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A B S T R A C T

New categories can be discovered by transforming semantic features into synthesized visual features without
corresponding training samples in zero-shot image classification. Although significant progress has been made
in generating high-quality synthesized visual features using generative adversarial networks, guaranteeing
semantic consistency between the semantic features and visual features remains very challenging. In this
paper, we propose a novel zero-shot learning approach, GAN-CST, based on class knowledge to visual feature
learning to tackle the problem. The approach consists of three parts, class knowledge overlay, semi-supervised
learning and triplet loss. It applies class knowledge overlay (CKO) to obtain knowledge not only from the
corresponding class but also from other classes that have the knowledge overlay. It ensures that the knowledge-
to-visual learning process has adequate information to generate synthesized visual features. The approach also
applies a semi-supervised learning process to re-train knowledge-to-visual model. It contributes to reinforcing
synthesized visual features generation as well as new category prediction. We tabulate results on a number of
benchmark datasets demonstrating that the proposed model delivers superior performance over state-of-the-art
approaches.
. Introduction

Humans can distinguish at least 30,000 basic object categories and
ny more subordinate ones (Biederman, 1987). Humans can also create
ew categories dynamically from a few or even zero examples (Fu et al.,
017). In contrast, most existing computer vision techniques require
ens of hundreds of labeled examples to learn a recognition model.
esides, it is difficult to guarantee that the recognition model is fully
rained for each category, especially since many new categories do not
ave samples. Inspired by the humans’ ability to recognize without
eeing the samples, the research area of zero-shot learning (ZSL) has
eceived increasing attention in recent years.

In ZSL, unseen categories without examples can be recognized by
ransferring knowledge obtained from the seen categories (Long et al.,
017). Specifically, ZSL is designed to find an intermediate knowl-
dge representation (e.g., attributes or textual features) to transfer the
nowledge learned from the seen categories to the unseen ones (Wang
t al., 2018). There are three paradigms for transferring knowledge:

(1) To use the semantic attributes to annotate images while new
ategories can be predicted by extracting and compositing semantic
ttributes from new examples (Lampert et al., 2009). However, the
erformance of these methods is rather primitive because the methods
re proposed at the early stage of ZSL, which cannot find a proper way
o integrate the attributes into the image.

∗ Corresponding author.
E-mail address: yangyun@ynu.edu.cn (Y. Yang).

(2) To use semantic embedding methods (Akata et al., 2013; Wang
et al., 2018; Ji et al., 2018; Fu et al., 2018; Chen et al., 2019) to
learn the mapping from visual space to the semantic space. Ref. Wang
et al. (2018) builds upon the recently introduced Graph Convolutional
Network (GCN) (Kipf and Welling, 2016) and proposes an approach
that uses both semantic embeddings and the categorical relationships to
predict the classifiers. Ref. Chen et al. (2019) proposes a novel zero-shot
learning model that forms a neighborhood-preserving structure in the
semantic embedding space and utilizes it to predict for unseen classes.
Ref. Fu et al. (2018) proposes a novel manifold distance computed
on a semantic class prototype graph, which takes into account the
rich intrinsic semantic structure. Other semantic embedding algorithms
have also been investigated such as semi-supervised max-margin learn-
ing frameworks (Li and Guo, 2015; Li et al., 2016) or multi-task
learning (Hwang et al., 2011; Jayaraman et al., 2014; Hwang and Sigal,
2014). However, semantic embedding always suffers from the domain
shift problem (Fu et al., 2015) since the learning process is over-fitted
with embedded attributes.

(3) To use knowledge-to-visual mapping technology to embed the
attributes or Wikipedia articles into an image, Ref. Kodirov et al. (2017)
reduces the domain shift and the overfitting problem, effectively. Most
state-of-the-art ZSL models are based on knowledge-to-visual map-
ping (Hu et al., 2019; Tao et al., 2017; Wang et al., 2018; Zhu et al.,
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2018; Xian et al., 2018; Huang et al., 2020), which can be classified
into GAN-based methods (Zhu et al., 2018; Xian et al., 2018; Huang
et al., 2020) and VAE-based methods (Wang et al., 2017; Verma et al.,
2018). GAN-based methods use category semantics and Gaussian noise
as inputs to the generator to generate visual features. The generator
is trained to perform a minimum–maximum game with the discrim-
inator. The VAE-based method associates the conditional generator
network with an additional encoder that approximates the posterior
distribution in order to infer the latent factors, and trains the two
models by maximizing the lower limit of variation. However, to our
best knowledge, the best result obtained from the state-of-the-art ZSL
models has only 12.5% accuracy in the Caltech UCSD Birds-2011(CUB)
dataset (a common dataset widely used for ZSL task) (Ji et al., 2018).
This value is slightly lower than that of the standard recognition tasks.
Consequently, there are still many challenges to be overcome in ZSL
models.

In this study, we identify two critical problems in the ZSL process
that might affect its performance. The first problem is inadequate
knowledge, which is caused by two aspects. On the one hand, the
semantic features are not enough to describe the fine-grained visual
features of a category; on the other hand, the semantic features and
visual features are not fully expressed when embedded, especially in
two very similar categories with no difference in embedding space.
The second problem is inadequate examples. Because the seen classes
may rarely (or almost never) intersect the unseen classes, it is diffi-
cult to achieve better performance only by relying on the seen class
examples. Especially in the same attribute or text description, the visual
appearance may be significantly different. For example, pigs and zebras
have the same attribute ‘‘tail’’ semantically, but they are completely
different visually. In this study, to solve the first problem, we propose a
class knowledge overlay calculation method to gather more knowledge
from similar categories that help the model to learn more knowledge.
To solve the second problem, we propose a semi-supervised process
to generate synthetic examples to re-train the ZSL model that helps
the model to predict unseen categories. The experimental results show
that our approach outperforms the state-of-the-art methods in several
benchmark datasets. Succinctly, we highlight the contributions of the
work as following:

1. We propose a novel ZSL model based on knowledge-to-visual
learning that outperforms state-of-the-art models on several
benchmarks.

