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a b s t r a c t

The paradigm of cloud computing has heralded a new avenue of computing, offering benefits of
increased data accessibility with low cost. Continuous Writing Applications (CWA) (e.g., augmented
online services for Health Care) have specific requirements on data storage, computation and band-
width, thus are cost-sensitive with limited budgets and time. Herein, we propose an architecture of
multi-cloud service provider (CSP) or ‘‘Multi-Cloud’’ to provide services to CWA, and design a novel
resource scheduling algorithm to minimize the system cost. The system models of classic CWAs to
tackle the resource requirements of users on MCP are exploited. The study can help to understand the
characteristics of different resources and conclude Multi-Cloud being the most attractive to many CWA
implementations. Interconnections of multiple CSPs and their load paths (i.e., data passing through
possible interconnections) are introduced. We then formulate the problem and present optimal user
scheduling based on Minimum First Derivative Length (MFDL) of system load paths. Theoretical
analysis demonstrated that the solutions with minimized costs can be achieved by the proposed
algorithm, termed ‘‘Optimal user Scheduling" for Multi-Cloud (OSMC). Through rigorous simulations
regarding different influencing factors, the proposed strategy has proven to be scalable, flexible, and
efficient in many practical scenarios.

© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

Subscription based or pay-per-use service business model
nown as Cloud Computing has gained significant importance
ver the past years. Cloud computing has numerous advantages,
ncluding provisioning of computing capacities, wide and het-
rogeneous network access, resource pooling and rapid elasticity
ith measured services [17,22,24]. Most applications running
n local PCs have been migrated to Cloud Service Providers
CSPs), such as Amazon EC2 [28], Windows Azure [26], IBMs Blue
loud [1], due to many advantages, e.g., providing flexible costs
nd improving data and application availability. In [27], it was
uggested that cloud computing services can allow fast access to
pplications as well as reduce infrastructure costs, even for small
nd medium companies.
The primary service offered by CSPs is Cloud Data Storage.

nstead of storing data on local machines, users can store data on
SPs that allow easy data retrieval from any geographical region
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via the Internet. Various IT giants have provided limited free
services and storage spaces for data uploading such as pictures
and videos. Besides, the ability to share the data with other
users is allowed through Cloud Data Storage, such as Amazon
S3, Microsoft SkyDrive, and Apple’s iCloud. CSPs also provide
more service options for users who are willing to pay for ex-
tra spaces and more corresponding function utilities. Nowadays,
with the emergence of Wireless Sensor Networks (WSNs), mobile
networks, Internet of Thing (IoT) [5], more and more data and
information ‘‘ensed" from the environment can be stored and
processed on CSPs, and then shared by the authorized entities.
Fig. 1 illustrates four main categories of services provided by CSPs,
that are detailed in the following.

(a) Surveillance System: Due to convenient storage and re-
rieval functions, more and more deployed surveillance systems
ave adopted CSPs to store the round the clock video record-
ngs, instead of the traditional way using local storage devices.
dditional services provided by CSPs include video surveillance
earch, customized pre-alarms, as well as flexible and convenient

ethods for viewing, analyzing and extracting information from

https://doi.org/10.1016/j.jpdc.2021.02.003
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Fig. 1. Four classic services CSPs may offer.

real-time videos or recorded footage. Some commercial compa-
nies, such as Camba [2], have entered this market with the hope
to attract more subscribers with very low prices.

(b) Health Care or e-Health: A human being generates 1 TB
of information in a day [12]. This data is already in use in fields
such as marketing or social networks. However, this data has not
been exploited to its full potential the area of e-health. CSPs are
ideal platforms to keep and analyze this data, for implementing
online e-learning, data mining by machine learning, or other
state-of-the-art technologies.

(c) Smart Homes: A smart home is a concept of the pervasive
computing. It will progressively gain significance for the people
living in high technology areas. Large amounts of data and com-
plex control required for implementing smart homes exceed the
ability of local computers. Cloud computing can help reduce local
workload, through which home users can obtain the real time
information from Internet directly. Smart home based on the CSPs
is more efficient, convenient, flexible and cost effective [15].

