
J. Parallel Distrib. Comput. 108 (2017) 85–94
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A parallel approximate SS-ELM algorithm based on MapReduce for
large-scale datasets
Cen Chen a,b, Kenli Li a,b,∗, Aijia Ouyang d, Keqin Li a,b,c
a College of Information Science and Engineering, Hunan University, Changsha, Hunan 410082, China
b National Supercomputing Center in Changsha, Changsha, Hunan 410082, China
c Department of Computer Science, State University of New York, New Paltz, NY 12561, USA
d Department of Information Engineering, Zunyi Normal College, Zunyi, Guizhou 563006, China

h i g h l i g h t s

• The paper proposes an approximate SS-ELM (PASS-ELM) algorithm on MapReduce.
• Several optimizations are adopted to improve the performance and scalability.
• An approximate adjacent similarity matrix calculation algorithm based on LSH is proposed.
• Extensive experiments have proven that our algorithm is efficient.

a r t i c l e i n f o

Article history:
Received 27 July 2015
Received in revised form
2 August 2016
Accepted 8 January 2017
Available online 21 January 2017

Keywords:
PASS-ELM
MapReduce
LSH
Parallel
Approximate algorithm
Big data

a b s t r a c t

Extreme Learning Machine (ELM) algorithm not only has gained much attention of many scholars
and researchers, but also has been widely applied in recent years especially when dealing with big
data because of its better generalization performance and learning speed. The proposal of SS-ELM
(semi-supervised Extreme Learning Machine) extends ELM algorithm to the area of semi-supervised
learning which is an important issue of machine learning on big data. However, the original SS-ELM
algorithm needs to store the data in thememory before processing it, so that it could not handle large and
web-scale data sets which are of frequent appearance in the era of big data. To solve this problem, this
paper firstly proposes an efficient parallel SS-ELM (PSS-ELM) algorithm on MapReduce model, adopting
a series of optimizations to improve its performance. Then, a parallel approximate SS-ELM Algorithm
based onMapReduce (PASS-ELM) is proposed. PASS-ELM is based on the approximate adjacent similarity
matrix (AASM) algorithm, which leverages the Locality-Sensitive Hashing (LSH) scheme to calculate the
approximate adjacent similarity matrix, thus greatly reducing the complexity and occupied memory.
The proposed AASM algorithm is general, because the calculation of the adjacent similarity matrix is the
key operation in many other machine learning algorithms. The experimental results have demonstrated
that the proposed PASS-ELM algorithm can efficiently process very large-scale data sets with a good
performance, without significantly impacting the accuracy of the results.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

With the development of information technology, data takes a
trend of explosive growth in recent years. How to conduct data
mining and machine learning on a large number of data turns

∗ Corresponding author at: College of Information Science and Engineering,
Hunan University, Changsha, Hunan 410082, China.

E-mail addresses: chencen@hnu.edu.cn (C. Chen), lkl@hnu.edu.cn (K. Li),
oyaj@hnu.edu.cn (A. Ouyang), lik@newpaltz.edu (K. Li).

http://dx.doi.org/10.1016/j.jpdc.2017.01.007
0743-7315/© 2017 Elsevier Inc. All rights reserved.
to be an important issue in the era of big data [20,13,1]. Huang
et al. [9] put forward ELM (Extreme Learning Machine) in 2004
to train the single-hidden layer feedforward neural networks
(SLFN), which later has been studied by many scholars because of
its better generalization performance and faster learning speed.
In the past few years, great progress has been made in both
theoretical research and practical application, as evidenced by
different variants of the ELM algorithm. However, they are mainly
applied in the area of supervised learning, such as regression
analysis and classification. Huang et al. [7] have proposed semi-
supervised Extreme LearningMachine (SS-ELM) based onmanifold

http://dx.doi.org/10.1016/j.jpdc.2017.01.007
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2017.01.007&domain=pdf
mailto:chencen@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:oyaj@hnu.edu.cn
mailto:lik@newpaltz.edu
http://dx.doi.org/10.1016/j.jpdc.2017.01.007


86 C. Chen et al. / J. Parallel Distrib. Comput. 108 (2017) 85–94
regularization to extend ELM to semi-supervised learning, which
greatly expanded the practicality of ELM algorithm.

Like ELM algorithm and many variants, traditional SS-ELM
algorithm needs to store the data to be trained into the
memory before calculation. If the amount of data is beyond one
machine’s memory capacity, SS-ELM will not be able to carry
out the calculation effectively. Furthermore, the calculation of
the adjacent similarity matrix requires calculating and storing
pair-wise similarity values among all data samples, that is, the
calculation of the adjacent similarity matrix has O(N2) complexity
in both time and space. In addition, as H and L both are dense
matrices, the calculation of (HT L)H also has O(2hN2) complexity.
It is clearly not feasible for large data sets with millions or billions
of data samples. In general, the larger the amount of data is, the
more effective SS-ELM algorithm will be. The way to make use of
SS-ELM algorithm in processing a large amount of data is worth
further exploration, which is also a main challenge the researchers
confronted.

MapReduce model is a parallel programming model which
is usually used for parallel computation of large-scale data
sets [3,15] because of its salient features that include scalability,
fault-tolerance, ease of programming, and flexibility. MapReduce
programming model is of great help to programmers who are not
familiar with the distributed programming. Because of its salient
features, many machine learning algorithms are parallelized on
MapReduce model for big data [14,16,30,19,28]. Apache Hadoop
is an open-source application based on MapReduce programming
model, which has been widely applied in handling large amounts
of data.

Some scholars have conducted the parallel processing of ELM
algorithm and its variants on MapReduce model [5,26,4,27], but
have not realized the parallel processing of SS-ELM algorithm.
In this paper, we propose an efficient parallel SS-ELM (PSS-ELM)
algorithm and a novel parallel approximate SS-ELM (PASS-ELM)
algorithm, leveraging the MapReduce framework to improve its
performance and scalability. The major contributions of this paper
are summarized as follows.

1. The novel approximate SS-ELM is proposed, during which the
naive adjacent similaritymatrix algorithm is replacedby anovel
approximation algorithm for computing the adjacent similarity
matrix named as AASM, which is based on the LSH scheme
to reduce the computational complexity. The proposed AASM
algorithm can be widely applied, because the calculation of
the adjacent similarity matrix is necessary for many other
machine learning algorithms such as spectral clustering, graph-
based semi-supervised learning and so on. Then, the expected
reduction in computation time and memory resulted from our
approximate algorithm has been theoretically analyzed.

2. The parallel SS-ELM (PSS-ELM) and parallel approximate SS-
ELM (PASS-ELM) algorithms are proposed based onMapReduce
model. Through thorough analysis of the SS-ELM algorithm, the
operations can be divided into two groups: one group is to be
parallelized by MapReduce, while the other group is to be run
in a single machine.

3. Several optimizations are adopted in the proposed parallel
algorithms to reduce communication cost in the shuffling
phase, such as cache-based optimization, partitioning scheme
and local-summation in MapClose function, thus greatly
improving the performance and scalability.

