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the DNNs. To alleviate this problem, we propose a robust classification model against
transfer attacks based on the framework of variational Auto-Encoders (VAEs) which are
probabilistic generative models and have been successfully used to a large mount of tasks.
Specifically, our model simulates the data generative process with several multivariate

ﬁz}\/,v;;)sr:rsi;l examples Gaussian distributions and DNNs: (1) We assume that the latent embedding generated
Robustness P by an encoder (a DNN) of each category corresponds to a multivariate Gaussian distribu-
Transfer attacks tion. (2) A decoder (a DNN) is proposed to decodes the latent embedding into an observable.
VAEs (3) Theoretical analysis illustrates that our model can predict data’s labels by maximizing

the lower bound on the log-likelihood for each category utilizing Bayes’ theorem with
excellent robustness against transfer attacks. Inference in our model is done in a variational
way so the Stochastic Gradient Variational Bayes (SGVB) estimator and reparamerization
trick can be utilized to optimize the evidence lower bound (ELBO). The experiments with
quantitative comparisons show that our approach reaches state-of-the-art with signifi-
cantly better robustness.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Given adequate data and computing power, deep neural networks (DNNs) have been demonstrated their potential to sur-
pass human-level capability on image classification [10,34,35,38]. However, as is well-realized, DNNs still have plenty of
flaws, one of which is their excessive sensitivity to adversarial examples [2,6,9,20,33]. In general, a primary branch of adver-
sarial attacks is white-box attacks and black-box attacks. In white-box setting, all the information of the target model is
known while there are no or limited knowledge in black-box setting. In many real world condition, black-box attacks are
more challenging.
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Numerous black-box attacks have been proposed to fool the target model [3,6,22]. A common idea is to use a surrogate
model instead of the target model to craft adversarial examples, which is termed as transfer-based attack. Su et al. have
shown that adversarial examples transfer between models through sufficient experiments [31]. And Liu et al. have proposed
transfer-based attack for real-world image classification system [18].

Nowadays, scholars have designed defense techniques against adversarial attacks to alleviate this security issue
[19,24,28]. Among these, adversarial training is the most extensively investigated approach to increase the robustness of
DNNs [13,36]. Meanwhile, generative models are proposed to detect adversarial examples [29] and improve robustness such
as denoise auto-encoder [14].

However, there have been few recent studies on the robustness of generative classification models to adversarial exam-
ples, where such a classifier clearly created the conditional distribution of the input for given targets [16]. The classifier need
to use Bayes’ rule to transform a generated model into a discriminator, which makes predictions for a given input by com-
paring the probabilities of the labels. This is strongly linked to the “distance” of the input to the data manifold combined with
a category. Therefore, generative classifiers ought to robust on many adversarial examples lately proposed if the “off-
manifold” conjecture applies for many practical applications [16].

Inspired by recent researches [16,27], we propose a high robust classifier against transfer-based attacks under the frame-
work of variational Auto-Encoder (VAE) which is one of the most prevalent generative models combined with deep learning.
VAE:s are successfully used to a large mount of tasks such as image generation [25], text generation [39], speech production
[32], recommender system [15], and semi-supervised classification [42]. The encoder-decoder architecture of the VAEs
allows it to learn the latent representation of high dimensional data inputs in the contiguous space, which makes the process
of sampling from this latent space very straightforward.

Specifically, our model simulates the data generative process with several multivariate Gaussian distributions and DNNs.
We assume that the latent embedding which are generated by an encoder (a DNN) of each category corresponds to a mul-
tivariate Gaussian distribution. Then a decoder (another DNN) is proposed to decode the latent representation into an
observed variable. At last we can predict data’s labels by chosing the largest posterior probability of all classes using Bayes’
rule. Inference in our model is done in a variational way so we can utilize the Stochastic Gradient Variational Bayes (SGVB)
estimator and reparamerization trick to optimize the evidence lower bound (ELBO). We quantitatively analyze the resistance
of our model to transfer attacks, and experiments with quantitative comparisons show that our method reaches state-of-the-
art (on MNIST and Fashion-MNIST datasets among all models, on CIFAR-10 dataset among generative classification models)
with significantly better defense against transfer-based attacks. Our major contributions can be summarized as follows:

e We can get the ELBO of VAEs through calculating the mismatch between the true joint distribution and the variational
joint distribution, which is very helpful for us to derive our model.

e We propose an image classification approach within the framework of VAE, which considering a Gaussian mixture prior
on the latent variable.

e We quantitatively analyze the resistance of our model to transfer-based adversarial examples. Experimental results prove
that our model reaches state-of-the-art with significantly better robustness.