(d) Environment Monitor: With the advancement of WSNs,
more and more environmental data are ‘‘sensed’’, ranging from
water pollution, air pollution to bridge health, high-speed rail-
way health, in which CSPs play an important role to save and
process such massive data. TBs of data are generated every day.
Cloud computing provides a platform to store and compute high
volumes of data. This in turn leads to generation of invaluable
information for disaster predictions. Cloud enables an efficient
way to access and utilize the data for users around the world,
especially government officers, researchers, and scientists, among
others.

‘‘Continuous Write Applications" (CWAs) are CSP applications
used to compute large volumes of data. A main concern by single
CSP is to provide continuous service availability. For example, the
license agreement of Amazon states that the provided cloud ser-
vices may be unavailable occasionally [28]. This may lead to that
the user’s cloud services may terminate at any time. In addition,
Amazon is not responsible for cloud service availability. To tackle
the above limitation, in this paper, ‘‘Multi-Cloud" is proposed to
assure service availability that can satisfy particular requirements
of CWAs. We also reduce the operating cost of the CSPs that
deliver the CWAs services. There are some service demands for
each of the CWAs that involve resources requirements in terms of
storage capacity, bandwidth, and CPU cycles. The CSPs completely
controls all resources, including both local resources and that
99
provided by the other CSPs, then provided as services of the
CWA to the users under the term of a solo CSP. It is assumed
that the resource utility costs may vary for the same service
for users based on geographical distribution. To assurance data
availability, we assume that same data from a single user will be
stored by at least two CSPs. In this way, each CSP can build its
particular virtual Multi-Cloud or ‘‘multiple Clouds" and organize
the resources flexibly to meet the needs of increasing users, as
well as ensure a higher Quality of Service (QoS).

A worth-exploring problem in the field of Multi-Cloud can
offer services to massive CWA users around the world: ‘‘how
can the CSPs organize the resources of Multi-Cloud, to reach
the lowest utility cost for each customer?" Herein, a multi-tuple
mathematical model is formulated to describe the key concerns,
including users’ resource requirements, utility costs of the CSPs,
as well as inter-cloud communications. Additionally, based on the
model, we propose a novel algorithm of cooperative multi-cloud
load-balancing, which can meet all the resource requirements of
users while achieving the minimum cost per user.

The rest of the paper is organized as follows. The relevant
research work is discussed in Section 2. Section 3 describes
the CWA model and formulates the optimization problem. In
Section 4, our strategy for optimal load-path search in Multi-
Cloud is proposed. In Section 5, we introduce our proposed
algorithm in detail, termed Optimal user Scheduling for Multi-
Cloud (OSMC). Sections 6 and 7 cover the experimental results
and conclusions.

2. Related work

Many online applications can be classified as CWAs, such as
surveillance systems, e-Health, and Internet-of-Things [5], etc.
These applications continuously generate massive data that re-
quire to be transported, stored and analyzed in real time. Each
application requires three basic factors, namely communication
bandwidth for data transportation, large data storage capacity,
and computational power to analyze the collected data. Many
traditional CWAs are restricted by small scale systems. In order
to set up a system that can satisfy all the requirements indepen-
dently, expensive devices, such as cameras, sensors, wires, central
control devices, and pre-compiled programs need to be planted
to provide improved storage space and computational capaci-
ties [15]. However, the scalability of such systems is extremely
poor.

With the development of cloud computing [21] and big data
processing [10,11], the basic requirements of CWAs can be sat-
isfied by CSPs. Many novel business models targeting at CWA
markets have emerged recently, such as Camba for surveillance
systems [12]. With the support of Cloud computing, CWAs can
evolve from closed, independent systems to open, scalable plat-
forms. The success of CWAs on cloud computing mainly depends
on two factors namely operational cost and reliability. It is widely
recognized that the resource utilization cost and scheduling in
networked systems entails strategic significance, and many sem-
inars and working group meetings have explored the subject for
a long period [9,13,29].

