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Abstract

It is well and widely known that sample pooling could provide an effective and efficient way

for fast coronavirus testing among massive asymptomatic individuals. The method of multi-level

acceleration for asymptomatic COVID-19 screening has been introduced, and for one and two

levels, the optimal group sizes have been obtained. However, there are still multiple challenges.

First, it is not clear how to find the optimal group sizes for three or more levels. Second, there is

lack of closed-form expressions for the optimal group sizes for two or more levels. Third, it is not

clear how to determine the optimal number of levels. And last, it is not known what the maximum

achievable speedup is. The motivation of this paper is to address all the above challenges. The

optimization of a hierarchical pooling strategy includes its number of levels and the group size of

each level. In this paper, based on multi-variable optimization and Taylor approximation, we are

able to derive closed-form expressions for the optimal number of levels d∗ = ln(1/ ln(1/q0))−1,

the optimal group sizes m∗1 = ed∗ = 1/(ep0), m∗2 = ed∗−1 = 1/(e2 p0), ..., m∗d∗ = e = 1/(ed∗ p0), and

the maximum possible speedup of a hierarchical pooling strategy of 1/(ep0 ln(1/p0)), where p0

is the fraction of infected people. The above speedup is nearly a linear function of the reciprocal

of p0, in the sense that it is asymptotically greater than any sub-linear function (1/p0)
1−ε of the

reciprocal of p0 for any small ε > 0. Using the results in this paper, we can quickly and easily

predict the performance of an optimal hierarchical pooling strategy. For instance, if the fraction of

infected people is 0.0001, an 8-level hierarchical pooling strategy can achieve speedup of nearly

400.

Keywords: Asymptomatic screening, coronavirus, group test, hierarchical pooling strategy, multi-

level acceleration, optimization, speedup.
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1 Introduction

1.1 Background

It is well and widely known that sample pooling could provide an effective and efficient way for fast

coronavirus testing among massive asymptomatic individuals [2, 4]. Sample pooling strategies can

save substantial time and resources compared to individual testing during epidemic surveillance

and large-scale COVID-19 screening [15, 22]. It was reported that up to 89% fewer tests would

be required for group size of 3 to 25 in a population of 150,000 with an infection prevalence of

1% [8]. It was also found that by pooling 384 samples into 48 groups, both an 8-fold increase in

testing efficiency and an 8-fold reduction in test costs can be achieved [21]. The approach of sample

pooling and group testing has been introduced [14, 18], adopted and applied [1, 5, 6, 10, 11, 23, 24],

extensively studied [3, 8, 9, 12, 17, 19, 20, 21, 25], and reviewed [7, 16].

The method of multi-level acceleration for asymptomatic COVID-19 screening has been in-

troduced in [13]. For one and two levels, the optimal group sizes were obtained in [13]. However,

there are still multiple challenges. First, it is not clear how to find the optimal group sizes for three

or more levels. Second, there is lack of closed-form expressions for the optimal group sizes for two

or more levels. Third, it is not clear how to determine the optimal number of levels. And last, it

is not known what the maximum achievable speedup is. The motivation of this paper is to address

all the above challenges.

1.2 Contributions

The optimization of a hierarchical pooling strategy includes its number of levels and the group size

of each level. In this paper, based on multi-variable optimization and Taylor approximation, we are

able to derive closed-form expressions for the optimal number of levels d∗ = ln(1/ ln(1/q0))−1,

the optimal group sizes m∗1 = ed∗ = 1/(ep0), m∗2 = ed∗−1 = 1/(e2 p0), ..., m∗d∗ = e = 1/(ed∗ p0), and

the maximum possible speedup of a hierarchical pooling strategy of 1/(ep0 ln(1/p0)), where p0

is the fraction of infected people. The above speedup is nearly a linear function of the reciprocal

of p0, in the sense that it is asymptotically greater than any sub-linear function (1/p0)
1−ε of the

reciprocal of p0 for any small ε > 0.

