
Journal of Network and Computer Applications 125 (2019) 130–145
Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca
Routing as a service (RaaS): An open framework for customizing
routing services

Chao Bu a, Xingwei Wang b,*, Hui Cheng c, Min Huang d, Keqin Li e

a School of Computer Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
b School of Computer Science and Engineering, Northeastern University, Shenyang, 110819, China
c School of Computing and Mathematical Sciences, Liverpool John Moores University, Liverpool, L3 5UX, UK
d College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China
e Department of Computer Science, State University of New York, New Paltz, NY, 12561, USA
A R T I C L E I N F O

Keywords:
Software defined networking
Network function virtualization
Routing as a service
Routing service product line
Dynamic software product line
* Corresponding author.
E-mail address: wangxw@mail.neu.edu.cn (X. W

https://doi.org/10.1016/j.jnca.2018.10.010
Received 4 June 2018; Received in revised form 3
Available online 28 October 2018
1084-8045/© 2018 Elsevier Ltd. All rights reserved
A B S T R A C T

With the emergence of various types of network applications, the user communication requirements for them are
becoming more and more diversified and personalized. In order to accommodate the user frequently changing
demands for different network applications, the Internet Service Provider (ISP) traditionally purchases and
operates new dedicated network equipment, which always incurs high capital expense (CAPEX) and operating
expense (OPEX) from the economic viewpoint and also burdens network management. Inspired by the ideas of
Software Defined Networking (SDN) and Network Function Virtualization (NFV), we consider dealing with the
above challenge by reusing virtualized network functions and selecting appropriate ones to compose the
customized routing services on the routing paths for different applications. In this paper, based on SDN and NFV,
we propose Routing as a Service (RaaS) as an open framework to customize the specific routing services for
applications. Then, we present Routing Service Product Line (RSPL) by introducing Dynamic Software Product
Line (DSPL) into the proposed RaaS, so as to rapidly customize a large number of routing services with different
characteristics. In addition, according to the proposed framework, we also carry out a case study to customizing
routing services with benefits of both the user and the ISP considered. Simulation results show that the proposed
RaaS is feasible and efficient.
1. Introduction

With the rapid development of Internet technologies and continu-
ously expanding network size, many new types of network applications
are emerging. Meanwhile, the user communication requirements for
different network applications become more and more diversified and
personalized, bringing great challenges to the traditional routing
configuration which is still mainly in manual or command-default mode
(Jiang et al., 2016) and difficult to satisfy the user frequently changing
demands. In this paper, we propose dynamically providing services on
the packets routing paths to achieve adaptive routing configuration. This
requires the specialized network functions (i.e., middle-boxes) to
implement distinctive packet processing operations beyond simple
packet forwarding (Lima and Carvalho, 2011), such as improving secu-
rity (e.g., firewall, DPI), enhancing performance (e.g., traffic shaping,
caching proxy) and ensuring reliability (e.g., failure recovery, resource
ang).

October 2018; Accepted 24 Octo

.

reservation). Traditionally, most of the professional network functions
are usually performed by intermediary devices (Carpenter, 2002), that is,
they are implemented based on special hardware (Cheng et al., 2015). In
order to satisfy the user frequently changing communication re-
quirements, the Internet Service Provider (ISP) has to keep purchasing
and operating new network equipment, which incurs high capital
expense (CAPEX) and operating expense (OPEX) (Wu et al., 2015).
Therefore, the ISP needs a sustainable method which can satisfy the user
high communication requirements with low investment and good
time-to-value.

As the newly emerge network paradigms, Software Defined
Networking (SDN) (Diego et al., 2015) and Network Function Virtuali-
zation (NFV) (Mijumbi et al., 2015) have potentials to deal with the
above challenges. SDN decouples the control logic from data plane with
the network intelligence being highly concentrated in the control plane.
The logically centralized control plane made it easy to adjust network
ber 2018

mailto:wangxw@mail.neu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2018.10.010&domain=pdf
www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca 
https://doi.org/10.1016/j.jnca.2018.10.010
https://doi.org/10.1016/j.jnca.2018.10.010
https://doi.org/10.1016/j.jnca.2018.10.010


C. Bu et al. Journal of Network and Computer Applications 125 (2019) 130–145
behaviors, balance network load, manage network functions and
configure network services based on the global network view. Thus, SDN
can provide the sound basis to support the innovation of routing service
configuration mode. NFV decouples network functions from dedicate
network equipment on which they run, that is, the hardware based
network functions can be virtualized as the plain software based in-
stances, which enables the instantiated network functions to run on
commodity hardware. Taking the advantages of SDN and NFV, we
consider reusing various virtualized network functions and selecting
appropriate ones to compose the customized routing services on the
routing paths for different network applications, so as to satisfy the user
distinctive communication requirements. In this paper, based on SDN
and NFV, we propose Routing as a Service (RaaS) as an open framework
to customize routing service.

The routing service customization should be specific and personalized
for each user. However, it is very hard for ISP to customize each routing
service for each user independently and individually when facing a very
large number of users, especially when the real-time demands of users are
changing frequently and the new demands of users are emerging rapidly.
The reason is that the ISP cannot afford the high service provision cost
incurred by high consumption of computation andmemory resources and
that the ISP lacks the rapid production and deployment capability for the
new unexpected services. In addition, users are not willing to bear the
high cost of each routing service which is customized from scratch.
Therefore, we introduce Dynamic Software Product Line (DSPL) (Ben-
como et al., 2012) into the routing service composition, which can
rapidly and automatically produce a very large number of different
customized routing services for a very large number of users in real-time,
meanwhile satisfy each user's personalized communication
requirements.

DSPL is a software reuse paradigm to guide the developing software
products from a common set of core assets (Hallsteinsen et al., 2013)
rather than one by one from scratch (Lee et al., 2002). It composed of two
processes: domain engineering and application engineering (Kamoun
et al., 2016). In the domain engineering process, DSPL exploits com-
monality and variability among a family of software products so as to
develop the reusable and dynamically reconfigurable core assets. The
application engineering is responsible for automatically producing
customized software products derived from domain engineering. That is,
in the application engineering process, DSPL dynamically selects and
reuses appropriate core assets according to the applications' diversified
and personalized demands to rapidly customize different software
products in the real-time. Thus, DSPL can massively produce software
products of a certain domain. In this paper, we consider routing services
as software products, and diverse network functions as available com-
ponents that can be assembled into products. With the technologies of
DSPL (e.g., commonality and variability modelling, feature modelling,
orthogonal variability modelling), we develop the Routing Service
Product Lines (RSPLs), so as to achieve massively customizing diversified
routing services for different communication requirements in a rapid and
automatic way in the real-time.

In summary, the major contributions of this paper are as follows:

� An open framework, RaaS, is proposed for customizing routing ser-
vices based on the integration of SDN and NFV. RaaS provides a
flexible and effective way to achieve routing service customization by
assembling appropriate network functions and further optimize the
user experience.

� RSPL is devised by using the idea of DSPL, so that the mass-
customization for routing services can be achieved rapidly and
automatically in the real-time. The commonality and variability
model, the two-layered feature model and the orthogonal variability
model are respectively established for RSPL.

� A case study is presented according to the proposed RaaS framework
to illustrate how to maximize the ISP economic benefit with the
optimization of user service experience considered.
131
The rest of this paper is organized as follows. In Section 2, we review
the related work and compare our work with them. In Section 3, we
present the system framework of the proposed RaaS. In Section 4, we
describe the details of the established RSPL, and present the two-layered
feature model and the orthogonal variability model. In Section 5, we
carry out a case study to describe how to optimize the benefits for both
the user and the ISP. In Section 6, we present simulation experiments and
results. Finally, Section 7 concludes the paper.

2. Related work

There have been a lot of research on routing based on the idea of SDN.
In (Yu et al., 2015), an adaptive routing for video streaming (ARVS) with
QoS support over SDN was developed. It treats the base layer packets and
enhancement layer packets as two levels of QoS flows respectively to
reduce packet loss rate and enhance coverage under various network
loads. In (Li et al., 2017), by applying the SDN controller to enable the
central control of the entire network, a joint optimization model is pro-
posed to consider high bandwidth utilization for provider and low delay
for users. In (Chen et al., 2017), a system approach to provide deter-
ministic delay guarantee for dynamic service chaining in SDN is pre-
sented. It achieved QoS-guaranteed service chaining by systematically
evaluating the delay performance and designing the service traversal
path. In (Kosugiyama et al., 2017), based on SDN controller and SDN
switches, a method was devised to aggregate flows and minimize the
number of flows in a network while all flows satisfy their allowable delay
as QoS or SLA. In (Lin et al., 2016), by leveraging SDN's new system
architecture, a multi-tenancy management framework was proposed. It
enables the jointly optimized design of QoS-aware virtualization and
routing by tenant isolation and prioritization as well as flow allocation,
fulfilling QoS requirements of tenants' applications. In (Bentaleb et al.,
2017), an SDN-enabled streaming architecture called SDNDASH was
proposed. It aims to address HTTP adaptive streaming issues including
video instability, quality of experience unfairness and network under-
utilization. The above research configure routing and manage flows
based on the logically centralized controller in the SDN paradigm, which
makes it easy and flexible to allocate resources and provide services
under the global view. However, they cannot select and compose diverse
appropriate network functions into new routing services with different
characteristics. In addition, these research mainly focus on improving
QoS without taking the user personalized requirements into account. In
contrast, the proposed RaaS combines the centralized control idea of SDN
with the network function virtualization of NFV to provide a program-
mable and extensible framework with diverse reusable network func-
tions. According to the user personalized requirements, the routing
services can be customized with appropriate functions.