The contents of the paper are as follows. Section 2 reviews
relevant researches while Section 3 introduces ELM algorithm,
SS-ELM algorithm, MapReduce programming model and LSH
scheme. Section 4 describes our proposed efficient PSS-ELM algo-
rithm. Section 5 gives an introduction to the parallel approximate
SS-ELM (PASS-ELM) algorithm in detail. Section 6 shows the results
of PASS-ELM algorithm and Section 7 comes the conclusion.
2. Related works

Extreme Learning Machine (ELM) was proposed by Huang
[9,10]. Thanks to the efforts of different scholars and researchers,
ELM algorithm has been greatly developed and improved. Many
researchers came up with different variants of ELM algorithm.
Liang et al. [17] proposed an online sequential ELM (OS-ELM)
algorithm, which could train the data block of either fixed or
unfixed sizes in an incremental quantity. Thus, it provides a
way of utilizing the ELM algorithm to train a large number of
data samples. Rong et al. [22] proposed an online sequential
fuzzy Extreme Learning Machine (OS-FUZZY-ELM) for function
approximation and classification problems. Zhao has put forward
forgetting mechanism to OS-ELM (FOS-ELM) [33] which can be
used to train the incremental data with timeliness in 2012.
Huang et al. [7] have put forward the semi-supervised Extreme
Learning Machine(SS-ELM) based on manifold regularization and
ELM. Huang et al. [8] applied ELM algorithm into regression
and multi-class classification. ELM algorithm and its variants are
extensively applied in text classification, image recognition and
other areas [31,32,12,25,29].

With the development of ELM algorithm, many scholars have
focused on the study of parallel ELM algorithm based on MapRe-
duce. Q. He et al. [5] proposed the parallel ELM algorithm
(PELM) based on MapReduce. Wang et al. [26] have put for-
ward the parallel online sequential Extreme Learning Machine
(POS-ELM) based on OS-ELM and MapReduce model for training
the incremental data samples in parallel. Xin has come up with
ELM* algorithm [27] which has higher efficiency than PELM. Un-
like PELM, ELM* algorithm has used only one MapReduce process.

Locality-Sensitive Hashing(LSH) scheme was proposed to solve
the approximate nearest neighbor problem [2,11] especially in
high dimension, where, given the query q, the problem turns to
report the point p which is the closest one to q. The main idea is
to hash the points such that the probability of collision is much
higher for points which are close to each other than for those
which are far apart. Then, we can determine near neighbors by
hashing the query point and retrieving elements stored in buckets
containing that point. It is proved theoretically and practically that
the scheme proposed in [2] is efficient to solve the approximate
nearest neighbor search problem for lp Norm.

3. Preliminaries

3.1. ELM

ELM [10] has been originally developed for single hidden-layer
feedforward neural networks (SLFNs) and then extended to the
‘‘generalize’’ SLFNs where the hidden layer need not be neuron
alike [6]. The definitions of symbols in the paper are shown in
Table 1.

Suppose that one SLFN has h hidden nodes. The output function
of the SLFN model can be expressed as Eq. (1):

fh(x) =

h
i=1

βiG(ai, bi, x), x ∈ Rd, βi ∈ Rm (1)

where h is the number of the hidden nodes, βi is the output weight
of the ith hidden node connecting with the output node, ai is the
weight of the ith hidden node connecting with the input nodes, bi
is the threshold of the ith hidden node, and G(x) is the activation
function.

Suppose that the number of input samples (xi, ti), x ∈ Rd, ti ∈

Rm is n, ti is the label of the ith data point, then the output function
should satisfy Eq. (2):

h
i=1

βiG(ai, bi, xj) = tj, j = 1, . . . , n. (2)



C. Chen et al. / J. Parallel Distrib. Comput. 108 (2017) 85–94 87
Table 1
Symbols and definitions of ELM.

Symbols Definitions

X The set of samples.
Y The label of the sample.
l The number of the labeled sample
u The number of the unlabeled sample
n The number of the sample, n = u + l
h The number of hidden nodes of generalized SLFN.
d The dimension of the sample.
a The weight vector connecting the hidden nodes and the input nodes. ai is the weight of the ith hidden node connecting with the input nodes.
b The threshold vector of the hidden nodes. bi is the threshold of the ith hidden node.
m The dimension of the label of the sample, which is the same as the number of output nodes.
β The output weight vector connecting the hidden layer of h nodes and them output nodes. βi is the output weight of the ith hidden node connecting

with the output node.
H The hidden layer output matrix of the neural network and the ith column of H is the ith hidden node output with respect to inputs x1, x2, . . . , xN
The equation above can be expressed briefly as Eq. (4):

Hβ = T

H =

h(x1)
...
h(xn)


=

G(a1, b1, x1) . . . G(ah, bh, x1)
...

...
...

G(a1, b1, xn) . . . G(ah, bh, xn)


n∗h

β =

βT
1
...

βT
h


h∗m

T =

tT1
...

tTh


h∗m

.

(3)

Basically, there are two main stages of ELM training process:
random featuremapping and linear parameters solving. In the first
stage, the hidden layer is randomly initialized to map the input
data into a feature space (called as ELM feature space) by some
nonlinear mapping functions. In the second stage, the weights
connecting the hidden layer and the output layer, denoted by β ,
are solved by minimizing the approximation error in the squared
error sense:

min ∥Hβ − T∥
2. (4)

In particular, ∥ · ∥ means the Frobenius bound norm. To solve
the multiple regression system, the above-mentioned equation’s
optimal solution is to solve the generalized inverse of the output
matrix H (Moore–Penrose generalized inverse of a matrix). There
are manymethods available to solve the generalized inverse of the
matrix, such as orthogonal projection method, orthogonalization
method, iterativemethod, and singular value decomposition (SVD)
method [21,23].

3.2. SS-ELM

ELM algorithm is primarily used in the field of supervised
learning, such as regression analysis and classification, which
greatly restricts the utility of ELM algorithm. In order to
solve this problem, semi-supervised ELM integrates manifold
regularization into ELM extending ELM to the area of semi-
supervised learning [7].

Suppose that the labeled data samples are (xi, ti)li=1, x ∈ Rd, ti ∈

Rm and the unlabeled data samples are (xi)ui=1, x ∈ Rd. SS-ELM
algorithm can be described as:

β =


(Ih + HTCH + λHT LH)−1HTCT̃ , l ≤ N
HT (Il+u + CHHT

+ λLHHT )−1CT̃ , l ≥ N
(5)
where l represents the number of the hidden nodes; N is the
number of data samples; H refers to the output matrix of nodes at
the hidden layer; L is the Laplacematrix whose calculationmethod
is: L = D − S; S refers to the adjacent matrix of the input data; Sij
refers to the similarity between the input node i and j, which can
be expressed as the Gaussian function:

Sij = exp


−
∥xi − xj∥2

2σ 2


(6)

and D is a diagonal matrix whose element is Dii =
l+u

j=1 Sij. We

can normalize L in accordance with the equation D−
1
2 LD−

1
2 . The

calculation of the Laplace matrix is presented as the following
equation:

L = I − D−
1
2 SD−

1
2 (7)

T̃ is a matrix of (l+ u) ×m. The preceding one line of the matrix is
the label of the labeled data samples. The following u line of data
is 0. λ is a tradeoff parameter. Suppose that the sample xi belongs
to tj, and that the category tj has (Nt)j sample data, then the data
samples will be granted with one penalty coefficient Ci = C0/Ntj .
C0 is one parameter defined by users.