The paper is organized as follows. In Section 2, we describe the hierarchical pooling strategy

and analyze its performance. In Section 3, we derive closed-form expressions for the optimal group

sizes for one and two levels. We confirm their accuracy by comparing them with know solutions. In

Section 4, we derive closed-form expressions for the optimal group sizes and the optimal number

of levels. We also demonstrate numerical data. We conclude the paper in Section 5.
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2 Hierarchical Pooling Strategy

In this section, we describe the hierarchical pooling strategy and analyze its performance.

2.1 Description of the Strategy

A hierarchical pooling strategy involves pooling samples from multiple people and works as fol-

lows. A d-level hierarchical pooling strategy (HPSd) has d ≥ 1 levels. The size of a level- j group

is m j, where 1≤ j≤ d. For convenience, a population of size N can be treated as a level-0 group of

size m0 = N. A level- j group is divided into level-( j+1) groups of size m j+1, where 0≤ j≤ d−1.

A level-d group cannot be further divided. It is clear that m0 > m1 > m2 > · · ·> md > 1.

Algorithm 1: HPSd( j,S)

Input: A level j, 1≤ j ≤ d; a set S of m j samples.

Output: A subset P⊆ S of positive samples.

P← /0; (1)

Perform a group test for S; (2)

if (the group test result of S is negative) (3)

return P; (4)

end if; (5)

if ( j < d) (6)

n← ⌈m j/m j+1⌉; (7)

Divide S into S1,S2, ...,Sn; (8)

for k← 1 to n do (9)

Pk← HPSd( j+1,Sk); (10)

P← P∪Pk; (11)

end for; (12)

else (13)

for (each sample s ∈ S) do (14)

Test s; (15)

if (the test result of s is positive) (16)

P← P∪{s}; (17)

end if; (18)

end for; (19)

end if; (20)

return P. (21)
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Algorithm 1 gives a recursive description of the HPSd procedure. On level j, a group test

is performed for a level- j group (which is divided from a level-( j− 1) group) of size m j (line

2). If the test result of a level- j group of m j samples is negative, we know that all the individual

samples in the group are negative (lines 3–5). If the test result of a level- j group of m j samples is

positive, where 1≤ j≤ d−1, then the m j samples proceed to level j+1, i.e., they are divided into

level-( j+ 1) groups of size m j+1, which are processed by using the same HPSd procedure (lines

7–12). One level d, the individual samples of a level-d group are tested one by one without sample

pooling (lines 14–19).

2.2 Analysis of the Strategy

Let us define the following variables.

• p0: the probability that the test result of one individual is positive.

• q0: the probability that the test result of one individual is negative.

• p j: the probability that the test result of one level- j group is positive under the condition that

the test result of a level-( j−1) group is positive, where 1≤ j ≤ d.

• q j: the probability that the test result of one level- j group is negative under the condition

that the test result of a level-( j−1) group is positive, where 1≤ j ≤ d.

• Tj: the expected number of tests for one level- j group, where 1≤ j ≤ d.

• T ′j : the expected number of tests for one level- j group under the condition that the test result

of the level- j group is positive, where 1≤ j ≤ d.

The following theorem gives p j and q j for all 1≤ j ≤ d.

Theorem 1 For a d-level hierarchical pooling strategy, we have q1 = q
m1

0 , p1 = 1−q1, and

q j =
q

m j

0 −q
m j−1

0

p1 p2 · · · p j−1
,

and p j = 1−q j, for all 2≤ j ≤ d.

Proof. The equations for q1 and p1 are straightforward. As for q j, where 2≤ j ≤ d, we have

q j =
q

m j

0 (1−q
m j−1−m j

0 )

p1 p2 · · · p j−1
=

q
m j

0 −q
m j−1

0

p1 p2 · · · p j−1
,
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where p1 p2 · · · p j−1 is the probability that the test result of a level-( j−1) group is positive (i.e., the

condition), which implies that the test results of all corresponding level-1, ..., level-( j−2) groups

are positive; q
m j

0 is the probability that all the m j samples in a level- j group are negative (i.e.,

the test result of one level- j group is negative); and (1− q
m j−1−m j

0 ) is the probability that at least

one of the remaining (m j−1−m j) samples in the same level-( j−1) group is positive (to keep the

condition). The equations for p j, where 2≤ j ≤ d, are straightforward.

