
1

GPU-Accelerated Parallel Hierarchical Extreme
Learning Machine on Flink for Big Data
Cen Chen, Kenli Li, Senior Member, IEEE, Aijia Ouyang, Zhuo Tang, Member, IEEE,

Keqin Li, Fellow, IEEE

Abstract—Extreme learning machine (ELM) has become one of the most important and popular algorithms of machine learning,
because of its extremely fast training speed, good generalization, and universal approximation/classification capability. The proposal
of hierarchical extreme learning machine (H-ELM) extends ELM from single hidden layer feedforward networks (SLFNs) to multilayer
perceptron (MLP), greatly strengthening the applicability of ELM. Generally speaking, during training H-ELM, large-scale datasets are
needed. Therefore, how to make use of H-ELM framework in processing big data is worth further exploration. This paper proposes a
parallel H-ELM algorithm based on Flink, which is one of the in-memory cluster computing platforms, and GPUs. Several optimizations
are adopted to improve the performance, such as cache-based scheme, reasonable partitioning strategy, memory mapping scheme
for mapping specific JVM objects to buffers. Most importantly, our proposed framework for utilizing GPUs to accelerate Flink for big
data is general. This framework can be utilized to accelerate many other variants of ELM and other machine learning algorithms. To
the best of our knowledge, it is the first kind of library, which combines in-memory cluster computing with GPUs to parallelize H-ELM.
The experimental results have demonstrated that our proposed GPU-accelerated parallel H-ELM named as GPH-ELM can efficiently
process large-scale datasets with good performance of speedup and scalability, leveraging the computing power of both CPUs and
GPUs in the cluster.

Index Terms—Big data, deep learning, Flink, GPGPU, hierarchical extreme learning machine (H-ELM), parallel

F

1 INTRODUCTION

1.1 Motivation

WIth the rapid development of Internet and Internet
of things technologies, recent years have witnessed

a surge of data at a fast speed. Due to the development
of big data technologies, many decision methods based on
the traditional experience and intuition have been replaced
by data analysis and data mining. Many researchers have
focused on getting valuable information and knowledge
from massive data with data mining or machine learning
methods [1], [2].

During the past years, extreme learning machine (ELM)
[3], [4], [5] has become one of the most important and
popular algorithms of machine learning and artificial intel-
ligence, because of its extremely fast training capacity, good
generalization, and universal approximation/classification
capability. Unlike other traditional learning algorithms, e.g.,
back propagation (BP)-based neural networks (NNs), ELM
theories believe that the hidden layer of ELM does not need

• Cen Chen, Kenli Li, Aijia Ouyang, Zhuo Tang and Keqin Li are with
the College of Information Science and Engineering, Hunan University,
Changsha, Hunan 410082, China; and the National Supercomputing
Center in Changsha, Changsha, Hunan 410082, China.
E-mail: chencen@hnu.edu.cn; lkl@hnu.edu.cn; ztang@hnu.edu.cn;
likq@hnu.edu.cn

• Aijia Ouyang are with the Department of Information Engineering, Zunyi
Normal College, Zunyi, Guizhou 563006, China.
E-mail: oyaj@hnu.edu.cn;

• Corresponding author: Kenli Li
• Keqin Li is also with the Department of Computer Science, State Univer-

sity of New York, New Paltz, New York 12561, USA.
E-mail: lik@newpaltz.edu

to be iteratively tuned and the parameters of the hidden
layer can be generated randomly. Theoretically, Huang et al.
[6], [7] have proved that with randomly generated hidden
neurons, ELM still maintain its universal approximation
capability. Tang et al. [8] proposed a hierarchical ELM (H-
ELM) framework for multilayer perceptrons (MLPs), which
is based on the universal approximation capability of the
original ELM. This proposal has extended the original ELM
algorithm from shallow architecture to deep architecture,
largely strengthening the applicability of ELM. The H-
ELM framework contains two main components: (a) several
unsupervised feature encoding layers and (b) supervised
feature classification based on the original ELM. Unlike the
greedy layerwise training of deep learning (DL), once the
previous layer is established, the weights of the current layer
are fixed without fine-tuning, making it more efficient in
learning performance than the DL [8].

Generally speaking, applications on MLPs (e.g., im-
ages/videos) usually require large-scale datasets. As we
know, there are many hidden layers in H-ELM framework.
These factors engender the need for large amounts of
computing resources and cost plenty of time to train H-
ELM framework, thus making it prohibitive to complete
the training job on a single computer. How to make use
of H-ELM algorithm in processing a large amount of data
is worth further exploration, which constitutes one main
challenge for researchers..

Hadoop, an open source MapReduce framework [9], has
been highly successful in implementing large-scale data-
intensive applications on commodity clusters. Xun et al.
[10] proposed a parallel mining algorithm for frequent item-
sets using MapReduce. Ding et al. [11] proposed a novel

2

attribute equilibrium dominance reduction accelerator (D-
CCAEDR) based on the distributed coevolutionary cloud
model and MapReduce, aiming at the tremendous challenge
of attribute reduction for big data mining and knowledge
discovery.

However, it is a disk-based system and every MapRe-
duce stage can only interact with other stages through the
Hadoop Distributed File System (HDFS). In-memory cluster
computing platforms (e.g., Flink [12] and Spark [13]) are de-
signed to process data-intensive applications with distribut-
ed in-memory architecture, and provide similar scalability,
and fault-tolerance characteristics to Hadoop. Because of
their in-memory parallel execution model which saves huge
amounts of disk I/O operations time, they are more suitable
for data mining and machine learning that require many
iterative operations.

Over the past few years, graphics processing units (G-
PUs) have emerged as parallel processors thanks to their
high computational power and low price, especially for
high-performance computing (HPC) area. In many super-
computers, such as Tianhe and Titan, CPUs and GPUs coop-
erate together to produce powerful computing. The trend of
using heterogeneous CPU-GPU clusters is now mainstream.
For example, each computing node of the Tianhe-1A has two
Intel(R) Xeon X5670 CPUs and one NVIDIA(R) Tesla M2050
GPU. As with the high computing power of GPUs, many
researchers have focused on utilizing GPUs to accelerate the
deep learning and have obtained excellent effect. NVIDIA
has developed deep neural network library (cuDNN) [14]
which is a GPU-accelerated library for deep neural net-
works. Coates et al. [15] utilized a cluster of GPU servers
with Infiniband interconnects and MPI to train extremely
large networks (with over 1 billion parameters) within a
couple of days.

1.2 Contributions
Existing in-memory cluster computing platforms have been
proven to be outstanding platforms for processing big da-
ta with high performance, high fault tolerance, high-level
and easy programming model and high compatibility with
many open source stacks. Apache Flink is a new open source
platform for both distributed stream and batch data pro-
cessing. Spark and Flink are quite similar. As we know, H-
ELM framework consists of many hidden layers, which are
similar with the iterative operation. The in-memory parallel
execution model provided by Flink can cache the data in
the distributed memory in the cluster, thus saving huge
amounts of disk I/O operations time between two layers.
Through deep analysis of the details of H-ELM, we find
that Flink is a very appropriate platform for parallelizing
H-ELM framework.

Moreover, through analysing the execution process of
H-ELM framework, we find that some time-consuming
sub-processes are appropriate for being executed in GPUs.
Through accelerating them by GPUs, a high speedup will
be achieved. However, in-memory cluster computing plat-
forms such as Flink and Spark can only run on CPUs
now. That is to say, these platforms cannot leverage the
available computing resources of GPUs, or benefit from the
acceleration of GPUs, which may be present in the nodes of
the cluster.

In this paper, we have proposed a novel parallel hi-
erarchical extreme learning machine combining Flink and
GPUs to process large-scale datasets. Our Our algorithms
are built on top of Flink, thus inheriting the existing good
reliability and expandability of Flink. Due to the fact that
Spark and Flink are very similar, our design can be easily
integrated into Spark. To the best of our knowledge, it is
the first kind of library, which combines in-memory cluster
computing with GPUs to parallelize H-ELM, inheriting the
outstanding features of both in-memory cluster computing
and GPU. The framework for utilizing GPUs to accelerate
H-ELM on Flink is an extension of our previous work [16].
In this new framework, we proposed a heterogeneous task
management for hybrid CPUs and GPUs, in which CPUs
and GPUs cooperate together to fulfill the works assigned to
them, thus achieving a better acceleration than our previous
work. Our main contributions are as follows.

• The sub-operations of H-ELM which need to be
parallelized are parallelized on Flink, thus benefiting
from the in-memory cluster computing. In the mean-
time, several optimizations are adopted to improve
the scalability and performance of our paralleliza-
tion. Furthermore, we accelerate our proposed paral-
lel algorithm through leveraging the high computing
power of GPUs, which may be present in the clusters,
thus improving the performance greatly.

