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ABSTRACT Visual Question Answering (VQA) is a challenging multi-modal learning task since it requires
an understanding of both visual and textual modalities simultaneously. Therefore, the approaches used to
represent the images and questions in a fine-grained manner play key roles in the performance. In order to
obtain the fine-grained image and question representations, we develop a co-attention mechanism using an
end-to-end deep network architecture to jointly learn both the image and the question features. Specifically,
textual attention implemented by a self-attention model will reduce unrelated information and extract more
discriminative features for question-level representations, which is in turn used to guide visual attention.
We also note that a lot of finished works use complex models to extract feature representations but neglect
to use high-level information summary such as question types in learning. Hence, we introduce the question
type in our work by directly concatenating it with the multi-modal joint representation to narrow down
the candidate answer space. A new network architecture combining the proposed co-attention mechanism
and question type provides a unified model for VQA. The extensive experiments on two public datasets
demonstrate the effectiveness of our model as compared with several state-of-the-art approaches.

INDEX TERMS Co-attention, question type, self-attention, visual question answering.

I. INTRODUCTION

Recently, multi-modal learning for computer vision and nat-
ural language processing has grown by leaps and bounds,
such as visual question answering [1], image captioning [2]
and image-text matching [3], etc. The VQA tasks require to
provide the correct answer to a question with a correspond-

. . . . . : What sport is bei layed? : What is in th son's hand?
ing image, as shown in Fig. 1. There are many potential o voana T e plave & Bibeq e persoms b
applications for VQA, such as image retrieval [4], aided- @ ®)
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av gatg 0 b_ d indiv du? S_[S] and auto at(_: querying FIGURE 1. Examples of different questions in VQA. Q=question,
of surveillance video [6]. Predicting the best matching answer A=answer.

correctly has always been one of the most challenging tasks
for VQA, since it requires a fine-grained understanding of
the question text and parsing the visual scene and it may also
involve complex reasoning.

Due to in-depth research on computer vision and natu-
ral language processing, numerous methods have attacked
VQA and have achieved good results. In the early stage,

most models directly learn the joint embedding of visual
and textual features through linear pooling (such as element-
wise addition or multiplication) and then feed it into a
classifier to predict the most related answer. Specifically,
visual features are obtained with convolutional neural net-
work (CNN) pre-trained on object recognition, and textual
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the global-level and may bring irrelevant or noisy informa-
tion. Hence, the attention-based models have been developed.
The idea behind the attention mechanism is to assign different
weights to local features instead of considering global fea-
tures merely. More recently, models based on co-attention
have been widely used in VQA tasks, aiming to focus on
salient regions of the image and critical words of the ques-
tion [7]-[9]. For co-attention mechanisms, question-guided
visual attention is obtained based on the question information,
while image-guided textual attention is obtained based on the
image information. The co-attention mechanism can reduce
unrelated information and obtain more meaningful features
representations for image and question.

In spite that a lot of promising results have been achieved,
the capabilities of the methods based on co-attention are still
far from satisfaction. We argue that this is mainly because
the following reasons. The primary reason is that question-
guided visual attention mechanism uses the whole question
feature to guide visual attention, which will distract attention
and fail to attend to the question-related regions accurately,
due to the colloquial words in the question. Another reason
is that the image-guided textual attention mechanism uses
the image features to guide textual attention, which does
not precisely attend to the important words of the question,
because there are many interference information in the image
that is not related to the question. For the reasons mentioned
above, we propose a new co-attention mechanism. More
specifically, self-attention is performed on the question with-
out the guidance of image features to obtain discriminative
question representation, which is in turn used to guide visual
attention. We consider that the advantage of introducing self-
attention mechanism is that it can assign greater weights
to those important words in the question, thus reducing the
negative impact of irrelevant information on the accuracy
of the answer prediction. Compared with the traditional co-
attention mechanism, our proposed co-attention mechanism:
1) contributes to attend to the image regions which are most
relevant to the question; 2) does not exploit the image fea-
tures when calculating the textual attention, thus reduces the
computational overhead.

Moreover, we notice that in the existing models, question/
answer type is usually not considered in training. In general,
each sample in VQA dataset includes an image, a ques-
tion/answer pair, and an answer type. Most works use answer
type for result analysis but it is not considered during the
training process. Compared with the answer type, question
type has less variety and is easier to interpret when we
only have the question. Meanwhile, question input can be
clustered into question types with different semantics. Hence,
we divide the questions from VQA datasets into 8 sub-
categories, including color, time, counting, location, reason,
sport, judgement and other. Introducing question type will
help the model know the type of question before answering,
so it can reduce the search space of answers. For this purpose,
we fuse the question type by directly concatenating it with the
multi-modal joint representation.
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In this paper, Co-Attention Network with Question Type
(CAQT) is proposed to address the VQA task. CAQT is
designed to integrate co-attention mechanism and question
type into one unified model for VQA.

The key contributions of this work are three-fold:

o We propose a novel co-attention mechanism for the
VQA task. For the given questions, we perform self-
attention to assign greater weights to the important
words. And then, we use the new representation to guide
visual attention of images.

« We concatenate the one-hot encoding of the question
type directly to the multi-modal joint representation for
later answer generation. Our intuitive motivation is that
knowing question type before answering could narrow
down the candidate answer space.

« Extensive experiments performed on two benchmark
VQA datasets demonstrate the feasibility and effective-
ness of CAQT.

The remainder of this paper is organized as follows.
Section II reviews the related works and section III introduces
preliminary knowledge about the VQA tasks. In section 1V,
we provide the details of CAQT. We then perform the
experimental evaluation in Section V. Finally, we present
the conclusion of this paper and provide the future work
in Section VI.

Il. RELATED WORK

This section is divided into three parts. The first part intro-
duces the related knowledge of the VQA task. The second
part introduces the models based on the attention mechanism.
The final part introduces the models with question-type.

A. VISUAL QUESTION ANSWERING

VQA lies in the intersection of computer vision and natural
language processing, which has attracted increasing interest
from multiple research fields. A series of major datasets for
VQA have been publicly released, including DAQUAR [10],
COCO-QA [11], VQA [1], FM-IQA [12], Visual7W [13],
and Visual Genome [14]. A basic framework for the VQA
task first encodes question embedding using RNN model
and extracts image feature via CNN model, then fuses the
question and image features, and finally, uses this feature to
predict the answer. Recently, effective bilinear pooling meth-
ods such as MCB [7], MLB [15], MFB [16] and MLPB [17]
have been proposed, which are superior to linear pooling
(concatenation, element-wise addition or multiplication).
Moreover, memory-augmented neural networks [18] and
attention-based models [8], [19], [23], [25], [31], [32] have
also been developed. Therefore, significant progress has been
made in the study of VQA.