The following theorem gives closed-from expressions of p j and q j for all 2≤ j ≤ d.

Theorem 2 For a d-level hierarchical pooling strategy, we have

p j =
1−q

m j

0

1−q
m j−1

0

,

and

q j =
q

m j

0 −q
m j−1

0

1−q
m j−1

0

,

for all 2≤ j ≤ d.

Proof. We can prove by induction on j≥ 2. First, it is easy to verify that the claim is correct for p2

and q2. Next, we assume that the claim holds for p2 and q2, ..., p j−1 and q j−1. For q j, we notice

that

p1 p2 · · · p j−1 = (1−q
m1

0 )

(

1−q
m2

0

1−q
m1

0

)

· · ·
(

1−q
m j−1

0

1−q
m j−2

0

)

= 1−q
m j−1

0 ,

by the induction hypothesis, which yields q j and p j.

Let Tpooling(m1,m2, ...,md) be the expected number of tests of a d-level hierarchical pooling

strategy. The following theorem gives Tpooling(m1,m2, ...,md), and Tj and T ′j for all 1≤ j ≤ d.

Theorem 3 For a d-level hierarchical pooling strategy, we have

Tpooling(m1,m2, ...,md) =

(

N

m1

)

T1,

Tj = q j +(T ′j +1)p j = 1+ p jT
′
j , 1≤ j ≤ d,

T ′j =

(

m j

m j+1

)

Tj+1, 1≤ j ≤ d−1,

T ′d = md.

Proof. The equation for Tpooling(m1,m2, ...,md) is straightforward. For a level- j group of samples,

if the test result of the group is negative (which happens with probability q j), only one test is

required; if the test result of the group is positive (which happens with probability p j), T ′j +1 tests
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are required, one for group test, and T ′j for proceeding to level j+1. Hence, the expected number

of tests for one level- j group is Tj = q j +(T ′j + 1)p j = 1+ p jT
′
j , for all 1 ≤ j ≤ d. The equation

for T ′j is straightforward for all 1≤ j ≤ d.

The following theorem gives a closed-from expression of Tj for all 1≤ j ≤ d.

Theorem 4 For a d-level hierarchical pooling strategy, we have

Tj = 1+m j

(

p j

m j+1
+

p j p j+1

m j+2
+ · · ·+ p j p j+1 · · · pd−1

md

+ p j p j+1 · · · pd

)

,

for all 1≤ j ≤ d.

Proof. We can prove by induction on j = d,d− 1, ...,1. First, it is easy to verify that Td = 1+

pdT ′d = 1+md pd . Next, we assume that the claim holds for Tj+1. For Tj, we have

Tj = 1+ p jT
′
j

= 1+ p j

(

m j

m j+1

)

Tj+1

= 1+ p j

(

m j

m j+1

)(

1+m j+1

(

p j+1

m j+2
+ · · ·+ p j+1 p j+2 · · · pd−1

md

+ p j+1 p j+2 · · · pd

))

= 1+m j

(

p j

m j+1
+

p j p j+1

m j+2
+ · · ·+ p j p j+1 · · · pd−1

md

+ p j p j+1 · · · pd

)

.

This proves the theorem.

Note that the number of tests without sample pooling is N. Therefore, the speedup of a d-level

hierarchical pooling strategy is

S(m1,m2, ...,md) =
N

Tpooling(m1,m2, ...,md)
=

m1

T1
.

The biggest challenge is to find m1,m2, ...,md , such that S(m1,m2, ...,md) is maximized. In fact,

the number d of levels should also be optimized.