• Our proposed parallel algorithm is based on both
Flink and GPUs, thus inheriting the outstanding fea-
tures of both Flink and GPUs. Our proposed parallel
algorithm has good fault tolerance and reliability,
supporting distributed file system, high performance
for iterative computing, high computing power pro-
vided by GPUs.

• Our proposed framework for utilizing GPUs to ac-
celerate applications on Flink for big data is widely
applicable, in which CPUs and GPUs cooperate with
each other to fulfill the tasks with high performance.
Many other variants of ELM and other machine
learning algorithms can benefit from our proposed
framework.

The remainder of this paper is organized as follows. Sec-
tion 2 and Section 3 review related work and provide more
background information. Section 4 describes our proposed
parallel H-ELM framework on Flink (PH-ELM). Section 5
presents details of accelerating our proposed parallel H-
ELM framework by GPUs (GPH-ELM). Section 6 analyzes
our proposed algorithms. Section 7 presents the perfor-
mance results. Section 8 concludes this paper.

2 RELATED WORKS

Extreme learning machine (ELM) was fisrt proposed by
Huang [4], [5] to train single-hidden layer feedforward
Neural networks (SLFNs). Thanks to the efforts of different
scholars and researchers, ELM algorithm has been greatly
developed and improved. Many researchers have come up
with different variants of ELM algorithm. Liang et al. [17]
proposed an online sequential ELM (OS-ELM) algorithm,
which could train the data block of either fixed or unfixed
sizes in an incremental quantity. Thus, it provides a way

3

of utilizing the ELM algorithm to train a large number of
data samples. Rong et al. [18] proposed an online sequential
fuzzy extreme learning machine (OS-FUZZY-ELM) for func-
tion approximation and classification problems. Huang et al.
[19] has put forward the semi-supervised extreme learning
machine (SS-ELM) based on manifold regularization and
ELM.

With the development of ELM algorithm, many scholars
have focused on the study of distributed ELM algorithm. Q.
He et al. [20] proposed the parallel ELM algorithm (PELM)
based on MapReduce. Wang et al. [21] put forward the
parallel online sequential extreme learning machine (POS-
ELM) based on OS-ELM and MapReduce model for train-
ing the incremental data samples in parallel. Xin came up
with ELM* algorithm [22] which has higher efficiency than
PELM.

We can find that there are many matrix operations in H-
ELM framework. Many works have focused on efficient par-
allel matrix multiplication. Among traditional parallel ma-
trix multiplication based on MPI, SUMMA [23] is the most
popular distributed matrix multiplication algorithm. It is ob-
vious that these methods have the disadvantage that all the
data needs to be resided in the shared memory of the cluster.
Furthermore, these solutions require designing complicated
fault tolerance mechanisms. To solve the low programmabil-
ity of traditional distributed approaches, Schmidt et al. [24]
proposed an approach to integrate R into [25]. However, this
approach still suffers the fault tolerance problems. Recently,
HAMA [26], which is based on Hadoop and MapReduce
model, provides distributed matrix computations. However,
the execution performance of HAMA is not efficient due
to the overhead and disk operations of the MapReduce
jobs. Due to the high computational performance of GPUs,
many researchers from both academia and industry have
proposed GPU-based accelerated matrix operation libraries
or algorithms, such as cuBLAS [27] and [28]. Yang et al.
[29] proposed a partitioning scheme for SpMV on GPUs
and multicore CPUs. Li et al. [29] proposed a probabilistic
modeling method to improve the performance of SpMV on
GPUs. However, they are not distributed operation libraries.

3 BACKGROUND

3.1 ELM Learning Algorithm
During the past decades, many researchers have studied the
universal approximation capability of SLFNs deeply [30],
[31]. It is usually assumed that the activation function of the
hidden neurons is continuous and differentiable, and the
parameters of hidden neurons need to be adjusted during
training. However, it has been proven that randomly gener-
ated networks with the outputs being solved by least mean
square are able to maintain the universal approximation
capability [6], [7].

ELM was put forward for ”generalized” single-hidden
layer feedforward networks (SLFNs) where the hidden layer
does not need to be neuron alike [3], [32]. The output
function of ”generalized” SLFNs with l hidden nodes can
be represented by Equation (1):

fl(x) =
l∑

i=1

βiG(ai, bi, x), x ∈ Rd, βi ∈ Ro (1)

where βi is the output weight of the ith hidden node
connecting with the output layer, ai is the input weight
vector connected the input layer to the ith hidden node, bi
is the bias weight of the ith hidden node, G(x) denotes the
activation function, d denotes the dimension of the sample
and o denotes the dimension of the label of the sample.

For N arbitrary distinct samples (xi, ti), xi ∈ Rd, ti ∈
Rm, i = 1, ..., N , where xi is the training data vector, ti
represents the target of each sample. Equation (1) can be
expressed compactly as Equation (2):

Hβ = T (2)

where H is the hidden layer output matrix (randomized
matrix), T is the training data target matrix, β is the output
weight vector. H , T and β are expressed as Equation (3):

H =

 G(a1, b1, x1) · · · G(al, bl, x1)
...

G(a1 , b1, xN) · · · G(al, bl, xN)


N×l

β =

 βT
1
...

βT
l


l×o

T =

 tT1
...
tTN


N×m

(3)

Different from traditional learning algorithms, ELM
tends to reach not only the smallest training error but also
the smallest norm of output weights [3]:

Minimize : ||Hβ − T ||2 + ||β|| (4)

In the classical implementation of ELM [4], [5], the
minimal norm least square method is used to obtain the
output weight vector:

β∗ = H†T (5)

where H† is the Moore-Penrose (MP) generalized in-
verse of matrix H . The orthogonal projection method can
be efficiently used to calculate the MP inverse: H† =
(HTH)−1HT if HTH is nonsingular, or HT (HHT)−1 if
HHT is nonsingular. According to the ridge regression
theory, it was recommended that a positive value 1

λ can be
added during the calculation of the output weights, thus
achieving a more stable solution and better generalization
performance. Therefore, we can have:

β = HT

(
1

λ
+HHT

)−1

T (6)

And the corresponding output function of ELM is:

f(x) = h(x)β = h(x)HT

(
1

λ
+HHT

)−1

T (7)

Or we can have:

β =

(
1

λ
+HTH

)−1

HTT (8)

f(x) = h(x)β = h(x)

(
1

λ
+HHT

)−1

HTT (9)

4

Huang et al. [3] demonstrated that the solutions to
Equation (6) and Equation (8) are actually consistent to
minimize ||Hβ−T ||2+λ||β||2, which is the essential target of
ELM as mentioned before. As for big data circumstance, the
number of hidden nodes is much less than that of training
samples. According to the matrix theory, with SVD method,
a small matrix HTH could be calculated instead of the large
matrix HHT .

3.2 ELM-Based Sparse Autoencoder

Representational learning, e.g., stacked autoencoder (SAE),
is effective in learning useful features for achieving high
generalization performance [33]. Apart from being used to
train SLFNs, the ELM theory has also been applied to build
an autoencoder for multilayer perceptron (MLP). Autoen-
coder aims at learning representations of the input that
are robust to small irrelevant changes in input and always
functions as some sort of feature extractor in a multilayer
learning framework [34]. Mathematically, an autoencoder
takes an input vector x, and first maps it to a higher
level representation y through a deterministic mapping
y = hθ(x) = g(A·x+b), parameterized by θ = {A, b}, where
g(·) is the activation function, A is a d × d′ weight matrix
and b is a bias vector. The resulting latent representation y
is then mapped back to a reconstructed vector z in the input
space z = hθ′(y) = g(A′ · y + b) with θ′ = {A′, b′}.

Tang et al. [8] proposed ELM-based sparse autoencoder.
Through performing ℓ1 optimization, more sparse and com-
pact features of the inputs are generated for the establish-
ment of ELM autoencoder. Unlike the autoencoders (i.e.,
BP-based algorithm) used in traditional deep learning (DL)
algorithms, the input weights of the proposed ELM-based
sparse autoencoder are established by searching the path
back from a random space. The optimization model of the
ELM sparse autoencoder proposed in [35] can be denoted as
the following equation:

Oβ = argmin
β

{p(β) + q(β)} (10)

where p(β) = ||Hβ − X||2, and q(β) = ||β||ℓ1 is the ℓ1
penalty term of the training model.

Beck et al. [36] proposed a fast iterative shrinkage-
thresholding algorithm (FISTA) to solve the problem in
Equation (10). It has been proven that FISTA has a global
rate of convergence which is significantly better, both theo-
retically and practically, especially for big data. The pseudo-
code of implementing FISTA for solving ELM-based sparse
autoencoder is shown in Algorithm 3.1.