B. ATTENTION MODELS

Currently, the mainstream VQA models are essentially based
on attention mechanisms. Its success mainly relies on the
reasonable assumption that humans have the ability to quickly
understand the visual scene by attending to selective parts
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of the whole image instead of processing the entire scene
at once [20]. Attention learns to attend to the most relevant
regions of the input space and assigns different weights to
different regions. Attention mechanisms are firstly used in
machine translation [21] and then are employed to solve the
multi-modal tasks, such as image caption [22], VQA [23]
and Cross-media Retrieval [9]. In the VQA task, the attention
mechanism is used to identify “where to look™ [24] and
“which word to listen”” before carrying on further computa-
tions. For example, for the question “What color is his hat?”’,
the image region containing “‘hat” is more informative than
other image regions, and the textual information containing
“color” and “hat” are more important than other words in
the question. Numerous works have concentrated on using
the attention mechanisms to solve the VQA task [8], [9], [16],
[23], [25]-[27].

Recently, some works have introduced visual attention
to address the VQA task. For example, [23] designed an
Attention-based Configurable Convolutional Neural Network
(ABC-CNN) to learn question-guided attention. ABC-CNN
determined an attention map for each image-question pair
by convolving the image feature map with configurable con-
volutional kernels derived from the question’s semantics.
And [25] presented a scheme with Stacked Attention Net-
works (SAN) to obtain the answer, SAN regarded the seman-
tics of the question as a query to find the regions of the image
that were associated with the answer. Some recent works inte-
grate visual attention with textual attention to further improve
VQA performance. Reference [8] designed a Hierarchical
Co-attention Model (HieCoAtt), simultaneously reasoning
about image and question attention. Reference [9] proposed
a Dual Attention Networks (DANSs), which refined specific
regions in the images and words in the text through multiple
reasoning steps, in order to capture essential information from
visual and textual features. In the VQA task, they explored
a reasoning way that allowed textual attention and visual
attention to steer each other during inference period [9].
In [16] and [26], the networks can find important infor-
mation in question text without the guidance of the image.
Reference [27] designed a high-order attention mechanism
for multi-modal input data. These inputs included an image,
a question, and 18 candidate answers. They considered that
learning high-order correlations could obtain the appropriate
information from different data modalities (question, image,
and answers), so as to infer a correct answer. In this paper,
we compute the textual attention based on the question itself,
without having to consider the image feature.

Besides, self-attention [28] was first proposed to solve
machine translation problems and achieved good perfor-
mance. In long-distance dependence, self-attention module
calculated the attention at position ¢ in a sequence by attend-
ing to all positions. Currently, some methods [29], [30] based
on self-attention are used in the field of natural language
processing. For example, [29] proposed a model for extract-
ing an interpretable sentence embedding by self-attention,
which achieved promising performance on author profiling,
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sentiment classification, and textual entailment. And [30]
proposed self-attention based approach to tackle Semantic
Role Labeling, which can directly capture the relationships
between two tokens regardless of their distance. Our model is
partly motivated by [29], which utilizes self-attention to find
the most informative components of the question and uses a
matrix to represent the question.

C. MODEL WITH QUESTION-TYPE

When considering the model with question-type for solv-
ing the VQA task, [33] introduced Question Type-guided
Attention (QTA) that dynamically gated the contribution of
ResNet [34] and Faster R-CNN [35] features. QTA utilized
the information of question type to guide the visual encod-
ing process, and the experiments over TDIUC [36] dataset
showed impressive performance. Motivated by [33], we also
consider the question type in our model. The main idea is
that if the model knows the question type before answering
the question, the search space of answers set can be reduced.

Ill. PRELIMINARY

In this section, we first formulate the VQA problem addressed
in this paper and then illuminate the basic framework for the
problem.

A. PROBLEM DESCRIPTION

Given an image [ and the related question Q, the VQA model
is designed to predict possible answer. The dominant methods
typically formalize VQA as a classification problem in the
space of candidate answers. This can be formulated as:

a = arg max p(a|Q, I; ©), e
acQ

where 2 is the set of candidate answers, ® represents the
parameters of the method.

It is worth noting that ambiguous or subjective questions
might have multiple correct answers. Hence, we use a sig-
moid output that allows multiple correct answers for each
question, instead of a common single-label softmax. That
is, in this paper, we treat VQA as a multi-label regression
problem.

B. COMMON FRAMEWORK

The basic framework for VQA always consists of three major
components which are image embedding, question embed-
ding, and joint feature learning.

1) IMAGE EMBEDDING

In the literature, CNNs are typically used in extracting image
feature. CNNs are pre-trained on ImageNet, with common
examples as ResNet-152 [34] and Faster R-CNN [35]. The
feature representation extracted from ResNet-152 has a size
of 2048 x 14 x 14, where 14 x 14 indicates the number
of image regions and 2048 represents the dimension of each
region. While in Faster R-CNN, the input image is passed
through it to obtain a vector representation of size K x 2048
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FIGURE 2. Overview of the CAQT model. WE=word embedding, QType=question type, A=answer.

(in [37], K = 36), where K is the number of objects in
the image and the dimension of each object is 2048. Given
I represents the input image, V denotes the output vector,
the image feature is obtained by:

V = CNN(). 2)
2) QUESTION EMBEDDING

RNNs like Long Short-Term Memory (LSTM) [38] and
Gated Recurrent Unit (GRU) [39] are typically used in
extracting question feature. Given Q represents the input
question, H denotes the output vector, the question embed-
ding is obtained by:

H = RNN(Q). 3)

Specifically, the number of words in the question is usually
limited to 14, the embedding of each word is sequentially fed
into the RNN model. The final hidden state of the RNN model
is considered as question representation.

3) JOINT FEATURE LEARNING

The image feature V and the question feature H are fused
via multi-modal pooling, i.e., concatenation, element-wise
addition or multiplication, MCB, MLB, MFB, and etc. The
joint feature is:

F=f(V.H), “

where f indicates the multi-modal pooling module. The joint
feature F is then fed into the classifier to predict the answer.

Recently, many models incorporate the co-attention mech-
anism for getting more discriminative visual and textual rep-
resentations, and experiments have shown that the model
based on co-attention has achieved the state-of-the-art results.