The process of SS-ELM algorithm based on Gao Huang’s
paper [7] can be summarized in Algorithm 1:

Algorithm 1 SS-ELM Algorithm
Input: The labeled data set: (xi, ti)vi=1, x ∈ Rd, ti ∈ Rm;

The unlabeled data set: (xi)ui=1, x ∈ Rd;
The hidden node output function: G(ai, bi, x);
The number of hidden nodes: l;

Output: The output weight vector: β;
1: Construct the graph Laplacian L from both the labeled data set and the

unlabeled data set;
2: Initiate the hidden node parameters with random input weights and

biases (wi, bi);
3: Calculate the output matrix of the hidden node H;
4: Choose the tradeoff parameter C and λ;
5: Compute the output weights β using Eq. 5;
6: return β .

3.3. Introduction of MapReduce

MapReduce is a programming model used for parallel calcula-
tion of large-scale data setsmainly for its salient features including
scalability, fault-tolerance, ease of programming, and flexibility. It
includes Map, Shuffle and Reduce processes. The data to be pro-
cessed are stored in the distributive file system HDFS. The form of
⟨key, value⟩ pair is the most fundamental data structure of MapRe-
duce programming model. Map process is stimulated by the data



88 C. Chen et al. / J. Parallel Distrib. Comput. 108 (2017) 85–94
stored in the HDFS. Similarly, the output data are also presented
in the form of ⟨key, value⟩ pair. After the Map process, the mid-
dle data is generated, which is equally in the form of ⟨key, value⟩
pair. The middle data is stored in the local disk of the calculation
nodes. Once Map process ends, they will enter to Shuffle process
and those data with the same key will be combined. The process is
automatically completed by the system, invoking large-scale com-
munication overhead. After that, the Reduce process defined by
users starts, with the input data in the form of ⟨key, value⟩ pair. Af-
ter processing, the new data of ⟨key, value⟩ form will be combined
and stored in the HDFS.

3.4. Introduction of Locality-sensitive hashing for lp norm

Locality-sensitive hashing (LSH) scheme [2,11] is designed for
the (R, C)-Near Neighbor problem, which is a simple version of the
Approximate Nearest Neighbor problem. The goal of this problem
is to report a point within distance CR from a query point q,
in which R means the threshold of distance and C means the
probability. The main idea is to hash points so that the probability
of collision would be much higher for close points than for those
that are far apart.

4. Parallel SS-ELM based on MapReduce

In this section, we describe our proposed PSS-ELM, a parallel
algorithm for SS-ELM algorithm in MapReduce.

4.1. Summary of the contributions

SS-ELM algorithm for large-scale data sets requires careful al-
gorithmic considerations. We summarize the algorithmic contri-
butions here and will describe each in detail in later sections.

1. Selective parallelization: We group operations into expensive
and inexpensive ones based on input sizes. Expensive oper-
ations are done in parallel for scalability, while inexpensive
operations are performed on a single machine to avoid extra
overhead of parallel execution.

2. Cache-based algorithm (CPHOM): A cache-based parallel
hidden layer output matrix (CPHOM) is proposed to improve
the efficiency. The CPHOM is faster than the standard method
by 60× as the naive method of calculating hidden layer output
matrix.

3. Efficient matrix multiplication: We divide the matrix
chain-multiplication into four types and provide two efficient
algorithms for them: cache-based parallel matrix multiplica-
tion (CPMM) and partition-based parallel matrix multiplication
(PPMM). During the processing of these two algorithms, a seri-
als of optimizations are adopted to improve the performance,
such as cache-based scheme, efficient partitioning strategies
and local-summation in MapClose function.

Through thorough analysis, it is clear that the core operations
are the calculation of hidden layer output matrix H , Laplace
matrix L, and matrix chain-multiplication. Based on MapReduce
model, three sub-algorithms are designed and implemented on
Hadoop: the cache-based parallel hidden layer output matrix
(CPHOM) algorithm, parallel Laplace matrix (PLM) algorithm, and
parallel matrix multiplication algorithm which includes cache-
based parallel matrix multiplication (CPMM) and partition-based
parallel matrix multiplication (PPMM). As in Fig. 1, the training
data sets are stored in the Hadoop distributed file system (HDFS)
at first, and then it will be processed in Hadoop computing cluster
through these four proposed algorithms. After that, the calculated
output weight vector β is emitted to the HDFS.
Fig. 1. PSS-ELM overview.

4.2. Selective parallelization

Which operations should be parallelized? The naive approach
is to parallelize all the operations. However, some operations run
more quickly on a single machine than on multiple machines
in parallel. The reason is that, when processing small data, the
overhead incurred by using MapReduce exceeds gains made by
parallelizing the task. Simple tasks with quite small input data are
carried out faster on a singlemachine. Thus, through analyzing, we
can divide the suboperations into two groups: one group is to be
parallelized while the other group is to be run on a single machine.

According to Section 4.2, when processing large-scale data sets,
the number of the unlabeled and the labeled data is much larger
than the number of the hidden nodes. Therefore, the calculation of
SS-ELM algorithm should follow Eq. (8).

β = (Ih + HTCH + λHT LH)−1HTCT̃ . (8)

We use U to represent the matrix HTCH , V to represent the
matrix HT LH , and W to represent the matrix HTCT̃ . Therefore, the
above equation can be transformed into a solution algorithm as
presented in Eq. (9).

β = (Ih + U + λV )−1W (9)

In Eq. (9), (Ih + U + λV ) is a matrix with h lines and h columns.
Generally speaking, h is so small (which represents the number of
hidden nodes), so the expenditure of calculating the inversematrix
is not high. At the same time, HTCT̃ is a matrix with h lines and m
columns, thus the calculation of multiplication of (Ih + U + λV )−1

andW does not consumemuch time.When the number of samples
is quite large, the calculation of the matrix U, V and W would be
time consuming. From the above analysis, it is clear that calculation
of the three matrices U , V and W is the costliest in the calculation
of the SS-ELM algorithm.

Therefore, the calculation of the three matrices U , V andW are
to be parallelized by MapReduce so as to improve the efficiency.
OnceU, V andW are calculated, onemachinewould be adopted to
calculate the final hidden node output matrix in accordance with
Eq. (9). Consequently, PSS-ELM algorithm for a large amount of
data can be expressed as Algorithm 2. Meanwhile, we find that the
core operations for calculating U , V and W are the calculation of
the hidden layer output matrix H , the Laplace matrix L, and matrix
chain-multiplication.