Recently, more and more research work explore the specific
solutions provided by the major Cloud/Edge provider and it is
difficult to fully exploit different Clouds/Edges concurrently. Easy-
Cloud is proposed in [4], which is an easy and effective toolkit
and user interface able to not only interact with multiple and
different Cloud/Edge platforms at the same time but also to
provide a rule-based engine where the user can specify what to
do in real-time when the workload of the services running on the
Clouds/Edges becomes under-utilized (e.g., switch-off the service
to save money) or over-utilized (e.g., switch-on new computa-
tional resources to overcome the increased workload).
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Many research efforts have been conducted on resource uti-
ization cost models in the literature, such as learning curve [14],
ivisible Load Theory (DLT) [8], and queueing models [7]. Cost
f use and supply issues are still an arduous task in cloud com-
uting. CSPs provides a service template menu which consists of
arious resources, such as CPU, storage, bandwidth, and mem-
ry. Difficulty in resource provisioning increases since various
equirements may emerge from various users on each of these
imensions [14]. Although Cloud computing brings in many ben-
fits such as low cost and data accessibility, however, due to
oncerns such as the risks of service unavailability and potential
alicious attacks, dealing with a ‘‘single cloud’’ providers is ex-
ected to be no longer preferred by users. Therefore, the focus
as recently shifted to ‘‘multi-clouds’’, or in other words, ‘‘inter-
louds’’, or ‘‘cloud-of-cloud’’ [3,16]. Herein, we study the collab-
ration of Multi-Cloud for data backup with aims to enhance
ystem reliability.

. System model, notation and problem definition

This study focuses on CSPs that provide Infrastructure-as-a-
ervice (IaaS). IaaS is a service model providing an infrastructure
f the computer for supporting enterprise operations. Typical
aaS services include Microsoft Azure, Amazon EC2, Rackspace,
nd GoGrid. One CSP can be assigned as the Chief Cloud of the
ultiple Clouds. Furthermore, every CWA requires at least two
SPs for data storage to improve data availability. It is assumed
hat the Chief Cloud schedules the resources of other CSPs. Let
0 denote the set of CSPs. CSP0 is introduced to build the Multi-
loud accordingly, which can be the Chief Cloud. We have C0 =

CSP0, CSP1, . . . , CSPn}. Each CSPk, k = 0, 1, 2, . . . , n, has cer-
ain resources. A tuple is used to denote the resources Rk =

Bk, Sk, Ck], where Bk denotes the bandwidth, Sk denotes the stor-
ge space, and Ck denotes the computational capability of CSPk.
¯ k = [B̄k, S̄k, C̄k] denotes the upper-bound of the resources that
CSPk can offer to CSP0. A vector Pk = [PBk , PSk , PCk ] is used to

epresent the utility cost functions of the CSPk for the resources
n terms of bandwidth, storage, computing, respectively.

It is assumed that the CSP0 involves m users, where m ≫ n.
ccording to the service packages, the users can be divided into
categories. For example, CSP0 can provide storage service pack-
ges for one day, one month, or one year, and charge different
ervice fees. All users are assigned some priorities on the basis
f category classifications. Higher priority of user infers that the
ser has paid more for the services, thus in return gaining access
o more data storage in the system. Let U = {uj

i} denote the
et of users within the CSP0, where uj

i denotes the user i with
priority of j = 1, . . . , J for user i = 1, . . . ,m. Each user uj

i has
ome basic resource requirements in terms of bandwidth, storage,
nd computation that can be denoted as r ji = [bji, s

j
i, c

j
i ]. All the

ser requirements must be satisfied by C0 in order to successfully
llocate resources.
As shown in Fig. 2, the main focus is on the communications

f the inter-cloud and intra-cloud. We assume that if two CSPs
re connected by a direct communication link, then CSPs are the
eighboring nodes of each other. We use Nk to denote the set of
eighboring nodes of CSPk, e.g., in Fig. 2, N3 = {CSP2, CSP4, CSPn}.
e use Lk,l to denote the communication bandwidth between
SPk and CSPl, and Bk,l to denote the communication cost on a
ink Lk,l. If two CSPs have no direct link, then the CSPs need two
r more network links to set up the communication paths.
 R

100
Fig. 2. Illustration of a user broker for Multi-Cloud.

3.1. Customer’s utility cost model of CWA

Two CSPs are required for each customer i, CSPi−edge and
CSPi−back. When the customer i subscribes a CWA package j, then
SP0 decides which CSPi−edge in C0 should be connected directly
o uj

i. Simultaneously, another CSP is required to store the data
ent from CSPi−edge as a backup, which is denoted as CSPi−back. It
s assumed that the CSPi−edge only select one CSP from Ni−edge as
he CSPi−back. The following equation is obtained for utility cost
unction of customer i,

fcost(i) = fcost(i, Bi−edge) + fcost(i, Si−edge)+

cost(i, Ci−edge) + fcost(i, Bi−back) + fcost(i, Si−back), (1)

subject to:

r ji ⪯ R̄i−edge, b
j
i ≤ B̄i−back, s

j
i ≤ S̄i−back. (2)