Taking the advantages of the integration of SDN and NFV, we have
proposed an adaptive routing service customization mechanism in our
recent work (Bu et al., 2017). In this work, with the analysis of the re-
lationships among the network operator, the ISP and the user, we pre-
sented the market-driven matching schemes and workflows between
multiple application requests and multiple candidate services. It aims to
achieve the optimal benefit equilibrium between the ISP and the user
when customizing and providing routing services. In this paper, the
proposed RaaS also takes the advantages of SDN and NFV, however, it
aims to achieve automatically and quickly customizing a very large
number of routing services in the real-time for a very large number of
users with different communication requirements. It promotes routing
service mass customization by introducing the software engineering idea
(i.e. DSPL) into the processes of network function selection and routing
service composition.

There are also some research on providing services with the idea of
function composition based on NFV and SDN. In (Bueno et al., 2013), by
using the tangible capabilities of SDN together with NFV, an open plat-
form named OpenSCaaS for service chain as a service is presented. It
provides an open, novel, and extensible approach for service-providers to



C. Bu et al. Journal of Network and Computer Applications 125 (2019) 130–145
enforce service-chaining policy without modifying current SDN stan-
dards or mandating any implementation constraints on middle-boxes. In
(Wang et al., 2015), a combinatorial optimization model was developed
to describe resources and components of dynamic function composition,
and further a Markov approximation based distributed algorithm was
proposed. In (Cheng et al., 2015), a service chain instantiation frame-
work based on NFV and SDN was proposed. It combines network func-
tions in cooperative and optimal way. In (Gharbaoui et al., 2017), an
orchestrator is presented to achieve the adaptive provisioning of
high-available and QoS-assured service chain paths in SDN/NFV in-
frastructures. In (Moyano et al., 2017), a novel network management
model is proposed based on NFV and SDN, it allows residential users to
define and control access network resources and the dynamic provision
of traffic differentiation to fulfill QoS requirements. In (Grigoriou et al.,
2017), based on the elasticity of SDN/NFV technologies, an approach for
QoE management through cooperation and information exchange among
network elements which are involved in the service delivery chain is
proposed. Based on the integration of NVF and SDN, the above research
can readily develop diversified services by composing various functions
to deal with flows on demands. However, they have not explored the idea
of mass-customization for routing services when facing large-scale users
with different requirements. They also do not consider benefits of both
the user and the ISP. In contrast, the proposed RaaS combines DSPL with
network function selection and routing service composition, thus ach-
ieves the routing service mass-customization. Furthermore, RaaS takes
benefits of both the user and the ISP into account when customizing
routing services.

There are some research on customizing services by leveraging DSPL.
In (Lee et al., 2012), a novel service-oriented product line (SOPL) was
proposed, which combines feature-oriented analysis with a
self-management QoS framework. In (Gamez et al., 2015), a software
product line based approach for stateful service selection problem with
transaction and QoS support was proposed. It chooses the best services by
matching every task of the workflow to satisfy the user preferences and
constraints. In (Kotonya et al., 2009), a consumer-centered approach was
proposed. It integrates product line engineering with service-orientation
by adapting feature-oriented product-line engineering to
service-oriented development. In (Gomaa and Hashimoto, 2011), the
dynamic software adaptation for SOPL was proposed, which uses a dy-
namic feature model for a family of service-oriented architectures. In
(Nascimento et al., 2014), a self-adaptive solution was proposed, which
leverages the ideas from Software Product Line Engineering to support
fault-tolerant composition services. The above research leverage the
feature modelling method of DSPL to improve the service customization.
However, they mainly focused on the user requirements to establish the
feature model without considering other participants (e.g., the ISP). In
addition, they do not consider the routing problems when customizing
services. In contrast, we have proposed a novel two-layer feature model
by leveraging DSPL for routing service customization, and have taken
both the user service experience and the ISP profit expectation into
account.

There are some research on constructing models to evaluate the user
service experience or assess the ISP economic benefit, so as to improve
the service quality or optimize the profit. In (Wagle et al., 2015), an
evaluation model is proposed, it considers both dynamic and static at-
tributes during the selection of provider. It also verifies the service
quality delivered for each service in the SLA commitment. In (Hsu and Lo,
2014), a QoS to Quality of Experience (QoE) mapping and adjustment
model is proposed, it translates the network QoS parameters into the
user's QoE. Thus, the ISP can use the proposed model to precisely mea-
sure and predict its customers' QoE. In (Msakni and Youssef, 2013), a
classification of several objective models is presented to assess QoE based
on QoS parameters. It also discusses some other factors that must be
considered in the mapping process between QoE and QoS. In (Floris et al.,
2018), it considers the collaboration among ISPs and OTTs for joint
QoE-aware service management in terms of technical and economic
132
aspects. Three different models are proposed to maximize the profit so as
to provide different QoE to customers. In (Antonio et al., 2011), a simple
QoS-based dynamic pricing approach is proposed, which attempts to
increase user's satisfaction level by maximizing the provided QoS level
and applying dynamic pricing strategies according to the QoS. It serves as
the model to allow service providers to maximize their profits. These
research have devised models and approaches of evaluating the user
service experience or assessing the ISP economic benefit, by which to
improve the service provision. However, most of them mainly focus on
the user or the ISP separately, they do not take both of the user experi-
ence and the ISP profit together into account when providing services.
Moreover, they focus on the user experience on service quality without
considering the user experience on service price. They are also short of
analyzing the impact of optimizing the ISP profit on the user selectivity
for services. In contrast, the proposed RaaS has constructed corre-
sponding evaluation models to deal with the above problems. The user
experience on service quality and service price are considered together in
the model to evaluate the user service experience. In addition, the user
service experience serves as a key factor to optimize the ISP economic
benefit when composing and pricing services.

3. The framework of RaaS

The proposed RaaS is based on the idea of decoupling control plane
from data plane in SDN and decoupling network functions from physical
network equipment in NFV. The framework of RaaS is composed of three
layers, i.e., data layer, control layer and application layer. According to
the requirements of both the user and the ISP for different network ap-
plications, the three layers cooperate with each other to achieve routing
service customization. The details of the system framework of RaaS is
shown in Fig. 1.

The data layer is in charge of processing packets according to for-
warding rules. It consists of a series of network domains which may be
built under different environments with different networking modes.
Each domain contains multiple switches which are standardized and
NFV-enabled (Mijumbi et al., 2015). These switches not only contain
simple forwarding functions (i.e., standard IP routing functions), but also
can be enhanced and programmed with special-purpose packet for-
warding functions (i.e., various types of virtualized network functions).
Here, path computation does not decouple from routing service compo-
sition, the corresponding routing algorithms serve as candidate network
functions to be selected to compose customized routing services. Such
enhancement enables the appropriate network functions to be dispatched
into the corresponding switches, and the customized routing services to
be composed on the paths for different network applications.

Based on the integration of NVF and SDN, the control layer is
composed of the routing service orchestration center and the routing
service decision-making center. The routing service orchestration center
is established to virtualize the underlying network resources to form the
virtualized resource pool by the virtualization technology (Lorena et al.,
2015). In the virtualized resource pool, the underlying switches and links
are virtualized to be logical nodes and logical links respectively, and
various types of virtualized network functions are modularly designed
with the standardized interfaces. With the virtualized resource pool, the
underlying network resources can be monitored, managed and allocated
in a unified and global way by the routing service decision-making
center. The routing service decision-making center is established to
perform mass-customization for routing services. By using the DSPL
method, we devise diversified RSPLs for different types of network ap-
plications according to their domain knowledge. The RSPL contains
reconfigurable core assets and multiple variation points which corre-
spond to multiple feasible selection and composition possibilities for
routing services. The variability model, feature model and orthogonal
variability model are established in RSPL, so as to support diversified
routing service customization according to various requirements of both
the user and the ISP. Based on the established RSPLs in the RSPLs set, the



Fig. 1. The framework of the proposed RaaS.