3.3 H-ELM Framework for Deep Learning

Tang et al. [8] proposed a hierarchical ELM (H-ELM)
framework for multilayer perceptrons (MLPs). The H-ELM
training architecture has two separate parts: unsupervised
hierarchical feature representation and supervised feature
classification. For the former phase, the ELM-Based sparse
autoencoder described in Section 3.2 is performed to extract
multilayer sparse features of the input data. While for the
latter one, the original ELM algorithm is used for making
the final decision.

Algorithm 3.1 ELM-based Sparse Autoencoder Overview

Input: The training dataset matrix X : {(xi)|xi ∈ Rd, i =
1, ..., N};
Hidden node output function: G(ai, bi, x);
The number of hidden nodes: l;
The iteration size: size;
Hidden node matrix V : (ai, bi), i = 1, ..., l;

Output: The hidden weight vector: β;
1: Calculate the hidden layer output matrix H ;
2: Calculate the matrix HTH ;
3: Calculate the matrix HTX ;
4: Calculate the Lipschitz constant γ of the the gradient of

smooth convex function ∇p depends on the maximum
eigenvalue of HTH ;

5: y1 ← β0 ∈ Rn and t1 ← 1;
6: for (i = 0; i ≤ size; i++) do
7: Calculate βk using Equation (11) and Equation (12):

βk ← pL(yk)← Tα

(
yk − 2

1

γ
HTHyk + 2

1

γ
HTX

)
;

(11)

Tα(x)← (|β| − α) + sgn(β), α← λ

γ
(12)

8: Calculate tk+1 using Equation (13):

tk+1 ←
1 +

√
1 + 4t2k
2

(13)

9: Calculate yk+1 using Equation (14):

yk+1 ← βk +

(
tk − 1

tk+1

)
(βk − βk−1) (14)

10: end for
11: return βk.

During each forward feature representation layer, the
input raw data should be firstly transformed into an ELM
random feature space, which can help to exploit hidden
information among training samples. Then, a multilayer
unsupervised learning is performed to eventually obtain
the high-level sparse features by the ELM-Based sparse
autoencoder algorithm. Mathematically, the output of each
hidden layer can be represented as:

Oi = G(Oi−1 × βi−1) (15)

where Oi is the output of the ith layer, Oi−1 is the output of
the (i−1)th layer, G(·) denotes the activation function of the
hidden layers, and β represents the output weights of the
(i − 1)th hidden layer. Unlike the existing DL frameworks
[37], [38], where all the hidden layers are put together as a
whole system, each hidden layer of H-ELM is an indepen-
dent module, and functions as a separated feature extractor.
Once the feature of the previous hidden layer is extracted,
the weights or parameters of the current hidden layer will
be fixed, and do not need to be fine-tuned.

After multilayer unsupervised feature learning, the re-
sultant outputs of the Kth layer OK , are viewed as the high-
level features extracted from the input data. When used
for classification, they are randomly perturbed, and then
utilized as the inputs of the supervised ELM to obtain the
final results of the whole network. The overall algorithm of
training H-ELM framework is shown in Algorithm 3.2.

5

TABLE 1
Parallelization Suboperations

Subprocess Suboperations Description

SAT

Hi Calculate H using Equation (3) by Oi−1

Hi
THi Large matrix - large matrix multiplication

Hi
TOi−1 Large matrix - large matrix multiplication

Oi = Oi−1βi Large matrix - small matrix multiplication

OET
Hm Calculate H using Equation (3) by Om

Hm
THm Large matrix - large matrix multiplication

Hm
TT Large matrix - large matrix multiplication

SAP Oi = Oi−1βi Large matrix (rows are enormous) - small matrix multiplication

OEP Hm Calculate H using Equation (3) by Oi−1

Hmβm Large matrix - small matrix multiplication

Algorithm 3.2 H-ELM Framework for Training

Input: The training dataset matrix X : {(xi)|xi ∈ Rd, i =
1, ..., N};
The number of hidden layer for sparse autoencoder: m;

Output: Output weight vector of each layer: βi;
1: Randomly generate hidden node matrix for each layer for

sparse autoencoder Vi, i = 1, ...,m;
2: Randomly generate hidden node matrix for original ELM

Vm+1;
3: O0 ← X ;
4: for (i = 0; i < m; i++) do
5: Calculate hidden weight vector βi by Algorithm 3.1 using

Oi−1 and Vi as its parameters;
6: Oi ← Oi−1 × βi;
7: end for
8: Calculate output weight vector βm+1 by Equation (8) using

Om and Vm as its parameters;
9: return βi, i = 1, ...,m+ 1.

4 PARALLEL H-ELM FRAMEWORK WITH FLINK

In this section, we parallelize the training process and
prediction process of H-ELM framework on Flink named
as PH-ELM, taking advantage of the distributed in-memory
computing platform. Flink is designed as a popular pro-
cessing platform that is suitable for big data mining. The
key programming model of Flink is the abstract distributed
DataSet (DST), which is similar with Resilient Distributed
Dataset (RDD) [13]. DST represents a collection of distribut-
ed items, which can be manipulated across many computing
nodes concurrently. Programmers can define a series of user-
defined actions (e.g., Map, Reduce, Join, Group) for the
DSTs. Due to the fact that Spark and Flink are quite similar,
our design can be easily integrated into Spark.

4.1 Selective Parallelization
Among many suboperations in training process described
in Algorithm 3.1, Algorithm 3.2 and suboperations in pre-
diction process, which operations should we parallelize? A
naive approach is to parallelize all the operations. However,
some operations run more quickly on a single machine
rather than on multiple machines in parallel. That is be-
cause the overhead incurred by using distributed comput-
ing exceeds gains made by parallelizing the task. Therefore,
simple tasks where the input data is very small are carried
out faster on a single machine. Thus, we divide the subop-
erations into two groups: those to be parallelized and those
to be run in a single machine.

As discussed in Section 3, there are four subprocesses
in H-ELM framework: sparse autoencoder in training pro-
cess (SAT); original ELM in training process (OET); sparse
autoencoder in prediction process (SAP) and original ELM
in prediction process (OEP). We go through the execution
process of H-ELM framework to select the suboperations
which contain large-scale inputs.

For processing large-scale datasets, N is very large, while
l, d is small (N is the number of input data samples; d is the
dimension of input data samples; l is the number of hidden
nodes). HTH is an l×l matrix, HT is an l×N matrix, H is an
N × l matrix, while O is an N ×m matrix. The computation
cost of calculation shown in lines 5− 10 of Algorithm 3.1 is
small. In addition, after the calculation of HTH and HTT ,
the computation cost of the line 3 of Equation (8) is also
small. Therefore, we implement these operations on a single
machine.

Through deep analysis, all the suboperations of H-ELM
framework which are required to be parallelized are listed in
Table 1. These suboperations can be divided into three types:
calculation of H , multiplication of HT and another large
matrix, multiplication of a large matrix and small matrix β.

4.2 PH-ELM Overview
According to the three types of suboperations presented
above, we have proposed three basic parallel algorithms on
Flink and adopted a series of optimizations to improve the
performance. The parallel training process and prediction
process of H-ELM are based on these three basic parallel
algorithms: cache-based parallel hidden layer output ma-
trix (CPHOM), cache-based parallel β matrix multiplication
(CPBMM), and adaptive transpose hidden matrix multipli-
cation (ATHMM).

The workflow of parallel H-ELM framework on Flink
(PH-ELM) is as presented in Figure 1. During PH-ELM,
the executions of both sparse autoencoder layers and the
original ELM layer are parallelized on Flink. Before the
training process, the data to be processed is stored in HDFS
at first. Then it is loaded into Flink’s distributed memory
system as a DST object. In the meantime, the hidden node
parameters of all the autoencoder layers and the original
ELM layer are generated randomly. Suppose that there are
m sparse autoencoder layers. Through our proposed par-
allel H-ELM framework which are based on our proposed
three basic algorithms, hidden weight vectors βi,...,m of all
autoencoder layers and βm+1 of the original ELM layer are

6

CPHOM

Distributed memory systems of Flink

HDFS

Data DST

1

p

d

.

.

.

.

.

.

1
.

.

.

1

p

d

.

.

.

.

.

.

1

p

d

.

.

.

.

.

.

1
.

.

.

1
.

.

.

1
.

.

.

1
.

.

.

1
.

.

.

CPBMM ATHMM
Basic parallel

algorithms

1

p

.

.

.

.

.

.

1
.

.

.

1

p

.

.

.

.

.

.

1

p

.

.

.

.

.

.

1
.

.

.

.

.

.

.

.

.

DST Label

... ...

Multilayer Forward Encoding Original ELM

Fig. 1. Parallel H-ELM on Flink (PH-ELM) overview.

calculated. These hidden weight vectors are stored in Flink’s
distributed memory system as DST objects. They can be also
written into HDFS.