A list of notations with their descriptions is presented in Table 1.
Supposing ri−back is used to denote the resource required by

ustomer i on CSPi−back, then we get ri−back = [bi, si, 0], where
the computational requirement is zero. Consequently, the cost
function of (1) can be transferred to:

fcost(i) = r ji · PT
i−edge + r ji−back · PT

i−back, (3)

with r ji ⪯ R̄i−edge, r
j
i−back ⪯ R̄i−back, and CSPi−edge and CSPi−back are

he neighboring CSPs.

.2. Problem formulation

In this section, the problem will be formulated in detail. We
irst obtain the system cost utility function of all of the users on
0 as:

(C0,U) =

m∑
i=1

fcost(i)

=

m∑
i=1

(r ji · PT
i−edge + ri−back · PT

i−back), (4)

ubject to:

⪯ R̄ . (5)
k|∀CSPk∈C0 k
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Table 1
List of notations.
Notation Description

fcost(i, Bi−edge) Bandwidth cost of link from customer i to CSPi−edge
fcost(i, Si−edge) Storage cost of customer i’s data on CSPi−edge
fcost(i, Si−back) Storage cost of customer i’s CSPi−back
fcost(i, Bi−back) Usage cost of bandwidth of CSPi−back
fcost(i, Ci−edge) Computational cost of customer i’s data processed on CSPi−edge
PT
i Transpose of vector [PBk , PSk , PCk ] to denote the utility cost functions of the CSPk
o

F

From (5), it is observed that the utility cost function of CSP ,
denoted as P , can be considered as one of the critical factors
that impact the resource scheduling for the Multi-Cloud. P can
be divided into two types of functions, i.e., linear or non-linear
functions [6]. According to Divisible Load Theory (DLT) [8], lin-
ear functions represent computation and communication utility
cost functions. However, linear functions are simplified prob-
lem formulations. For real-time scenarios (e.g., system queue-
ing [29], etc.), linear functions are required to quantify the utility
costs [30]. Resource scheduling algorithms vary with different
cost functions. The paper proposes a general method to mini-
mize the total utilization cost of Multi-Cloud using various cost
functions.

With reference to Fig. 2, the problem considered in this paper
can be elaborated as follows. The Multi-Cloud that provides the
CWA services, has a user pool with m users and each of the user
has different resource requirements. Let CSP0 be the user broker
also known as the Chief Cloud. A user broker is the broker which
collects the resource status from all the clouds, keeping a log of
the resource cost of each of the cloud. The user broker has two
functions:

• One is to schedule the users from the user pool.
• One is to make decision on the CSPi−edge and CSPi−back for

each of the user.

For every user provided with CSPi−edge and CSPi−back, they are
neighboring CSPs that are connected by direct communication
links. The aforementioned scheduling must satisfy the two main
constraints: (a) The resource requirements of all the users are
to be satisfied by the Multi-Cloud; and (b) the sum of all of the
users’ resources that a CSP provides must not exceed the actual
available resources.

4. Optimal load paths within Multi-Cloud

With reference to Section 3, when a CWA is registered, the
Multi-Cloud must seamlessly deliver two connected CSPs to the
user, which are a Chief CSP and a data backup CSP. With reference
to 2, if CSP2 is a user’s Chief CSP, then two potential load paths
are available, namely (CSP2, CSP1) and (CSP2, CSP3). Thus, the com-
plexity of the potential load paths for each of the user is given
by O(nk), where n is the number of CSPs in the system and k is
the average number of adjacent CSPs. Let P0 denote the set of all
potential paths within the Multi-Cloud. After the definitions, we
shall analyze the cost of all the load paths in the following.