2. We propose class knowledge overlay (CKO) to obtain more
knowledge from similar categories that effectively improves the
effect of knowledge-to-visual learning.

3. We re-train the ZSL model by applying synthetic examples on a
semi-supervised learning (SSL) process. It significantly reinforces
category training and predicting.

2. Related works

A key idea of zero-shot learning is to find a appropriate embedding
space that seen and unseen classes can share. There are three types
of embedding in zero-shot learning approaches, which are to (a) map
from the visual feature space to the semantic space (Frome et al., 2013;
Fu et al., 2015; Mikolov et al., 2014; Socher et al., 2013; Zhang and
Saligrama, 2015), (b) or conversely (Ba et al., 2015; Pambala et al.,
2019; Xian et al., 2017; Zhu et al., 2018), (c) or jointly map from both
the visual and semantic space to common space (Yang and Hospedales,
2014; Lei Ba et al., 2015; Akata et al., 2015), respectively.

2.1. Semantic attributes

Semantic attributes refer to express a class or an instance using
attributes. ZSL uses attributes as side information and consists of two
steps: (1) to train the seen classes: gain knowledge about attributes; (2)
to inference the unseen classes: classify some unseen objects via known
2

knowledge. This is the first and most basic method of ZSL. In 2009, a
pioneering study on ZSL, Ref. Lampert et al. (2009), proposed direct at-
tribute prediction(DAP) and indirect attribute prediction(IAP). They are
the main forms of attribute-based learning which learns the attribute
classifier first and then seeks the most promising unseen class. Ref. Yu
and Aloimonos (2010) proposed an author-topic model to describe
the attribute-specific distributions of image features. Ref. Suzuki et al.
(2014) has proposed a weighted version of DAP based on the obser-
vation probability of the attributes. However, attribute-based learning
ignores the associations between different attributes, and it is more
accurate in predicting attributes than classes. Furthermore, attributes
need a large number of experts to label, which is inefficient. On the
contrary, our approach does not depend on any prior attributes.

2.2. Semantic embedding

Semantic embedding is a text-to-vector technique that can be used
for mapping the visual feature to semantic space. The semantic
embedding-based learning is one of the most widely used methods
(Frome et al., 2013; Fu et al., 2015; Mikolov et al., 2014; Socher
et al., 2013; Zhang and Saligrama, 2015). Attribute label embedding
(ALE) (Akata et al., 2013), proposed a label embedding framework
to solve the prediction of classes aiming at the attribute learning
directly. It not only takes attribute as side information but also takes
word vector and hierarchy label embedding(HLE) as side information.
Besides, inspired by ALE, Ref. Akata et al. (2015) proposed structured
joint embedding(SJE), a structured joint framework and used various
side information to replace the era of artificial annotation attributes
in ZSL tasks. In 2016, LatEm (Xian et al., 2016), a nonlinear model
of SJE, was proposed. It has a stronger expressive ability and can be
adapted to different types of samples. The semantic similarity embed-
ding (SSE) (Zhang and Saligrama, 2015) not only maintains semantic
consistency but also ensures the accuracy of classification. The above
studies directly transfer the visual feature space to the semantic space,
which leads to the problem of the large semantic gap problem. In 2017,
Ref. Kodirov et al. (2017) introduced semantic autoencoder(SAE), a
bidirectional encoding and decoding method that significantly reduces
the semantic gap. However, the experimental results of SAE are not
optimistic because the feature space transferring technique cannot
eliminate the semantic gap.

2.3. Semantic-to-visual mapping

Different from semantic embedding, semantic-to-visual mapping is
designed to learn the mappings from semantic space to visual space.
Currently, most approaches follow the idea of semantic-to-visual map-
ping (Ba et al., 2015; Pambala et al., 2019; Xian et al., 2017) and lead
a new era of ZSL. The Ref. Zhu et al. (2018) combined the generative
adversarial network (GAN) and ZSL to transform the ZSL problem into
an ‘‘imagination’’ problem. The method implements semantic-to-visual
mapping using ‘‘imagining’’ visual features from semantic features.
Other studies (Akata et al., 2016, 2015; Lei Ba et al., 2015; Romera-
Paredes and Torr, 2015b; Zhang et al., 2017; Zhu et al., 2018; Xie
et al., 2021; Xiang et al., 2021) show that these approaches yielded
optimistic results. However, these approaches cannot ‘‘imagine’’ the
visual features of the unseen classes if the corresponding semantics
have not appeared. In this study, we use both semantics from one class
and the ‘‘class knowledge overlay’’ to obtain more semantics from other
similar classes. This approach significantly enriches the semantics for
semantic-to-visual mapping.
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Fig. 1. Overall architecture: The approach first extracts semantic features by using the class knowledge overlay (CKO) (the green dotted part). In the module of knowledge-to-visual
learning (the dotted blue part), multi-layer perceptrons (MLPs) with noise is used to transform class knowledge into synthesized visual features. The discriminator distinguishes
the real and fake visual features and the correct classification labels. Finally, a semi-supervised learning mechanism (the dotted purple part) is used to iteratively select samples
from unseen classes and their predicted pseudo-labels to augment the training data. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 2. The example of similarity scores of Logger-Head Shrike with other classes.