This paper is organized as follows. The background of VAEs and adversarial attack and defense methods are given in Sec-
tion 2. Our method is discussed in Section 3, where it mainly discusses the mechanism and robustness of our model. Exper-
iments are implemented to illustrate the effectiveness of the proposed method in Section 4. The conclusion is given in
Section 5.

2. Background

In this section we provide background on VAEs and some effective adversarial attack and defense methods on DNNs.

2.1. Variational Autoencoder
A VAE is composed of two networks that encode an input x to a latent variable z and decode the latent embedding which
sampled by a posterior distribution back to the inputs space, respectively:

z ~ encoder(x; @) = p(z|x), (M)

% ~ decoder(z; ©) = q(x|z). 2)

The VAEs regularize the encoder by applying a prior on the latent distribution p(z) which generally chooses z ~ N (0,I).
VAEs estimate the log-likelihood log p(x) by learning a probabilistic generative model p(x|z) with latent variables z:

logp(X) > L = Ez-pem log q(x|2)] — KL(p(2[%)[[p(2)), 3)

where KL is the Kullback-Leibler divergence, and £ is the so-called ELBO on the log-likelihood which consists of two parts: a
reconstruction error and the mismatch between the true posterior and the variational.
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2.2. Adversarial examples

Adversarial examples which were first proposed by Szegedy [33] are commonly found in DNNs. The pixel values of the
input image change slightly, and the modified new image can still be distinguished by the human eyes, but the neural net-
work model will misclassify it with high confidence. The changed image that leads to the misclassification is an adversarial
example.

Liu et al. defined transferability that is the percentage of the adversarial examples generated from source model to mis-
classify target model [18]. Transfer attacks are based on the transferability of DNNs.

For mathematical definition, we want to find a minimum perturbation term é which is added to the original sample x to
get an adversarial example x*. In general, the method of seeking adversarial example can be turned into an optimization
problem:

6 =min|x — x*

{ min % — ¥, )
s.t. f(x) = f(x),

where f(-) is a classification result of deep neural network model and |-[|,, is the ¢, norm of a vector.

If the target model structure and parameters are known, we can get the adversarial examples by gradient-based method
such as the fast gradient sign method (FGSM) [9] when there is ¢,, norm:

5 = esign(Va] (0,x,y)), (5)

where ||x* — x| < €, and J(0,,Y) is the loss function of the target model. An adversarial example can be generated by FGSM
through performing gradient calculations once, which is very fast. But the success rate of FGSM sometimes is not very high.
To enhance FGSM'’s performance, Kurakin et al. proposed iterative FGSM (I-FGSM) [13] that iteratively calculated FGSM with
a finer direction and could be regarded as a projected gradient descent (PGD) method inside an ¢, ball [4].

To improve the transferability, Wu et al. presented Variance-Reduced Iterative FGSM (Vr-IGSM) which utilized an aver-
aged gradient of original input with Gaussian noises to eliminate local fluctuation in surrogate model [41]:

G=2YVix+&).  &GeN(0,6 ) .
i=1

X, = Clip(x; + € - sign(G,)).
Another strong attack MI-FGSM utilized the momentum method which accumulates a velocity vector in the gradient

direction of the loss function across iterations for crafting adversarial examples [6]. This attack can fool DNN models effec-
tively, even in black-box manner. It outperforms one-step gradient-based and vanilla iterative approaches.

gy TED
8 = 18+ ogmyl

X, = Clip(x; + € - sign(g,,,)).

When there is ¢, norm, we can get adversarial examples by deepfool method [20]. It generates an adversarial example x*
by finding the distance between the initial sample x and the demarcated hyperplane by the steepest descent method:

o = 1(x)(Vfi(x) — Vfi(x))

e ®—f )| (8)
[[Vfe @V,

(7)

I(x) = argmin
K #k
where f,(x) is the output of f(x) before softmax layer that corresponds to the k™ class. The DeepFool method can simply be
adapted to find minimal adversarial perturbations for any ¢, norm (p € [1, +oc]).

When there is ¢y norm, we can get adversarial examples by JSMA (Jacobian-based Saliency Map Attack) method [23]. The
method is a greedy algorithm that increases the probability of target class for each iteration by picking pixels to modify each
time. The attack utilizes the gradient VZ(x),to get a saliency map, which calculates the effect of each pixel of classification
results, where Z(x) is the output of all network layers except the softmax and [ is the target class. For the saliency map, this
method repeatedly selects the most significant pixel and modifies it to raise the likelihood of the class I until either the mod-
ified pixels exceed a set threshold, which leads the attack unsuccessful, or changes the classification effectively. Particularly,
the method defines the saliency map with pair of pixels p, q. Definition o, represents the impact of changes in both pixels p
and g on target classification, and f,, indicates how much all other outputs p and q will change:

oz
g = Y2 P ©)
ie{p.q} '
OZ(X);
Bg = (Z Z 6:(:)j> — Upg- (10)
ie{p.g} Jj !
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Then the approach applies the following equation to get the pixels:
(p*v q*) = darg II;%X(—OCM : ﬁpq)(“ﬂq > O) : (ﬁpq < 0)7 (11)

where o, > Omeans the target classification is more possible, $,, < Omeans the other categories are less possible, and
—0lpq - Ppgls largest.