3 Closed-Form Expressions

In this section, we derive closed-form expressions for the optimal group sizes when d = 1 and

d = 2.

The key method to derive closed-form expressions is to use the following approximation. For

the function f (x) = lnx, we use the Taylor approximation f (x) = f (1)+ f ′(1)(x−1) at 1, that is,

lnx = x−1, or x = lnx+1, for x≈ 1. Letting x = qk
0, we get

qk
0 = k lnq0 +1 = 1− k ln(1/q0).

The above equation is repeatedly used in this paper.
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3.1 One-Level Acceleration

The following theorem gives closed-form expressions of the optimal group size and the maximum

speedup when d = 1.

Theorem 5 When d = 1, the optimal group size is

m∗1 =

√

1

ln(1/q0)
.

The speedup achieved is

m∗1
2

=
1

2

√

1

ln(1/q0)
.

Proof. For a one-level pooling strategy with group size m1, we have

T1 = 1+m1 p1 = 1+m1(1−q
m1

0 ),

and

S(m1) =
m1

T1
=

1

1+1/m1−q
m1

0

.

To find the optimal value of m1, we need to minimize

F(m1) =
1

m1
−q

m1

0 =
1

m1
−1+m1 ln(1/q0).

Note that
∂F(m1)

∂m1
=− 1

m2
1

+ ln(1/q0) = 0,

which gives the optimal group size m∗1 as

m∗1 =

√

1

ln(1/q0)
.

Furthermore, we have the optimal speedup

S(m∗1) =
1

1+1/m∗1−q
m∗1
0

=
1

1/m∗1 +m∗1 ln(1/q0)
=

1

2

√

1

ln(1/q0)
=

m∗1
2
.

This proves the theorem.

Table 1 shows the accuracy of the above closed-form expression of m∗1 (actually ⌊m∗1⌉) com-

pared with the real optimal value of m1 obtained in [13]. It is easily seen that our closed-form

expression is very accurate.
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Table 1: Optimal Group Size for One-Level Pooling Strategy

p0 m∗1 from [13] m∗1 (closed-form)

10−1 4 3

10−2 11 10

10−3 32 32

10−4 101 100

10−5 317 316

10−6 1001 1000

10−7 3163 3162

3.2 Two-Level Acceleration

The following theorem gives closed-form expressions of the optimal group sizes and the maximum

speedup when d = 2.

Theorem 6 When d = 2, the optimal group sizes are

m∗1 =

(

1

ln(1/q0)

)2/3

,

and

m∗2 =

(

1

ln(1/q0)

)1/3

.

The speedup achieved is

m∗1
3

=
1

3

(

1

ln(1/q0)

)2/3

.

Proof. Let us consider a two-level pooling strategy with group sizes m1 and m2. For a given m1,

we have

T ′1 =

(

m1

m2

)

T2

=

(

m1

m2

)

(1+ p2T ′2)

=

(

m1

m2

)

(1+m2 p2)

=

(

m1

m2

)(

1+m2

(

1−q
m2

0

1−q
m1

0

))

= m1

(

1

m2
+

1−q
m2

0

1−q
m1

0

)

.
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To minimize T ′1, we need to minimize

F(m2) =
1

m2
+

1−q
m2

0

1−q
m1

0

=
1

m2
+

m2

m1
.

Note that
∂F(m2)

∂m2
=− 1

m2
2

+
1

m1
= 0,

which gives m2 =
√

m1.

To find the optimal value of m1, we notice that

T ′1 = m1

(

1√
m1

+
1−q

√
m1

0

1−q
m1

0

)

= m1

(

1√
m1

+

√
m1

m1

)

= 2
√

m1,

and

T1 = 1+ p1T ′1 = 2
√

m1(1−q
m1

0 )+1.

The speedup can be treated as a function of m1:

S(m1) =
m1

T1
=

m1

2
√

m1(1−q
m1

0 )+1
=

1

2
√

m1 ln(1/q0)+1/m1
.