During the prediction process, the label of the data to
be predicted is calculated by the hidden weight vectors
βi,...,m+1 and the randomly generated hidden node param-
eters in a forward way.

4.3 Implementation Details of Basic Parallel Algorithm-
s
4.3.1 Adaptive Partition Scheme and Storage Formats
Minimizing the volume of data exchanged between nodes
is important to design efficient distributed algorithms. Gen-
erally speaking, there are two basic types of strategies for
partitioning a matrix, which are based on submatrices and
rows. A row may be split into different blocks using the
strategies based on submatrices, leading to the need for
accumulating computing results from different workers.
Actually, the communication and synchronization among
nodes are costly in the cluster computing environment.
Therefor, partitioning the matrices based on submatrices
will bring high overhead so that it is not appropriate in big
data environment. On the contrary, a row does not need
to be split into different blocks in rows-based strategies.
The accumulation of intermedia results can be calculated
locally in one worker so that there is no need of shuffling
the intermedia results across different nodes. According to
the above analysis, the best choice is to partition the matrix
based on rows so that the multiplication of every row of the
first matrix and the column of the second matrix is executed
as a whole to decrease the overhead caused by shuffle phase.
However, if the row of the first matrix is so large (e.g. 5G,
20G), it should be partitioned into different blocks.

According to the above analysis, we propose rows-based
format named as RDST and columns-based format named
as CDST if the rows do not need to be split. During RDST,
the matrix is partitioned by rows, and each row is expressed
by the pair with row index as its key and a vector as its
value. While during CDST, the matrix is partitioned by
columns and each column takes column index as its key and
a vector as its value. To further improve the performance, we
can combine several rows or columns into a group, which

are named as blocked RDST (BRDST) or blocked CDST
(BCDST). If the content of each row is too large, it then needs
to be split. Therefore, a split rows-based format named as
SRDST and a split columns-based format named as SCDST
are proposed. RDST, BRDST and SRDST are presented in
Figure 2. All these formats are based on Flink’s abstract
model DataSet (DST) to form the distributed in-memory
datasets.

4.3.2 CPHOM: Cache-based Parallel Hidden Layer Output
Matrix

In the calculation of the matrix H , the naive method is to join
matrix elements with parameters of the hidden nodes in the
Map and Shuffle stage, and then execute G(ai, bi, x) in the
Reduce stage. However, the Shuffle phase of this method
involves large-scale communication overhead. Generally s-
peaking, the parameters (wi, bi) of the hidden nodes are
small. CPHOM utilizes the fact that the small dataset can
fit into a machine’s main memory, and can be distributed
to all the Mappers by the distributed cache functionality of
Flink. The advantage of the small dataset being available in
Mappers is that, during the calculation of H , the execution
of G(ai, bi, x) can be done inside the Mappers, and the
Shuffle phase can be omitted, thus greatly improving the
performance.

Algorithm 4.1 provides the pseudo code of calculating
the hidden layer output matrix. The input dataset is stored
in the Flink’s distributed cache as a DataSet object M in a
sequence of < key, value > pairs, each of which represents
a sample in the datasets, where key represents the index of
the sample and value represents the content of the sample.
The hidden parameters (wi, bi) of the hidden nodes are
generated and then are created as a DST object P . We define
a Map function named as CPHOMMap for DST M with P
as its broadcast variable. Therefore, the hidden parameters
are distributed to the nodes of the cluster by the distributed
cache functionality of Flink. In the CPHOMMap function,
G(ai, bi, x) is executed for each sample.

As discussed in Section 4.3.1, to improve the perfor-
mance of the matrix multiplication, the best choice is to par-
tition the matrix HT by rows. That is to say, we need to par-
tition the matrix H by columns. To partition the matrix HT

7

.

.

.

.

<rowIndex, vector>

Cache

Cache

Cache

Cache

Cache

Cache

.

.

.

.

.

.

.
.

.

.

(a) (b)

<blockId, subRow>

row-index column-index

block

Fig. 2. Proposed format. (a) rows based DST (RDST) and blocked rows based DST (BRDST) (b) split rows based format DST (SRDST) .

in RDST format, the output of the Map function will be <
colIndex, hV alue >, where colIndex is the key which rep-
resents the column index, hV alue represents one column.
To partition the matrix HT to BRDST format, the output of
the Map function will be < blockID+ colIndex, hV alue >.
After the Mapper, groupBy function is executed to partition
the matrix to the corresponding format.

Algorithm 4.1 CPHOM Algorithm
Input: A distributed DST object which contains a sequence of

pairs in the form of < index, sample > pair, where the the
index is the key which represents the index of the sample,
sample is the value which represents the content of the
sample.

Output: < key, hV alue >: key is the index of the content in
the hidden output matrix, hV alue represents the content in
the hidden output matrix.

1: CPHOM(DataSet < index, sample > M) //main function
2: Randomly generate the hidden node parameters (ai, bi);
3: Create DST object P from (ai, bi);
4: Set P as a Broadcast Variable;
5: H ←M .map(new CPHOMMap().withBroadcastSet(P)

.groupBy(0);
6: return H .
7:
8: CPHOMMap(< index, sample >) //map function
9: Init h

10: (x, t)← parse(sample)
11: for (i = 0; i ≤ l; i++) do
12: h← G(ai, bi, x);
13: if partition HT by rows then
14: return (i, h);
15: else
16: Get blockIndex from i;
17: key ← blockIndex+′,′ +i;
18: return (key, h);
19: end if
20: end for

4.3.3 CPBMM: Cache-based Parallel β Matrix Multiplica-
tion

To calculate the multiplication of a large matrix and the
small matrix β, such as Oi−1βi and Hmβm, a cache-based
parallel β matrix multiplication named as CPBMM algo-
rithm is proposed. In general, matrix-matrix multiplication
is very expensive. A standard, yet naive way of multi-
plying two matrices A and B in MapReduce is to join

the corresponding elements of A and B together at first.
And then the joined pair is multiplied in Mappers. After
that, a Shuffle phase and a Reduce phase are executed to
sum the intermediate results. This naive algorithm is very
inefficient since it generates huge communication overhead
and occupies huge storage spaces. Fortunately, when one
of the matrices is very small, we can distribute one matrix
using the distributed cache functionality provided by Flink.

As for the the multiplication of a large matrix and
small matrix β as presented in Table 1, the content of rows
are generally small. Therefore, we can partition the large
matrix by rows in the form of RDST or BRDST. Take RDST
as a example, a Map function is defined which takes the
pair < rowIndex, vector > as its input. The user-defined
Map function is employed to the RDST object. During each
Mapper, the pair is multiplied by all the columns of the β.

4.3.4 ATHMM: Adaptive Transpose Hidden Matrix Multipli-
cation
In terms of the large matrix - large matrix multiplication,
such as Hi

THi, Hi
TOi−1, Hm

THm and Hm
TT as presented

in Table 1, an adaptive algorithm is proposed. Let us take
A×B as an example. If one of these two matrices is smaller
than a threshold so that one matrix is appropriate to be
stored in a single computer node, CPBMM algorithm can
be utilized. While, if these two matrices are so large that
it is inappropriate to cache them in a single node, these
two matrices are needed to be partitioned. As discussed in
Section 4.3.1, the best choice is to partition A by rows as
the RDST format and B by columns as the CDST format. To
further improve the performance, we can combine several
rows of A into a group (BRDST format), and combine
several columns of B into a group (BCDST format). Let us
take RDST and CDST as an example. Firstly, each row of
A is joined with all the columns of B. After that, the user-
defined Mappers are invoked to multiply the row vector of
A and the column vector B.

However, if the width of A is so large that it is inappro-
priate to be processed in a single Mapper, we need to split
each row of A into blocks. SBDST and SCDST format can be
utilized to deal with this situation. Firstly, the corresponding
splits of A and B are joined. Then, the user-defined Mappers
are used to conduct the vector multiplication. After that, an
extra Reduce phase is needed to sum up the intermediate
results.

8

5 GPU-ACCELERATED H-ELM FRAMEWORK

5.1 Combination of Flink and GPUs
As we know, CUDA kernels running on GPUs could only
be invoked by host applications or libraries programmed
by C/C++ or Python. However, the tasks of Flink are
executed in Java virtual machines (JVMs). Therefore, to
integrate GPUs into the existing architecture of Flink, the
first problem to be solved is to provide an efficient strategy
for communication between JVM and GPUs. A number
of issues complicate the efficient communication strategy.
Firstly, CPUs and GPUs have separate memory spaces,
requiring explicit data transfers between CPU and GPU
memory. What’s worse, during the classical implementa-
tions of CUDA programming model, data transfers from the
host to GPUs are in the form of buffers. The native solution
is to transform the JVM objects to buffers manually, which
decreases the performance greatly.