C&W attacks [2] formulate the generating adversarial examples problem by adding a cost function which evaluates the
difference between the prediction of input and the target label to the original problem:

minimize||x’ — X||? + ¢ - f(x) (12)
with fdefined as
f(x") = max (max{Z(x"); :i # [} - Z(x"),, —K), (13)

where Kk is a parameter that encourages the solver to detect an adversarial example x* with a high possibility as class I that
target model outputs. We let x = 0 for our experiments as the authors done. Because ¢, is not differentiable, the ¢, method is
conducted by iteratively removing pixels which are trivial for generating adversarial examples by gradient of ¢, distance.
C&W attacks are among the most effective attacks that find adversarial examples with small ¢, 4., and ¢, disturbances.
So these attacks can often be used to assess the effectiveness of potential defenses. The two authors also encouraged those
who propose defenses implement both assessment methods: (1) Take advantage of a powerful attack; (2) Demonstrate that
transferability fails.

2.3. Defense methods

For the purpose of defending against adversarial examples, many scholars have proposed a series of defense methods.
Defensive distillation [24] and gradient masking based methods [5] attempted to optimize the gradient of models against
adversarial attacks. However, they are vulnerable to approximated gradient attacks [1,17]. Recently, adversarial training
has been proven to be the most extensively investigated way to improve the robustness of deep learning models
[36,37,40]. It can be seen as the following robust optimization problem:

momzi:rglé‘iAXf(fo(Xi +0),¥1),
A={o:1]0]|, <€}

In addition, detecting and purifying adversarial examples methods are effective from another way to protect DNN models
[7,11,30]. Detecting adversarial images or decontaminating the imperceptible perturbations before importing data into
DNNSs can also increase the accuracy of deep classifiers. Because the strong similarity and correlation between adjacent pix-
els in the local structure of figures, image compression can reduce the redundant information of the image while retaining
the significance. Thus, in [11], the authors designed ComDefend, which utilized image compression to eliminate or break the
structure of disturbances.

(14)

3. Variational deep embedding for classification

In this section, we represent our classifier, a probabilistic robust classification model based on the framework of VAEs.
First of all, we find a novel way to get the ELBO of VAEs, which is helpful for us to derive our model. We can calculate the
KL divergence of two joint probabilities p(x,z) and q(x,z) by the following equation:

KL(D(*’ 2)[[q(%,2))
= Ex-pin |, P(ZIX) log 22222 dz|
= Exi) [logp ) ,p(z|X)dz + [, p(z|x)log? "”)dz}

(x.2)

= Ex-piy 108 D(X)] + Ex-pn) U p(z|x) logB23 dz] (15)
= C + Exujia) [f p(2|x) log Z2E% dz]

q(x|z)
= C+ Exopiw) [Ezopzm [~ 108 Q(XIZ)] +KL(p(z|x)[|p(2))]
= _[,7

where we have omitted the constant term, and Ex.jx (-] can also be omitted because p(x) is the natural distribution of x. So
we prove that maximizing ELBO of VAEs is equ1valent to minimizing KL(p(x,2)||q(X,2)).
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3.1. The generative process

Since we solve the classification problem by a type of generative model, we first represent the generative procedure of our
method. The framework of our model is shown in Fig. 1. The main idea is considering a Gaussian mixture prior on the latent
variable while training the VAE. Then at the inference time, we utilize Bayes’ rule to get the classification.

Specifically, assume there are N categories, the model generates an observed input x € R? by the process:

1. Pick a category y ~ p(Y)
2. Pick a latent vector z ~ N'(u,, 621)
3. Pick an input x:
a If x is binary
i Compute the expectation vector p,

u, = decoder(z; 0) (16)

ii Pick an input x ~ Bernoulli(u,)
b If x is real valued
i Computer g, and o2

[1,;log 62] = decoder(z; ©) (17)

ii Pick an input ¥ ~ NV(u,, 62I)
where we assume p(Y) is a discrete uniform distribution; g, and &7 are the mean and the variance of the Gaussian distribu-
tion corresponding to the category y which we should to get by training data; I is an identity matrix; decoder(z; #), parame-
trized by 6, is a DNN whose input is z; Bernoulli(u,) and N (p,, 62I)are multivariate Bernoulli distribution and Gaussian
distribution which are parametrized by u, and g, 6?2 respectively. On the basis of above generation procedure, the joint
probability q(x,z,y) can be factored as:

q(%,2,y) = q(x12)q(z]y)q(y)- (18)