C. Bu et al. Journal of Network and Computer Applications 125 (2019) 130–145
appropriate network functions are selected to compose the customized
routing services. This approach helps to achieve mass-customization for
routing services. Each customized routing service optimizes the user
service experience and maximizes the ISP profit expectation.

The application layer implements routing logic that supports the
routing service decision-making. At this layer, routing control instances
are provided to guide the control layer in providing the customized
routing services. For example, three instances are shown in Fig. 1.
Domain Knowledge for different types of Applications (DKA) is used to
establish specific RSPLs. Since the requirements of both the user and the
ISP are considered, the Function Selection Schemes (FSSs) and the Ser-
vice Pricing (SP) strategy are devised to provide the feasible selection and
pricing for routing service customization.

3.1. The notions of RaaS

We provide the following definitions and descriptions for the ele-
ments used in the RaaS, so as to abstract the routing service custom-
ization. And the elements can serve as the basis for routing service
development.

Definition 1. An Application Request (AR) is defined as a six-tuple harid;
R;SAppids ;SAppidd ;ep;hpi. Here, arid is the application's unique identifier; R ¼
fr1; r2;…; rq

��q 2 Nþg is the set of the communication requirements of the

user, and Nþ is the set of positive integers; SAppids and SAppidd are the source
133
switch and destination switch of arid respectively; ep and hp represent the
user estimated price on the service and the user highest acceptable price
to the required service respectively.

Definition 2. An ISP is defined as a five-tuple hDKA;RSPL; FSS;C; spi
which provides the routing service to the user. Here, DKA ¼ fdka1; dka2;
…; dkapjp 2 Nþg is the set of domain knowledge for different types of
network applications and each element represents domain knowledge for
one certain type of application; RSPL ¼ frspl1; rspl2;…; rsplpjp 2 Nþg is
the set of RSPLs and each rspli in RSPL is the established RSPL corre-
sponding to dkai in DKA, 1 � i � p; FSS ¼ ffss1; fss2;…; fssnjn 2 Nþg is
the set of function selection schemes and its element can be selected to
compose the routing service by ISP; C ¼ fc1; c2;…; cnjn 2 Nþg is the set
of costs of implementing different schemes in FSS; sp is the service pricing
strategy set by ISP.

For example, we suppose that dkai 2 DKA denotes the domain
knowledge of the video-chat type of applications. Its domain knowledge
contains all possible communication characteristics required by this type
of applications in the ISP's historical records, such as reliable interaction
(i.e., connection oriented), private conversation (i.e., encryption and
access control), video quality (i.e., traffic shaping, congestion control,
bandwidth allocation), and so on. It can be described as Fig. 2.

Definition 3. A RSPL is defined as a five-tuple hrsplid;dkaid;CF;DF;NFi.
Here, rsplid is the unique identifier of a RSPL; dkaid is the corresponding



Fig. 2. The XML fragment example.

Fig. 3. The method to abstract a CRS. A routing service is treated as a directed
acyclic graph here. The selected functions in the service can be treated as nodes
in the graph and they deal with packets by push and pull operations based on the
modes of their ports, which can be used to model the RSCR.

C. Bu et al. Journal of Network and Computer Applications 125 (2019) 130–145
domain knowledge which is necessary to establish the RSPL, dkai 2 DKA;
CF ¼ fcf1; cf2;…; cfuju 2 Nþg and DF ¼ fdf1; df2;…; dfvjv 2 Nþg are
common features and different features respectively defined according to
dkaid for the RSPL; NF ¼ fnf1; nf2;…; nfwjw 2 Nþg is the set of selectable
network functions to compose routing services based on the RSPL.

Definition 4. A Customized Routing Service (CRS) is defined as a
seven-tuple hcrsid; rscr; Pac; e1; e2; fsi. Here, crsid is the CRS's unique
identifier; rscr is the corresponding Routing Service Composition Rule
(RSCR) which contains the selected functions and their assembling forms
to compose the CRS; e1 and e2 are the endpoints of the CRS; Pac ¼ fpac1;
pac2;…; paceje 2 Nþg is the set of packets forwarded by the CRS; fs is the
forwarding state of Pac (including transmission rate, size, loss rate, etc.),
which has been dealt with by the CRS. When packets in Pac enter the CRS
from one endpoint, they are dealt with then forwarded to the other
endpoint under fs.

Definition 5. A Network Function (NF) is defined as a four-tuple hnfid;
inp; op; CMi. Here, nfid is the unique identifier of a network function,
nfid 2 NF; inp and op are the input port and the output port of the function
respectively; CM ¼ fpullm; pushm; uncertainmg is the set of connection
modes of ports. pullm represents pull mode and supports pulling packets
from another function; pushm represents push mode and supports push-
ing packets to another function; uncertainm represents uncertain mode
and serves as the connector between pullm and pushm. inp is either pullm
or uncertainm, and op is either pushm or uncertainm. A pullm inp of a
function can only connect with an uncertain op of another function. A
pushm op of a function can only connect with an uncertain inp of another
function.

Definition 6. The operator � is defined to do the operation of selecting
one element from a set. For example,NF � nfi means selecting nfi fromNF.

Definition 7. The operator put is defined to do the operation of putting
nfi into crsj by putðnfi; crskÞ.
Definition 8. The operator del is defined to do the operation of deleting
nfi from crsj by delðnfi; crskÞ.
Definition 9. The operator push is defined to push packets to a function
when packets are ready. If a push is operated by nfi, nfi is the source
function of the push.

Definition 10. The operator pull is defined to pull packets from a
function when packets are ready. If a pull is operated by nfi, nfi is the
destination function of the pull.

Inference 1. The operation of replacing one function in a service with
another function is achieved by doing one � operation, one del operation
and one put operation.

Inference 2. The operation of composing a network service is ach-
134
ieved by doing � operation and put operation for x times, here, x 2 Nþ.
Inference 3. The operation of forwarding packets by a routing service

is achieved by doing pull operation for x times and push operation for y
times by the selected functions in the service, here, x;y 2 Nþ.

In addition, a CRS can be abstracted as shown in Fig. 3, which can also
be used to describe the corresponding RSCR.
3.2. The workflow of RaaS

In the system of RaaS, the control layer cooperates with the appli-
cation layer through the north-bound interface (Lopes et al., 2016). ISP
periodically updates the routing control logic by resetting the DKA
component, FSSs component and SP component according to the recent
historical records (e.g., service provision information, user feedback in-
formation, etc.) which are collected and sent by the control layer. For
example, new requested features for some type of applications appear,
which should be added into the corresponding DKA; a CRS cannot adapt
to new demands, whose functions selection scheme should be improved;
and the SP should be changed because of some type of applications
becoming popular. Meanwhile, the control layer should adjust the cor-
responding RSPL models according to the latest state of the components
in the application layer, and return the newest service provision records
to the application layer in time.

The control layer cooperates with the data layer through the south-



C. Bu et al. Journal of Network and Computer Applications 125 (2019) 130–145
bound interface (Lopes et al., 2016). The control layer periodically
measures network status with the method of Link Layer Discovery Pro-
tocol (LLDP) (Tarnaras et al., 2015), and waits for the application re-
quests sent by the data layer through the packet_in message (Li et al.,
2017)). Then, the control layer matches the application requests with the
corresponding RSPLs. According to the FSSs and SP the RSCRs are
created. At last, the rules are sent to the data layer through the packet_out
message (Li et al., 2017) and the appropriate functions are deployed into
the appropriate switches on the application communication paths. In
addition, the detailed function deployed methods can refer to our pre-
vious work (Bu et al., 2018).

Algorithm 1

1. for all new ARs do
2. Match ARs with RSPLs;
3. for each ark do
4. Obtain candidate NFs according to RSPL;
5. Obtain feasible NF sets according to FSSs;
6. Select the NF set (i.e., NF) according to SP;
7. for each nfi 2 NF do
8. NF � nfi ;
9. putðnfi; crskÞ;
10. end for
11. Provide crsk to the application;
12. end for
13. end for
Algorithm 2
1. for all existing ARs do
2. if requirements in ARs are changing then
3. for each ark do/* crsk denotes its current and NFk denotes the functions in crsk
*/

4. Reselect the NF according to RSPL, FSSs and SP;
5. for each nfi 2 ðNFk � NF \ NFkÞ do
6. delðnfi; crskÞ;
7. end for
8. for each nfi 2 ðNF � NF \ NFkÞ do
9. ðNF � NF \ NFkÞ � nfi;
10. putðnfi; crskÞ
11. end for
12. Provide crsk to the application;
13. end for
14. end if
15. end for

Algorithm 3
1. for all existing ARs do
2. if ARs are finishing then
3. for each ark do/* crsk denotes its current and NFk denotes the functions in crsk
*/

5. for each nfi 2 NFk do
6. delðnfi; crskÞ;
7. end for
8. Release crsk;
9. end for
10. end if
11. end for

In this paper, the specific algorithms are devised for the main work-
flows running in the system, which are Algorithm 1 for new ARs coming,
Algorithm 2 for existing ARs change, and Algorithm 3 for existing ARs
accomplishment.