IV. MODEL
In this section, we describe our proposed CAQT model and
explain it in more details. The overall architecture of our
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proposed model is given in Fig. 2. CAQT has the following
four parts:

« Input representation module which includes image and
question features extraction components.

o Co-Attention module which includes self-attention
based textual attention and question-guided visual
attention.

o Question type module which concatenates the one-hot
encoding of the question type directly to the multi-modal
joint representation.

o Prediction module is used to infer answers.

A. MODELING

1) INPUT REPRESENTATION

a: IMAGE EMBEDDING

Recently, [40] use bottom-up attention to obtain image fea-
tures which have achieved promising results in comparison
with other image feature extraction methods. In light of this,
we employ Faster R-CNN [35] for high-level image feature
extraction and obtain the top-K candidate objects of the input
image I:

V = CNN(I),
V = [V1, Vo, ..

&)
(6)

where v; € R% indicates the k-th object feature, K is the
number of objects in the image.

VK] € RKXdV,

b: QUESTION EMBEDDING

In this paper, we use bi-directional LSTM (Bi-LSTM) to
encode questions. The question is first tokenized into words
and then transformed to one-hot feature vectors ¢ =
¢". 4%, ....q"), where ¢’ € RP is the one-hot encoding at
position ¢, n is the length of the question, D is the number
of words in the vocabulary. We first convert ¢; into a vector
representation x; by x; = W,q;, where W, is an embedding
matrix, x; is learned along other parameters during training.
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At each step, we feed the vector x; into Bi-LSTM:

W, = LSTM (v 1), ™
W = LSTM" (x;, h, ). ®)
he = [H, .1, ©)
H=T[hh, ... hl, (10)

where h’; € R% and h? € R represent the hidden states
at time ¢ from forward and backward LSTMs, respectively.
h; encodes the semantics of the ¢-th word in the context of
the entire question. Note that we use all the hidden states of
Bi-LSTM (H € R"XM") instead of the final hidden state as the
expression of the question, which helps improve the model
performance.

2) CO-ATTENTION

Co-attention mechanism ensures deep cross-domain interac-
tions and obtains discriminative features. Our co-attention
mechanism combines self-attention based textual attention
and visual attention. We will introduce these two parts sep-
arately in the following. We first perform self-attention on
the question and receive a new expression of the question,
then use this expression to perform visual attention. Self-
attention can highlight the focus of the question, question-
guided visual attention will give greater weights to regions
of the image which are relevant to important semantic of the
question.

a: TEXTUAL ATTENTION BASED ON SELF-ATTENTION
Textual attention based on self-attention performs self-
attention on the question. In [16], the mechanism for dealing
with questions is textual attention without the guidance of
image features, but the result is a vector that can only rep-
resent a specific component of the question, and this repre-
sentation is not enough to express the complicated question
(especially for reasoning questions with multiple objects).
But in our work, we use the self-attention proposed by [29],
which can fully express most or even all components of the
question. Thus, it is not difficulty in expressing complex
questions.

We use a 2-D matrix to represent the sentence embedding,
with each row of the matrix attending on a different part of
the sentence. The self-attention mechanism takes the whole
Bi-LSTM hidden states H as input and outputs a vector of
weights a. The question features are weighted by the self-
attention weights a and then summed into a single vector m
which represents the attended question. The equations are as
follows:

a= softmax(wsztanh(WslHT)), (11)
m = aH, (12)
where wyy € R'% and W, € R%*2dh gre learnable param-
eters, d, is a hyperparameter. The self-attention ensures that

the more important word in question will be assigned greater
weight. m € R'*?? ysually focuses on a specific component
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of the question, but questions usually have multiple related
words or phrases, so we need to perform multiple hops of
attention:

A = softmax(Wytanh(Wg HT)), (13)
M = AH, (14)

where Wy, € R"*% and Wy, € R9*2dn gre learnable param-
eters, r is a hyperparameter which represents the number
of parts extracted from the question. Finally, the question is
expressed as M € R"*2  which highlights the focus of the
question.

b: QUESTION-GUIDED VISUAL ATTENTION

Visual attention uses the question representation M as a guide
to attend the objects that are most relevant to the question.
M becomes m’ by mean function. The question representation
m’ and the image representation V are firstly projected to the
same dimension by non-linear layers. Next, we use element-
wise multiplication to fuse these projected representations,
and then compute the normalized attention weight o of each
image object feature v; through a linear-layer and softmax
function. Finally, the image features are weighted by nor-
malized attention weights and summed into a single vector
u € R4 which represents the attended image. The calcu-
lation details are listed below:

m = mean(M), (15)
e = we(ReLU(W,m'™) © ReLUW,VT)), (16)
o = softmax(e), a7n
K
w=3 o, (18)
k
ReLU(x) = max(0, x), (19)

where w, € R*2dn | W, € Ra>2dn and W, € R>*2dn gre
learnable parameters, d,; and d, are hyperparameters, 2d;, =
dy = d,. © represents element-wise multiplication.

3) QUESTION TYPE

We believe that adding the question type information before
feeding the merged features into the classifier can narrow
down the range of answers. For example, questions starting
with “how many” will mostly lead to numerical answers.
Therefore, we divide the VQA v1.0 and VQA v2.0 datasets
into 8 sub-categories, including color, time, counting, loca-
tion, reason, sport, judgement and other. The distribution
of the percentage of each question type is shown in Tab. 1.
For question types that are difficult to distinguish between
specific types in the datasets or that have a small proportion,
we attribute them to the other class. As can be seen from
Tab. 1, judgement class and sport class respectively has the
highest proportion and the lowest proportion in training set,
validation set and testing set of the VQA datasets. The distri-
butions of question types in the training set and validation set
of the two datasets are relatively uniform, but the questions in
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TABLE 1. The proportion of question types in the training set, validation set and testing set of the VQA v1.0 and VQA v2.0 datasets, respectively.

Category VQA v1.0 (%) VQA v2.0 (%)
training set | validation set | testing set | training set | validation set | testing set

color 8.976 9.465 8.975 9.303 8.002
time 0.673 0.830 0.018 0.657 0.815 0.017
counting 10.640 10.587 9.092 11.347 11.217 9.670
location 2.099 2.511 3.027 2.004 2.346 2.857
reason 1.201 1.051 0.034 1.102 0.911 0.033
sport 0.621 0.547 0.004 0.569 0.507 0.003
judgement 38.396 37.670 78.825 37.745 37.800 78.364
other 37.394 37.340 37.600 37.102 1.054

the testing set are mainly distributed in color, counting, loca-

tion, judgement and other classes, the other three question

types account for a small percentage, the sum is less than 1%.