We assume that ¥ and y are independent conditioned on z and the label distribution q(y) can be evaluated from the train-
ing data. But in general, in order to balance each category, we also take a uniform distribution to q(y). So the probabilities are
defined as:

am) =pY.N) =g Y =1 N, (19)
atzly) = N, 30, (20)

As close as possible

v

A £~N(0,3)

Decoder

Encoder

Y
o] N

As close as possible B

.-
-

Fig. 1. The framework of our model.
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q(x|z) = Bernoulli(n,) or N(u,,a2I), (21)

3.2. Variational Lower Bound

A classifier of our approach is turned to maximize the likelihood of the given data. We could find ELBO by variational
inference theory as same as VAE does. As we have proved in the beginning of this section, maximize the ELBO is equivalent
to minimize the KL-divergence of the two distributions. So given the generation process in Section 3.1 and as same as Eq.
(18), the joint probability p(x,z,y) can be factored as:

p(x.2,y) = p(ylz)p(z|X)p(X). (22)
The KL-divergence of the two joint probability distributions can be written as:

D = KL(p(x,2,Y)[|9(%,2,))
=3 J; f,p(x.2,y) log 222 dzdx
y

= Jy JPI2)p(zlx)p(x) log fTERRES dzdx,
y

(23)

where q(x,z,y) is the variational joint probability that approximates the true joint probability p(x,z,y). And p(x) is the nat-
ural distribution of given data x = V) x? ... x(™ that we want to get, but it’s difficult to get generally. In our approach, we
assume q(y|z) to be a discrete uniform distribution, the same distribution as q(y). Then the KL-divergence in Eq. (23) can be
rewritten as:

KL(p(x,2,y)llq(x,2,y))
= Erepix {Zf pyiz)p ZX)longi?‘(‘)dz}

= Expx [fp z|x) logpmz Z\szlx £h ] .
= By [ 1, p(z|x) (logp( ) —logq(x]z) )dz]
p(zx y\l) dz]

= Exp 108 D(X)] + Expx) U p(z|x) ( logq(x|z) +lo q(zy)
In our method, similar to original VAE, we use a DNN encoder to model p(z|x):

= C+ Ezpaw [~ 10g q(Xl2) + KL(p(2]X)[|q(2]y))].

[it; log 6%] = encoder(x; D), (25)

p(z%) = N(z: 1.6°1), (26)
where @ is the parameter of network encoder.
By substituting the terms in Eq. (24) with Eqgs. (19), (20), (21), and (26), using the SGVB estimator and the reparameter-
ization trick, the KL(p(x,z,y)||q(x,z,y)) can be rewritten as:
(a) If x is binary
KL(p(x,z,y)llq(x.2,y))

K J L "
_;_Kzz<leogy§k)\j (1—)(,)10g<1—yx >>+%Z<logay“ <z—ﬂy\1>2+%—1>. @7)

k=1 j=1 -1

(b) If x is real valued
KL(p(z|%)[|q(z|y))

(- 2>log{2n,,-exp< exp (527
1= (-5 i o)

o)
= 1 Epona?) {log;—ﬁ + o ( — 2%, + g2 — #)}

L ~
:%Z(lOgﬂ'y‘l ( l—ﬂy‘l)z‘l'%’z“—l).

=1

dx

>/ Vanay
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KL(p(x,2,y)llq(%,2,y))

1 { 1 % 1 2 1 - log%l 4 1 (i i (29)
=50 ( (% - m) " +logadly ) +3> (log %+ 4 (i —mlh) + - 1),
k=1 j=1 =1

where K is the number of Monte Carlo samples in the SGVB estimator, ] is the dimensionality of x and ,uﬁ"‘),xj is the j element
of x, x|; denotes thej”‘ element of *, L is the dimensionality of uy, o-f,, 6, and &2. In Eq. (29), we also have omitted the constant
term, and a2, af, can be treated as hyperparameters or derived from neural networks training.

In Eq. (29), we compute u{ as:
u® = decoder(z¥; @), (30)

where z® is the k™ sample from p(z|x) by Eq. (26) to produce the Monte Carlo samples. According to the reparameterization
trick by [12], z¥) is obtained by:

20 =i+ Goeb, (31)

where €® ~ A/(0,1), o is the operator of element-wise multiplication, and u,, oy are derived by Eg. (20). The summary of our
approach training is shown in Algorithm 1.