5.1.1 Architecture
To overcome the challenges described above, we designed
the strategy for combining Flink and GPU carefully. It is
an extension of our previous work [16]. Our architecture
is based on Flink’s cluster computing environment such as
HDFS, Job Manager. Java native interface (JNI) is utilized
to communicate between JVM and GPUs and invoke the
CUDA kernels in work nodes.

Figure 3(a) shows the architecture of a work node. Flink
communicates with GPUs by calling JAVA interfaces. While,
the JAVA interfaces communicate with CUDA host which is
programmed by C/C++ through JNI. CUDA host controls
the management of GPUs and invokes CUDA kernels to
execute operations on GPUs. Figure 3(b) shows the het-
erogeneous task management for hybrid CPUs and GPUs.
During the programming model of GPGPU, the CPU and
GPU work in master-slave mode, with the CPU as master
and the GPU as slave. Part of the task can be assigned and
executed on the CPU in parallel on the original task slots
provided by Flink. The rest of the task can be assigned and
be executed on the GPU in parallel with support from the
CPU on the GPU task slots.

5.1.2 Memory Mapping Scheme
A memory mapping scheme is utilized to avoid manual
transformation from JVM objects to buffers, thus improving
the performance. We use the fact that, the Tuple objects
in Flink are stored in the cache of JVM in a sequential
way. During our scheme, we transfer the buffers in JVM
in raw bytes to the device memory of GPUs by JNI without
any modifications. After that, a user-defined Struct pointer
according to the definition of Tuple can be utilized to indicate
the content of a Tuple as the code presented as follows:

1 #pragma pack (1)
2 typedef s t r u c t Point{
3 long x ;
4 double y ;
5 } ;
6

7 Point * ptr ;
8 long point x = ptr−>x ;
9 double point y = ptr−>y ;

5.2 Algorithm Design
CPUs and GPUs have different properties and should take
on computing tasks matching their abilities to obtain the
maximum benefit. The CPU is good at complexity control
and lowering the latency of computing while the GPUs do
well in high throughput. In other words, various aspects of
each task should be assigned to the CPU and GPU based
on their properties to achieve the effect of ”one plus one is
larger than two”.

To design efficient algorithms for H-ELM Framework on
Flink and GPUs, we need to find out the parts which are
appropriate for being accelerated by GPUs at first. And then,
the corresponding CUDA kernels will be developed. After
that, we need to write programs about transferring the data
to be processed in Flink to GPUs, invoking the kernels by
JNI in an asynchronous model, and transferring the results
from GPUs to Flink. Through analysing the parallel parts of
H-ELM Framework on Flink, we find that the parts which
are time-consuming and requires large-scale computing are
those in Mappers and Reducers. Therefore, these parts are
accelerated by GPUs to improve the performance. While
other parts (e.g., join, group) are in need of large-scale
complexity control and memory operations, thus making
them inappropriate for GPUs.

5.3 Implementation Details of Acceleration
5.3.1 Acceleration of CPHOM by GPUs (GCPHOM)
Through analysing the CPHOM algorithms, we find that
the time-consuming subprocess is to apply G(ai, bi, x) ex-
ecution for each sample as described in Algorithm 4.1. As
GPUs can process many items concurrently, the mapParti-
tion function, which is similar to Map function, but runs
separately on each partition of the DST, is utilized in our
implementation.

Algorithm 5.1 Accelerate CPHOM algorithm by GPUs
Input: A distributed DataSet which contains a sequence of

pairs in the form of < index, sample > pair, where the
index is the key which represents the index of the sample,
sample is the value which represents the content of the
sample.
Distributed cache: parameters of the hidden nodes (ai, bi).

Output: < key, hV alue >: hV alue represents one value in the
hidden output matrix.

1: MapPartition (list(index, sample)) //map function
2: if There is no free GPU then
3: Call the Map function as described in Algorithm 4.1 for

all the elements in the list;
4: return ;
5: end if
6: Select an appropriate GPU; //need lock
7: Transfer the buffers in the list to the selected GPU;
8: Transfer the buffers of hidden nodes to the selected GPU;
9: Invoke cuCPHOM kernel to process the data by GPU;

10: Transfer the partial resulted vector valueList to main mem-
ory;

11: Release the selected GPU; //need lock
12: Convert and insert valueList to pU ;
13: return pU ;

Firstly, we check if there is a free GPU or not. If there are
no appropriate GPUs, Map function is then adopted to exe-
cute the operations on CPUs. If there are appropriate GPUs,

9

Worker

Executor on JVM

TaskTask

JAVA Interface

CUDA Kernel

JNI

CUDA Host

Cache

JAVA

C/C++ and

CUDA

CPU

Host

U

t

GPU U

Mapping

Data

CUDA

Heterogeneous Task Manager

Task

Slot

Task

Slot

GPU

Task

Slot

GPU

Task

Slot... ...

Task Task Task Task

JNI JNI

CPU ... CPU GPU GPU...

(a) (b)

Fig. 3. GFlink architecture (a) Architecture of a work node. (b) Heterogeneous task management.

a GPU is selected and marked as busy. Then the buffers to be
processed are transferred to GPUs and the cuCPHOM kernel
is invoked. After the executions are finished, the contents
are transferred from GPUs to the main memory. Lastly, the
selected GPU is released.

5.3.2 Acceleration of CPBMM by GPUs (GCPBMM)
In terms of CPBMM algorithm, we find that suboperation
which is the most time-consuming and appropriate for be-
ing accelerated by GPUs is the multiplication of submatrices
and hidden matrix β. The procedure of accelerating CPBMM
algorithm by GPUs is as shown in Figure 4. The large matrix
is stored in RDST. Firstly, matrix β is broadcasted to all the
work nodes in the cluster. Then the map phase is invoked.
During the map phase, mapPartiton function provided by
Flink is implemented, which is similar to Map function. By
this means, each partition is processed together without the
need of processing elements one by one. The CUDA kernel
utilized to multiply the submatrices and β is cublasCgemm
interface in cuBLAS [27].

As shown in in Figure 4(a), we take A×B as an example.
where A is a large matrix and B represents the matrix β.
Suppose that there are three workers in the cluster: worker0
with 1 CPU and 1 GPU, worker1 with 1 CPU and worker2
with 1 CPU and 2 GPUs. Firstly, we partition the sparse
matrix to RDST format. Suppose that there are 6 partitions
(e.g., A0, A1, A2, A3, A4, A5). During the execution, the
matrix B is broadcasted to every worker in the cluster.
Each partition alike to a submatrix of the huge matrix is
processed in mapPartiton function by a task. In terms of our
example, 2 tasks in worker0, 1 task in worker1 and 3 tasks in
worker2 are invoked by the master. As for the executions on
GPUs, our implemented kernel is invoked to execute matrix
multiplication in one GPU.

5.3.3 Acceleration of ATHMM by GPUs (GATHMM)
In terms of ATHMM, if one row of the matrix is not very
large, the first matrix is partitioned by RDST format or
BRDST format and the second matrix is partitioned by
CDST or BCDST format. We take this format as an example
and the work flow is as described in Figure 4(b). For A×B,
suppose that A has 2 rows and B has 2 columns. Suppose
that there are two workers in the cluster: worker0 with 1 CPU
and 1 GPU, worker1 with 1 CPU and 1 GPU. Like GCPBMM,

TABLE 2
Symbols of cost model

Symbol Definitions
N The number of samples.
d The dimension of samples.
o The dimension of labels.
l The number of hidden nodes of layers: 1−m.
k The dimension of label.
n The number of computing nodes in the cluster.

IOM() The cost of memory read and write.
Network() The cost of network transfers.
Compute() The cost of computation.

to multiply two submatrices in GPUs, cublasCgemm interface
is adopted.

The rows in the first matrix with the same indexes as the
columns in the second matrix are joined together and are
grouped into 4 groups. Secondly, these groups are processed
in mapPartiton function. In terms of our example, 2 tasks in
worker0, 1 task in worker1 are invoked by the master. Then,
A0 ×B0 is executed in CPU0 in worker0, A0 ×B1 in GPU0
in worker0, A1 × B0 in CPU0 in worker1, and A1 × B1 in
GPU0 in worker1 respectively. Then all the partial results
are shuffled across networks and accumulated together as
a new matrix by reduceByKey procedure.

6 ALGORITHMS ANALYSIS

In this section, we build a brief time cost model to evaluate
our proposed algorithms. The symbols used in the cost
model are defined in Table 2.