. Methodology

The core of our approach is the design of a semantic-to-visual
earning model. The overall method is demonstrated in Fig. 1. First, vi-
ual features are extracted by fast region-based convolutional network
fast-RCNN)(Section 3.2). Then, semantic features are extracted from
ikipedia articles by CKO and TF–IDF (Section 3.3). Next, a GAN
odel is trained with triplet loss to ‘‘imagine’’ the synthetic visual

eatures from semantic features (Section 3.4). Finally, a semi-supervised
earning (SSL) algorithm is used to re-train the GAN model.

.1. Notations

Suppose there is a series of data points (𝑑, 𝑦) from the original
mage dataset 𝐷 and label 𝑌 respectively. We use subscripts 𝑢 and
to represent datasets of unseen and seen classes after splitting the

ataset, respectively. The visual features 𝑥 ∈ 𝑉 can be extracted by
sing original images 𝑑. The semantics of seen and unseen categories
re represented as 𝑡𝑠, 𝑡𝑢, which come from the semantic space 𝑇 . For
he 𝑖th class, the representation of the class name is 𝐸𝑖 ∈ 𝐸, where

is the sets of all class names. The goal of ZSL is to predict 𝑦
𝑢 e

3

ased on 𝑥𝑢 and 𝑡𝑢. Generator 𝐺 and discriminator 𝐷 are represented
s 𝑅𝑇 × 𝑅𝑀 → 𝑅𝑉 , 𝑅𝑉 → {0, 1} × 𝐿𝑐𝑙𝑠 where 𝑅𝑀 represents the

mapping relationship of semantic features into visual features, and
𝐿𝑐𝑙𝑠 represents the corresponding class labels in visual features 𝑉 . We
converted the parameters of 𝐺 and 𝐷 into 𝜃 and 𝜔.

3.2. Visual feature extraction

The visual features are extracted by the visual feature extraction
methods described below: the fast-RCNN framework and the VGG16
architecture are used as the backbones to detect seven parts of the
birds. First, the features of the input images 𝑑 ∈ 𝐷 are extracted by
VGG16. The proposed region of interest(ROI) pooling layer in Girshick
(2015) is input into an n-ways softmax layer and a boundary box
regression. Then, it is regarded as a detected visual feature when the
proposed area is larger than a confidence threshold; otherwise, it is
regarded as a missing part. Finally, the detected region is input into
the visual encoder subnet and eventually encoded into 512-dimensional
feature vectors for each part. The visual features of these seven parts are
concatenated together to form 3584-dimensional visual features 𝑥 ∈ 𝑉 .

3.3. Semantic feature extraction

Class knowledge overlay: The overall flow of the CKO algorithm
s shown in the Algorithm 1. First, the word2vec is applied to transform
ach class to a vector. Second, a cosine similarity is used to calculate
he similarity scores among the class vectors and the top-k similar
lasses of each class are ranked. Finally, the Wikipedia text of the
ategory is represented by concatenating its own Wikipedia text and the
ikipedia text of the top-k similar classes. Fig. 2 shows the similarity

esults of Logger-Head Shrike and other classes. Obviously, Logger-
ead Shrike has a high similarity score to Great-Gray Shrike, which
emonstrates that Great-Gray Shrike is likely to contain the knowledge
f Logger-Head Shrike.
Semantic embedding: The Wikipedia texts are tokenized into

ords, firstly. Then, some necessary preprocesses, such as removing
top words, porter stemmer, and tokenization (Porter, 2013), are ap-
lied to reduce inflected words to their word stem. Finally, the text
ncoder, TF–IDF, is used to extract and embed the semantic features.
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Algorithm 1: CKO algorithm
Input: The number of unique labels 𝑛, similarity ranking 𝑘, text

encoder 𝛷,word2vec model 𝑤2𝑣, class name of each class
𝐸, original Wikipedia articles of each class 𝐴𝑜 ;

Output: class knowledge overlay between classes 𝑆𝑀 ∈ 𝑅𝑛×𝑛,
overlay-based Wikipedia articles 𝐴𝑠, encoded text
vectors 𝛷(𝐴𝑠) ;

1 Initialize 𝑆𝑀 ← ∅, 𝐴𝑠 ← 𝐴𝑜;
2 for 𝑖 = 1; 𝑖 ≤ 𝑛; 𝑖 + + do
3 𝑠1 ← 𝑤2𝑣(𝐸𝑖);
4 for 𝑗 = 1; 𝑗 ≤ 𝑛; 𝑗 + + do
5 𝑠2 ← 𝑤2𝑣(𝐸𝑗 );
6 𝑆𝑀[𝑖][𝑗] ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠1, 𝑠2);
7 end
8 Rank 𝑆𝑀[𝑖] in descending order and select the top 𝑘 classes,

and mark them as 𝑘𝑐 ;
9 for 𝑐 = 1; 𝑐 ≤ 𝑘; 𝑐 + + do
10 Add the wikipedia article of class 𝑘𝑐 to 𝐴𝑖𝑠;
11 end
12 end
13 𝛷(𝐴𝑠) ← encoding 𝐴𝑠 with TF–IDF encoder;
14 Return 𝑆𝑀 , 𝐴𝑠, 𝛷(𝐴𝑠) ;

3.4. Knowledge-to-visual learning

Visual feature generation: Text encoder 𝜙 is used to embed texts.
The embedded texts 𝜙(𝑇𝑐 ) are used as input to a generator (𝐺 for short),
which is a multi-layer perceptron with random noise 𝑧. Through this
process, visual features 𝑥 can be generated by 𝐺𝜃(𝑇𝑐 , 𝑧).