4.3. Cache-based parallel hidden layer output matrix (CPHOM)

In the calculation of the matrix H , the naive method is to join
matrix elements with parameters of the hidden nodes in the Map
and Shuffle stage, and then execute G(ai, bi, x) in the Reduce stage.
However, the Shuffle phase of this method involves large-scale
communication overhead. Generally speaking, the parameters



C. Chen et al. / J. Parallel Distrib. Comput. 108 (2017) 85–94 89
Algorithm 2 PSS-ELM Overview
Input: The labeled data: (xi, ti)li=1, x ∈ Rd, ti ∈ Rm

The unlabeled data:(xi)ui=1, x ∈ Rd

Output: The mapping function of SS-ELM f : f (x) = h(x)β;
1: Initiate the hidden-node parameters with random input weights and

biases(wi, bi);
2: Calculate U = HTCH, V = HT LH,W = HTCT̃ with MapReduce;
3: Calculate the outputweightmatrix β = (Ih + U + λV )−1W in a single

machine;
4: Return to the mapping function f (x) = h(x)β

(wi, bi) of the hidden nodes are small. CPHOM utilizes the fact
that the small data sets can fit in a machine’s main memory,
and can be distributed to all the Mappers by the distributed
cache functionality of Hadoop. The advantage of the small data
set being available in Mappers is that, during the calculation of
H , the execution of G(ai, bi, x) can be done inside the Mappers,
and the Shuffle phase can be omitted, thus greatly improving the
performance.

MapReduce on hidden layer mapping is just mapping samples
to space represented by hidden layer nodes. In the beginning, the
input data sets are stored in the HDFS as a sequence of ⟨key, value⟩
pairs, each of which represents a sample in the data sets, where
key represents the index of the sample and value represents the
content of the sample. The parameters (ai, bi) of the hidden nodes
are distributed to the nodes of the cluster by the distributed cache
functionality of Hadoop. In the Map phase, G(ai, bi, x) is executed
for each sample. Algorithm 3 provides the pseudo code of the Map
function of MapReduce on hidden layer mapping.

We can partition the matrix H through Shuffle and Reduce
phase according to the partitioning scheme described in Sec-
tion 4.5.1. As discussed in Section 4.5.1, to improve the perfor-
mance of the matrix multiplication, the best choice is to partition
the matrix HT by rows. That is to say, we need to partition the
matrix H by columns. To partition the matrix HT by whole rows,
the output of the Map function will be ⟨colIndex, hValue⟩, where
colIndex is the key which represents the column index of the value
in the hidden output matrix, hValue represents one value in the
hidden output matrix. To partition the matrix HT by splitting rows
into blocks, the output of the Map function will be ⟨blockID +

colIndex, hValue⟩. During Reduce function, the results produced in
the Shuffle phase are written to the HDFS. After that, the matrix of
H is partitioned by whole columns or blocks of columns.

Algorithm 3 CPHOMMap
Input: < index, sample >

index is the key which represents the index of
the sample, sample is the value which represents
the content of the sample.
Distributed cache: parameters of the hidden
nodes (ai, bi).

Output: < key, hValue >
hValue represents one value in the hidden output
matrix.

1: Init h
2: (x, t) = parse(sample)
3: for (i = 0; i < l; i + +) do
4: h = G(ai, bi, x);
5: if Partition HT by rows then
6: context.write(i, h)
7: else
8: Get blockIndex from i;
9: key = blockIndex+′,′ +i;
10: context.write(key, h);
11: end if
12: end for
Table 2
Matrix multiplication classification.

Suboperations Description

HTC Large matrix–small matrix multiplication.
(HTC)H Small matrix–large matrix multiplication.
(HTC)T̃ Small matrix–small matrix multiplication.
HT L Large matrix–large matrix multiplication.
(HT L)H Large matrix–large matrix multiplication.

4.4. Parallel Laplace matrix (PLM)

The calculation of the Laplace matrix can be decomposed
into Eqs. (10), (11), (12). From these equations, we can see
that it includes three important steps. Firstly, we calculate the
adjacent similarity matrix for every pair by Eq. (12), which is a
very important step for calculating the Laplace matrix. The naive
method is to join each sample with other samples as a pair in the
Map and Shuffle phase, and then to calculate the similarity for
every pair in the Reduce phase. Secondly, an extraMap and Reduce
phase is needed here to sum up the similarity for each sample and
all other samples as shown in Eq. (11) to form thematrixD. Thirdly,
we calculate the Laplace matrix by matrix chain-multiplication by
Eq. (10).

lkj = Ikj −

Djj

−
1
2 Dkk

−
1
2


Skj (10)

Djj =

n
a=1

Sja (11)

Skj = exp


−
∥xk − xj∥2

2σ 2


. (12)

4.5. Efficient parallel matrix multiplication

As discussed above, the key operation for PSS-ELM algorithm
is the calculation of matrices U , V , W , where U = HTCH ,
V = HT LH and W = HTCT̃ . Through analyzing the matrix
chain-multiplication, we can divide these matrix multiplications
into four types as shown in Table 2: large matrix–small matrix
multiplication; small matrix–large matrix multiplication; large
matrix–large matrix multiplication; small matrix–small matrix
multiplication. Since small matrix–small matrix multiplication
does not consume a lot of time, it can be executed in a single
machine. In addition, an adaptivemethod formatrixmultiplication
based on the size of the data is proposed: cache-based parallel
matrix multiplication (CPMM) for large matrix–small matrix
multiplication as well as small matrix–largematrixmultiplication;
partition-based parallel matrix multiplication (PPMM) for large
matrix–large matrix multiplication.

Note that, for the calculation of matrix C , C is a (l+ u) × (l+ u)
diagonal matrix with its first l diagonal elements Cii = Ci and the
rest is equal to 0, where Ci = C0/Ntj , C0 is one parameter defined
by users and Ntj means the number of samples of category tj. For
semi-supervised learning, the number of the labeled samples l is
not very large. Meanwhile, the core calculation of C is to count the
number of samples for each category tj. Therefore, the calculation
of matrix C consumes little time and is not presented.

4.5.1. Partitioning scheme
Based on the discussion in Section 3.3, one main factor

which results in performance degradation of MapReduce is the
communication cost in the Shuffle phase. During our design, a
series of schemes are adopted to reduce the overhead caused by
communication in the shuffling phase. Generally speaking, there



90 C. Chen et al. / J. Parallel Distrib. Comput. 108 (2017) 85–94
are two basic types of strategies to partition a matrix for matrix
chain-multiplication, which are based on sub-matrices and rows. A
rowmaybe split into different sub-matrices by the strategies based
on sub-matrices, arousing the need of accumulation of computing
results from different workers. Actually, the communication
and synchronization among nodes are costly under the cluster
computing environment. Therefore, partitioning the matrices
based on sub-matrices will incur high overhead so that it is
inappropriate for big data environment. On the contrary, based on
the strategies, a row do not need to be split into different blocks in
rows. The accumulation of intermediate results can be calculated
locally in one worker so that there is no need of shuffling the
intermediate results across different nodes.

According to the analysis above, the best choice is to partition
the first matrix based on rows and partition the second matrix
based on columns so that the multiplication of every row of the
first matrix and the column of the second matrix are executed
as a whole to decrease the overhead caused by Shuffle phase.
Providing the row of the first matrix is too big (e.g. 5G, 20G), then
it should be partitioned into different blocks. Therefore, for the
convenience of the calculations next, HT will be partitioned by
rows or blocked rows which is executed in the Shuffle phase as
described in Section 4.3, which means H is partitioned by columns
or blocked columns.