4. Routing Service Product Line

When a large number of users propose various personalized
communication requirements for different network applications, ISP
should be able to recognize differences among these requirements to
achieve routing service customization in addition to the mass production
of routing services. Thus, we present RSPL by using the methods of DSPL
to devise the commonality and variability model, the feature model and
the orthogonal variability model.
135
The relationships among these three models can be described as fol-
lows. (1) The commonality and variability model serves as the rules to
establish the feature model by predefining the association relationships
of commonality and variability among different routing services. (2) The
feature model is established according to the corresponding DKA. It
serves as the basis to create the orthogonal variability model in real-time
by providing certain variation points and their corresponding variants.
(3) According to the current requirements, new CRSs are composed and
existing CRs are adjusted rapidly based on the certain created orthogonal
variability models.

4.1. Commonality and variability modeling for RSPL

In order to achieve routing service customization, we predefine
commonality and variability of the RSPL. The commonality among
different routing services composed by a RSPL is modeled as common
feature or mandatory feature of the RSPL. For example, all routing ser-
vices which support the applications of VoIP type need the feature of
interactivity. The variability among different routing services composed
by a RSPL is modeled as different features which may be alternative or
optional. The alternative features indicate that no more than one feature
can be selected for routing services. For example, connectivity is an
alternative feature because a routing service is either connection-
oriented or connectionless. The optional features are selectable for
routing services of a certain RSPL. For example, QoS feature is an
optional feature because a routing service can select single or multiple
kinds of QoS involved algorithms (e.g., packet scheduling, traffic
shaping, buffer allocation, etc.) to satisfy different QoS requirements.

We define that each common feature corresponds to one mandatory
point which must be selected when composing routing services. We
define that each different feature (i.e., alternative feature or optional
feature) corresponds to one variation point, and the selectable elements
of each different feature corresponds to the selectable variants of each
variation point. In this way, the variation points serve as the key to
compose diverse routing services with the personalized requirements
considered. Therefore, the commonality and variability model of the
RSPL is illustrated in Fig. 4.

In this approach, common features and different features are defined
for RSPL. It provides reusable basis for customizing routing services, and
makes customization flexible and extendable. For example, according to
the selectable variants of each variation point, we consider the corre-
sponding selectable network functions as variants. Thus, it is easy to
embed new network functions and improve existing functions according
to the certain variation point. Moreover, maintenance cost can be
reduced. For example, once one function is changed, the changes can be
delivered to all RSPLs that use this function. It saves extra cost of inde-
pendently tracing and changing each special related service. In addition,
the management complexity of routing service can be simplified. For
example, when the user requirements or the network status change, the
routing service does not need to be entirely recomposed from scratch.
Instead, it only adjusts a few appropriate network functions for the
changed variation points in RSPL.

4.2. Feature modeling for RSPL

Feature modeling is the activity of identifying the externally visible
characteristics of products in a product line and organizing them into a
model, called feature model (Hinchey et al., 2012). Here, the visible
characteristics of routing services can be described as their capabilities,
such as the used domain technologies, protocols, algorithms and so on.
According to the commonality and variability model, the different fea-
tures are considered as the key to customize diversified and personalized
routing services, thus the feature model is established mainly based on
the different features mentioned above. In the feature model, we also
should take the requirements of both the user and the ISP into account,
and devise a separate layer in the model to guide function selection and



Fig. 4. The commonality and variability model.

C. Bu et al. Journal of Network and Computer Applications 125 (2019) 130–145
composition. Therefore, a two-layer feature model which contains
non-functional feature layer and function feature layer is proposed as
shown in Fig. 5. Here, the static-composition refers to the elements which
are mandatory for the routing services composed by a RSPL; the
dynamic-composition refers to the elements which are dynamically
selectable for the routing services composed by a RSPL according to the
real-time requirements.

In the non-function feature layer, the non-functional features such as
the user service experience and the ISP economic benefit are necessary to
customize different routing services. Although they do not serve as the
entity components of routing services, they serve as the optimization
conditions or constraints when composing CRSs. We consider two factors
which may influence the user service experience, which are the user
experience on service quality and the user experience on service price. In
this paper, we evaluate the user experience on service quality by the
actual parameter values (e.g., delay, jitter, error rate, etc.) which can be
provided by the routing service, and the user experience on service price
by the relationship between the user maximum acceptable price and the
Fig. 5. The feat

136
actual service price. For the ISP economic benefit, the costs will be
different with different FSSs which also lead to different parameter
values. In addition, the pricing strategy should also be set reasonably to
maximize the ISP profit without reducing the user acceptability for the
routing service.

In the function feature layer, the functional features (e.g., trans-
mission feature, QoS feature, etc.) form the possible capabilities of
routing services, and the corresponding selectable functions form the
entity components of routing services. The CRSs are considered as the
special software products, and the network functions are considered as
the optional software components which can be composed into the CRSs.
According to the commonality and variability model, we treat the
different features (i.e., QoS feature, security feature) as the variation
points, and the functions under them as the selectable variants. In this
approach, according to the non-functional features (i.e., optimization
conditions, constraints) in the non-functional layer, the appropriate
functions are selected for the corresponding functional features to
compose the CRSs with different capabilities.
ure model.



C. Bu et al. Journal of Network and Computer Applications 125 (2019) 130–145
4.3. Orthogonal variability modeling for RSPL

The orthogonal variability model is established to plan the complete
workflow to analyze, design and run the routing service in real-time
according to the current requirements based on the corresponding
feature model. As suggested above, the variation point serves as the key
to compose diverse routing services, its corresponding orthogonal vari-
ability model is also in charge of achieving the traceability of variability
in different software phases when customizing routing services. For
example, when the variants of some variation points have to be changed
(e.g., be added, be replaced, be deleted, etc.) due to the changed re-
quirements or network status, each variation point should keep consis-
tency throughout the routing service lifecycle. Especially for the running
services, they can be rapidly and accurately adjusted based on trace-
ability due to variation point being basic element, so that it does not need
to re-analyze, re-design and re-compose these services from scratch.

In this paper, we mainly take the QoS variation point as an example to
illustrate the orthogonal variability model in detail in Fig. 6. As shown in
Fig. 6, based on the QoS variation point (i.e., Fig. 6(A)), the variability is
extended to other diagrams at different phases of composing a routing
service, so as to associate variants with the selected function components.
The involved diagrams in the orthogonal variability model include static
view diagrams, such as class diagram (i.e., Fig. 6(B)) and use case dia-
gram (i.e., Fig. 6(C)), and dynamic view diagrams, such as activity dia-
gram (i.e., Fig. 6(D)) and sequence diagram (i.e., Fig. 6(E)). The static
Fig. 6. The orthogonal variability

137
view diagram reflects the structural characteristics of QoS variation point
in a routing service. For example, the class diagram shows the classes of a
service and their relationships, and the use case diagram shows the sys-
tem blueprint of a service. The dynamic view diagram reflects the
behavioral characteristics of QoS variation point in a routing service. For
example, the activity diagram shows the object interaction in a service,
and the sequence diagram shows the event sequence among different
objects.

In the orthogonal variability model, the variation point serves as the
basic element of customizing routing services, and the overall process of
composing a routing service in real-time according to a feature model are
also illustrated. In the class diagram of Fig. 6(B), multiple network
functions which can adjust parameters of QoS are classified and
enumerated as the candidate ones to be selected on demand. For
example, quite a few algorithms (e.g., partial buffer sharing, complete
buffer sharing, complete buffer partition, etc.) can achieve buffer man-
agement. However, just one of them can be selected by the system as one
of functional components in a specific routing service. In the use diagram
of Fig. 6(C), participants and use cases are used to describe the QoS
functional requirements of the system, so as to bulid the required service
according to the requirement analysis. In the activity diagram of
Fig. 6(D), it describes the behaviors when composing functions, and
shows the order of activations executed by the involved classes. It also
supports multiple thread description when multiple functions are
simultaneously allocated. The interactive processes and the exchanged
model for QoS variation point.