Because of the sparsity of training data (about 60 pictures per class
of CUB datasets, and the distribution of visual features has about 3500
dimensions), it is difficult for the generator to achieve good results in
transforming class knowledge into visual features. Ref. Zhu et al. (2018)
reported that classes have the following characteristics in the visual
space: the distance of intra-classes is short, the distance of inter-classes
is long, and an overlap rarely occurs. Therefore, a new constraint can
be added to the knowledge-to-visual features generation to make the
synthetic visual features have the same visual distribution as the seen
classes. The constraint is defined as follows:

𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑙𝑜𝑠𝑠 = 𝑚𝑎𝑥
(

1
𝐶

𝐶
∑

𝑐=1

(

1
𝑛

𝑛
∑

𝑖=1
𝑑𝑖𝑠𝑡(𝑥𝑐𝑠 , 𝑥

𝑐,𝑖
𝑠 )

− 1
𝑚

𝑚
∑

𝑖=1
𝑑𝑖𝑠𝑡(𝑥𝑐𝑠 , 𝑥

𝑐,𝑖
𝑠 )

)

+𝑚𝑎𝑟𝑔𝑖𝑛, 0
)

(1)

here 𝐶 is the number of seen classes, 𝑥𝑐,𝑖𝑠 is the 𝑖th visual feature of
lass 𝑐, 𝑥𝑐𝑠 denotes the synthetic-visual features of category 𝐶 in the seen
lass, 𝑐 denotes a class that does not belong to class 𝑐, 𝑚𝑎𝑟𝑔𝑖𝑛 represents
he minimum distance between two different class clusters, and 𝑑𝑖𝑠𝑡
epresents any measure. In this study, Euclidean distance is used as a
easure. Finally, the loss of generator is defined as:

𝐿𝐺 =E[𝐷𝜔(𝐺𝜃(𝑇 , 𝑧))] − E[𝐷𝜔(𝑥)]

+ 1
2
(𝐿𝑐𝑙𝑠(𝐺𝜃(𝑇 , 𝑧)) + 𝐿𝑐𝑙𝑠(𝑥)) + 𝜆𝑡𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑙𝑜𝑠𝑠

(2)

where the first two terms approximate Wasserstein distance of the
distribution of real features and fake features, the third and fourth
terms are classification losses of real and synthesized features. 𝜆𝑡 is a
egularization coefficient.
Discriminator: The discriminator (𝐷𝜔 for short) accepts two inputs:

ake visual features from 𝐺 or real visual features from images. Then it
ropagates them forward to a full connection layer with a ReLu activa-
or. Next, two subnetworks are used to distinguish whether features are
eal or fake and classify the category label of these features. The loss
unction of 𝐷 is the same with the previous work (Zhu et al., 2018).
𝜔 i

4

.5. Semi-supervised learning

During each SSL iteration, a conventional classifier are trained
y using examples from (𝐺(𝑡𝑢, 𝑧), 𝑦𝑢). In this paper, the conventional
lassifier is k-Nearest Neighbor model. Then, the classifier predicts
seudo-labels, which have highest class probability in all classes, for
ach unseen class sample in 𝑑𝑢. Those samples whose class probability
s above a certain threshold are stored in a set of 𝐷𝑝 = {(𝐷𝑠, 𝑦𝑢)}. In the
ext training, the training set 𝐷𝑠 is updated to 𝐷𝑠 ∪𝐷𝑝. Because at the
eginning of training, the model only trains the seen classes data. After
he semi-supervised learning, the unseen classes with pseudo labels will
e added to the training set. If the pseudo label is marked as unseen
lass, then a new class is introduced in the training set. So we need to
ynamically add new neurons to the subnetwork in the discriminator,
hich are used to classify new classes, and include this new category
hen calculating the triplet loss. The detailed training process of GAN
ith SSL is shown in Algorithm 2.

Algorithm 2: Semi-supervised Learning for synthetic examples
training

Input: inter-class distance 𝑚𝑎𝑟𝑔𝑖𝑛, confidence threshold 𝜓 ,the
maximal loops 𝑁𝑠𝑡𝑒𝑝, early stopping coefficient 𝑝, the
number of iterations for SSL 𝑁𝑠𝑠𝑙, the batch size 𝑚, Adam
hyperparameters 𝛼, 𝛽1, 𝛽2 ;

1 Initialize 𝑝← 100, 𝑛𝑑 ← 5, 𝛼 ← 0.001, 𝛽1 ← 0.5, 𝛽2 ← 0.9 ;
2 for 𝑖 = 1; 𝑛 ≤ 𝑁𝑠𝑠𝑙; 𝑖 + + do
3 for 𝑠𝑡𝑒𝑝 ← 1; 𝑠𝑡𝑒𝑝 ≤ 𝑁𝑠𝑡𝑒𝑝&&𝑝𝑐𝑜𝑢𝑛𝑡 ≤ 𝑝; 𝑠𝑡𝑒𝑝 + + do
4 for 𝑗 = 1; 𝑗 ≤ 5; 𝑗 + + do
5 Sample a minibatch of 𝑚 images 𝑥, matching texts 𝑇 ,

random noise 𝑧 ;
6 𝑥← 𝐺𝜃(𝑇 , 𝑧) ;
7 Compute the discriminator loss 𝐿𝐷 ;
8 𝜔← 𝐴𝑑𝑎𝑚(▽𝜔[𝐿𝐺], 𝜃, 𝛼, 𝛽1, 𝛽2);
9 end
10 Initialize each set in {𝑃𝑜𝑠𝑐𝑠𝑒𝑡}