Algorithm 1 Training our model. In experiments, we set M = 256 and L = 1.

tpy, 0,0 — Initialize the parameters

: Repeat

: XM —Random minibatch of M inputs (drawn from full dataset)

: € —Random samples from noise distribution A/(0,I)

g — Vu,00KL(P(X,2,Y)]lq(X,2,)) (Gradients of minibatch estimator)
u,,0, ® — Update parameters using gradients g (e.g. Adam or SGD)
: Until convergence of parameters (u,, @, ®)

: Return result

00N O U WN =

3.3. Understanding the KL Divergence of Our Approach

In this section, some intuitions of the KL(p(x,z,y)||q(x,z,y)) of our method are provided. More specifically, Eq. (24) can be
simplified as follows:

KL(p(x,2,Y)[14(%,2,y)) = Erwpizw[— 108 q(*]2) + KL(p(2]%)[|q(2]y))]- (32)

The left hand side in the right term of Eq. (32) is the reconstruction term, which encourages our model to explain the data-
set well while the right is the KL divergence from the prior q(z|y) to the variational posterior p(z|x), which regularizes the
latent representation z to lie on a Mixture-of-Gaussian manifold.

3.4. Classification Process

Once the training is done by minimize the KL-divergence w.r.t the parameters of {n,,0y.0.®}ye1,2,.--.N,a latent

embedding z can be extracted for each observed input x by Eqgs. (25) and (26). Since the posterior p(y|x) is difficult to learn
directly, we use the following equation to learn generative distribution p(x|y) and classify new samples by Bayes’ rule:

pylx) =10 — q(x|z)q(zly) &Y, (33)

where p(x) is the natural distribution of x. And we can get q(y) by Eq. (19) or from the dataset, get q(z|y) by Eq. (20), and get
p(z|x) by Eq. (26).
Thus, for each class y we train the VAE to learn the class-conditional distribution q(x|y). This enables us to evaluate ELBO
on the log-likelihood log p(x) of input x for each class y.
logp(x) > £ = —KL(p(x.2,y)llq(x,2.y)), (34)

We use variational inference during training and perform “exact” inference over q(x|z) during evalution. This inference is
implemented to find the optimal z which maximizes the ELBO on the log-likelihood for each class with input x:
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Ly(*x) = max[-KL(p(x,2,y)|q(*.z.y))]
= max[log q(x|z) — KL(p(z[x)[q(2[y))] (35)
= max [log q(xlz) - I(L(N(it, 1)V (n,, a’f,l))] :
where z in log q(x|z) obeys a Gaussian distribution N(yy,oﬁl).

Finally, to implement the actual classification, all £, (x) are scaled with a factor «, exponentiate, add an offset # and divide
by the total evidence:

pUIX) = (5™ 1) /Y (e +1p). (36)

The reason why we introduce # is derived from [27].

3.5. Classifier’s robustness

The determination of our model relies on the likelihood of each category. For clean inputs, that is mainly determined by
the posterior likelihood q(x|z) which depends on whether x is binary or real valued. We choose this posterior to be Gaussian
normally. The class conditional likelihood can only change elegantly with changes in x, so we can derive the lower bounds of
our model robustness. As seen this, note that Eq. (35) can be rewritten as:

o 1 2
Ly(X) = rl’lﬂaX{—KL(N’([I,GZI)H./\/'([Iy,O'JZ/I)) T |decoder(z) — x||; + C}, z~N(p,,00), (37)

where we absorb the normalization constants of g(x|z) into C and decoder(z) is the mean of q(x|z,y). Let y; be the ground
truth class and let j be the optimal latent for the clean sample x for class y;. A lower bound on £,(x + §) for a disturbance
& with size € = ||4||, can be estimated:

L, (X+8) =max [—KL(N(ﬂ, &1).|IN (. agl)) — 5L, ||decoder(z) — x - 3|3 + C
i X

262
203

> —KL(N(;i*,6'21).|W(yy77a'§rl)> L, ||decoder(z) — x — || + C

= Ly, (X) + 58" (decoder(z) — ) — 5L, €2 + C (38)
> Ly, (X) — L €||decoder(z) — X||, — ;€ +C
zZ~ N(”J/T’ o-ﬁrl)'
Similarly, an upper bound of £,(x + 6) for all other class y # y; could be derived:
Ly(x+8) =max {—I(L(N(ﬂ, &1).|IN (s, c;;l)) — 51, ||decoder(z) — x — 3]3 + c]
u X
< —I(L(/\/(yy, a’I).[|N (n,, aﬁl)) +C—35 (dﬁ + €2 — 26" (decoder(z) — x)) (39)
< —I(L(N’(yy, &1).IN (n,, 051)) +C =55 (d2 + € - 2ed,).
where d, = |decoder(2) - ¥||,,z ~ N (u,, a.I). Now we can find € for a given image x by equating Eqs. (38) and (39).
. & + 262 (,cyT (x) + 1<L(N(py,&H).HN(py,a;I))) )
2(dy +dy,) 7
where dy, = ||[decoder(z) — |,z ~ N'(n,, , o; I). And we want to find:
€y = Mine. (41)

Y#yr

Note that one assumption we make is that we have found the global minimum of d,, and in practice a tight estimate of
the global minimum can be found.