C. Bu et al. Journal of Network and Computer Applications 125 (2019) 130–145
messages among the user, ISP and RSPL system with respect to the time
sequence are described in the sequence diagram of Fig. 6(E). It also
emphasizes the sequential occurrence of events when running a service,
so as to keep the involved components working orderly.

5. A case study

When providing routing services, ISP tends to maximize its own profit
in two ways. One is to reduce the cost by choosing the suitable FSS and
the other is to raise the price for the customized service by its pricing
strategy. However, the FSS and pricing strategy also influence the User
Service Experience (USE) which consists of the User Experience on Ser-
vice Quality (UESQ) and the User Experience on Service Price (UESP)
which further affect the user in selecting the customized routing service.
For example, the user may always reject the service with poor quality
and/or high price, and then ISP cannot get any profit. Therefore, it is
necessary to maximize ISP profit whilst the user service experience is
considered. A possible way is to formulate and exploit the relationship
among the user, the ISP, and the CRSs.

In this section, we present a case study to illustrate how to practically
take the requirements of both the user and the ISP in to account ac-
cording to the instances (i.e., FSSs and SP) in the application layer of the
proposed RaaS framework. In this paper, the FSSs is supposed to contain
the combination constraints among network functions, for example, the
anti-affinity between two functions nfi and nfj (i.e., AAnfi;j 6¼ 1), which
indicates that nfi and nfj cannot be implemented in a same service
because of their conflicting resource demands or operating conditions.
Meanwhile, the SP is set to maximize the ISP Economic Benefit (IBE). In
this approach, according to the feature demands for the routing service,
the set of feasible function combinations is denoted as the following Funs:

Funs ¼ fCRS;V1;V2;…;Vmg s:t: CRS ← V1 ^ V2 ^… ^ Vm

¼ fCRS; fnf1; nf2; nfi�1g; nf1; nf2; nfi�1 2 V1�
nfi; nfj; nfjþ1; nfjþ2

�
;…; nfi; nfj; nfjþ1; nfjþ2 2 V2

fnfl; nflþ1; nfkgg nfl; nflþ1; nfk 2 Vm

⇒
��

crs1; nf1; nfjþ1;…; nflþ1

�
AAnf1;jþ1 ^… ^ AAnfjþ1;lþ1 ¼ 1

_�crs2; nf2; nfjþ2;…; nfk
� _… AAnf2;jþ2 ^… ^ AAnfjþ2;k ¼ 1

_�crsn; nfi�1; nfj;…; nfk
��

AAnfi�1;j ^… ^ AAnfj;k ¼ 1
¼ ffss1; fss2;…; fssng: fss1; fss2;…; fssn 2 FSS:

Here, V1;V2; :::;Vm are the corresponding variants of the involved
features, and nfi; nfj; :::; nfk are the optional functions of each variant.
Fig. 7. The detailed description amon

138
Thus, the set of n feasible function combinations FSS ¼ ffss1; fss2; :::; fssng
(i.e., Definition 2) can be obtained. All the schemes in FSS all can achieve
the same routing service customization, however, they lead to different
costs because of different service composition overheads (e.g., the
required resources, the maintenance expenses, etc.). In addition, they
also bring different service experiences to users. For example, the cost of
fss1 may be higher because it provides high-quality high-price service, on
the contrary, the cost of fss2 may be lower because it provides cost-
effective service. The detailed descriptions are shown in Fig. 7.

5.1. The USE evaluation model

For multiple schemes in FSS, we propose to acquire the user selec-
tivity on each of them by evaluating their influences on the USE (i.e.,
UESQ and UESP). For UESQ, assume that r1, …,rc, …rq are the service
parameters to evaluate the schemes in FSS. In general, the user usually do
not have professional knowledge to accurately express their quantitative
requirements for the parameters, we use the intervals ½rl1; rh1�, …, ½rlc; rhc �,
…, ½rlq; rhq� to represent the user's inaccurate requirements on r1, …, rq.
There are two cases about the evaluation on parameter values. In one
case, the higher the actual parameter value is, the better the user eval-
uation on this parameter (e.g., bandwidth) is, for example, if rc belongs to
this case, its ideal value rþc and negative ideal value r�c can be defined as
follows:

�
rþc ¼ rhc
r�c ¼ rlc

(1)

In the other case, the lower the actual parameter value is, the better
the user evaluation on this parameter (e.g., delay) is, for example, if rq
belongs to this case, its ideal value rþq and negative ideal value r�q can be
defined as follows:

(
rþq ¼ rlq
r�q ¼ rhq

(2)

In this approach, the UESQ on fssi (fssi 2 FSS) can be defined as
follows:

dþ
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXq

c¼1

�
avc � rþc

�2s
(3)
g the user, the ISP and the CRSs.



C. Bu et al. Journal of Network and Computer Applications 125 (2019) 130–145
d�
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXq

c¼1

�
avc � r�c

�2s
(4)

UESQðfssiÞ ¼ d�
i

dþ
i þ d�

i

(5)

Here, avc is the actual parameter value of rc provided by the service
composed by fssi. dþi is the Euclidean distance between the actual
parameter values and the ideal parameter values, and d�i is the Euclidean
distance between the actual parameter values and the negative ideal
parameter values.

For UESP, we consider that it is affected by the actual price p set by
ISP, the user estimated price ep, and the user highest acceptable price hp
for the service. We define UESP as follows:

UESP ¼

8>>>>>><
>>>>>>:

1; p � ep

1� p� ep
hp� ep

; ep < p < hp

ε; p ¼ hp

0; p > hp

(6)

Here, 0 < ε ≪ 1. Apparently, the higher the p set by ISP, the lower the
UESP is. When p set by ISP approaches hp, theUESP is tends to ε. Once the
UESP is higher than hp, the UESP is 0. In contrast, when p approaches ep,
especially when p is lower than or equal to ep, the UESP tends to or reach
to its highest value 0.

In summary, we use UESQ and UESP together to determine USE,
shown as follows:

USE ¼ UESQ� UESP (7)

Here, we use the multiplication relationship, so as to indicate that
USE depends on both of UESQ and UESP. Only when both of UESQ and
UESP have high values, the user will have good service experience. If
either of them is too low, the user will have bad service experience.
Especially, if either of them tends to 0, the user will not select the cor-
responding service.

5.2. The IBE evaluation model

In order to maximize IBE, ISP should choose suitable FSS and price
service reasonably. Assume that the cost of composing service crsi by fssi
is ci and p is the price set by ISP for the service composed by fssi,
fssi 2 FSS, ci 2 C. Thus, the profit proi expected by ISP is defined as
follows:

proi ¼ ðp� ciÞ � USEðcrsi; pÞ (8)

Here, USEðcrsi; pÞ is the USE for the service crsi composed by fssiwith p
according to Eq. (7), and it acts as the probability that the user accepts the
service. According to Eq. (5) and Eq. (6), Eq. (8) can be extended as
follows:

proi ¼ ðp� ciÞ � ðUESQðcrsiÞ � UESPðpÞÞ

¼ ðp� ciÞ �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

UESQðcrsiÞ; p � ep

0
BBB@

UESQðcrsiÞ

�
	
1� p� ep

hp� ep



1
CCCA; ep < p < hp

UESQðcrsiÞ � ε; p ¼ hp

0; p > hp

(9)

Here, 0 < ε ≪ 1.
In fact, the user knows the actual value of ep, however, ISP does not
139
know it. Assume that ISP knows the user hp through his historical
transaction experiences. For ISP, the value of ep belongs to ½0; hp� and
obeys a certain distribution function F. Therefore, ISP uses F(ep) as the
user estimated price, and makes its pricing strategy to maximize its profit
according to F(ep). Thus, replace ep in Eq. (9) with F(ep) as follows:

pro
0
i ¼ ðp� ciÞ � ðUESQðcrsiÞ � UESPðpÞÞ

¼ ðp� ciÞ �

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

UESQðcrsiÞ; p � FðepÞ
0
BBB@

UESQðcrsiÞ

�
	
1� p� FðepÞ

hp� FðepÞ


1
CCCA; FðepÞ < p < hp

UESQðcrsiÞ � ε; p ¼ hp

0; p > hp

(10)

In Eq. (10), ci is known and UESQðcrsiÞ can be obtained by Eq. (7).
When p ¼ hp and p > hp, proi approaches 0. Therefore, the maximum
profit can be obtained under p � FðepÞ or FðepÞ < p < hp.