During the matrix multiplication, if the rows of the matrix are
split into blocks, to decrease the computation and communication
cost during the Shuffle course, we should first cache the
intermediate results and then compute the local summation of
matrices in the MapClose function provided by Hadoop.

4.5.2. Cache-based parallel matrix multiplication (CPMM)
As for the calculation of HTC and (HTC)H , matrix C and

HTC is small and can be distributed to all the nodes by the
distributed cache functionality from Hadoop. Take the calculation
of HTC as an example, the first matrix can be divided by rows to
avoid the communication overhead caused by summing up the
intermediate results. Then the user-defined Mappers which take
the pair ⟨rowIndex, vector⟩ as its input are executed in all nodes
of the cluster. During each Mapper, the pair is multiplied by all
the columns of the second matrix. If one row is too large, rows
will be split into blocks. The partitioning process for H is done by
the Shuffle phase in the CPHOM algorithm. In (HTC)H , (HTC) is
distributed to all the nodes.

4.5.3. Partition-based parallel matrix multiplication (PPMM)
As for the large matrix–large matrix multiplication HT L and

(HT L)H , the best choice is to partition the first matrix by rows and
the second matrix by columns. Then each row of the first matrix
is joined with all the columns of the second matrix during the
Map and the Shuffle phase. Then the user-defined Reducers which
take the pair ⟨rowIndex, columnIndex, rowVector, columnVector⟩ as
input are invoked to multiply the row vector of the first matrix
and the column vector of the second matrix. If the number of
columns of the first matrix is too large that it is inappropriate to
be processed in a single Reducer, we should split the rows of the
first matrix into blocks.

5. Parallel approximate SS-ELM based on MapReduce

As discussed in Section 4.4, the simplest solution to the
computation of the adjacent similarity matrix is a nested loop over
all pairs of two samples, which, however, has the disadvantage of
O(N2) complexities in both time and space. In addition, as H and
L are all dense matrix, the calculation of (HT L)H also has O(2hN2)
complexities. Therefore, it is infeasible to handle large and web-
scale data sets in computation. We overcome this limitation by
proposing an approximate SS-ELM algorithm (ASS-ELM) which is
based on a novel approximate adjacent similarity matrix (AASM)
algorithm. Then it is parallelized on MapReduce model named
as PASS-ELM. The main idea of AASM is to compute the samples
which are near to each other, thus reducing the complexities
for the calculation of the adjacent similarity matrix. Meanwhile,
the similarities between samples which are far apart need no
computation andmay be set as zero. Therefore, comparedwith the
original L, the dense matrix of L has become sparse matrix with
smaller number of non zeros, thus reducing the time consumed
in the calculation of (HT L)H . The main difference between PSS-
ELM and PASS-ELM is that the calculation of the adjacent similarity
matrix is replaced by approximate adjacent similarity matrix
(AASM) algorithm.

5.1. Approximate adjacent similarity matrix algorithm (AASM)

The main idea of AASM is that, by utilizing the LSH scheme,
sampleswhose hashing values collidedwith each other fall into the
same bucket, so that the probability of collision of close samples
would be much higher than those which are far apart. Then the
similarity among the samples in the same buckets are required to
be calculated, thus reducing the time complexities.

The LSH scheme proposed in [2] uses p-stable distributions
working for lp norm, where p = 1 or p = 2. The lp norm is defined
as Eq. (13).

lp(x, y) =




d
i=1

|xi − yi|p
1/p

 (13)

where x, y is the vector, p = 2 and lp norm is called as euclidean
distance, which is always used in Gaussian function.

The LSH scheme using p-stable distributions, as proposed in [2]
is to be utilized as follows: computing the dot products (a.v) to
assign a hash value to each sample which can be denoted as vector
x. Formally, each hash function h(x)maps a d dimensional sample x
onto the set of integers. Each hash function in the family is indexed
by a choice of random la and lb where la is a d dimensional vector
with entries chosen independently froma p-stable distribution and
lb is a real number chosen uniformly from the range [0, lw]. For a
fixed la and lb the hash function h is given as Eq. (14):

h(x) =

 la × x + lb
lw

 . (14)

Generally speaking, just one hash function is insufficient.
During AASM, a new hash family is constructed through k AND
constructions and r OR constructions. It means that we will
construct r hash tables, while different hash tables will be
constructedbydifferent hash function groupswhich contain khash
functions. The construction technology includes two construction
processes:

1. AND construction: SupposeH is a (d1, d2, p1, p2)-sensitive hash
family and h is a hash function from H . Then select k hash
functions fromH to construct a new function group h′. And only
when all the hash values from these k hash functions are equal,
h′(x) = h′(y).

2. OR construction: Suppose H is a (d1, d2, p1, p2)-sensitive hash
family and h is a hash function from H . Then we select l hash
functions from H to construct a new function h′. h′(x) = h′(y)
is not valid unless there is at least a hash function which makes
h(x) = h(y).



C. Chen et al. / J. Parallel Distrib. Comput. 108 (2017) 85–94 91
Fig. 2. AASM on MapReduce.

Therefore, we can construct a new hash family (r1, r2, 1 −

(1 − pk1)
r , 1 − (1 − pk2)

r) through k AND construction and r OR
construction. As proposed in [11], the general LSH technology for
(R, C)-Near Neighbor (NN) contains two phases: the construction
phase and the search phase. In the construction phase, we will
construct r hash tables with buckets contain points with the same
hash value. In the search phase, given point p, we will go through
all the hash tables and then return all the points which have the
same hash value with the point p.

Our proposed AASM algorithm contains four steps. Firstly, the
algorithm creates r hash function groups each of which contains
k hash functions. Secondly, calculating hash values of all samples
from these r hash groups. Thirdly, samples with similar hash
values, which are calculated by the same hash group, will be
grouped together. Fourthly, similarity values are computed in each
group to form portions of the similarity matrix.

5.2. MapReduce implementation of AASM

The implementation of AASM on MapReduce is illustrated in
Fig. 2. The training data sets are partitioned into splits, which are
processed by distributed Mappers in the cluster while the hash
parameters are distributed into all thework nodes in the cluster by
Hadoop’s distributed cache functionality. In the Map phase, hash
values of all samples are calculated by hash parameters with r
hash groups, each ofwhich contains k hash functions. In the Shuffle
phase, the samples with the same hash value, which are calculated
by the same hash group, are to be grouped together into a bucket.
In the Reduce phase, the similarity of the samples that belong to
one bucket traversing all buckets is calculated.

The pseudo-codes for the Map function is as shown in
Algorithm 4. The Map phase applies the LSH scheme to calculate
hash values of all the samples using r hash groups. The output
key–value pair is ⟨bulkID, index, value⟩, where bulkID contains the
hash table ID and the hash value.

After the Map phase, the Shuffle phase groups the data points
with the same key into the same bucket. The input to the
Reducer of the first stage is the ⟨bulkID, list(index, value)⟩ pair,
and list(index, pointvalueValue) is a list of indexes and samples
which are near to each other. Therefore, after the Shuffle phase,
the samples whose hash values are equal in each hash table are
grouped into the same bucket.
Algorithm 4Map(key, value)
Input: < index, value >

index represents the index of the data point,
value is the content of the sample.
Distributed cache: LSH hash family which
contains r hash function groups, each of
which has k hash functions.