We need to minimize

F(m1) = 2
√

m1 ln(1/q0)+
1

m1
.

Note that
∂F(m1)

∂m1
=

ln(1/q0)√
m1

− 1

m2
1

= 0,

which gives

m∗1 =

(

1

ln(1/q0)

)2/3

,

and

m∗2 =

(

1

ln(1/q0)

)1/3

.

Furthermore, we have

S(m∗1,m
∗
2) =

1

2
√

m∗1 ln(1/q0)+1/m∗1
=

1

3

(

1

ln(1/q0)

)2/3

=
m∗1
3
.

This proves the theorem.

Table 2 shows the accuracy of the above closed-form expressions of m∗1 and m∗2 (actually ⌊m∗1⌉
and ⌊m∗2⌉) compared with the real optimal values of m1 and m2 obtained in [13]. It is easily seen

that our closed-form expressions are very accurate, especially when p0 is small.
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Table 2: Optimal Group Sizes for Two-Level Pooling Strategy

p0 (m∗1,m
∗
2) from [13] (m∗1,m

∗
2) (closed-form)

10−1 (8, 2) (4, 2)

10−2 (25, 5) (21, 5)

10−3 (106, 10) (100, 10)

10−4 (476, 22) (464, 22)

10−5 (2179, 46) (2154, 46)

10−6 (10051, 100) (10000, 100)

10−7 (46525, 215) (46416, 215)

4 Multi-Level Acceleration

In this section, we derive closed-form expressions for the optimal group sizes and the optimal

number of levels for a hierarchical pooling strategy.

The main result of this section is the following theorem, which gives closed-form expressions

of the optimal number of levels, the optimal group sizes, and the maximum speedup for all d ≥ 1.

Theorem 7 For all d ≥ 1, the optimal number of levels is

d∗ = ln

(

1

ln(1/q0)

)

−1.

The optimal group sizes are

m∗j =

(

1

ln(1/q0)

)(d∗+1− j)/(d∗+1)

= ed∗+1− j =
1

e j p0
,

for all 1≤ j ≤ d∗. The speedup achieved is

m∗1
d∗+1

=
1

d∗+1

(

1

ln(1/q0)

)d∗/(d∗+1)

,

which is actually

1

ln(1/ ln(1/q0))

(

1

ln(1/q0)

)(ln(1/ ln(1/q0))−1)/ ln(1/ ln(1/q0))

,

or equivalently,

1

ln(1/ ln(1/(1− p0)))

(

1

ln(1/(1− p0))

)(ln(1/ ln(1/(1−p0)))−1)/ ln(1/ ln(1/(1−p0)))

=
1

ep0 ln(1/p0)
.

The rest of the section is devoted to proving the above theorem.
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4.1 Optimal Group Sizes

Now, let us consider a d-level hierarchical pooling strategy with group sizes m1,m2, ...,md . By

Theorem 4, we know that

Tpooling(m1,m2, ...,md) = N

(

1

m1
+

p1

m2
+

p1 p2

m3
+ · · ·+ p1 p2 · · · pd−1

md

+ p1 p2 · · · pd

)

,

which is actually

Tpooling(m1,m2, ...,md) = N

(

1

m1
+

1−q
m1

0

m2
+

1−q
m2

0

m3
+ · · ·+ 1−q

md−1

0

md

+(1−q
md

0 )

)

,

and approximately,

Tpooling(m1,m2, ...,md) = N

(

1

m1
+ ln(1/q0)

(

m1

m2
+

m2

m3
+ · · ·+ md−1

md

+md

))

.

The above approximation makes it possible to derive the optimal group sizes in closed-form.

To minimize Tpooling(m1,m2, ...,md), we need to minimize

F(m1,m2, ...,md) =
1

m1
+ ln(1/q0)

(

m1

m2
+

m2

m3
+ · · ·+ md−1

md

+md

)

.