6.1 ATHMM Analysis

Suppose that the rows of the first matrix are divided into
r blocks, the columns of the first matrix are divided into s
blocks, and the columns of the second matrix are divided
into t blocks. We take Hi

THi as an example. As Figure
4(b) shows, the cost of the whole procedure of ATHMM
algorithm can be divided into 4 steps:

• Partition stage: During the partition stage, each
block in matrix Hi

T will be emitted t times, while
each block in matrix Hi will be emitted r times, thus

10

Driver

BB

Worker:

1CPU+1GPU

A0

A1

Cache

A2

Cache

A3

A4

Cache

A0 B A1 × B

Task_0 Task_1

A4 ×B A5 B

Task_1 Task_2

A2 × B

Task_0

CPU_0 GPU_1 CPU_0 GPU_0 GPU_1

C0 C1 C2 C4 C5

Broadcast

mapPartition

Worker:

1CPU
Worker:

1CPU+2GPU

A5

A3 B

CPU_0

C3

×

B B B

Task_0

× ×

A0 A1 B0 B1 B2

CPU_0 GPU_0

C0

Partition

matrix

Join

mapPartition

reduceByKey

Worker: 1CPU + 1GPU

A0

Cache

A0

B1

Task_0

A0

B0

B0×
Task_1

A0 B1×

(a) (b)

0

0

0

1

CPU_0 GPU_0

C1

Worker: 1CPU + 1GPU

A1

Cache

A1

B1

Task_0

A1

B0

B0×
Task_1

A1 B1×

1

0

1

1

Fig. 4. Acceleration of CPBMM and ATHMM by GPUs (a) GCPBMM (b) GATHMM

the cost can be denoted as IOM(((t+ r))× |Hi|) =
IOM((t+ r)×N × li).

• Join stage: During the Join stage, only one ma-
trix (Hi) is shuffled. through the network. The cost
spending on the network communication can be
derived as Network(r×|Hi|) = Network(r×N×li).

• Map stage: Once two related submatrices are gath-
ered together by fetching from the network and
reading locally, the matrix multiplication would be
conducted locally. It is clear that the computing cost
of this step is Compute(N × li ×N).

• Reduce stage: Finally, during the Reduce stage, the
related submatrices are fetched through network,
and then s − 1 addition is performed. The cost is
close to Network(s× li ×N).

The cost model of ATHMM algorithm is total cost of
these 4 steps:

Cost(ATHMM) = IOM((t+ r)×N × li)

+Network(r ×N × li)

+Compute(N × li ×N)

+Network(s× li ×N)

(16)

6.2 CPHOM Analysis
The total execution time of CPHOM consists two parts:
broadcasting the hidden parameters (wi, bi) of the hidden
nodes and the conducting G(ai, bi, x) execution in all the
nodes. The cost model of CPHOM algorithm can be derived
as:

Cost(CPHOM) = Network(2× n× li−1 × li)

+Compute(N × li−1 × li)
(17)

where l0 is equal to the dimension of samples d.

6.3 CPBMM Analysis
Like CPHOM, firstly, the matrix β is broadcasted to all the
computing nodes in the cluster. Then the sub-matrix of the
first large matrix is multiplied with β in the computing n-
odes locally. As for the execution of Oβ and Hβ, it is clearly
that the computing cost of the second step is O(N×li×li+1).
The cost model of CPBMM algorithm can be derived as:

Cost(CPBMM) = Network(n× li × li+1)

+Compute(N × li × li+1)
(18)

6.4 GPU Acceleration Analysis

During our scheme, GPU is only utilized to accelerate the
Compute stage. As for the GPU execution, the data is firstly
transferred from the main memory to the device memory of
GPUs before being processed in the GPUs. After that, the
results are transferred from GPUs to the main memory. The
execution time of a GPU can be denoted as:

Tg = Tgm data + Tgp + Tgm result + Tgf (19)

where Tg represents the total execution time on a GPU,
Tgm data refers to the moving data buffers between the CPU
and the GPU, Tgp represents the real execution time on a
GPU, Tgm result represents the moving results from GPUs
to the main memory, while Tgf denotes the fixed time for
invoking GPU.

6.5 Overall Analysis

When processing large-scale datasets, N is much larger than
other parameters. Through analysing these three basic algo-
rithms and suboperations, we can find that the bottleneck of
PH-ELM and GPH-ELM is ATHMM algorithm (including
Hi

THi, Hi
TOi−1, Hm

THm and Hm
TT). The number of

hidden nodes has an effect on the execution of Hi
THi,

Hi
TOi−1 and Hm

TT . From the cost model of ATHMM,
the execution time of ATHMM is linearly with the number
of hidden nodes theoretically. The dimension of samples
has an impact on the execution of H and Hi

TOi−1. The
influence of dimension is smaller than that of the number
of hidden nodes. However, the dimension of labels merely
affect the performance of Hm

TT . Due to the fact that one
row of matrix T only contains one element, the dimension
of labels has little influence on the overall performance.

7 EXPERIMENTS

In this section, some experiments are conducted to evaluate
the performance of PH-ELM and GPH-ELM. Firstly, a series
of experiments are conducted to evaluate the execution effi-
ciency by comparing them with the original H-ELM frame-
work in terms of the average running time and speedup.
Then, for comparison, we also evaluate the performance of
other parallel ELM algorithms. Lastly, the performance of
our three basic parallel algorithms, and the effects of the

11

TABLE 3
Datasets from the UCI machine learning repository

Datasets Instances Dimensions Classes
MINST 60000 784 10

GISETTE 6000 5000 2
ADULT 48842 14 2
WINE 178 13 3

acceleration by GPUs are evaluated in detail by comparing
them with other distributed matrix algorithms.

7.1 Experimental Setup
All the experiments are performed on a Flink cluster, in
which each test computer in the cluster is equipped with
one Intel(R) Core(TM)i5-4590 CPU which contains 4 cores
running at 3.30 GHz , 12GB memory and 2 NVIDIA GeForce
GTX 750 GPUs. Each GPU has 512 CUDA processor cores,
working on 1020 MHz clock and 1 GB global memory with
128 bits bus. As for the software, the test machine runs in
the UBUNTU 14.04, NVIDIA CUDA toolkit 7.5 and Flink
0.10.1. The datasets used in the experiments are from the
UCI machine learning repository as shown in Table 3.

7.2 Results Overview
This section presents the results of the overall performance
of our proposed PH-ELM and GPH-ELM algorithms. The
performance speedup on small datasets is presented in Fig-
ure 5(a). For a clear observation of the results, three groups
of dataset are utilized: small data samples, medium data
samples and large-scale data samples. Four sparse encoder
layers and the original ELM layer are utilized. The number
of hidden nodes of all layers is set as 1, 000.

During the experiment for small data samples, the num-
ber of instances of all datasets is 50, 000 created by replicat-
ing the original datasets and the cluster contains 10 comput-
ing nodes. Both PH-ELM and GH-ELM do not get an ideal
speedup. That is because, in terms of small datasets, the
communication overhead in PH-ELM and GH-ELM greatly
affects the efficiency of the parallelization. The running
time of serial executions in PH-ELM and GPH-ELM also
occupies a large proportion. Moreover, there also exists a
fixed time for the application submission and configuration,
it is reasonable that the whole speedup of processing small
datastes is small. Figure 5(b) presents the speedup of the
medium dataset with 400, 000 instances. We can see that the
speedup of all these 4 datasets is higher than the speedup
with small data samples. The speedup of PH-ELM achieves
almost 4×, while GPH-ELM achieves almost 9×.

Figure 5(c) shows the average running time of large-scale
training samples with 2, 000, 000. H-ELM even fails to finish
because of limited memory. Therefore, we cannot show the
speedup of PH-ELM and GH-ELM. From this figure, we
can find that the average running time of GISETTE dataset
is longer than that of other datasets. That is because, the
dimension of GISETTE dataset is the largest. However, the
running time of GISETTE dataset is not much larger than
that of other datasets. That is because, as discussed in
Section 6, different dimensions of samples just affect parts
of the execution of one hidden layer.

7.3 Rseults Under Different Circumstances
7.3.1 Results for Different Sizes of Records
Figure 6(a) illustrates the average running time of MINST.
The number of samples is increased from 1, 000, 000 to
5, 000, 000 gradually. 4 sparse encoder layers and the o-
riginal ELM layer are utilized, and the number of hidden
nodes of all layers is set as 1, 000. H-ELM even fails to finish
because of limited memory. From this figure, we can find
that GPH-ELM has higher speedup (about 3× to 4×) over
PH-ELM than processing small datasets. As for PH-ELM
and GPH-ELM, the running time increases faster than the
increase of the number of instances.

7.3.2 Results for Different Numbers of Slave Nodes
In this case, the effects of our proposed PH-ELM and GPH-
ELM under different numbers of slave nodes are evaluated.
The number of data samples is 5, 000, 000, both the number
of the hidden nodes of the sparse autoencoder layers and
the original ELM layer are set as 1, 000. The number of slave
nodes is increased from 10 to 50. Figure 6(b) illustrates the
average running time under different numbers of slave n-
odes. From this figure, we can find that the average running
time of PH-ELM and GPH-ELM algorithm decreases basi-
cally in a linear manner with the increase of the number of
slave nodes. It demonstrates that our proposed algorithms
have good scalability.