Output: < bulkID, index, value >
bulkID contains hash table ID and hash value.

1: for (i = 0; i < r; i + +) do
2: Get ith hashGroup using i from LSH hash family;
3: hashValue = hashGroup(sample);
4: outKey = i+′,′ +hashValue;
5: output(outKey, index+′,′ +sample);
6: end for

The pseudo-codes for the Reducer phase is as shown in
Algorithm 5. The Reducer computes the similarity of all the
neighboring points in each bucket via nested loop. The output of
the Reducer is in the form of ⟨indexX + indexY , similarity⟩, where
(indexX+indexY ) is the keywhich contains indices of two samples,
while similarity denotes the similarity between indexX sample and
indexY sample.

Algorithm 5 Reduce
Input: < bulkID, list(index + sample) >

list(index, value) denotes the list of the samples
and the indexes in the bucket.

Output: < indexX + indexY , similarity >
(indexX + indexY ) denotes the index of two
samples, similarity denotes the similarity
between indexX sample and indexY sample.

1: length = getListLength(value);
2: for (i = 0; i < length; i + +) do
3: x = getSample(value, i);
4: indexX = getIndex(value, i);
5: for (j = i; j < length; j + +) do
6: y = getSample(value, j);
7: similarity = gaussianFuction(x, y);
8: indexY = getIndex(value, j);
9: outKey = indexX+

′,′ +indexY+
′,′ +key;

10: output(outKey, similarity);
11: end for
12: end for

5.3. Complexity analysis

In this section, we analyze its superiority in performance of
the AASM algorithm and matrix multiplication based on AASM
algorithm. During theMap phase, since hash value of every sample
is calculated by r hash groups, each of which contains k hash
functions. Therefore, the time complexity of calculating the r hash
tables in the Map phase will be O(krN). After that, the samples
with the same hash valuewhich is calculated by the function group
are grouped into the same bucket. Secondly, for each bucket, we
will only compute the similarity of the samples that belong to
one bucket. Suppose the ith hash table has Ti buckets, each of
which has Nj points. If two samples are not in the same bucket,
the similarity between these two samples are not needed to be
calculated. Therefore, the overall complexity of these two steps can
be presented in Eq. (15)

O(krN) + r
T−1
j=0

O(Nj
2). (15)

Although there are some duplicate calculations in the second step,
the complexity is much smaller than the complexity O(N2).



92 C. Chen et al. / J. Parallel Distrib. Comput. 108 (2017) 85–94
Fig. 3. The average running time of different sizes of records.

Then the complexity of matrix multiplication based on AASM
algorithm is to be analyzed. As for the calculation of (HT L)H , if the
matrix L is dense matrix, where the number of non zeros is N2,
the complexity will be O(2hN2). If our proposed AASM algorithm
is utilized, the dense matrix will change into sparse matrix, thus
reducing the storage and time complexity rapidly. The number of
non zeros is given in Eq. (16) at most and the complexity of (HT L)H
is given in Eq. (17).

Nnone =

T−1
j=0

1
2
Nj

2 (16)

O


2h

T−1
j=0

1
2
Nj

2


= O


h

T−1
j=0

Nj
2


. (17)

6. Experiments

In this section, the classification accuracy and performance
of PSS-ELM and PASS-ELM algorithms are evaluated. Section 6.1
presents the experimental settings. The accuracy evaluation of
PASS-ELM is conducted in Section 6.2, while the performance
evaluation is given in Section 6.3.

6.1. Experiments setup

All the experiments are performed on a Hadoop cluster. Each
computing node runs in Linux operation system Ubuntu 12.04.4,
with one Pentium (R) DualCore 3.20 GHz CPU and 8 GB memory.
All the nodes are connected by a high speed Gigabit network, and
are configured with Hadoop 2.5.0.

We tested the original SS-ELM, PSS-ELM and PASS-ELM
algorithms on five popular semi-supervised learning benchmarks
that have been widely used in evaluating semi-supervised
algorithms [23,24,18] as described in Table 3.

6.2. Experiments for accuracy

In order to evaluate the classification accuracy of PASS-ELM
algorithm, some experiments are performed on the data sets
described above with SS-ELM, PSS-ELM algorithms and PASS-ELM
algorithm. The data sets are outlined in Table 3. Through counting
the average classification accuracy of the algorithm, different
accuracies of SS-ELM and PASS-ELM are presented in Fig. 3. From
the figure, we can see that the classification accuracy of PASS-ELM
is a little smaller that the accuracy of SS-ELM.
Fig. 4. The average running time of different sizes of records on different
algorithms.

6.3. Experiments for computational performance

In this section, some experiments are conducted to evaluate the
performance of PSS-ELM algorithm and PASS-ELM algorithm by
comparing them with original SS-ELM algorithm in terms of the
average run time and speedup.

6.3.1. Results of different sizes of records
In this section, in order to compare the average running

time and speedup of different data sizes on the Hadoop for our
proposed algorithm, a Hadoop cluster with 8 computing nodes are
constructed. At the same time, G50C is adopted in the test with
different replicated times and the number of the hidden nodes is
200. As quantities of data differs, the time consumed by SS-ELM,
PSS-ELM and PASS-ELM algorithm varies, as shown in Fig. 4. The
sizes of records are increased from 5000 to 40,000. Fig. 5 shows
the running time of PASS-ELM algorithm, with the sizes increased
from 5000 to 160,000. It can be seen from the figure that the time
consumed by SS-ELM and PSS-ELM algorithms grows rapidly as
the number of trained samples increases and it is almost quadratic
to the number of training items. This is because the algorithms
involve the calculation of adjacentmatrix, which needs to calculate
the Euclidean distance between all the samples, as well as the
enormous dense matrix multiplication. Moreover, if the sizes of
records are 4000, the original SS-ELM cannot be conducted on a
single machine for the dense matrix L already reached to 16G.
However, our proposed PASS-ELM algorithm does not grow with
such a rapid speed. It is clear that the time consumed by our
algorithm is almost linear to the number of training items.

6.3.2. Results of different number of slave nodes
In this section, the effects of the algorithms under different

numbers of slave mode computers are tested. The sizes of records
are 10,000 with data set USPST(B), as well as the number of the
hidden nodes is set as 100. The speedups of PASS-ELM and PSS-
ELM algorithms relative to SS-ELM algorithm are as shown in
Fig. 6. It can be seen that, with the increase of the number of
slave nodes, speedup of PASS-ELM increases, basically in a linear
manner. However, as the number of nodes increases, the rate of
speedup increase slows down.

6.3.3. Results of different number of hidden nodes
In this section, the effects of different number of the hidden

nodes on the test results are examined. G50C is adopted in the test.
The dimension of the data set is 50. The number of Slave mode
computers is 8 and the size of record is 10,000. The number of



C. Chen et al. / J. Parallel Distrib. Comput. 108 (2017) 85–94 93
Table 3
Data sets.

Data set Class Dimension Labeled data Unlabeled data Test data

G50C 2 50 50 314 136
COIL20(B) 2 1024 40 1000 360
USPST(B) 2 256 50 1409 498
COIL20 20 1024 40 1000 360
USPST 10 256 50 1409 498
Fig. 5. The average running time of different sizes of records on PASS-ELM.