4.1. Cost of single CSP and load paths

Each CSP can be considered as either Chief CSP or data backup
CSP. With reference to Eqs. (1) and (3), it can be noted that
computational resources are not required for the backup CSP.
It is assumed that a set of users, Ul, that require services from
CSPl can be further classified into two sub-sets Ul−edge and Ul−back,
where Ul−edge denotes the set of users using CSPl as the Chief
CSP and Ul−back denotes the set of users using CSPl as the data
backup CSP. Further it can be noted that U

⋂
U = ∅
l−edge l−back
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and Ul−edge
⋃

Ul−back = Ul hold. Referring to (15), the utilization
cost function of a single CSPl can be obtained as follows:

Fl(Ul) =

∑
∀i∈Ul−edge

(r ji · PT
l ) +

∑
∀i∈Ul−back

(r ji · PT
l ). (6)

Supposing a new user, ui, select CSPl as the Chief CSP or data
backup CSP, therefore the new set of users Ul is updated to U ′

l =

U ′

l−edge
⋃

Ul−back or Ul = Ul−edge
⋃

U ′

l−back, respectively, where
U ′

l−edge = {Ul−edge, ui} and U ′

l−back = {Ul−back, ui}. According to (6),
the new utilization cost of the CSPl because of the new user, ui,
can be obtained, namely Fl(U ′

l ).
Suppose the load path of ui is determined to be (CSP2, CSP1)

by the user broker. CSP2 and CSP1 function as the Chief and
a data backup CSP, respectively. We use FPi to represent the
cost of ui along a path Pi, where Pi is path (CSPi−edge, CSPi−back).
Consequently, we obtain:

FPi = Fi−edge(U ′

i−edge) − Fi−edge(Ui−edge)

+ Fi−back(U ′

i−back) − Fi−back(Ui−back). (7)

It is worthy to notice that r ji ·P
T
i−edge+ri−back ·PT

i−back = FPi , ∀i ∈

U . According to (7), we can re-formulate the objective function
described in (5), as follows:

F (C0,U) =

m∑
i=1

(r ji · PT
i−edge + ri−back · PT

i−back)

=

m∑
i=1

FPi , (8)

where CSPi−edge and CSPi−back are neighboring CSPs.
Thus, it can be found that each user has multiple load paths

with various costs. In order to minimize the utilization cost of
the entire system, the optimal cost path for all the users shall be
determined one after another. For this reason, we introduce the
definition of the First Derivative Length (FDL) of the load path as
follows:

F ′

Pi = (r ji · PT
i−edge + ri−back · PT

i−back)
′

=
∂(r ji · PT

i−edge)

∂r ji
+

∂(ri−back · PT
i−back)

∂ri−back

= PT
i−edge + r ji ·

∂PT
i−edge

∂r ji
+

PT
i−back + ri−back ·

∂PT
i−back

∂ri−back
. (9)

Combining (1), (9), r ji = [bji, s
j
i, c

j
i ], and r ji−back = [bji, s

j
i, 0], we

btain:
′

Pi = fcost(i, Bi−edge) + fcost(i, Si−edge)

+ fcost(i, Ci−edge) + bji ·
∂ fcost(i, Bi−edge)

∂bji

+ sji ·
∂ fcost(i, Si−edge)

j + c ji ·
∂ fcost(i, Ci−edge)

j

∂si ∂ci
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+ fcost(i, Si−back) + bji ·
∂ fcost(i, Bi−back)

∂bji

+ fcost(i, Bi−back) + sji ·
∂ fcost(i, Si−back)

∂sji
. (10)

.2. Optimal load path for each user

For every user ui, among all the Pi paths, there must be at least
ne path, denoted as P̄i, with minimum FDL. This path is defined
s the minimum first derivative length (MFDL). The following
heorem is from [29].

heorem 1. The set of P̄i, where ∀ui ∈ U , is an optimal solution to
5) if and only if each user i chooses the path with the MFDL from
he set of all potential paths, P0. Moreover, if fcost is assumed to be
onvex, then P̄i is optimal if and only if the path with the MFDL in
0 provides a service to ui.