𝐶
𝑐=1 to ∅, {𝑁𝑒𝑔𝑐𝑠𝑒𝑡}

𝐶
𝑐=1 to ∅,

𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑙𝑜𝑠𝑠 = 0 ;
11 Sample a minibatch of 𝑚 class labels 𝑐, matching texts 𝑇𝑐 ,

random noise z ;
12 𝑥← 𝐺𝜃(𝑇𝑐 , 𝑧) ;
13 Compute the generator loss 𝐿𝐺 ;
14 for 𝑗 = 1; 𝑗 ≤ 𝑚; 𝑗 + + do
15 Select 𝑛1 images 𝑝𝑜𝑠 of the same classes as 𝑐𝑗 and 𝑛2

images 𝑛𝑒𝑔 of different classes from 𝑐𝑗 ;
16 𝑃𝑜𝑠𝑗𝑠𝑒𝑡 ← 𝑝𝑜𝑠,𝑁𝑒𝑔𝑗𝑠𝑒𝑡 ← 𝑛𝑒𝑔 ;
17 𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑙𝑜𝑠𝑠+ = 𝑚𝑎𝑥( 1

𝑛1

∑𝑛1
𝑡 ||𝑥𝑗 − 𝑃𝑜𝑠

𝑗,𝑡
𝑠𝑒𝑡||2 −

1
𝑛2

∑𝑛2
𝑡 ||𝑥𝑗 −

𝑁𝑒𝑔𝑗,𝑡𝑠𝑒𝑡||2, 0) + 𝑚𝑎𝑟𝑔𝑖𝑛
18 end
19 𝜃 ← 𝐴𝑑𝑎𝑚(▽𝜃[𝐿𝐺], 𝜃, 𝛼, 𝛽1, 𝛽2);
20 Calculate the accuracy of seen classes and determine

whether to stop early ;
21 end
22 Sample unseen images 𝑥𝑢, matching texts 𝑇𝑡𝑒𝑠𝑡 ;
23 Train conventional classifier 𝑀𝑜𝑑𝑒𝑙 using 𝑥𝑢 ;
24 𝑦𝑝𝑟𝑜 ←𝑀𝑜𝑑𝑒𝑙.𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑇𝑡𝑒𝑠𝑡) ;
25 add 𝑥𝑢[𝑦𝑝𝑟𝑜 ≥ 𝜓] and corresponding texts to 𝑥𝑠 ;
26 Modify discriminator model structure ;
27 end

3.6. Training and testing

Training: Semantic features are extracted using the proposed class
nowledge overlay(CKO), and visual features are extracted through real
mages and generators. Then, ACGAN is trained with 𝑛𝑖𝑡𝑒𝑟 iterations,
ncluding the training generator’s ability to generate visual features
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Fig. 3. An example of class knowledge overlay between different classes of CUB. The 𝑥-
xis and 𝑦-axis represent classes selected from the CUB dataset, respectively. Each lattice
epresents the knowledge overlay of the corresponding 𝑥-axis and 𝑦-axis categories: the

darker the color, the higher the knowledge overlay; the lighter the color, the lower the
knowledge overlay. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

using semantic features with tripletloss, and the training discriminator
to judge visual features as fake or real and predict the class labels. After
the ACGAN training is completed, the generator uses the visual features
generated by the semantic features of unseen classes and the corre-
sponding semantic labels to train the traditional classifier(eg. Decision
Tree, SVM, . . . ). The trained classifier will give the label probability for
visual features of the unseen class. For labels with a probability higher
than a certain threshold, their visual features are added to the training
set. Repeat the above process until the 𝑛𝑠𝑠𝑙 semi-supervised process is
executed.

Testing: After training, we obtain the generation model 𝐺, which
an transform semantic features of classes into synthetic visual features.
n the testing process, the model compares the real visual features (from
he new coming image) with the synthetic visual features (from the text
f class). Then, the model decides the class of the new coming image.

. Experiments

.1. Experimental setup

.1.1. Datasets
Our approach was compared with the state-of-the-art methods on

wo benchmarks: Caltech UCSD Birds-2011(CUB) and North America
irds(NAB). The CUB dataset contains 200 fine-grained classes of the
irds with 11,788 images. The NAB dataset is a larger dataset of 48,562
mages across 1011 bird classes. Besides, the raw textual sources from
nglish Wikipedia-v01.02.2016 are adopted. Fig. 3 shows the class
nowledge overlay of CUB dataset. The class knowledge is embedded
nto vectors by using word2vec. The overlay is calculated by using
uclidean distance. This obviously shows that CKO not only integrates
he semantic features of the same parent category (such as black-footed
lbatross and laysan albatross, up to 88% similarity), but also integrates
he semantic features of different parent categories with high similarity
laysan albatross and parakeet auklet, up to 74% similarity), and class
verlay of category information of different superclass can add more
emantic features.

.1.2. Split methods
In zero-shot learning, there are two commonly used training/testing

et segmentation methods: Super-Category-Shared splitting (SCS) and
uper-Category-Exclusive splitting (SCE), which are used in Elhoseiny
5

Table 1
The hyperparameters of the model under different settings. 𝑚𝑎𝑟𝑔𝑖𝑛 denotes the distance
between different classes of sample clusters in triplet loss; 𝑡𝑜𝑝𝐾 denotes the overlay of
K class texts; 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 denotes the threshold for semi-supervised learning to select
samples.

Parameters CUB NAB

SCS SCE SCS SCE

Margin 0.1 0.1 0.2 0.1
topK 4 1 3 1
Confidence 0.5 0.7 0.6 0.4

et al. (2017), Hu et al. (2019), Ji et al. (2018) and Zhu et al. (2018). In
the case of SCS-split, there are more than one seen class belonging to
the same super category for each unseen class. For example, the classes
‘‘Tennessee Warbler’’ and ‘‘Wilson Warbler’’ are in the training set and
in the testing set, respectively, but the super category is ‘‘Warbler’’ in
CUB2011. Same as CUB2011, ‘‘Cooper’s Hawk’’ in the training set and
‘‘Harris’s Hawk’’ in the testing set have the same super category ‘‘Hawk’’
in NABirds. Compared with SCS, in the case of SCE-split, the classes
with the same super category either belong to the training set(seen) or
to the testing set(unseen). For instance, if ‘‘Caspian Tern’’ is selected
as the training set, then all other terns are selected as the training set.
Therefore, in SCE, the correlation between the seen and unseen classes
is minimal. Consequently, the classification accuracy based SCE-split is
lower than the SCS-split.