Fig. 6. The average speedup of different number of slave nodes.

hidden nodes is 100, 200, 300, 400 and 500 respectively. Given
different numbers of the hidden nodes, the time consumed by
PASS-ELM algorithm and SS-ELM algorithm are as shown in Fig. 7.
We can see that the consumed time almost grows linearly along
with the increase of the number of the hidden nodes.

6.3.4. Results of optimizations
In this section,we evaluate the results of our two optimizations:

cache-based parallel matrix multiplication (CPMM) and partition-
based parallel matrix multiplication (PPMM) on a Hadoop cluster
with 8 computing nodes. We take HT L as an example, where
the number of records increased from 10,000 to 60,000 and the
number of the hidden nodes are 200. As for CPMM, the matrix H
is treated as the cached matrix. During the process of the PPMM,
H is partitioned by rows and L is partitioned by rows. Compared
with the naive methods for matrix multiplication, the speedup of
CPMM and PPMM is as shown in Fig. 8. The CPMM is almost over
60× speedup over the naive algorithm, while PPMM is almost 6×
speedup as the naive algorithm. Therefore, the best choice is to
adopt the CPMM algorithm. However, if thematrix is too large that
Fig. 7. The results of different number of hidden nodes.

Fig. 8. The speedup of optimizations.

it cannot be loaded into one machine’s memory, we need to adopt
the PPMM algorithm.

7. Conclusion

The proposed SS-ELM algorithm extends the scope of the
application of ELM algorithm. At the same time, the algorithm’s
training precision is improved by making use of the unlabeled
data. However, the original SS-ELM cannot handle large and
web-scale data sets which are of frequent appearance in the
era of big data. In order to solve this problem, an in-depth
analysis of SS-ELM algorithm is conducted and proposes a parallel
SS-ELM algorithm named as PSS-ELM based on MapReduce
programming model, which can utilize the flexibility offered by
cloud computing platforms. To improve the performance, the
paper also proposes an approximate adjacent similarity matrix
algorithm named as AASM that can be applied in many machine
learning algorithms. The time complexity of our algorithm is
almost linear, while the original algorithm is quadratic. Then,
we parallel this approximate algorithm on MapReduce named
as PASS-ELM. Many optimizations are conducted to improve its



94 C. Chen et al. / J. Parallel Distrib. Comput. 108 (2017) 85–94
efficiency, such as cache-based optimization, partitioning scheme,
local-summation for improving the efficiency of the Shuffle phase.
Experiments have demonstrated that our proposed PASS-ELM
algorithm is able to process a large number of data samples, with
excellent performance on speedup and high accuracy.

Acknowledgments

The research was partially funded by the Key Program
of National Natural Science Foundation of China (Grant No.
61432005), the National Outstanding Youth Science Program
of National Natural Science Foundation of China (Grant No.
61625202), the International (Regional) Cooperation and Exchange
Program of National Natural Science Foundation of China (Grant
No. 61661146006), the National Natural Science Foundation
of China (Grant Nos. 61370095, 61472124, 61662090), the
International Science & Technology Cooperation Program of China
(Grant Nos. 2015DFA11240, 2014DFB30010), the National High-
tech R&D Program of China (Grant No. 2015AA015305), and
the Key Technology Research and Development Programs of
Guangdong Province (Grant No. 2015B010108006).

References

[1] M.D. Assunção, R.N. Calheiros, S. Bianchi, M.A. Netto, R. Buyya, Big data
computing and clouds: Trends and future directions, J. Parallel Distrib.
Comput. 79 (2015) 3–15.

[2] M. Datar, N. Immorlica, P. Indyk, V.S. Mirrokni, Locality-sensitive hashing
scheme based on p-stable distributions, in: Proceedings of the Twentieth
Annual Symposium on Computational Geometry, ACM, 2004, pp. 253–262.

[3] J. Dean, S. Ghemawat,Mapreduce: simplified data processing on large clusters,
Commun. ACM 51 (1) (2008) 107–113.

[4] Q. He, C. Du, Q. Wang, F. Zhuang, Z. Shi, A parallel incremental extreme svm
classifier, Neurocomputing 74 (16) (2011) 2532–2540.

[5] Q. He, T. Shang, F. Zhuang, Z. Shi, Parallel extreme learning machine for
regression based on mapreduce, Neurocomputing 102 (2013) 52–58.

[6] G.-B. Huang, L. Chen, Enhanced random search based incremental extreme
learning machine, Neurocomputing 71 (16) (2008) 3460–3468.

[7] G. Huang, S. Song, J.N. Gupta, C. Wu, Semi-supervised and unsupervised
extreme learning machines, IEEE Trans. Cybern. 44 (12) (2014) 2405–2417.

[8] G.B. Huang, H. Zhou, X. Ding, R. Zhang, Extreme learning machine for
regression and multiclass classification., IEEE Trans. Syst. Man Cybern. Part B
Cybern. Publ. IEEE Syst. Man Cybern. Soc. 42 (2) (2012) 513–529.

[9] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: a new learning
scheme of feedforward neural networks, in: 2004 IEEE International Joint
Conference on Neural Networks, 2004. Proceedings, Vol. 2, IEEE, 2004,
pp. 985–990.

[10] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and
applications, Neurocomputing 70 (1) (2006) 489–501.

[11] P. Indyk, R. Motwani, Approximate nearest neighbors: towards removing
the curse of dimensionality, in: Proceedings of the Thirtieth Annual ACM
Symposium on Theory of Computing, ACM, 1998, pp. 604–613.

[12] W. Jun, W. Shitong, F.-l. Chung, Positive and negative fuzzy rule system,
extreme learningmachine and image classification, Int. J. Mach. Learn. Cybern.
2 (4) (2011) 261–271.

[13] K. Kambatla, G. Kollias, V. Kumar, A. Grama, Trends in big data analytics, J.
Parallel Distrib. Comput. 74 (7) (2014) 2561–2573.

[14] U. Kang, B. Meeder, E.E. Papalexakis, C. Faloutsos, Heigen: Spectral analysis for
billion-scale graphs, IEEE Trans. Knowl. Data Eng. 26 (2) (2014) 350–362.

[15] R. Lämmel, Googles mapreduce programming modelrevisited, Sci. Comput.
Programming 70 (1) (2008) 1–30.

[16] K. Li, W. Ai, Z. Tang, F. Zhang, L. Jiang, K. Li, H. Kai, Hadoop recognition of
biomedical named entity using conditional random fields, IEEE Trans. Parallel
Distrib. Syst. 26 (11) (2015) 1–1.

[17] N.-Y. Liang, G.-B. Huang, P. Saratchandran, N. Sundararajan, A fast and accurate
online sequential learning algorithm for feedforward networks, IEEE Trans.
Neural Netw. 17 (6) (2006) 1411–1423.

[18] S. Melacci, M. Belkin, Laplacian support vector machines trained in the primal,
J. Mach. Learn. Res. 12 (5) (2009) 1149–1184.