Under the condition of p � FðepÞ, ISP can maximize its profit promax
i

with p ¼ FðepÞ:

promax
i ¼ ðFðepÞ � ciÞ � UESQðcrsiÞ (11)

Under the condition of FðepÞ < p < hp, ISP can maximize its profit
promax

i with p ¼ ðhpþ ciÞ=2 according to the first-order condition:

pro
0max
i ¼ ðhp� ciÞ2

4ðhp� FðepÞÞ2 � UESQðcrsiÞ (12)

Then, the maximum profit pro*max
i can be obtained by comparing

promax
i in Eq. (11) and pro'max

i in Eq. (12):

pro*max
i ¼

8>>><
>>>:

ðFðepÞ � ciÞ � UESQðcrsiÞ; FðepÞ < hpþ ci
2

ðhp� ciÞ2
4ðhp� FðepÞÞ2 � UESQðcrsiÞ; FðepÞ � hpþ ci

2

(13)

Meanwhile, according to Eq. (11), Eq. (12) and Eq. (13), the pricing
strategy pmax which maximizes ISP profit can be obtained as follows:

pmax ¼

8>><
>>:

FðepÞ; FðepÞ < hpþ ci
2

hpþ ci
2

; FðepÞ � hpþ ci
2

(14)

In fact, pmax is obtained for each FSS. And according to Eq. (8), the
most suitable fssi with IEB maximized can be chosen by comparing the
profits of FSSs.

6. The simulation experiments

6.1. The simulation setup

To simulate the proposed RaaS, we use the Floodlight (Project
Floodlight Open) as the control center of the framework for customizing
routing services. It generates rules and distributes them to the switches
on the application communication paths. The rule contains fields of
matching and fields of instructions. The fields of matching are used to
match requests for routing services. The fields of instructions contain
action instructions (e.g., forwarding to controller, dropping, allocating
functions, ordering actions) which are used to deal with packets, and
function IDs which identify the available functions. Taking the OpenFlow
as the example, the rule based on it in this paper is shown in Fig. 8.

We use OpenFlowClick (OpenFlowClick) to simulate the switch.
OpenFlowClick is a kind of software based switch which is created based



Fig. 8. The example of FTE.

Table 1
Characteristics of the two topologies.

G�eANT INTERNET2

TNN (nodes) 41 64
TNL (links) 65 78
NLL (links< 10G) 8 0
NLB (10G< links< 100G) 30 0
NLM (links> 100G) 27 78

C. Bu et al. Journal of Network and Computer Applications 125 (2019) 130–145
on Click modular router (Kohler et al., 2000) with OpenFlowClick
element (Mundada et al., 2009) embedded into it. The Click modular
router is extendable, programmable, and assembled by a series of packet
processing modules (i.e., diverse virtualized network functions) called
elements that can be flexibly selected and added. OpenFlowClick element
allows a controller to install rules to guide packet processing through
multiple selected network functions that serve as elements in Click
modular router. It allows multiple Click modular routers being controlled
by one single controller.

The simulation environment is established on Linux platform (Intel
core i5 3.3 GHz, 16 GB DDR3 RAM). We adopt two typical and real
network topologies which are G�eANT (The Internet Topology Zoo) and
INTERNET2 (INTERNET2) with different numbers of nodes and links and
different bandwidth distribution to evaluate the proposed RaaS. The
G�eANT and INTERNET2 are shown in Fig. 9. They have different char-
acteristics, such as the Total Number of Nodes (TNN), the Total Number
of Links (TNL), the Number of Links with bandwidth Less than 10G
(NLL), the Number of Links with bandwidth Between 10G and 100G
(NLB), and the Number of Links with bandwidth More than 100G (NLM),
which are shown in Table 1.

The resources of nodes such as CPU, storage and memory, follow a
uniform distribution between 500 and 1000 units. The cost of each unit
capacity is 1 per time unit. The requests arrive over time following the
Poisson distribution, and each of the request has a life-cycle follows an
exponential distribution with 1000 time units in average. The number of
Fig. 9. The network topologies.

140
network functions required by each request follows a uniform distribu-
tion between 2 and 10, and the type of each network function is random.
The node resources needed to support each network function follow the
uniform distribution between 1 and 10 units. The simulation parameters
and the corresponding distribution model are motivated by literature
such as (Khan et al., 2016) and (Sahhaf et al., 2015), which study the
network function provision problem. In this paper, we focus on the
variation point of QoS to simulate the proposed RaaS and evaluate its
performance. In particular, we mainly consider four parameters (e.g.,
delay, jitter, error rate and bandwidth) for QoS, and their demand in-
tervals are based on the quality standard bounds (Network performance,
2011) and (Definitions of terms, 2008). For comparison purpose, we
choose another current popular service composition approach based on
service-chaining policy and compare it with RaaS under the integration
of SDN and NFV environment. The chosen approach is OpenSCaaS
(Bueno et al., 2013), and we simulate it for composing routing services.
6.2. The simulation results

We compare routing service setup time of the two approaches. The
setup time is defined as the interval from the routing service request
being received to the routing service being provided. Here, the setup time
consists of two part: the service composition time and the service
calculation time. The results are shown in Figs. 10 and 11.

When the number of candidate functions increases, the routing ser-
vice setup time increases; when the number of flows supported by RaaS
and OpenSCaaS increases, the routing service setup time increases too.
The time overhead of RaaS always increases slower and less than that of
OpenSCaaS, especially when the number of flows increases sharply. In
more detail, the service calculation time of RaaS is less than 15% of the
total service setup time even under the peak network load (i.e.,
Figs. 10(d) and 11(d)), while the service calculation time of OpenSCaaS is
approximately 25% of the total service setup time at the same situation.
Furthermore, the service composition of RaaS always takes less time than
that of OpenSCaaS at the same situation. For example, the service
composition of OpenSCaaS just takes only more 5ms than that of RaaS
under the lightest network load (i.e., Figs. 10(a) and 11(a)), while the
former takes more 20ms than the latter under the peak network load.
The reason is as follows. Based on RSPL, RaaS have established the
commonality and variability among different types of routing services,
which can support quickly composing different services of a certain type.
RaaS does not need to calculate all routing services entirely even for the
new ones, it only needs to calculate the differences in the corresponding
variation points without calculating each service from scratch every time.
Moreover, according to the established feature model and the orthogonal
variability model, RaaS can reuse appropriate core functions and auto-
matically select candidate functions to customize routing services. In this
approach, the routing services are produced as software products and
diverse network functions are allocated as available components which
can be assembled into products, which effectively improve the efficiency
of routing service composition. However, OpenSCaaS does not consider
rapidly reusing core functions of different types of routing services, and it
does not assembles functions into services through the product line
method. Thus, OpenSCaaS has to calculate and compose each routing
service separately from scratch which spends much time, especially when
the number of flows increases greatly.



Fig. 10. Time overhead over G�eANT.

C. Bu et al. Journal of Network and Computer Applications 125 (2019) 130–145
We compare the user and the ISP satisfaction degree on the CRS
composed by the two approaches. The user satisfaction degree is calcu-
lated by Eq. (7). ISP satisfaction degree is the ratio of its actually got
profit to the service price. The results are shown in Figs. 12 and 13.

The average satisfaction degree on the services customized by RaaS is
much higher than that by OpenSCaaS. In more detail, the user satisfac-
tion degree and the ISP satisfaction degree of RaaS can reach to 96% and
95% respectively with the number of candidate function increasing,
while they can only reach to 88% and 81% under OpenSCaaS at the same
situation. Moreover, when the number of candidate function increases
from 15 to 80, RaaS brings much higher increment in both satisfaction
degrees (i.e., about 18% and 22% respectively) than OpenSCaaS (i.e.,
about 11% and 7% respectively). The reason is as follows. RaaS cus-
tomizes routing services in a fine-grained way by leveraging the defined
variation points of RSPL to select the classified and appropriate functions
independently, which promotes satisfying different demands of users
purposely and reducing composition costs. In RaaS, two evaluation
models have been constructed. The user experience on service quality
and service price are both considered to improve the user service expe-
rience, which is also used as a factor to optimize the ISP economic benefit
when selecting network functions and pricing services. Thus, when the
number of candidate function increases, RaaS can achieve more opti-
mized function combinations, which improve the quality of the
customized routing services and reduce the service provision costs.
However, OpenSCaaS just considers satisfying user demands by estab-
lishing new service chains, which cannot distinguish the fine-grained
141
differences among the user diversified demands. It focuses on the user
experience on service quality without considering the impact of service
price on the user satisfaction. Moreover, OpenSCaaS does not consider
the issue of optimizing ISP benefits when providing services.

The user requirements on CRS may change when the CRS runs. Thus,
we also compare the following two measures: CRS adjustment efficiency
and CRS adjustment success ratio. The former is 1 minus the ratio of the
CRS adjustment time to the CRS setup time, that is, the smaller the CRS
adjustment time is, the higher the CRS adjustment efficiency is. The latter
is the ratio of the number of the successfully adjusted CRSs to the total
number of the CRSs of which requirements are changed. We randomly
select 30% of the total CRSs and change their requirements, and the re-
sults are shown as Figs. 14 and 15.