This requires

∂F(m1,m2, ...,md)

∂m1
=− 1

m2
1

+
ln(1/q0)

m2
= 0,

∂F(m1,m2, ...,md)

∂m2
= ln(1/q0)

(

−m1

m2
2

+
1

m3

)

= 0,

∂F(m1,m2, ...,md)

∂m3
= ln(1/q0)

(

−m2

m2
3

+
1

m4

)

= 0,

...
∂F(m1,m2, ...,md)

∂md−1

= ln(1/q0)

(

−md−2

m2
d−1

+
1

md

)

= 0,

∂F(m1,m2, ...,md)

∂md

= ln(1/q0)

(

−md−1

m2
d

+1

)

= 0.

Solving the above equations, we get

m∗d = (m∗d−1)
1/2 =

(

1

ln(1/q0)

)1/(d+1)

,

m∗d−1 = (m∗d−2)
2/3 =

(

1

ln(1/q0)

)2/(d+1)

,

m∗d−2 = (m∗d−3)
3/4 =

(

1

ln(1/q0)

)3/(d+1)

,
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...

m∗2 = (m∗1)
(d−1)/d =

(

1

ln(1/q0)

)(d−1)/(d+1)

,

m∗1 =

(

1

ln(1/q0)

)d/(d+1)

,

which give

Tpooling(m
∗
1,m

∗
2, ...,m

∗
d) = N

(

(ln(1/q0))
d/(d+1)+ ln(1/q0)d

(

1

ln(1/q0)

)1/(d+1))

= N

(

d +1

m∗1

)

,

and the speedup is

S(m∗1,m
∗
2, ...,m

∗
d) =

N

Tpooling(m∗1,m
∗
2, ...,m

∗
d)

=
m∗1

d +1
=

1

d +1

(

1

ln(1/q0)

)d/(d+1)

.

4.2 Optimal Number of Levels

To find the optimal number of levels, we view the speedup as a function of d:

S(d) =
1

d +1

(

1

ln(1/q0)

)d/(d+1)

.

To maximize S(d), we need ∂S(d)/∂d = 0, where

∂S(d)

∂d
=

1

(d +1)2

(

1

ln(1/q0)

)d/(d+1)(
1

d +1
ln

(

1

ln(1/q0)

)

−1

)

,

which gives the optimal number of levels d∗ as

d∗ = ln

(

1

ln(1/q0)

)

−1.

Algorithm 2: HPS Optimization

Input: p0.

Output: d∗,m∗1,m
∗
2, ...,m

∗
d .

Calculate d∗ = ⌊ln(1/ ln(1/(1− p0)))−1⌉; (1)

for j← 1 to d∗ do (2)

Calculate m∗j = ⌊(1/ ln(1/(1− p0)))
(d∗+1− j)/(d∗+1)⌉; (3)

end for; (4)

return d∗,m∗1,m
∗
2, ...,m

∗
d . (5)

Algorithm 2 gives our method to find the optimal hierarchical pooling strategy with the opti-

mal number of levels and the optimal group sizes.
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4.3 The Maximum Speedup

The maximum achievable speedup of a hierarchical pooling strategy is a function of q0:

S(q0) =
1

ln(1/ ln(1/q0))

(

1

ln(1/q0)

)(ln(1/ ln(1/q0))−1)/ ln(1/ ln(1/q0))

,

or equivalently, a function of p0:

S(p0) =
1

ln(1/ ln(1/(1− p0)))

(

1

ln(1/(1− p0))

)(ln(1/ ln(1/(1−p0)))−1)/ ln(1/ ln(1/(1−p0)))

.

To simplify the above expression, let

x =
1

ln(1/q0)
=

1

ln(1/(1− p0))
.

Then, we get d∗ = lnx−1, and

S(p0) =
x1−1/ lnx

lnx
=

x

(lnx)x1/ lnx
.

Notice that x1/ lnx = e. Hence, we get

S(p0) =
x

e lnx
.