4. Experiments

In this section, we test our model and deep convolutional neural network architectures applied to MNIST, Fashion-MNIST,
and CIFAR-10 image classification datasets. We consider the following DNN architectures with corresponding dataset:
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e MNIST (Fashion-MNIST): We trained three models, a surrogate model and two target models. The surrogate model is LeNet
convolutional neural network architecture with a two-layer fully connected network and two convolutional layers. One of
the target models is also LeNet architecture. For our model, we use a LeNet architecture as an encoder and a reverse LeNet
architecture as a decoder, and we use dim(z) = 20for the classifier.

o CIFAR-10: Since the robustness properties of MNIST models may not reach to natural images, we further consider per-
forming the same evaluation on CIFAR-10. Because fully generative classifiers are less satisfactory for classifying clean
CIFAR-10 images, the clean test set accuracy for our model on CIFAR-10 is 81.51%, better than conditional PixelCNN++
[26] which achieves 72.4% clean test accuracy, and a little less than flow-based generative classifier which achieves
83.2% clean test accuracy [8]. Then we choose to work with CIFAR-2, a binary classification dataset containing “airplane”
and “car” images from CIFAR-10. We also trained three models on this dataset. Two of them (including the surrogate
model) are VGG-16 convolutional neural network for image classification. For our model, we use a VGG-16 architecture
as an encoder and a reverse VGG-16 architecture as a decoder, and we use dim(z) = 10 for the classifier.

4.1. Classification accuracy

We use ReLU non-linearity in our network and Adam optimizer for training. The main accuracy results are shown in
Table 1. Our model gets state-of-the-art on MNIST, Fashion-MNIST, and CIFAR-2 datasets. However, for high-dimension data-
set, how obtaining strong classification accuracy without harming likelihood estimation for generative models is still a chal-
lenging problem [8]. For CIFAR-10 dataset, although the accuracy of our model is 10% less than CNNs’, it is better than
conditional PixelCNN++, and a little less than flow-based generative classifier which achieves state-of-the-art.

4.2. Generative evaluation

Since our algorithm depends upon the reconstruction error between the generated and the original images, we now show
a few randomly chosen images generated by the network corresponding to test samples of different classes from three data-
sets in Fig. 2.

4.3. Robustness analysis

In this part, we utilize three types of adversarial examples, ¢, 7., and /¢, transfer-based attacks, to test the robustness of
our model. In [21,22], the authors leveraged a dataset augmentation technique to train the substitute model, which kept the
same distribution of surrogate and target models. In this paper, we randomly divide the training data into two parts equally.
One part is used to train the surrogate model, and the other part is used to train the target models, which guarantees that
surrogate and target models are trained with data of the same distribution. Some adversarial examples of all attack methods
on three datasets are shown in Fig. 3. All experimental results are shown in Tables 2 (MNIST), 3 (Fashion-MNIST), and 4
(Cifar-2). The following takes MNIST as an example to analyze the robustness of our model.

4.3.1. ¢, attacks
For ¢, transfer attacks, we craft adversarial examples by FGSM and C&W 7., methods.

(a). FGSM. In order to improve efficiency, we use iterative FSGM to craft adversarial examples and we pick the number of
iterations to be 12. As seen in Table 2, the accuracy of surrogate model reaches to 5.44% when €is approximately equal
to 0.015. And the accuracy reduces to 13.48% of CNN-2. However, the accuracy is still over 72%for our model.

(b). C&W ¢,.. We report in Table 2 that the accuracy of surrogate model and target models by C&W /., adversarial attacks. It
shows that C&W ¢ is a strong attack. The accuracy of surrogate model is 0.0% by C&W ¢, attack. However, for target mod-
els, our model has better robustness than CNN-2 while the accuracy of our model is 72.15% and the CNN-2 is 58.76%.

In conclusion, our model has got better robustness on ¢, transfer attacks.

Table 1
The main accuracy results of all models.
Model
Dataset CNN-1 CNN-2 Our Model
MNIST 99.2% 99.2% 99.1%
Fashion-MNIST 91.29% 91.26% 91.47%
CIRFAR-10 92.17% 91.42% 81.51%
CIRFAR-2 90.1% 91.1% 90.25%
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Fig. 2. Generated and original images from MNIST, Fashion-MNIST, and CIFAR-10 datasets.
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Fig. 3. Clean data and adversarial examples of all attack methods on MNIST, Fashion-MNIST, and CIFAR-2 datasets.