It can be seen that, CRS adjustment efficiencies and success ratios of
the two approach decrease when the number of flows increases, and their
values of RaaS are always higher than those of OpenSCaaS. In more
detail, the CRS adjustment efficiency and the CRS adjustment success
ratio of RaaS just decreases about 14% and 10% respectively when the
number of flows increases by 1000 times, while their values decreases
about 35% and 17% respectively under OpenSCaaS at the same situation.
Moreover, under the peak network load, the CRS adjustment efficiency
and the CRS adjustment success ratio of RaaS are about 30% and 8%
higher those of OpenSCaaS. The reason is as follows. Although the
number of flows which request routing services increases sharply, RaaS
only needs to calculate the differences among the involved variation
points according to the changed communication requirements based on



Fig. 11. Time overhead over INTERNET2.

Fig. 12. The average satisfaction degrees for customized services over G�eANT.

C. Bu et al. Journal of Network and Computer Applications 125 (2019) 130–145
the RSPL. In the model establishing process (i.e., domain engineering
process), the feasible function combinations for different demands have
been considered, which can effectively reduce the impact of high
network load on CRS adjustment efficiency. Furthermore, depending on
the reusable, loosely coupling and composable characteristics of RSPL,
142
RaaS only replaces the involved functions in the already customized
routing services according to the specific variation points to adjust CRSs
without establishing new CRSs from scratch. This decreases the CRS
adjustment failure ratio under high network load. However, OpenSCaaS
has to take much time to calculate the whole function configuration



Fig. 13. The average satisfaction degrees for customized services over INTERNET2.

Fig. 14. The average CRS adjustment efficiency over G�eANT.

Fig. 15. The average CRS adjustment efficiency over INTERNET2.

C. Bu et al. Journal of Network and Computer Applications 125 (2019) 130–145
according to the changed requirements and search for suitable functions
from candidate functions one by one, which greatly reduce the CRS
adjustment efficiency. In addition, OpenSCaaS also cannot reuse the
running services, it has to re-compose new routing services to replace
143
them from scratch once the running ones' demands being changed. This
will significantly decrease the CRS adjustment success ratio especially
when the available network resources are insufficient caused by the
increasing network load.



C. Bu et al. Journal of Network and Computer Applications 125 (2019) 130–145
7. Conclusion

In this paper, an open framework, that is, RaaS, for customizing
routing service based on SDN and NFV, is proposed. We leverage the idea
of DSPL to achieve routing service customization with requirements of
both the user and the ISP considered. The two-layered feature model for
RSPL is proposed and used to compose the personalized routing services
with the diverse network functions. The orthogonal variability model for
RSPL is proposed and used to achieve traceability and consistency of the
variability in different phase of the development models. We formulate
the formal definitions and descriptions to abstract routing service cus-
tomization, and devise two evaluation models for USE and IEB to opti-
mize benefits of both the user and the ISP.

In order to improve the practicability of our work, we plan to do
prototype implementation of the proposed RaaS over the production
networks to further verify its effectiveness and improve its performance.
In addition, some more efficient network function selection schemes will
be investigated in the near future.

Acknowledgments

This work is supported by the National Key R&D Program of China
under Grant No. 2017YFB0801701, and the Major International
(Regional) Joint Research Project of NSFC under Grant No. 71620107003.

References

Antonio, G.I., Juan, C.C., Antoni, B., Ang�elica, R., 2011. A QoS-based dynamic pricing
approach for services provisioning in heterogeneous wireless access networks.
Pervasive Mob. Comput. 7 (5), 569–583.

Bencomo, N., Hallsteinsen, S., Almeida, E.S., 2012. A view of the dynamic software
product line landscape. Computer 45 (10), 36–41.

Bentaleb, A., Begen, A.C., Zimmermann, R., Harous, S., 2017. SDNHAS: an SDN-enabled
architecture to optimize QoE in HTTP adaptive streaming. IEEE Trans. Multimed. 19
(10), 2136–2151.

Bu, C., Wang, X., Cheng, H., Huang, M., Li, K., Sajal, K.D., 2017. Enabling adaptive
routing service customization via the integration of SDN and NFV. J. Netw. Comput.
Appl. 93 (1), 123–136.

Bu, C., Wang, X., Huang, M., Li, K., 2018. SDNFV-based dynamic network function
deployment: model and mechanism. IEEE Commun. Lett. 22 (1), 93–96.

Bueno, I., Aznar, J.I., Escalona, E., Ferrer, J., García-Espín, J.A., 2013. An OpenNaaS
based SDN framework for dynamic QoS control. In: Proceedings of the IEEE SDN for
Future Networks and Services, pp. 1–7.

Carpenter, B., 2002. Middleboxes: taxonomy and issues. RFC 3234.
Chen, Y., Wang, L., Lin, F., Lin, B., 2017. Deterministic quality of service guarantee for

dynamic service chaining in software defined networking. IEEE Trans. Netw. Serv.
Manag. 14 (4), 991–1002.

Cheng, G., Chen, H., Hu, H., Wang, Z., Lan, J., 2015. Enabling network function
combination via service chain instantiation. Comput. Network. 92, 396–407.

Definitions of terms Related to Quality of Service, 2008. ITU-T E. 800.
Diego, K., Ramos, F.M.V., Paulo, V., Christian, E.R., Siamak, A., Steve, U., 2015. Software-

defined networking: a comprehensive survey. Proc. IEEE 103 (1), 14–76.
Floris, A., Ahmad, A., Atzori, L., 2018. QoE-aware OTT-ISP collaboration in service

management: architecture and approaches. ACM Trans. Multimed Comput. Commun.
Appl 14 (2s), 36:1-36:24.

Gamez, N., Haddad, J.E., Fuentes, L., 2015. SPL-TQSSS: a software product line approach
for stateful service selection. In: Proceedings of the International Conference on Web
Services, pp. 73–80.

Gharbaoui, M., Fichera, S., Castoldi, P., Martini, B., 2017. Network orchestrator for QoS-
enabled service function chaining in reliable NFV/SDN infrastructure. In:
Proceedings of the 3rd Conference on Network Softwarization, pp. 1–5.

Gomaa, H., Hashimoto, K., 2011. Dynamic software adaptation for service-oriented
product lines. In: Proceedings of the 15th International Software Product Line
Conference, pp. 21–26.

Grigoriou, E., Barakabitze, A.A., Atzori, L., Sun, L., Pilloni, V., 2017. An SDN-approach for
QoE management of multimedia services using resource allocation. In: Proceedings of
the International Conference on Communications.

Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K., 2013. Dynamic Software Product
Lines. Systems and Software Variability Management, pp. 253–260.

Hinchey, M., Park, S., Schmid, Klaus, 2012. Building dynamic software product lines.
Computer 45 (10), 211–220.

Hsu, W.H., Lo, C.H., 2014. QoS/QoE mapping and adjustment model in the cloud-based
multimedia infrastructure. IEEE Syst. J. 8 (1), 247–255.

INTERNET2 Network Infrastructure Topology, URL�http://www.internet2.
Jiang, Y., Lan, J., Wang, Z., Deng, Y., 2016. Embedding and reconfiguration algorithms

for service aggregation in network virtualization. Int. J. Commun. Syst. 29 (1),
33–46.
144
Kamoun, A., Kacem, M.H., Kacem, A.H., 2016. Multiple software product lines for service
oriented architecture. In: Proceedings of the 25th International Conference on
Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 56–61.

Khan, M.M.A., Cheriton, D.R., Shahriar, N., Ahmed, R., Boutaba, R., 2016. Multi-path link
embedding for survivability in virtual networks. IEEE Trans. Netw. Serv. Manag. 13
(2), 253–266.

Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.F., 2000. The Click modular
router. ACM Trans. Comput. Syst. 18 (3), 263–297.

Kosugiyama, T., Tanabe, K., Nakayama, H., Hayashi, T., Yamaoka, K., 2017. A flow
aggregation method based on end-to-end delay in SDN. In: Proceedings of the
International Conference on Communications, pp. 1–6.

Kotonya, G., Lee, J., Robinson, D., 2009. A consumer-centred approach for service-
oriented product line development. In: Proceedings of the Joint Working IEEE/IFIP
Conference on Software Architecture and European Conference on Software
Architecture, pp. 211–220.

Lee, K., Kang, K.C., Lee, J., 2002. Concepts and guidelines of feature modeling for product
line software engineering. In: Processings of the Proceedings of the 7th International
Conference on Software Reuse: Methods, Techniques, and Tools, pp. 62–77.