4.1.3. Evaluation metric
In this study, top-1 accuracy is used to evaluate the predictive

performance of the model. Top-1 accuracy has been widely used in
existing works (Elhoseiny et al., 2017; Li et al., 2018; Meng and Guo,
2018; Sariyildiz and Cinbis, 2019; Xian et al., 2017) to choose the
highest prediction probability as the final result.

4.1.4. Implementation details
Semantic features: In this study, the Wikipedia text was used as

side information to match some visual features with the words in it.
Although Wikipedia texts are more expressive and discriminating than
attribute representations, they usually have more noise. In this case, the
methods described in Section 3.3 were used to process the Wikipedia
texts. Then, TF–IDF was used to extract the semantic features from the
processed texts. The dimension of these features is 7551 and 13,217 in
CUB2011 and NAB Wikipedia datasets, respectively.

Visual features: There are seven parts of the input image, (1)
ead, (2) back, (3) belly, (4) breast, (5) leg, (6) wing, and (7) tail
or capturing the different characteristics of birds. For each part of
he bird, a 512-dimensional vector can be obtained after applying the
ulti-Layer Perceptron(MLP) with two hidden layers(each with a size

f 512). For the CUB2011 dataset, seven bird parts were used as visual
eatures, whereas in the NAB dataset, the ‘‘leg’’ part was deleted since
here are no annotations for the ‘‘leg’’ part in the NAB dataset. The
emaining six parts were retained as visual features. Therefore, the
eature dimensions extracted from CUB2011 and NAB datasets were
584 and 3072, respectively.
Model setting: The seen dataset is divided into training set and

alidation set according to the ratio of 9:1. The semantic features were
nput into a MLP in the semantic-to-visual generation method. Firstly,
he MLP used a 1000-dimensional full connection layer to reduce the di-
ensions of the semantic features. Then random noise was added to the

emantic features of dimension reduction. Finally, two full-connection
ayers with LeakyRelu and Tanh were used to generate visual features.
able 1 shows the hyperparameters of our method under different
ettings. For the study of hyperparameters see Section 4.5. Our model
s trained with Adam, using the default parameters 𝛽1 = 0.9, 𝛽2 = 0.999,
nd the learning rate 𝜂 = 0.001. And 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = 10000 and 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 =
000 are set. The KNN model (K = 20) was trained to evaluate the
een class and the unseen class in every 40 iterations. The unseen
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Table 2
Top-1 accuracy (%) on CUB and NAB datasets with two split settings.

Methods CUB NAB

SCS SCE SCS SCE

ZSLNS (Qiao et al., 2016) 29.1 7.3 24.5 6.8
SynCfast (Changpinyo et al., 2016) 28.0 8.6 18.4 3.8
ZSLPP (Elhoseiny et al., 2017) 37.2 9.7 30.3 8.1
GAN-ZSL (Zhu et al., 2018) 43.7 10.3 35.6 8.6
CorrectionNet (Hu et al., 2019) 45.8 10.0 37.0 9.5
S2GA-DET (Ji et al., 2018) 42.9 10.9 39.4 9.7
CIZSL (Elhoseiny and Elfeki, 2019) 44.6 14.4 36.6 9.3
CANZSL (Chen et al., 2020) 45.8 14.3 38.1 8.9
GDAN (Huang et al., 2019) 44.2 13.7 38.3 8.7
GAN-CST 46.1 14.1 38.6 10.4

class accuracy, which the highest generalized accuracy of the seen class
in validation set corresponds to, was selected as the final result. The
generalized accuracy is calculated as follows:

𝐺𝑎𝑐𝑐 =
1
𝑚

𝐽
∑

𝜆

1
𝑁

𝑁
∑

𝑛=0
𝐼
(

argmax
( 𝑛𝑐𝑙𝑠

∑

𝑖=𝑛𝑡𝑐𝑙𝑠

�̂�𝑖𝑛 + 𝜆
)

== 𝑦𝑛

)

(3)

here, 𝑚 = 𝐽−𝜆
𝛿 , the 𝛿 presents the update frequency of 𝜆. 𝑁 denotes

he sample numbers of a seen classes, 𝑛𝑐𝑙𝑠 denotes the number of all
lasses, 𝑛𝑡𝑐𝑙𝑠 denotes the seen classes number, �̂�𝑖𝑛 denotes the prediction
robability of the 𝑛th sample on the 𝑖 class, 𝑦𝑛 denotes the real class
abel of the 𝑛th sample. Argmax function indicates the predictive label
f �̂�. In this study, we set 𝜆 = −2, 𝐽 = 2 and 𝛿 = 0.01.

.2. Performance evaluation

.2.1. Comparative methods
Nine latest methods were used in the comparisons with our meth-

ds: ZSLNS (Qiao et al., 2016), SynCfast (Changpinyo et al., 2016),
SLPP (Elhoseiny et al., 2017), GDAN (Huang et al., 2019), CIZSL (El-
oseiny and Elfeki, 2019), CANZSL (Chen et al., 2020), GAN-ZSL (Zhu
t al., 2018), CorrectionNet (Hu et al., 2019), S2GA-DET (Ji et al.,
018). All the comparisons used the same splits. For the first three
ethods, we cite the results from Zhu et al. (2018). The results of

ast five methods are cited in their respective papers, which report
he maximum of the results. For GDAN, we reproduce report the best
esults by using source code it provide.