Table 2

Performance comparisons of transfer attacks on MNIST.

Surrogate model (CNN1)

Target model (CNN2)

Target model (Our model)

Clean 98.59% 98.51% 98.27%

L. FGSM 1.12% 13.48% 72.23%
CW_L, 0.00% 58.60% 75.40%

L, Deepfool 0.00% 83.85% 95.71%
CW_L, 0.46% 75.95% 94.34%

Lo JSMA 12.08% 27.86% 48.87%
CW_Ly 0.00% 64.04% 76.82%

Strong Vr-IGSM 2.72% 65.42% 85.13%
MI-FGSM 2.00% 29.29% 79.38%
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Table 3
Performance comparisons of transfer attacks on Fashion-MNIST.
Surrogate model (CNN1) Target model (CNN2) Target model (Our model)

Clean 89.44% 89.59% 88.25%
Ly FGSM 5.44% 12.50% 60.42%
CW_L 0.00% 58.76% 72.15%
L, Deepfool 0.00% 77.45% 85.08%
CW_L, 1.48% 62.66% 82.14%
Lo JSMA 10.56% 30.50% 44.26%
CW_Lg 0.00% 64.44% 71.81%
Strong Vr-IGSM 1.82% 56.49% 77.45%
MI-FGSM 1.60% 26.55% 72.28%

Table 4
Performance comparisons of transfer attacks on Cifar-2.
Surrogate model (CNN1) Target model (CNN2) Target model (Our model)

Clean 86.68% 86.42% 85.88%
L, FGSM 1.48% 62.50% 80.47%
CW_L, 7.00% 48.02% 62.18%
L, Deepfool 0.00% 80.66% 83.92%
CW_L, 0.00% 81.64% 82.03%
Ly JSMA 5.20% 76.81% 83.74%
CW_Ly 0.00% 77.44% 81.31%
Strong Vr-IGSM 1.76% 60.39% 73.40%
MI-FGSM 1.60 55.68% 68.30%

4.3.2. ¢, attacks
For ¢, transfer attacks, we craft adversarial examples by DeepFool and C&W ¢, methods.

(a). DeepFool. We report in Table 2 that the accuracy of surrogate model and target models by DeepFool adversarial attacks.
It shows that DeepFool is an effective attack that the perturbations are too small to perceptible. The accuracy of surrogate
model is 0.0% by DeepFool attack. The transfer attack on CNN-2 and our model has no significant effect due to the small
disturbance of adversarial examples. However, for target models, our model has better robustness than CNN-2 while the
accuracy of our model is 95.71% and the CNN-2 is 83.85%.

(b). C&W ¢,. We report in Table 2 that the accuracy of surrogate model and target models by C&W ¢, adversarial attacks. The
accuracy of surrogate model is 0.0% by C&W ¢, attack. However, for target models, our model has better robustness than
CNN-2 while the accuracy of our model is 94.34% and the CNN-2 is 75.95%.

In conclusion, our model has got better robustness on ¢, transfer attacks.

4.3.3. ¢, attacks
For ¢y transfer attacks, we generate adversarial examples by ]SMA and C&W ¢, methods.

(a). JSMA. We report in Table 2 that the accuracy of surrogate model and target models by J[SMA adversarial attacks. It shows
that JSMA is an effective attack. The CNN-1 only gets the accuracy of 12.08% on adversarial examples generating by JSMA
attack. The transfer attack on CNN-2 and our model is significant successful because the decreasing of accuracy results
due to the large disturbance. However, our model also has better robutness than CNN-2. The accuracy of our model is
48.87% while the CNN-2 is 27.86%.

(b). C&W ¢y. We report in Table 2 that the accuracy of surrogate model and target models by C&W ¢, adversarial attacks. It
shows that C&W ¢, is an effective attack. The surrogate model only gets the accuracy of 0.0% on adversarial examples gen-
erating by C&W ¢, attack. The transfer attack on CNN-2 and our model is significant work because the decreasing of accuracy
results. However, for target models, our model has better robustness than CNN-2 while the accuracy of our model is 76.82%
and the CNN-2 is 64.04%.

In conclusion, our model has got better robustness on ¢, attacks.