Since
1

1− p0
= 1+ p0 + p2

0 + · · ·= 1+ p0 +o(p0),

and

ln(1+ y) = y− y2

2
+

y3

3
−·· · ,

we have (by setting y = p0 +o(p0))

ln

(

1

1− p0

)

= (p0 +o(p0))−
1

2
(p0 +o(p0))

2 +
1

3
(p0 +o(p0))

3−·· ·= p0 +o(p0),

and x = 1/p0. Therefore, we obtain

S(p0) =
1

ep0 ln(1/p0)
.

By using the above technique, we can have m∗d∗ = e = 1/(ed∗ p0), m∗d∗−1 = e2 = 1/(ed∗−1 p0),

m∗d∗−2 = e3 = 1/(ed∗−2 p0), ..., m∗1 = ed∗ = 1/(ep0).

We have proved Theorem 7.
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Figure 1: Speedup vs. number of levels (p0 = 0.001).

4.4 Numerical Data

We now demonstrate some numerical data.

In Figure 1, for p0 = 0.001, we show the speedup S(d) as a function of number of levels

d. It can be observed that as d increases, S(d) also increases. However, to certain point, S(d)

decreases as d further increases. It is clear that there is an optimal value of d∗ = 6, such that S(d)

is maximized.

In Table 3, for p0 = 10−1,10−2,10−3, ...,10−7, we demonstrate the optimal number of lev-

els ⌊d∗⌉, the corresponding optimal group sizes ⌊m∗1⌉,⌊m∗2⌉, ...,⌊m∗d⌉, and the maximum speedup

achieved by the ⌊d∗⌉-level hierarchical pooling strategy.

In Figure 2, for q0 = 0.900,0.905,0.910, ...,0.995, we show the maximum achievable speedup

S(q0) of a hierarchical pooling strategy as a function of q0. It is observed that as q0 increases, S(q0)

increases very rapidly.

In Figure 3, we show the maximum achievable speedup S(1/p0) of a hierarchical pooling

strategy as a function of the reciprocal of the fraction of infected people 1/p0:

S(1/p0) =
1/p0

e ln(1/p0)
.

It can be seen that S(1/p0) is nearly a linear function of 1/p0. Actually, although S(1/p0) is not

really a linear function of 1/p0, it grows faster than any sub-linear function (1/p0)
1−ε for any

small ε > 0.
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Table 3: Optimal Number of Levels, Optimal Group Sizes, and Maximum Speedup

p0 ⌊d∗⌉ (⌊m∗1⌉,⌊m∗2⌉, ...,⌊m∗d⌉) Speedup

10−1 1 (3) 1.55

10−2 4 (37, 13, 5, 2) 7.96

10−3 6 (368, 135, 50, 18, 7, 2) 53.23

10−4 8 (3679, 1353, 498, 183, 67, 25, 9, 3) 399.40

10−5 11 (36788, 13533, 4979, 1832, 674, 248, 91, 34, 12, 5, 2) 3195.35

10−6 13 (367879, 135335, 49787, 18316, 6738, 2479, 912, 335, 123, 45, 17, 6, 2) 26627.99

10−7 15 (3678794, 1353353, 497871, 183156, 67379, 24788, 9119, 3355, 1234, 454, 167, 61, 23, 8, 3) 228240.01
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Figure 2: Speedup vs. (1 – the fraction of infected people).
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Figure 3: Speedup vs. the reciprocal of the fraction of infected people.

5 Concluding Remarks

We have successfully derived closed-form expressions for the optimal number of levels and the

optimal group sizes of a hierarchical pooling strategy. These expressions enable us to achieve

the maximum possible speedup (whose closed-form expression is also available) of a hierarchical

pooling strategy. Using the results in this paper, we can quickly and easily predict the performance

of an optimal hierarchical pooling strategy. For instance, if the fraction of infected people is 0.0001,

an 8-level hierarchical pooling strategy can achieve speedup of nearly 400.
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