The performance of our method (GAN-CST) was evaluated on two
enchmark datasets by using two segmentation methods: SCE and SCS.
s shown in Table 2, compared to the state-of-the-art methods, GAN-
ST obtain the best result in SCS-split on CUB dataset and SCE-split
n NAB dataset, which increases by 0.66% and 7.22%. Compared with
he latest generative ZSL methods (CIZSL, CANZSL, GDAN), except
or the slightly lower SCE-split of CUB dataset, 14.1% vs. 14.4%, our
ethod exceeds these methods by up to 11.83%. Since there are some

orrelations between the training set and the test set in the SCS-split,
t is difficult to detect more correlations by adding some test samples
nto the training dataset with semi-supervised learning. Therefore, the
mprovement of GAN-CST is not apparent on the SCS-split. However,
ome improvements were still achieved compared to the GAN-ZSL
ethod in the SCS-split.

.2.2. Ablation study
Extensive ablation experiments were conducted to observe the ef-

ect of triplet loss(TL), class knowledge overlay(CKO), semi-supervised
earning(SSL) and their combinations on the results. Table 3 illustrates
he results of the ablation studies. Note that ACGAN is our basic
tructure. Obviously, our method after adding each component exceeds
CGAN, which shows the effectiveness of each of our components.

n addition, the table also shows that the combination of multiple
omponents can improve the performance of the model in most cases.
herefore, the superposition of the methods has a positive correlation
ith the final prediction accuracy.
6

Table 3
Ablation study. The top-1 accuracy of different combinations is tabulated. TL, CKO, and
SSL represent the triplet loss, class knowledge overlay, and semi-supervised learning,
respectively.

Method CUB NAB

SCS SCE SCS SCE

ACGAN 43.7 10.3 35.6 8.6
ACGAN (+TL) 44.1 11.6 35.9 8.9
ACGAN (+CKO) 44.6 12.1 37.3 9.3
ACGAN (+SSL) 43.8 10.9 36.6 8.8
ACGAN (+CKO+SSL) 44.9 11.6 36.2 9.2
ACGAN (+CKO+TL) 44.3 13.1 38.1 8.1
ACGAN (+SSL+TL) 44.6 13.3 36.5 9.7
GAN-CST 46.1 14.1 38.6 10.4

Table 4
AUSUC (%) on CUB and NAB datasets with two split settings.

Methods CUB NAB

SCS SCE SCS SCE

ZSLNS (Qiao et al., 2016) 14.7 4.4 9.3 2.3
SynCfast (Changpinyo et al., 2016) 13.1 4.0 2.7 3.5
ZSLPP (Elhoseiny et al., 2017) 30.4 6.1 12.6 3.5
GAN-ZSL (Zhu et al., 2018) 35.4 8.7 20.4 5.8
CorrectionNet (Hu et al., 2019) 41.9 9.0 25.4 7.6
CIZSL (Elhoseiny and Elfeki, 2019) 39.2 11.9 24.5 6.4
CANZSL (Chen et al., 2020) 40.2 12.5 25.6 6.8
GDAN (Huang et al., 2019) 38.7 10.9 24.1 5.9
GAN-CST 40.5 12.7 24.9 7.9

4.3. Generalized zero-shot learning

In the ZSL domain, it is not sufficient to only consider the perfor-
mance of the unseen classes. A more generalized evaluation criterion
is needed. In Zhu et al. (2018), a generalized evaluation metric, which
considers the accuracy of the seen and unseen classes, was proposed
for ZSL. A balance parameter was used to draw the curves of the seen
and unseen classes(SUC, the accuracy of the seen classes is the vertical
axis and the accuracy of the unseen classes is the horizontal axis), and
the area under SUC (AUSUC) was used to represent the generalization
ability of the ZSL model. Table 4 shows the AUSUC scores between
our method and the other methods. The AUSUC score of our method
increased by 1.6% and 3.95%, respectively, on two benchmark datasets
with SCE splitting compared to the other methods. In the SCS-split,
our method is slightly lower than CorrectionNet and CANZSL, only
1.4% and 0.7%, but still surpasses a large number of the state-of-the-art
methods.

We also evaluate the AUSUC scores of each component in our
method. Fig. 4 shows that the effect of triplet loss on the result
performance is relatively stable, while the performance of CKO and SSL
methods changes greatly. This is because the CKO and SSL sometimes
introduce some noise that affects the training of the model. However,
the generalization of each combination reached the state-of-the-art
standard.

In addition, we use another GZSL setting that emerges recently to
evaluate the proposed method on AwA1 and AwA2 datasets. These two
datasets are based on attribute and respectively contain 30,475 and
37,322 images of 200 animals with 40 seen and 10 unseen classes with
85-dimensional attributes. In this setting, test set includes data samples
from both the seen and unseen classes. We follow the same setting
in Xian et al. (2017), which adopt the average per-class top-1 accuracy
S and U, as well as their harmonic mean to evaluate the performance
of the model and combines the seen and unseen classes as the search
space. The Table 5 shows that the proposed method compared with
seven latest methods. The results show our GAN-CST exceeds a large
number of the latest method. Especially in the S of AwA1 dataset and
S and H of AwA2 dataset, the best performances are achieved, which

are 97.2%, 94.0% and 85.6%, respectively. An obvious rule can be
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Fig. 4. AUSUC scores of our approach on two benchmark datasets with two split settings. TL, CKO, and SSL represent the triplet loss, class knowledge overlay, and semi-supervised
learning, respectively.
Table 5
Comparative results (%) of state-of-the-arts with the same setting used in Xian et al.
(2017). U and S are the Top-1 accuracies tested on unseen classes and seen classes,
respectively. H is the harmonic mean of U and S. The hyperparameters are margin =
200, k = 1 and confidence = 0.9.