4.3.4. Strong transfer-based attacks
To further test the robustness of our model, we take two strong transfer attacks, Vr-IGSM and MI-FGSM, to attack the tar-
get models. As shown in Table 2, the accuracy of surrogate model on these two attacks is 1.82%and 1.60%, which indicates
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Table 6
Performance comparisons with other defense methods against transfer attacks on Fashion-MNIST
No defense Adv Training ComDefend Our method Our method + Adv Training Our method + ComDefend

Clean 91.3% 90.4% 91.3% 91.5% 90.1% 91.5%
FGSM 45.0% 83.5% 66.4% 64.3% 81.1% 83.3%
CW_L, 60.9% 61.3% 75.6% 74.9% 77.6% 80.1%
Deepfool 77.5% 88.0% 83.7% 90.8% 89.6% 91.2%
CW_L, 64.6% 85.2% 79.1% 85.0% 87.4% 87.7%
JSMA 31.8% 32.9% 40.6% 44.9% 43.8% 64.7%
CW_Lg 66.6% 79.7% 80.3% 73.1% 78.7% 82.2%
Vr-IGSM 57.5% 88.0% 71.1% 76.4% 80.2% 78.8%
MI-FGSM 28.6% 82.6% 68.8% 75.2% 84.3% 75.5%

Table 7
Performance comparisons with other defense methods against transfer attacks on Cifar-2
No defense Adv Training ComDefend Our method Our method + Adv Training Our method + ComDefend

Clean 91.1% 89.7% 91.1% 90.3% 89.2% 90.3%
FGSM 69.6% 82.5% 75.8% 80.1% 81.1% 82.0%
CW_L, 50.0% 60.1% 70.3% 62.4% 72.2% 73.3%
Deepfool 84.7% 85.0% 88.7% 89.6% 88.3% 89.6%
CW_L, 85.6% 85.8% 87.8% 89.6% 87.3% 89.6%
JSMA 80.2% 80.6% 85.4% 86.5% 80.1% 86.8%
CW_Ly 79.3% 80.4% 84.1% 83.7% 84.4% 85.5%
Vr-IGSM 62.4% 82.1% 76.8% 75.6% 82.2% 79.7%
MI-FGSM 57.7% 79.2% 74.9% 71.4% 79.0% 76.5%

Table 5
Performance comparisons with other defense methods against transfer attacks on MNIST
No defense Adv Training ComDefend Our method Our method + Adv Training Our method + ComDefend

Clean 99.2% 98.2% 99.2% 99.1% 99.0% 99.2%
FGSM 49.6% 92.6% 78.5% 81.6% 90.7% 90.3%
CW_L,, 60.5% 60.4% 86.6% 82.4% 86.9% 88.7%
Deepfool 88.2% 97.8% 93.2% 98.0% 96.2% 98.3%
CW_L, 71.4% 95.4% 85.8% 94.9% 96.5% 96.4%
JSMA 37.0% 28.3% 44.7% 57.8% 52.5% 69.8%
CW_Lgy 58.7% 81.7% 84.2% 73.8% 82.4% 86.1%
Vr-IGSM 65.4% 96.2% 79.6% 85.1% 89.0% 92.4%
MI-FGSM 29.3% 91.4% 74.0% 79.4% 91.7% 81.9%

the effectiveness of the two attacks. However, for target models, our model has better robustness than CNN-2 while the accu-
racy of our model is 85.13%,79.38% and the CNN-2 is 65.42%,29.29%.

4.3.5. Compare with other defense methods

As shown in Table 5, we compare our approach with other effective defense methods on MNIST dataset. All models are
trained by the whole training dataset. Although adversarial training (based on FGSM) and ComDefend have achieved better
results in defending against some transfer-based attacks, our method is better at defending against DeepFool and JSMA
transfer attacks. In addition, our method, based on a generative model, can be combined with adversarial training or Comde-
fend, which can greatly improve the performance of defense. This is a big advantage for our method. Table 6-7.

4.4. Summary

In summary, our model reaches state-of-the-art on MNIST and Fashion-MNIST datasets. For CIFAR-10 dataset, although
the accuracy of our model is below the deep discriminative models, it is above the generative classification models (such as
PixelCNN++). In addition, our model is more robust to ¢, ¢y, and /., transfer-based attacks than the discriminative models.
Compared with other high performance defense methods, our method is competitive. Besides, our model can be combined
with adversarial training or Comdefend to achieve better defense against transfer-based attacks.

5. Conclusion

In this work, a novel generative classifier with Gaussian mixture prior on latent embedding based on VAEs has been pro-
posed. Our model simulates the generating process of data in a natural way. We have given proof that our generative clas-
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sifier is more robust to many recent transfer-based attacks while our model can get state-of-the-art and generate high qual-
ity images.

For large datasets, although the generative models can effectively learn from the data, these models also tend to make
stronger assumptions about the data than discriminative models that are treated purely differently. When the models are
wrong, they usually lead to higher asymptotic bias. Therefore, finding a good generative model is a meaningful exploration.
And using generation classifiers provides an interesting way to evaluate the ability to build models and improve their capac-
ity to process high-dimensional data sets. In general, we believe that the advances in generating classifiers can better moti-
vate the design of attack, defense, and detection technologies.
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