Note that judgement class holds 78.825% and 78.364% of the

VQA v1.0 testing set and VQA v2.0 testing set, respectively.
The fusion of question type is formulated as follows:

f = ReLUW,ym'™) © ReLU(W,u"),  (20)

f' = concat(f, c), (21)
concat(f,c) = [f, c]T, (22)
where ¢ € R®*! (e = 8) indicates the one-hot encoding

of the corresponding question type, W,, € R?¥>2d and
W, € R?%>x2 are the learnable parameters. We directly
concatenate the one-hot encoding of the question type ¢ to
the multi-modal joint representation f € R>%*! in order to
get f € R4+ for later answer generation. In addition
to the one-hot encoding of the question type, we also have
tried to map the question type to the same dimension as the
question, but the experimental results are not satisfactory.

4) PREDICTION

In this paper, we treat VQA as a multi-label regression task
and use a multi-layer perceptron (MLP) to perform this task.
A set of candidate answers is pre-determined from all the
correct answers in the training set that appear more than
8 times. The joint representation f” is first fed into a non-linear
layer and then mapped via a linear layer. Finally, the sigmoid
function is employed to predict the score for each candidate
answer:

§ = sigmoid(WReLU (Wy.f'")), (23)

where W e RY*2dn Wp € R2dnxQdpte) gre the classifier
parameters, d indicates the number of candidate answers, §
represents the probability of the answer prediction.

B. LEARNING

1) LOSS FUNCTION

Our loss function is similar to the binary cross-entropy loss
while using soft accuracies. The objective function is:

M N

Lyga=—Y_ Y sjlogd+ (1 — splog(l — §;), (24)
i=1 j=1
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where M, N refer to the number of training questions and
candidate answers, respectively. The ground-truth scores s are
the soft accuracies of ground-truth answers computed in (25).

2) OPTIMIZATION

We choose Adamax as the optimizer. Adamax is a variant
of Adam that provides a simpler range of upper learning
rates. Compared with Stochastic Gradient Descent (SGD),
Adamax does not need to manually adjust the learning rate
and has faster convergence. We use weight normalization
to accelerate the training. More specifically, gradient clip-
ping technology and dropout (ratio = 0.5) are exploited in
training.

V. EXPERIMENTS
In order to validate our proposed model, we carry out exper-
iments to answer the following questions:
« RQ1: How does our designed approach perform when
compared with other benchmark methods?
« RQ2: Can the self-attention on the question contribute
to the overall effectiveness of CAQT?
« RQ3: Is the question type helpful for boosting the per-
formance of CAQT?

A. DATASET

We validate the CAQT model on both balanced and unbal-
anced version of VQA dataset, namely, the VQA v1.0 dataset
[1] and VQA v2.0 dataset [46]. We train our model on the
training and validation sets of the VQA datasets and then
report the test results on the test-dev and test-standard sets.

1) VQAVI.0

VQA v1.0 dataset [1] consists of 204,721 images from the
MSCOCO dataset [48]. There have 248,349 training ques-
tions, 121,512 validation questions, 60,864 developing test
questions, and 244,302 standard test questions. The questions
in VQA1.0 can be divided into three sub-categories: Yes/No,
Number and Other. There are three questions for per image
and each question exists ten ground-truth answers from ten
different annotators. Besides, VQA v1.0 includes two tasks:
Open-Ended task and Multiple-Choice task (18 answers
choices per question).

2) VQA V2.0
VQA v2.0 dataset [46] consists of 443,757 questions
for training, 214,354 questions for validation and
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447,793 questions for testing. There has only Open-Ended
task. The VQA v2.0 dataset is more balanced as compared
with the VQA v1.0 dataset. Specifically, for every ques-
tion, there are two similar images which have two different
answers to the question. We evaluate the CAQT model on the
challenging Open-Ended task of both datasets.

B. EVALUATION METRICS

Since each question in the datasets is answered by ten dif-
ferent annotators, the answers sometimes are not the same,
especially for ambiguous or subjective questions. In order
to explore the inconsistency between answers, we adopt
soft accuracies as the regression targets. We report the soft
accuracy as:

K
1 <k ik Wa = aj)
Acc(a) = I Zmin(ZIQgK’H;k T, (25)
k=1

where a1, a2, a3, . . ., ag are correct answers provided by the
different annotators, a is the predicted answer and K = 10. I
is an indication function.

C. PARAMETER SETTINGS

For extracting visual object features, we use Faster
R-CNN [35] to obtain top 36 (K = 36) object regions and
each region is represented by 2048 dimensional features. For
sentence encoding, a pre-trained GloVe word embedding of
dimension (300) is utilized [49]. And, Bi-LSTM is used to
encode question, the dimension of word feature vector in each
question is 2048 (d, = 1024). For computational efficiency,
we limit the length of each question to 14 words (n = 14).
We set d, = 100, r = 10 (according to [29]). The batch size
is set to 512, and the epoch is set as 30. All experiments are
fulfilled with PyTorch toolbox.

D. COMPARED METHODS

1) COMPARISON ON THE VQA V1.0 DATASET

We compare CAQT with existing state-of-the-art methods on
the VQA v1.0 dataset as follows:

e« LSTM Q+I [1] uses a two-layer LSTM to get question
embedding and uses VGGNet to get image features, then
fuses them via element-wise multiplication.

o DPPnet [41] solves the VQA task by learning a CNN
with a dynamic parameter layer where the weights are
determined adaptively based on questions.

« FDA [42] provides better-aligned image content repre-
sentation with questions. FDA can find the important
words and critical regions in the question and image,
respectively. The question feature and image feature are
fused via LSTM units.

o DMN+- [43] proposes a model with memory and atten-
tion mechanism. The input fusion layer allows interac-
tions between input facts, and a novel attention based
GRU allows for logical reasoning over ordered inputs.

o SMem [44] stores neuron activations from different spa-
tial regions of the image in its memory, and uses the
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question to choose relevant regions for computing the
answer.

o SAN [25] uses the semantic representation of question
as the query to search for the regions in an image that is
related to the answer. It queries an image multiple times
to infer the answer progressively.

o MRN [45] uses shortcuts and residual mappings for mul-
timodality, so MRN allows a deeper network structure
and can effectively learn the joint representation from
vision and language information.