Lee, J., Kotonya, G., Robinson, D., 2012. Engineering service-based dynamic software
product lines. Computer 45 (10), 49–55.

Li, W., Qi, H., Li, K., Stojmenovic, I., Lan, J., 2017. Joint optimization of bandwidth for
provider and delay for user in software defined data centers. IEEE Trans. Cloud
Comput. 5 (2), 331–343.

Lima, S., Carvalho, P., 2011. Enabling self-adaptive QoE/QoS control. In: Proceedings of
the 36th Conference on Local Computer Networks, pp. 239–242.

Lin, S.C., Wang, P., Luo, M., 2016. Jointly optimized QoS-aware virtualization and
routing in software defined networks. Comput. Network. 96 (26), 69–78.

Lopes, F.A., Santos, M., Fidalgo, R., Fernandes, S., 2016. A software engineering
perspective on SDN programmability. IEEE Commun. Surv. Tutor. 18 (2),
1255–1272.

Lorena, I., �Angel, L., Luis, J., 2015. Trends on virtualisation with software defined
networking and network function virtualization. IET Netw. 4 (5), 255–263.

Mijumbi, R., Serrat, J., Gorricho, J., Bouten, N., Turck, F.D., Boutaba, R., 2015. Network
function virtualization: state-of-the-art and research challenges. IEEE Commun. Surv.
Tutor. 18 (1), 236–262.

Moyano, R.F., Fern�andez, D., Bellido, L., Merayo, N., Aguado, J.C., Miguel, I., 2017. NFV-
based QoS provision for software defined optical access and residential networks. In:
Proceedings of the 25th International Symposium on Quality of Service, pp. 1–5.

Msakni, H.G., Youssef, H., 2013. Is QoE estimation based on QoS parameters sufficient for
video quality assessment?. In: Proceeding of the 9th International Wireless
Communications and Mobile Computing Conference, pp. 538–544.

Mundada, Y., Sherwood, R., Feamster, N., 2009. An OpenFlow switch element for Click.
In: Proceedings of the Symposium on Click Modular Router.

Nascimento, A.S., Rubira, C.M.F., Castor, F., 2014. ArCMAPE: a software product line
infrastructure to support fault-tolerant composite services. In: Proceedings of the 15th
International Symposium on High-assurance Systems Engineering, pp. 41–48.

Network performance Objectives for IP-based Services, 2011. ITU-T Y. 1541.
OpenFlowClick, URL http://archive.openflow.org/wk/index.php/OpenFlowClick.
Project Floodlight Open Source Software for Building Software-Defined Networks, URL

�http://www.projectfloodlight.org/.
Sahhaf, S., Tavernier, W., Rost, M., Schmid, S., Colle, D., Pickavet, M., Demeester, P.,

2015. Network service chaining with optimized network function embedding
supporting service decompositions. Comput. Network. 93 (3), 492–505.

Tarnaras, G., Haleplidis, E., Denazis, S., 2015. SDN and ForCES based optimal network
topology discovery. In: Proceedings of the IEEE Conference on Network
Softwarization, pp. 1–6.

The Internet Topology Zoo, URL <Available: http://www.topology-zoo.org/.
Wagle, S.S., Guzek, M., Bouvry, P., Bisdorff, R., 2015. An evaluation model for selecting

cloud services from commercially available cloud providers. In: Proceeding of the 7th
International Conference on Cloud Computing Technology and Science, pp. 107–114.

Wang, P., Lan, J., Zhang, X., Hu, Y., Chen, S., 2015. Dynamic function composition for
network service chain: model and optimization. Comput. Network. 92, 408–418.

Wu, J., Zhang, Z., Hong, Y., Wen, Y., 2015. Cloud radio access network (C-RAN): a
primer. IEEE Netw. 29 (1), 35–41.

Yu, T., Wang, K., Hsu, Y., 2015. Adaptive routing for video streaming with QoS support
over SDN networks. In: Proceedings of the International Conference on Information
Networking, pp. 318–323.

Chao Bu received the B.S. degree in information security, the
M.S., and Ph.D. degrees in software engineering from the
Northeastern University, Shenyang, China, in 2010, 2012, and
2018 respectively. He is currently a Lecturer at the School of
Computer Science and Engineering, Tianjin University of
Technology. His research interests include service chain cus-
tomization and future Internet, etc.

http://refhub.elsevier.com/S1084-8045(18)30332-1/sref1
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref1
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref1
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref1
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref1
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref2
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref2
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref2
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref3
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref3
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref3
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref3
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref4
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref4
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref4
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref4
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref5
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref5
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref5
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref6
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref6
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref6
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref6
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref7
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref8
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref8
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref8
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref8
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref9
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref9
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref9
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref10
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref11
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref11
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref11
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref12
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref12
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref12
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref13
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref13
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref13
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref13
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref14
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref14
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref14
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref14
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref15
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref15
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref15
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref15
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref16
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref16
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref16
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref17
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref17
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref17
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref18
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref18
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref18
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref19
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref19
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref19
http://www.internet2
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref21
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref21
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref21
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref21
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref22
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref22
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref22
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref22
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref23
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref23
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref23
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref23
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref24
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref24
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref24
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref25
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref25
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref25
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref25
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref26
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref26
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref26
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref26
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref26
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref27
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref27
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref27
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref27
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref28
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref28
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref28
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref29
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref29
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref29
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref29
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref30
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref30
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref30
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref31
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref31
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref31
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref32
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref32
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref32
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref32
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref33
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref33
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref33
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref33
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref34
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref34
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref34
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref34
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref35
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref35
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref35
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref35
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref35
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref36
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref36
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref36
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref36
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref37
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref37
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref38
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref38
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref38
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref38
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref39
http://archive.openflow.org/wk/index.php/OpenFlowClick
http://www.projectfloodlight.org/
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref42
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref42
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref42
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref42
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref43
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref43
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref43
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref43
http://www.topology-zoo.org/
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref45
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref45
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref45
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref45
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref46
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref46
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref46
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref47
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref47
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref47
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref48
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref48
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref48
http://refhub.elsevier.com/S1084-8045(18)30332-1/sref48


C. Bu et al. Journal of Network and Computer Applications 125 (2019) 130–145
Xingwei Wang received the B.S., M.S., and Ph.D. degrees in
computer science from the Northeastern University, Shenyang,
China, in 1989, 1992, and 1998 respectively. He is currently a
Professor at the School of Computer Science and Engineering,
Northeastern University. His research interests include cloud
computing and future Internet, etc.
Hui Cheng received the B.S. and M.S. degrees in Computer
Science from the Northeastern University, Shenyang, China, in
2001 and 2004 respectively, and the Ph.D. degree in Computer
Science from the Hong Kong Polytechnic University, Hong
Kong, China, in 2007. He is currently a Senior Lecturer at the
School of Computing & Mathematical Sciences, Liverpool John
Moores University, Liverpool, UK. His research interests include
wireless mobile networks, optical networks, artificial intelli-
gence, and dynamic optimization, etc.
145
Min Huang received the B.S. degree in automatic instrument,
the M.S. degree in systems engineering, and the Ph.D. degree in
control theory from the Northeastern University, Shenyang,
China, in 1990, 1993, and 1999 respectively. She is currently a
Professor at the College of Information Science and Engineer-
ing, Northeastern University. Her research interests include
modeling and optimization for logistics and supply chain sys-
tem, etc.
Keqin Li received the B.S. degree in computer science from
Tsinghua University, Beijing, China, in 1985, and the Ph.D.
degree in computer science from the University of Houston,
Texas, USA, in 1990. He is currently a SUNY distinguished
professor of computer science in State University of New York
at New Paltz. His research interests include parallel and
distributed computing and computer networking, etc.


	Routing as a service (RaaS): An open framework for customizing routing services
	1. Introduction
	2. Related work
	3. The framework of RaaS
	3.1. The notions of RaaS
	3.2. The workflow of RaaS

	4. Routing Service Product Line
	4.1. Commonality and variability modeling for RSPL
	4.2. Feature modeling for RSPL
	4.3. Orthogonal variability modeling for RSPL

	5. A case study
	5.1. The USE evaluation model
	5.2. The IBE evaluation model

	6. The simulation experiments
	6.1. The simulation setup
	6.2. The simulation results

	7. Conclusion
	Acknowledgments
	References