Methods AwA1 AwA2

S U H S U H

f-CLSWGAN (Qiao et al., 2016) 61.4 57.9 59.6 68.9 52.1 59.4
CADA-VAE (Changpinyo et al., 2016) 72.8 57.3 64.1 75.0 55.8 63.9
LisGAN (Elhoseiny et al., 2017) 76.3 52.6 62.3 – – –
GMN (Zhu et al., 2018) 79.2 70.8 74.8 – – –
GXE (Hu et al., 2019) 89.0 87.7 88.4 90.0 80.2 84.8
CE (Elhoseiny and Elfeki, 2019) 87.7 71.2 78.6 86.1 71.3 78.0
Deep-CDM (Chen et al., 2020) – – – 82.5 77.6 80.0
GAN-CST (Chen et al., 2020) 97.2 73.9 84.0 94.0 78.6 85.6

observed: our GAN-CST improves the U accuracy while ensuring a high
S accuracy. Although AwA1 has achieved better performance on U and
H compared to our method, the performance of our method on S far
exceeds it, and the accuracy on S is almost 100%. This shows that our
method can well retain the discriminative features of seen classes while
improving the performance of unseen classes.

4.4. Zero-shot retrieval

The task of zero-shot retrieval means to retrieve the relevant images
from unseen classes giving the semantic representation of the specified
class in unseen class set. We use mean average precision (mAP) to
evaluate the performance. For comparing with other methods fairly,
we report the performance of different settings in Table 6: retrieving
25%, 50%, 100% of the number of images for each class from the
whole dataset are ranked based on their final semantic similarity scores.
7

Fig. 5. Visualization samples of zero-shot retrieval with our approach. The first three
rows are classes from CUB dataset, and the rest are classes from NABird dataset. Correct
and incorrect retrieved instances are marked in light green and red, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

The precision is defined as the ratio of the number of correct retrieved
images to that of all retrieved images.

Table 6 presents the comparison results of different approaches
for mean accuracy precision (mAP) on CUB and NABird datasets. We
note that the proposed approach has achieved consistent improvement
compared with GAN-ZSL and beats all the competitors.

We also visualize some qualitative results of our approach on two
datasets, shown in Fig. 5. Each row is a class, and the class name and
precision are shown on the left. The first column is the benchmark.
The following five columns are Top-5 without considering the instances
in the first column. Some instances are hard to distinguish even for
humans, but the model can recognize. For example, the top-5 retrieval
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Fig. 6. Generalized Accuracy on two benchmark datasets with SCS-split.

Fig. 7. Generalized Accuracy on two benchmark datasets with SCE-split.

8
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Table 6
Zero-shot retrieval mAP (in %) comparison on CUB and NAB datasets. The results of
all the competitors are cited from Zhu et al. (2018).

Methods CUB NAB

25 50 100 25 50 100

ESZSL (Romera-Paredes and Torr, 2015a) 27.9 27.3 22.7 28.9 27.8 20.9
ZSLNS (Qiao et al., 2016) 29.2 29.5 23.9 28.8 27.3 22.1
ZSLPP (Elhoseiny et al., 2017) 42.3 42.0 36.6 36.9 35.7 31.3
GAN-Only (Zhu et al., 2018) 18.0 17.5 15.2 21.7 20.3 16.6
GAN-ZSL (Zhu et al., 2018) 49.7 48.3 40.3 41.6 37.8 31.0
GAN-CST 51.6 50.4 43.6 44.9 41.3 35.0

Table 7
Hyperparameters settings. TL, CKO and SSL represent triplet loss, class knowledge
overlay and semi-supervised learning respectively.

Methods Parameters Candidate values

1 TL Margin 0 to 0.8 with an interval of 0.1
2 CKO k 1, 2, 3, 4, 5
3 SSL Confidence 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8

images of class ‘‘Northern Waterthrush’’ are all from their ground truth
class since their visual features are similar. However, the query ‘‘Moun-
tain Bluebird’’ retrieves some instances from its affinal class ‘‘Florida
Scrub Jay’’ since their visual features are too similar to distinguish.

4.5. Hyperparameter study

In this section, different hyperparameters were set to observe their
impact on the performance of our model. Three groups of experiments
were conducted. The hyperparameter settings are shown in Table 7.
Figs. 6 and 7 show the generalized accuracy curves with different
splitting methods and different hyperparameters in two benchmark
datasets. The horizontal axis represents the values of the hyperparam-
eters, while the vertical axis represents the generalization accuracy
of the seen classes (calculated by formula (3)). The values of the
hyperparameters corresponding to the highest generalization accuracy
are set as the parameters of the model. Table 1 summarizes the values
of the hyperparameters in all groups. Our method is more robust than
the other methods because of the gaps in the accuracy of the unseen
classes with different hyperparameter settings.

5. Conclusion

In this study, we developed a novel approach to solve the challeng-
ing zero-shot learning tasks. Our approach uses an ACGAN to transform
semantic features into visual features. Meanwhile, class knowledge
overlay and semi-supervised learning were used to solve the problem of
the semantic consistency between the semantic features and visual fea-
tures, respectively. Furthermore, triplet loss was introduced to expand
the inter-class distances and shorten the intra-class distances. Extensive
experiments showed that our approach significantly outperforms the
state-of-the-art models on multiple zero-shot tasks. Our future works
may focus on: (1) applying a sophisticated visual feature generation
method to improve the quality of synthesized visual part; (2) instead
of text embedding, knowledge graph embedding would be applied to
enhance the ability of semantic representation.
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