« MCB [7] proposes to utilize Multimodal Compact Bilin-
ear pooling to efficiently and expressively combine
multi-modal features.

« MLB [15] proposes low-rank bilinear pooling using
Hadamard product for an efficient attention mechanism
of multi-modal learning.

« HieCoAutt [8] presents a hierarchical co-attention model
for visual question answering. Co-attention model
jointly reasons about image attention and question
attention.

« MAN [18] exploits memory-augmented neural net-
works to predict accurate answers for visual questions,
the memory network incorporates both internal and
external memory blocks and selectively pays attention
to each training exemplar.

o DAN [9] attends to specific regions in the image and
key words in the question via multiple steps and gath-
ers essential information from both modalities to infer
answers.

« MFB [16] develops a Multi-modal Factorized Bilin-
ear pooling approach to combine multi-modal features,
which leads to superior performance for the VQA task
compared with other bilinear pooling approaches.

2) COMPARISON ON THE VQA V2.0 DATASET
We compare CAQT with existing state-of-the-art methods on
the VQA v2.0 dataset as follows:

o VQA team-Prior [46] predicts the most common answer
in the training set, for all test questions.

¢ VQA team-Language only [46] has a similar architec-
ture with LSTM Q+I [1] except that it only accepts
the question as input and does not utilize any visual
information.

o VQA team-LSTM+CNN [46] uses LSTM to get ques-
tion embedding and uses CNN to get image fea-
tures. It combines these two features via element-wise
multiplication, and is followed by a MLP classifier
to predict a probability distribution over candidate
answers.

« MAN [18], MCB [7] and MLB [15] are consistent with
the comparison methods in VQA v1.0 dataset.

o Up-Down [37] combines bottom-up and top-down atten-
tion mechanisms which enable attention to be calculated
at the level of objects and other salient image regions.
The Up-Down model employs the visual feature from
Faster R-CNN with ResNet-101 and extracts the final
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TABLE 2. Results comparison of various models on VQA v1.0 test-dev set and test-standard set. “-” indicates that the result is not available. For the

test-dev set and the test-standard set, the best results are bolded.

Model test-dev test-standard
Overall Other Number Yes/No | Overall Other Number Yes/No
LSTM Q+I [1] 53.74 36.42 35.24 78.94 54.10 36.80 35.60 79.00
DPPnet [41] 57.22 41.69 37.24 80.71 57.36 42.24 36.92 80.28
FDA [42] 59.24 45.77 36.16 81.14 59.54 - - -
DMN+ [43] 60.30 48.30 36.80 80.50 60.40 - - -
SMem [44] 57.99 43.12 37.32 80.87 58.24 43.48 37.53 80.80
SAN [25] 58.70 46.10 36.60 79.30 58.90 - - -
MRN [45] 61.68 49.25 38.82 82.28 61.84 49.41 38.23 82.39
MCB [7] 64.70 55.60 37.60 82.50 - - - -
MLB [15] 65.08 54.87 38.21 84.14 65.07 54.77 37.90 84.02
HieCoAtt [8] 61.80 51.70 38.70 79.70 62.06 51.95 38.22 79.95
MAN [18] 63.80 54.00 39.00 81.50 64.10 54.70 37.60 81.70
DAN [9] 64.30 53.90 39.10 83.00 64.20 54.00 38.10 82.80
MFB [16] 65.90 56.20 39.80 84.00 65.80 56.30 38.90 83.80
CAQT(ours) 66.37 57.98 42.02 82.63 66.53 58.05 41.15 82.88

state of GRU as the question feature, and then combines
these two features via element-wise multiplication.

o MF-SIG-T3* [47] indicates 2-glimpse model by con-
catenating a Mean Field attention with a sigmoid atten-
tion. It is trained on external datasets and involves three
reasoning processes.

3) VARIANT MODELS

To demonstrate the effectiveness of self-attention on the ques-
tion, and question type, we design and compare three variant
methods. These variant models are trained and evaluated on
the training and validation sets of the two public datasets,
respectively. Specifically, the variant models are as follows:

« Baseline: The baseline model first extracts the image
feature from Faster R-CNN and uses the output of every
hidden state of Bi-LSTM as the question word feature.
Then executes question-guided visual attention. Finally,
image and text features are fused and fed into the classi-
fier to get the answer.

o Baseline+Self-Attention (Baseline+SelfAtt): Based on
the Baseline model, Baseline+SelfAtt performs self-
attention on the question, and then uses the new question
expression to execute visual attention.

« Baseline4-question type (Baseline4-QType): Compared
with the Baseline model, Baseline+QType concatenates
the one-hot encoding of the question type to the multi-
modal joint representation directly, then feeds these fea-
tures into the classifier.

E. EXPERIMENTAL RESULTS AND DISCUSSIONS

1) PERFORMANCE COMPARISON (RQ1)

We first list the performance of our method and then compare
it with previous published competing approaches. Tab. 2
shows the experimental results on test-dev and test-standard
of VQA vl1.0 dataset for the Open-Ended task. Tab. 2 is
divided into three categories: 1) approaches without using
attention mechanism; 2) methods only based on visual atten-
tion; 3) approaches integrating both visual attention and
textual attention.
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In Tab. 2, we have the following observations: CAQT
obtains the best Overall accuracies on test-dev (66.37%) and
test-standard (66.53%). Our method belongs to the third cat-
egory approach (approach based on visual and textual atten-
tion), with significant improvements over the best approach
MEB by 0.47% on test-dev and 0.73% on test-standard.
We consider that CAQT is superior to MFB probably because
we use a matrix to represent questions, but MFB uses a vector,
which may lead to information loss. Besides, MFB uses bilin-
ear pooling to fuse image and text features, which actually
results in expensive time and space complexity. Comparing
with the first category (methods without attention), CAQT
outperforms the best approach DMN+, especially with an
increase of 6.13% in terms of test-standard Overall accuracy.
In addition, compared with the second category approaches
involving visual attention, our method is still better, with a
large margin on the test-dev and test-standard sets.