7.3.3 Results for Different Numbers of Hidden Nodes
In this section, the effects of different numbers of the hidden
nodes on the test results are examined. The number of
slave mode computers is set as 10 and the size of records
is 1, 000, 000. The number of hidden nodes of all layers
is increased from 1, 000 to 5, 000 gradually. For different
numbers of the hidden nodes, the time consumed by PH-
ELM algorithm and GPH-ELM algorithm are shown in
Figure 6(c). We can see that the consumed time almost grows
linearly along with the increase of the number of the hidden
nodes, which is in accord with the analysis in Section 6.

7.3.4 Comparison Results for Other Parallel ELM Algo-
rithms
To the best of our knowledge, our proposed algorithm is
the first kind of distributed versions of H-ELM. Therefore,
in this section, we compare the performance of the original
ELM layer of our proposed PH-ELM and GPH-ELM with
other parallel ELM algorithms, including PELM [20] and
ELM* [22] which are both built on top of Hadoop. The
number of hidden is 200, the cluster has 10 slave mode
computers and each dataset contains 1, 000, 000 samples.
From the comparison results as presented in Figure 7, we
can find that our proposed algorithms outperform both
PELM and ELM*. That is because, every MapReduce in
Hadoop needs to interact with other stages through the
Hadoop Distributed File System (HDFS), which costs much
time for disk I/O operations. It can be estimated that the
speedup of our proposed approaches will increase as the
number of MapReduce stage increases. As we know, many
MapReduce stages are required in H-ELM. That is an im-
portant reason why we choose Flink as the platform rather
than Hadoop. Moreover, PELM and ELM* cannot utilize the
high computing power of GPUs in the cluster.

12

MINST GISETTE ADULT WINE
0.0

0.5

1.0

1.5

2.0

2.5

3.0 2.86

2.61
S
pe
ed
up

Different datasets

 PH-ELM
 GPH-LEM

1.49 1.53 1.45

2.48

1.45

2.49

MINST GISETTE ADULT WINE
0

1

2

3

4

5

6

7

8

9

10

11

12

S
pe
ed
up

Different datasets

 PH-ELM
 GPH-ELM

4.2

9.3

4.4

9.8

4

9.1

3.9

9.2

MINST GISETTE ADULT WINE
0

1000

2000

3000

4000

5000

6000

R
un

ni
ng

 ti
m

e/
s

Different datasets

 PH-ELM
 GPH-LEM5290

2450

5750

2630

4992

2298

4930

2287

Fig. 5. Performance results overview. (a) Performance speedup of small datasets. (b) Performance speedup of medium datasets. (c) Average
running time of large-scale datasets.

0 1000000 2000000 3000000 4000000 5000000 6000000
0

2500

5000

7500

10000

12500

15000

R
un

ni
ng

 ti
m

e/
s

Different sizes of records

 PH-ELM
 GPH-ELM

0 20 40 60
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

R
un

ni
ng

 ti
m

e/
s

Different number of slave nodes

 PH-ELM
 GPH-ELM

1000 2000 3000 4000
0

2500

5000

7500

10000

12500

15000

R
un

ni
ng

 ti
m

e/
s

Different number of hidden nodes

 PH-ELM
 GPH-ELM

Fig. 6. Performance results under different circumstances. (a) Average running time under different data sizes. (b) Average running time under
different numbers of slave nodes. (c) Average running time under different numbers of hidden nodes.

MINST GISETTE ADULT WINE
0

50

100

150

200

250

300

350

400

450

500

550

R
un

ni
ng

 ti
m

e/
s

Different datasets

 PH-ELM
 GPH-LEM
 PELM
 ELM*

Fig. 7. Performance comparison with PELM and ELM*.

7.4 Results for Basic Parallel Algorithms

In this section, we firstly evaluate the results of our CPBM-
M, ATHMM, GCPBMM and GATHMM on a Flink cluster
with 20 computing nodes by comparing them with other
distributed matrix systems, including SUMMA and HAMA.
SUMMA is a popular MPI-based matrix computation al-
gorithm, while HAMA is a famous matrix computation
library based on Hadoop. MINST dataset is utilized. As
for the CPBMM algorithm, Hmβm is taken as an example,
where the number of hidden nodes is set as 1, 000. While in
ATHMM algorithm, HTH is implemented, where BRDST is
utilized for HT and BCDST is utilized for H . The number of
records increases from 50, 000 to 250, 000, and the number
of the hidden nodes is 1, 000.

Figure 8 illustrates the comparison of CPBMM and
GCPBMM with SUMMA and HAMA, while Figure 9

presents the comparison results of ATHMM and GATHMM.
We find that the performance of CPBMM and ATHMM are
comparable to SUMMA. Our GPU-accelerated algorithms
GCPBMM and GATHMM are much faster than SUMMA.
It can also be seen that the our proposed algorithms are
much faster than HAMA. That is because, compared with
our proposed algorithms, HAMA has many network syn-
chronization operations and I/O overhead.

Then, we evaluate the results of our ATHMM and
GATHMM algorithms on different GPUs (including NVIDI-
A C2050, NVIDIA GeForce GTX 750 and NVIDIA K40) on
a single node. The number of hidden nodes is set as 1, 000,
and the number of records is 10, 000. Figure 10 shows that
the executions on K40 has the highest speedup, while the
performance on C2050 and GTX 750 is almost the same.
Therefore, our GPU-accelerated algorithms will get a higher
speedup if the GTX 750 is replaced with K40.

8 CONCLUSION

The proposed H-ELM has adopted a novel MLP training
scheme based on the universal approximation capability of
the original ELM, which achieves high-level representation
with layerwise encoding, and outperforms the original ELM
in various simulations. However, the capability of utilizing
H-ELM to process large-scale datasets is an urgent and
challenging issue confronting researchers. This paper has
proposed an efficient parallel algorithm based on Flink
named as PH-ELM, benefiting from the high performance,
good reliability and expandability of in-memory cluster
computing. During PH-ELM, several optimizations have
been adopted to improve the efficiency and scalability of

13

100000 200000 300000 400000
0

100

200

300

400

500

600

700

800

900

1000

1100

1200
1200

109
21

111

925

83
16

88

641

58
12

63

331

327

R
un

ni
ng

 ti
m

e/
s

Different sizes of data

 CPBMM
 GCPBMM
 SUMMA (MPI)
 HAMA (Hadoop)

34

Fig. 8. Performance comparison of CPBMM and GCPBMM.

100000 200000 300000 400000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400 2240

217
93

230

1850

165
71115

R
un

ni
ng

 ti
m

e/
s

Different sizes of data

 ATHMM
 GATHMM
 SUMMA (MPI)
 HAMA (Hadoop)

79 3272

690

172
51113

1120

Fig. 9. Performance comparison of ATHMM and GATHMM.

parallelism. To further improve the performance, the exist-
ing high computing power of GPUs is leveraged to acceler-
ate the PH-ELM. Experiments have demonstrated that our
proposed PH-ELM and GPH-ELM are able to process large-
scale datasets, with excellent performance in speedup and
scalability.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to
three anonymous reviewers for their constructive comments
which have helped to improve the quality of the manuscript.
The research was partially funded by the Key Program of

C2050 GTX 750 K40
0

2

4

6

8

10

12

14

16

18

S
pe
ed
up

Different datasets

 GCPBMM
 GATHMM

Fig. 10. Performance comparison of different GPUs.

National Natural Science Foundation of China (Grant Nos.
61133005, 61432005), the National Natural Science Foun-
dation of China (Grant Nos. 61370095, 61472124), and the
International Science & Technology Cooperation Program of
China (Grant No. 2015DFA11240), the Key Technology Re-
search and Development Programs of Guangdong Province
(Grant No. 2015B010108006).

REFERENCES

[1] J. Kim and W. Lee, “Stochastic decision making for adaptive
crowdsourcing in medical big-data platforms,” IEEE Transactions
on Systems Man & Cybernetics Systems, vol. 45, no. 11, pp. 1471–
1476, 2015.

[2] L. Liu and H. Jia, “Trust evaluation via large-scale complex
service-oriented online social networks,” IEEE Transactions on Sys-
tems Man & Cybernetics Systems, vol. 45, no. 11, pp. 1–1, 2015.

[3] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning
machine for regression and multiclass classification,” Systems,
Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,
vol. 42, no. 2, pp. 513–529, 2012.

[4] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning ma-
chine: a new learning scheme of feedforward neural networks,”
in Neural Networks, 2004. Proceedings. 2004 IEEE International Joint
Conference on, vol. 2. IEEE, 2004, pp. 985–990.

[5] G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning
machine: theory and applications,” Neurocomputing, vol. 70, no. 1,
pp. 489–501, 2006.