[19] I. Palit, C.K. Reddy, Scalable and parallel boosting with mapreduce, IEEE Trans.
Knowl. Data Eng. 24 (10) (2012) 1904–1916.

[20] R. Ranjan, L. Wang, A.Y. Zomaya, D. Georgakopoulos, X.-H. Sun, G. Wang,
Recent advances in autonomic provisioning of big data applications on clouds,
IEEE Trans. Cloud Comput. 3 (2) (2015) 101–104.

[21] C.R. Rao, S.K.Mitra, Generalized Inverse ofMatrices and its Applications,Wiley,
New York, 1971, p. 7.

[22] H.-J. Rong, G.-B. Huang, N. Sundararajan, P. Saratchandran, Online sequential
fuzzy extreme learningmachine for function approximation and classification
problems, IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39 (4) (2009)
1067–1072.

[23] V. Sindhwani, P. Niyogi, M. Belkin, Beyond the point cloud: from transductive
to semi-supervised learning, in: Proceedings of the 22nd International
Conference on Machine Learning, ACM, 2005, pp. 824–831.
[24] V. Sindhwani, D.S. Rosenberg, An rkhs for multi-view learning and manifold
co-regularization, in: International Conference, 2008, pp. 976–983.

[25] Y. Sun, Y. Yuan, G. Wang, An os-elm based distributed ensemble classification
framework in p2p networks, Neurocomputing 74 (16) (2011) 2438–2443.

[26] B. Wang, S. Huang, J. Qiu, Y. Liu, G. Wang, Parallel online sequential extreme
learningmachine based onmapreduce, Neurocomputing 149 (2015) 224–232.

[27] J. Xin, Z. Wang, C. Chen, L. Ding, G. Wang, Y. Zhao, Elm*: distributed
extreme learning machine with mapreduce, World Wide Web 17 (5) (2014)
1189–1204.

[28] Y. Xu,W. Qu, Z. Li, G. Min, K. Li, Z. Liu, Efficient k-means++ approximation with
mapreduce, IEEE Trans. Parallel Distrib. Syst. 25 (12) (2014) 3135–3144.

[29] Y. Yang, Y. Wang, X. Yuan, Bidirectional extreme learning machine for
regression problem and its learning effectiveness., IEEE Trans. Neural Netw.
Learn. Syst. 23 (9) (2012) 1498–1505.

[30] K. Yue, Q. Fang, X. Wang, J. Li, A parallel and incremental approach for data-
intensive learning of Bayesian networks, IEEE Trans. Cybern. 45 (12) (2015)
1.

[31] R. Zhang, G.-B. Huang, N. Sundararajan, P. Saratchandran, Multicategory
classification using an extreme learning machine for microarray gene
expression cancer diagnosis, IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) 4
(3) (2007) 485–495.

[32] X.-g. Zhao, G. Wang, X. Bi, P. Gong, Y. Zhao, Xml document classification based
on elm, Neurocomputing 74 (16) (2011) 2444–2451.

[33] J. Zhao, Z. Wang, D.S. Park, Online sequential extreme learning machine with
forgetting mechanism, Neurocomputing 87 (2012) 79–89.

Cen Chen is currently a Ph.D. candidate in Computer
Science, Hunan University, China. His research inter-
ests include parallel and distributed computing systems,
cloud computing, machine learning on big data. He has
published research articles in international conference
and journals of data mining algorithms and parallel
computing.

Kenli Li received the Ph.D. degree in Computer Science
from the Huazhong University of Science and Technology,
China, in 2003. He was a visiting scholar at the University
of Illinois at Urbana–Champaign from 2004 to 2005. He
is currently a full Professor of Computer Science and
Technology at Hunan University and Deputy Director of
the National Supercomputing Center in Changsha. His
major research areas include parallel computing, high-
performance computing, and grid and cloud computing.
He has published more than 130 research papers in
international conferences and journals such as IEEE

Transactions on Computers, IEEE Transactions on Parallel and Distributed Systems,
Journal of Parallel and Distributed Computing, ICPP, CCGrid. He is an outstanding
member of CCF. He is a member of the IEEE and serves on the editorial board of the
IEEE Transactions on Computers.

Aijia Ouyang received the Ph.D. degree in Computer
Science from Hunan University, China, in 2015. His
research interests include parallel computing, cloud
computing and big data. He has published more than 20
research papers in international conferences and journals
of intelligence algorithms and parallel computing.

Keqin Li is a SUNY Distinguished Professor of Computer
Science in the State University of New York. He is also a
Distinguished Professor of Chinese National Recruitment
Program of Global Experts (1000 Plan) at Hunan Uni-
versity, China. He was an Intellectual Ventures endowed
visiting chair professor at the National Laboratory for In-
formation Science and Technology, Tsinghua University,
Beijing, China, during 2011–2014. His current research in-
terests include parallel computing and high-performance
computing, distributed computing, energy-efficient com-
puting and communication, heterogeneous computing

systems, cloud computing, big data computing, CPU–GPU hybrid and cooperative
computing, multicore computing, storage and file systems, wireless communica-
tion networks, sensor networks, peer-to-peer file sharing systems, mobile com-
puting, service computing, Internet of things and cyber–physical systems. He has
published over 460 journal articles, book chapters, and refereed conference papers,
and has received several best paper awards He is currently or has served on the edi-
torial boards of IEEE Transactions on Parallel and Distributed Sys- tems, IEEE Trans-
actions on Computers, IEEE Transactions on Cloud Computing, IEEE Transactions
on Services Computing, IEEE Transactions on Sustainable Computing. He is an IEEE
Fellow.

http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref1
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref2
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref3
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref4
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref5
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref6
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref7
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref8
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref9
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref10
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref11
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref12
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref13
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref14
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref15
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref16
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref17
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref18
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref19
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref20
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref21
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref22
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref23
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref25
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref26
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref27
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref28
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref29
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref30
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref31
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref32
http://refhub.elsevier.com/S0743-7315(17)30013-8/sbref33

	A parallel approximate SS-ELM algorithm based on MapReduce for large-scale datasets
	Introduction
	Related works
	Preliminaries
	ELM
	SS-ELM
	Introduction of MapReduce
	Introduction of Locality-sensitive hashing for  lp  norm

	Parallel SS-ELM based on MapReduce
	Summary of the contributions
	Selective parallelization
	Cache-based parallel hidden layer output matrix (CPHOM)
	Parallel Laplace matrix (PLM)
	Efficient parallel matrix multiplication
	Partitioning scheme
	Cache-based parallel matrix multiplication (CPMM)
	Partition-based parallel matrix multiplication (PPMM)


	Parallel approximate SS-ELM based on MapReduce
	Approximate adjacent similarity matrix algorithm (AASM)
	MapReduce implementation of AASM
	Complexity analysis

	Experiments
	Experiments setup
	Experiments for accuracy
	Experiments for computational performance
	Results of different sizes of records
	Results of different number of slave nodes
	Results of different number of hidden nodes
	Results of optimizations


	Conclusion
	Acknowledgments
	References