We further demonstrate the performances of CAQT on the
VQA v2.0 dataset with both test-dev and test-standard sets.
Tab. 3 summarizes the comparisons of our approach with
the results of advanced methods. From the results in Tab. 3,
we can see that CAQT achieves 65.46% and 65.80% Overall
accuracies across all question domains of test-dev set and
test-standard set, respectively. CAQT outperforms the state-
of-the-art approach (MF-SIG-T3) by 0.73% on Overall accu-
racy of test-dev set, even though the MF-SIG-T3 model was
trained via VQA v2.0 dataset and an external dataset (Visual
Genome [ 14]). Furthermore, the improvements of CAQT can
be seen in all of the entries (Other with 0.79%, Number with
0.93%, Yes/No with 0.62% on test-dev set, Other with 0.24%,
Number with 0.04%, Yes/No with 0.04% on test-standard set),
especially for the Number accuracy on the test-dev set. The
results in Tab. 2 and Tab. 3 explicitly show the advantages
of CAQT.

2) EFFECTIVENESS OF SELF-ATTENTION MECHANISM (RQ2)

We summarize the performance of Baseline+SelfAtt on
VQA v1.0 and VQA v2.0 validation sets in Tab. 4 and Tab. 5,
respectively. When a model does not execute self-attention on
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TABLE 3. Results comparison of various models on VQA v2.0 test-dev set and test-standard set. “-” indicates that the result is not available. “*": trained
with external datasets. For the test-dev set and the test-standard set, the best results are bolded.

Model test-dev test-standard
Overall Other Number Yes/No | Overall Other Number Yes/No
VQA-team-Prior [46] - - - 25.98 01.17 00.36 61.20
VQA team-Language only [46] - - - 44.26 27.37 31.55 67.01
VQA team-LSTM+CNN [46] - - - 54.22 41.83 35.18 73.46
MAN [18] - - - 62.10 52.60 39.50 79.20
MCB [7] reported in [46] - - - 62.27 53.36 38.28 78.82
MLB [15] - - - 62.54 52.95 38.64 79.85
Up-Down [37] - - - 65.67 56.26 43.90 82.20
MF-SIG-T3* [47] 64.73 55.55 42.99 81.29 - - - -
CAQT(ours) 65.46 56.34 43.92 81.91 65.80 56.50 43.94 82.24
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Q: What time does the cell phone say?
GT:09:51

Ours: 09:51

§
;
M 1

Q: Where is the television?
GT: wall
Ours: wall @

What spot  is being played

he person's hand?

()

FIGURE 3. Visualization of examples. Original image (left), the output of the visual attention (middle) and the histogram of

textual attention weights distribution (right).

TABLE 4. The results of variant models on VQA v1.0 validation set.
Self-attention and question type are abbreviated as SelfAtt and
QType,respectively. The best results are bolded.

Model Overall | Other | Number | Yes/No
Baseline 63.40 54.14 44.27 81.49
Baseline+SelfAtt 63.60 54.23 44.19 81.93
Baseline+QType 63.51 54.15 44.15 81.82
CAQT (final) 63.78 54.28 44.55 82.24

the question, and not consider the question type, the Overall
accuracy shows the worst performance. In Tab. 4, compared
with Baseline, Baseline+SelfAtt has an Overall accuracy
increased by 0.2%. In Tab. 5, Baseline+4-SelfAtt outperforms
the Baseline model across all of the entries (Overall with
0.37%, Other with 0.17%, Number with 1.14%, Yes/No with
0.43%). Compared with Baseline, the improvement of exper-
imental results fully demonstrates that self-attention plays a
crucial role in improving the accuracy of the model.
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TABLE 5. The results of variant models on VQA v2.0 validation set.
Self-attention and question type are abbreviated as SelfAtt and QType,
respectively. The best results are bolded.

Model Overall | Other | Number | Yes/No
Baseline 63.58 54.63 47.86 80.31
Baseline+SelfAtt 63.95 54.80 49.00 80.74
Baseline+QType 63.63 54.68 48.39 80.25
CAQT (final) 64.25 55.39 48.03 81.17

3) VALIDATION OF QUESTION TYPE (RQ3)

Tab. 4 and Tab. 5 also give the performance of Baseline+
QType on the validation sets. It can be seen from Tab. 4,
Baseline+QType improves Baseline model from 63.40% to
63.51% on the Overall accuracy. In Tab. 5, Baseline+QType
obtains 63.63% on the Overall accuracy, which is better
than the Baseline model, especially on the entry Number.
We believe that the reason for the high accuracy on the two
datasets is that question type narrows down the answer space,
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hence the model only need to search for the correct answers
among the candidate answers of the corresponding type.

In Tab. 4, CAQT obtains the Overall accuracy of 63.78%
on the VQA vl1.0 validation set, outperforming baseline
by 0.38%. In Tab. 5, when we add both self-attention
and question type to the Baseline, the Overall accuracy
outperforms Baseline model remarkably, with an increase
0f 0.67%. Furthermore, compared with Baseline4-SelfAtt and
Baseline+QType, CAQT could consistently achieve better
performance on the two datasets, verifying that it is reason-
able to jointly consider self-attention on the question, and
question type.

4) CASE STUDY

In this section, we show some examples to demonstrate that
visual attention can locate the regions that are relevant to
the potential answers, and textual attention highlights the key
words. Fig. 3 presents eight examples. They cover question
types include color, time, counting, location, reason, sport,
Jjudgement and other. For each example, the exhibited three
images from left to right are ordered as the original image,
the output of the question-guided visual attention and the
histogram of textual attention weights distribution. The white
aperture area of the image is the detected attention. Across all
those examples, we can see that the visual attention attends
to the image regions that are related to the correct answer,
and the text attention assigns a relatively large weight to the
important words of the question. In Fig. 3(a), the question is
“What color is his hat?’’, which asks the color of the hat of
the man who stands on the skateboard. In the output of the
visual attention layer, the attention is focused on the head of
the man. As we can see from the histogram of textual attention
weights distribution, “color” accounts for the largest propor-
tion, followed by ‘““hat”. CAQT finally outputs the answer of
the question: the hat’s color is blue.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a novel deep neural network with the
new co-attention mechanism and question type for the VQA
task. Our proposed co-attention mechanism combines self-
attention based textual attention and question-guided visual
attention. We introduce the question type in CAQT model by
directly concatenating it with the multi-modal joint represen-
tation to reduce the search space of candidate answers. The
visualization shows that the CAQT model has the ability to
pay more attention to the relevant textual and visual clues that
are highly relevant to the answer of the question. Experiments
conducted on VQA v1.0 and v2.0 datasets show that CAQT
outperforms state-of-the-art approaches.

In the future work, we plan to extend our work in the
following two directions: 1) We will strive to explore more
complex interactions between textual and visual features;
2) We will design an end-to-end model to generate an expla-
nation for the predicted answer, because an explanation can
make the question answering process more understandable
and traceable.