[6] G. B. Huang, L. Chen, and C. K. Siew, “Universal approximation
using incremental constructive feedforward networks with ran-
dom hidden nodes.” IEEE Transactions on Neural Networks, vol. 17,
no. 4, pp. 879–92, 2006.

[7] G. B. Huang, M. B. Li, L. Chen, and C. K. Siew, “Incremental
extreme learning machine with fully complex hidden nodes,”
Neurocomputing, vol. 71, no. 4-6, pp. 576–583, 2008.

[8] J. Tang, C. Deng, and G. B. Huang, “Extreme learning machine
for multilayer perceptron,” IEEE Transactions on Neural Networks &
Learning Systems, vol. 27, no. 4, pp. 809–821, 2016.

[9] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[10] Y. Xun, J. Zhang, and X. Qin, “Fidoop: Parallel mining of frequent
itemsets using mapreduce,” IEEE Transactions on Systems Man &
Cybernetics Systems, vol. 46, no. 3, pp. 1–1, 2015.

[11] W. P. Ding, C. T. Lin, M. Prasad, and S. B. Chen, “Attribute
equilibrium dominance reduction accelerator (dccaedr) based on
distributed coevolutionary cloud and its application in medical
records,” IEEE Transactions on Systems Man & Cybernetics Systems,
vol. 46, no. 3, pp. 384–400, 2016.

[12] “Flink programming guide,” http://flink.apache.org/, 2016, on-
line; accessed 1-July-2016.

[13] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster com-
puting,” in Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation. USENIX Association, 2012,
pp. 2–2.

[14] “cudnn,” https://developer.nvidia.com/cudnn, 2016, online; ac-
cessed 1-July-2016.

[15] A. Coates, B. Huval, T. Wang, D. J. Wu, A. Y. Ng, and B. Catanzaro,
“Deep learning with cots hpc systems,” in International Conference
on Machine Learning, 2013, pp. 1337–1345.

[16] C. Cen, L. Kenli, O. Aijia, T. Zhuo, and L. Keqin, “Gflink: An in-
memory computing architecture on heterogeneous cpu-gpu clus-
ters for big data,” in International Conference on Parallel Processing,
2016.

[17] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan,
“A fast and accurate online sequential learning algorithm for feed-
forward networks,” IEEE Transactions on Neural networks, vol. 17,
no. 6, pp. 1411–1423, 2006.

[18] H.-J. Rong, G.-B. Huang, N. Sundararajan, and P. Saratchandran,
“Online sequential fuzzy extreme learning machine for function
approximation and classification problems,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 4,
pp. 1067–1072, 2009.

14

[19] G. Huang, S. Song, J. N. Gupta, and C. Wu, “Semi-supervised
and unsupervised extreme learning machines,” IEEE transactions
on cybernetics, vol. 44, no. 12, pp. 2405–2417, 2014.

[20] Q. He, T. Shang, F. Zhuang, and Z. Shi, “Parallel extreme learning
machine for regression based on mapreduce,” Neurocomputing,
vol. 102, pp. 52–58, 2013.

[21] B. Wang, S. Huang, J. Qiu, Y. Liu, and G. Wang, “Parallel online
sequential extreme learning machine based on mapreduce,” Neu-
rocomputing, vol. 149, pp. 224–232, 2015.

[22] J. Xin, Z. Wang, C. Chen, L. Ding, G. Wang, and Y. Zhao, “Elm*:
distributed extreme learning machine with mapreduce,” World
Wide Web, vol. 17, no. 5, pp. 1189–1204, 2014.

[23] R. A. V. D. Geijn and J. Watts, “Summa: scalable universal matrix
multiplication algorithm,” Concurrency and Computation: Practice
and Experience, vol. 9, no. 4, p. 255C274, 1997.

[24] D. Schmidt, G. Ostrouchov, W. C. Chen, and P. Patel, “Tight
coupling of r and distributed linear algebra for high-level pro-
gramming with big data,” 2012, pp. 811–815.

[25] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker, “Scalapack: a
scalable linear algebra library for distributed memory concurrent
computers,” in Frontiers of Massively Parallel Computation, 1992.,
Fourth Symposium on the, 1992, pp. 120–127.

[26] S. Seo, E. J. Yoon, J. Kim, S. Jin, J. S. Kim, and S. Maeng, “Hama:
An efficient matrix computation with the mapreduce framework,”
in Cloud Computing, Second International Conference, CloudCom 2010,
November 30 - December 3, 2010, Indianapolis, Indiana, USA, Proceed-
ings, 2010, pp. 721–726.

[27] “Cublas programming guide,” http://docs.nvidia.com/cuda/
cublas/index.html, 2016, online; accessed 1-November-2016.

[28] “Cusparse programming guide,” http://docs.nvidia.com/cuda/
cusparse/index.html, 2016, online; accessed 1-November-2016.

[29] W. Yang, K. Li, Z. Mo, and K. Li, “Performance optimization using
partitioned spmv on gpus and multicore cpus,” IEEE Transactions
on Computers, vol. 64, no. 9, pp. 2623–2636, 2015.

[30] T. Poggio and F. Girosi, “Networks for approximation and learn-
ing,” Proceedings of the IEEE, vol. 78, no. 9, pp. 1481–1497, 1990.

[31] H. White, Artificial neural networks: approximation and learning theo-
ry. Blackwell Publishers, Inc., 1992.

[32] G.-B. Huang and L. Chen, “Convex incremental extreme learning
machine,” Neurocomputing, vol. 70, no. 16, pp. 3056–3062, 2007.

[33] G. Huang, G.-B. Huang, S. Song, and K. You, “Trends in extreme
learning machines: a review,” Neural Networks, vol. 61, pp. 32–48,
2015.

[34] Y. Bengio, “Learning deep architectures for ai,” Foundations and
trends® in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[35] J. Tang, C. Deng, and G. B. Huang, “Extreme learning machine
for multilayer perceptron.” IEEE Transactions on Neural Networks &
Learning Systems, p. 1, 2015.

[36] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM journal on imaging
sciences, vol. 2, no. 1, pp. 183–202, 2009.

[37] Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 35, no. 8, pp. 1798–1828, 2013.

[38] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algo-
rithm for deep belief nets,” Neural computation, vol. 18, no. 7, pp.
1527–1554, 2006.

Cen Chen is currently a PhD candidate in Com-
puter Science, Hunan University, China. His re-
search interest includes parallel and distributed
computing systems, machine learning on big da-
ta. He has published several research articles
in international conference and journals of ma-
chine learning algorithms and parallel comput-
ing.

Kenli Li received the PhD degree in computer
science from the Huazhong University of Sci-
ence and Technology, China, in 2003. He was
a visiting scholar at the University of Illinois at
Urbana- Champaign from 2004 to 2005. He is
currently a full professor of computer science
and technology at Hunan University and deputy
director of the National Supercomputing Center
in Changsha. His major research areas include
parallel computing, high-performance comput-
ing, and grid and cloud computing. He has pub-

lished more than 130 research papers in international conferences and
journals such as IEEE Transactions on Computers, IEEE Transactions
on Parallel and Distributed Systems, Journal of Parallel and Distributed
Computing, ICPP, CCGrid. He is an outstanding member of CCF. He is
a senior member of the IEEE and serves on the editorial board of the
IEEE Transactions on Computers.

Aijia Ouyang received the PhD degree in
Computer Science, Hunan University, China,
in2015.His research interests include parallel
computing, cloud computing and big data. He
has published more than 20 research papers in
international conference and journals of intelli-
gence algorithms and parallel computing.

Zhuo Tang received the Ph.D. in computer sci-
ence from Huazhong University of Science and
Technology, China, in 2008. He is currently an
associate professor of the College of Computer
Science and Electronic Engineering at Hunan
University, and he is the sub-dean of the de-
partment of computing science. His majors are
distributed computing system, cloud computing,
and the parallel process for big data. He is a
member of ACM and CCF.

Keqin Li is a SUNY Distinguished Professor
of computer science. His current research in-
terests include parallel computing and high-
performance computing, distributed computing,
energy-efficient computing and communication,
heterogeneous computing systems, cloud com-
puting, big data computing, CPU-GPU hybrid
and cooperative computing, multicore comput-
ing, storage and file systems, wireless communi-
cation networks, sensor networks, peer-to-peer
file sharing systems, mobile computing, service

computing, Internet of things and cyber-physical systems. He has pub-
lished over 460 journal articles, book chapters, and refereed conference
papers, and has received several best paper awards. He is currently or
has served on the editorial boards of IEEE Transactions on Parallel and
Distributed Systems, IEEE Transactions on Computers, IEEE Transac-
tions on Cloud Computing, IEEE Transactions on Services Computing,
IEEE Transactions on Sustainable Computing. He is an IEEE Fellow.