40780

REFERENCES

[1]1 S. Antol et al., “VQA: Visual question answering,” in Proc. ICCV,
Dec. 2015, pp. 2425-2433.

[2] X. Chen et al. (Apr. 2015). “Microsoft COCO captions: Data col-
lection and evaluation server.”” [Online]. Available: https://arxiv.org/
abs/1504.00325

[3] A. Gordo, J. Almazén, J. Revaud, and D. Larlus, “Deep image retrieval:
Learning global representations for image search,” in Proc. ECCV, 2016,
pp. 241-257.

[4] A.Gordo and D. Larlus, “Beyond instance-level image retrieval: Leverag-
ing captions to learn a global visual representation for semantic retrieval,”
in Proc. CVPR, Jul. 2017, pp. 5272-5281.

[S] W.S. Lasecki, Y. Zhong, and J. P. Bigham, “Increasing the bandwidth of
crowdsourced visual question answering to better support blind users,” in
Proc. ASSETS, 2014, pp. 263-264.

[6] K. Tu, M. Meng, M. W. Lee, T. E. Choe, and S.-C. Zhu, ‘“Joint video
and text parsing for understanding events and answering queries,” I[EEE
Multimedia, vol. 21, no. 2, pp. 42-70, Apr./Jun. 2014.

[7] A.Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell, and M. Rohrbach,
“Multimodal compact bilinear pooling for visual question answering and
visual grounding,” in Proc. EMNLP, 2016, pp. 457-468.

[8] J. Lu, J. Yang, D. Batra, and D. Parikh, “Hierarchical question-
image co-attention for visual question answering,” in Proc. NIPS, 2016,
pp. 289-297.

[9] H. Nam, J.-W. Ha, and J. Kim, “Dual attention networks for multimodal
reasoning and matching,” in Proc. CVPR, Jul. 2017, pp. 2156-2164.

[10] M. Malinowski and M. Fritz, ““A multi-world approach to question answer-
ing about real-world scenes based on uncertain input,” in Proc. NIPS, 2014,
pp. 1682-1690.

[11] M. Ren, R. Kiros, and R. Zemel, “Exploring models and data for image
question answering,” in Proc. NIPS, 2015, pp. 2953-2961.

[12] H. Gao, J. Mao, J. Zhou, Z. Huang, L. Wang, and W. Xu, ““Are you talking
to a machine? Dataset and methods for multilingual image question,” in
Proc. NIPS, 2015, pp. 2296-2304.

[13] Y. Zhu, O. Groth, M. Bernstein, and L. Fei-Fei, ““Visual7W: Grounded
question answering in images,” in Proc. CVPR, Jun. 2016, pp. 4995-5004.

[14] R. Krishna et al., “Visual genome: Connecting language and vision using
crowdsourced dense image annotations,” Int. J. Comput. Vis., vol. 123,
no. 1, pp. 32-73, May 2017.

[15] J.-H. Kim, K.-W. On, W. Lim, J.-W. Ha, and B.-T. Zhang, ‘““Hadamard
product for low-rank bilinear pooling,” in Proc. ICLR, Apr. 2017, pp. 1-14.

[16] Z.Yu,J. Yu,J. Fan, and D. Tao, ““Multi-modal factorized bilinear pooling
with co-attention learning for visual question answering,” in Proc. ICCV,
Oct. 2017, pp. 1839-1848.

[17] M. Lao, Y. Guo, H. Wang, and X. Zhang, “Multimodal local perception
bilinear pooling for visual question answering,” IEEE Access, vol. 6,
pp. 57923-57932, 2018.

[18] C. Ma et al., “Visual question answering with memory-augmented net-
works,” in Proc. CVPR, Jun. 2017, pp. 6975-6984.

[19] C.Yang, H.Zhang, B. Jiang, and K. Li, “Aspect-based Sentiment Analysis
with Alternating Coattention Networks,” Inf. Process. Manage., vol. 56,
pp. 463478, May 2019.

[20] M. Corbetta and G. L. Shulman, “Control of goal-directed and stimulus-
driven attention in the brain,” Nature Rev. Neurosci., vol. 3, no. 3,
pp. 201-215, Mar. 2002.

[21] D. Bahdanau, K. Cho, and Y. Bengio. (Sep. 2014). “Neural machine
translation by jointly learning to align and translate.” [Online]. Available:
https://arxiv.org/abs/1409.0473

[22] K. Xu et al., “Show, attend and tell: Neural image caption generation with
visual attention,” in Proc. ICML, 2015, pp. 2048-2057.

[23] K. Chen, J. Wang, L.-C. Chen, H. Gao, W. Xu, and R. Nevatia.
(Nov. 2015). “ABC-CNN: An attention based convolutional neural net-
work for visual question answering.”” [Online]. Available: https://arxiv.org/
abs/1511.05960

[24] K. J. Shih, S. Singh, and D. Hoiem, “Where to look: Focus regions for
visual question answering,” in Proc. CVPR, Jun. 2016, pp. 4613-4621.

[25] Z. Yang, X. He, J. Gao, L. Deng, and A. Smola, “Stacked attention
networks for image question answering,” in Proc. CVPR, Jun. 2015,
pp. 21-29.

[26] M. Lao, Y. Guo, H. Wang, and X. Zhang, ‘‘Cross-modal multistep fusion
network with co-attention for visual question answering,” IEEE Access,
vol. 6, pp. 31516-31524, 2018.

[27] 1. Schwartz, A. Schwing, and T. Hazan, ‘‘High-order attention models for
visual question answering,” in Proc. NIPS, 2017, pp. 3664-3674.

VOLUME 7, 2019



C. Yang et al.: Co-Attention Network With Question Type for VQA

IEEE Access

[28]
[29]
[30]
[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]

[49]

A. Vaswani et al., “Attention is all you need,” in Proc. NIPS, 2017,
pp. 5998-6008.

Z. Lin et al. (Mar. 2017). “A structured self-attentive sentence embed-
ding.” [Online]. Available: https://arxiv.org/abs/1703.03130

Z.Tan, M. Wang, J. Xie, Y. Chen, and X. Shi, “Deep semantic role labeling
with self-attention,” in Proc. AAAI, 2017, pp. 4929-4936.

X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,”
in Proc. CVPR, Jun. 2018, pp. 7794-7803.

J. Fu et al. (Sep. 2018). “Dual attention network for scene segmentation.”
[Online]. Available: https://arxiv.org/abs/1809.02983

Y. Shi, T. Furlanello, S. Zha, and A. Anandkumar, “Question type guided
attention in visual question answering,” in Proc. ECCV, Sep. 2018,
pp. 151-166.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, Jun. 2016, pp. 770-778.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proc. NIPS, 2015,
pp- 91-99.

K. Kafle and C. Kanan, “An analysis of visual question answering algo-
rithms,” in Proc. ICCV, Oct. 2017, pp. 1983-1991.

P. Anderson et al., “Bottom-up and top-down attention for image cap-
tioning and visual question answering,” in Proc. CVPR, Jun. 2018,
pp. 6077-6086.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

K. Cho et al., “Learning phrase representations using RNN encoder—
decoder for statistical machine translation,” in Proc. EMNLP, 2014,
pp. 1724-1734.

D. Teney, P. Anderson, X. He, and A. van den Hengel, “Tips and tricks for
visual question answering: Learnings from the 2017 challenge,” in Proc.
CVPR, Jun. 2018, pp. 4223-4232.

H. Noh, P. H. Seo, and B. Han, “Image question answering using convolu-
tional neural network with dynamic parameter prediction,” in Proc. CVPR,
Jun. 2015, pp. 30-38.

I. Tlievski, S. Yan, and J. Feng. (Apr. 2016). “A focused dynamic
attention model for visual question answering.” [Online]. Available:
https://arxiv.org/abs/1604.01485

C. Xiong, S. Merity, and R. Socher, “Dynamic memory networks for
visual and textual question answering,” in Proc. ICML, Jun. 2016,
pp. 2397-2406.

H. Xu and K. Saenko, ““Ask, attend and answer: Exploring question-guided
spatial attention for visual question answering,” in Proc. ECCV, 2016,
pp. 451-466.

J.-H. Kim et al., “Multimodal residual learning for visual QA,” in Proc.
NIPS, 2016, pp. 361-369.

Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh, ‘“Making
the V in VQA matter: Elevating the role of image understanding in visual
question answering,” in Proc. CVPR, Jul. 2016, pp. 6325-6334.

C. Zhu, Y. Zhao, S. Huang, K. Tu, and Y. Ma, “Structured attentions for
visual question answering,” in Proc. ICCV, Oct. 2017, pp. 1300-1309.

T. Y. Lin et al., “Microsoft COCO: Common objects in context,” in Proc.
ECCV, 2014, pp. 740-755.

J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” in Proc. EMNLP, 2014, pp. 1532-1543.

CHAO YANG received the B.E. and MLE. degrees
in computer science from Hunan University,
Changsha, China, in 1999 and 2005, respectively,
and the Ph.D. degree in computational intelligence
and systems science from the Tokyo Institute of
Technology, Tokyo, Japan, in 2010.

She was a Postdoctoral Fellow with the Tokyo
Institute of Technology. Since 2016, she has been
an Associate Professor with the College of Com-
puter Science and Electronic Engineering, Hunan

University. Her research interests include data mining, machine learning,
intelligent systems, recommender systems, and deep learning. She is a
member ACM and CCF.

VOLUME 7, 2019

MENGAQI JIANG received the bachelor’s degree in
computer science and technology from the Hunan
University of Chinese Medicine, in 2017. She is
currently pursuing the master’s degree with the
College of Computer Science and Electronic Engi-
neering, Hunan University, China. Her research
interests include visual question answering and
information extraction.

BIN JIANG received the B.A. degree in math-
ematics and the M.E. degree in soft engineer-
ing from Hunan University, Changsha, China,
in 1993 and 2006, respectively, and the Ph.D.
degree in computational intelligence and systems
science from the Tokyo Institute of Technology,
Tokyo, Japan, in 2015. He is currently an Associate
Professor with the College of Computer Science
and Electronic Engineering, Hunan University. His
research interests include big data technology, arti-
ficial intelligence, machine learning, data mining, intelligent computing,
recommender systems, and social computing. He is a member ACM and
CCE.

WEIXIN ZHOU received the bachelor’s degree in
computer science and technology from the China
University of Mining and Technology, in 2017.
He is currently pursuing the master’s degree
with the College of Computer Science and Elec-
tronic Engineering, Hunan University, China. His
research interests include deep learning, recom-
mender systems, and natural language processing.

KEQIN LI is currently a Distinguished Professor
of computer science with the State University of
New York. He has published over 620 journal
articles, book chapters, and refereed conference
papers. His current research interests include cloud
computing, fog computing and mobile edge com-
puting, energy-efficient computing and commu-
nication, embedded systems and cyber-physical
systems, heterogeneous computing systems, big
data computing, high-performance computing,
CPU-GPU hybrid and cooperative computing, computer architectures and
systems, computer networking, machine learning, and intelligent and soft
computing. He has received several best paper awards. He currently
serves or has served on the editorial boards of the IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SysTEMS, the IEEE TRANSACTIONS ON COMPUTERS,
the IEEE TransacTioNs oN CLoup CoMmpUTING, the IEEE TRANSACTIONS ON
SERVICES CoMPUTING, and the IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING.

40781



	INTRODUCTION
	RELATED WORK
	VISUAL QUESTION ANSWERING
	ATTENTION MODELS
	MODEL WITH QUESTION-TYPE

	PRELIMINARY
	PROBLEM DESCRIPTION
	COMMON FRAMEWORK
	IMAGE EMBEDDING
	QUESTION EMBEDDING
	JOINT FEATURE LEARNING


	MODEL
	MODELING
	INPUT REPRESENTATION
	CO-ATTENTION
	QUESTION TYPE
	PREDICTION

	LEARNING
	LOSS FUNCTION
	OPTIMIZATION


	EXPERIMENTS
	DATASET
	VQA V1.0
	VQA V2.0

	EVALUATION METRICS 
	PARAMETER SETTINGS
	COMPARED METHODS
	COMPARISON ON THE VQA V1.0 DATASET
	COMPARISON ON THE VQA V2.0 DATASET
	VARIANT MODELS

	EXPERIMENTAL RESULTS AND DISCUSSIONS
	PERFORMANCE COMPARISON (RQ1)
	EFFECTIVENESS OF SELF-ATTENTION MECHANISM (RQ2)
	VALIDATION OF QUESTION TYPE (RQ3)
	CASE STUDY


	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	CHAO YANG
	MENGQI JIANG
	BIN JIANG
	WEIXIN ZHOU
	KEQIN LI