From Theorem 1, it is observed that an optimal solution results
nly if users’ requests travel along the MFDL paths among P0.
he optimal load path for the users can be determined one by
ne within the system. Theoretically, the sequence of the user
cheduling has no bearing on the final results. In the DLT, the load
an be arbitrarily divided and the entire system can be eventually
alanced according to the optimal solutions. However, in this
aper, the user service load cannot be divided arbitrarily to be
erved by parallel load paths. To further explain the aforemen-
ioned, a situation is considered where a few users require large
mounts of data. If such users are scheduled at the end, a system
mbalance will be observed. Thus, user scheduling is a necessity.
erein, it is assumed that users have been divided into several
ategories with different priorities the users can be scheduled
ccording to required service volume. The scheduling sequences
re considered as follows:

• Sequence A (SA): Select a user amongst the ones not yet
scheduled randomly;

• Sequence B (SB): Sort and assign the users from low to high
according to the priorities, and select the un-selected users
one by one in the same priority randomly, and;

• Sequence C (SC): Requires two sorting sequences. First, the
users are sorted according to their priorities. Second, sort
the users with the same priorities on the basis of amount of
required services. The user is then selected from the highest
priority.

n the following section, an algorithm is proposed that can sched-
le the users to reach the minimum utilization cost of the entire
ystem.

. The proposed algorithm

Each user will be assigned to a load path by the user broker
CSP0) as shown in Fig. 2). The basic idea is to determine the MFDL
ath for all the users within the system one by one according
o a predefined sequence, such as SA, SB, and SC, to minimize
he utilization cost of the entire system. In the sub-sections, an
lgorithm is proposed to reach a near optimal solution of (8). This
s referred to as the ‘‘Optimal user Scheduling for Multi-Cloud"
OSMC).

.1. Design of OSMC

The pseudo code of the proposed algorithm can be described
s follows (refer to Table 2). In the initialization phase, a set of
oad paths is constructed, P0. Each CSP within the system can
uild a load path with any neighboring CSP. Let the number of
 I
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Table 2
Algorithm 1: OSMC .
Step 1: Initialization

Construct the set of load paths, P0 , using SaLPF .
For k = 1 to m, where m = |C0|.
Set Bk = 0, Sk = 0, Ck = 0.

End For.
Calculate the FDL of each path in P0 by using (10).
Construct U , sorting the users according to SA, SB, or SC

Step 2: Main Loop
For each priority j.
For i = 1 to n, where n = |U|.
Sort the path in P0 according to the FDL from lowest to highest.
For l = 1 to |P0|.

Set CSPi−edge and CSPi−back along path Pl;
If r ji + Ri−edge ⪯ R̄i−edge and r ji−back + Ri−back ⪯ R̄i−back;
Assign ui to path Pl;
Set Ri−edge = Ri−edge + r ji and Ri−back = Ri−back + r ji−back;
Calculate the FDL of all paths in P0 that involve CSPi−edge or

CSPi−back by using (10).
Break Loop of l;

Else
Continue;

End For
If l > P0

Set a warning ‘‘Out of Recourses, User ui cannot be scheduled!";
End If

End For
Step 3: End Algorithm

Output a list of users that cannot be scheduled.

Table 3
Algorithm 2: Sub-algorithm of Load Path Finding (SaLPF ).

Set P0 = ∅

For k = 1 to n
For l = 1 to |Ni|, where Ni is the set of neighboring CSPs of CSPi .
Construct the load path (CSPi, CSPl).
Include (CSPi, CSPl) into P0 .

End For
End For
Return P0 .

clouds in the system be n. Assuming the Multi-Cloud is fully-
onnected, each CSP has n-1 load paths. Therefore, there will
e a total of n · (n − 1) load paths within the system. Table 3
resents the pseudo code of the Sub-algorithm of Load Path Find-
ng (SaLPF ). It constructs a set of load paths, P0, within the system.
fter the construction of P0, the FDL of each path according to
10) obtained. The minimum among P0 is then determined. If
wo or more load paths have the same MFDL, then one is chosen
andomly as the MFDL. The users should be sorted in U following
he sequences of SA, SB, or SC (See Table 2).

The target of the algorithm is to determine the optimal path
or each user and guarantee that the resources of the load path
atisfy the user’s requirements. The main loop (refer to Table 2)
ocuses on three procedures as follows.

1. Sort the load paths in P0 according to the FDL from the
lowest to the highest;

2. Examine whether the load path can satisfy the require-
ments of the user. If the resources of the user cannot be
satisfied along the load path, examine the load path with
the next minimum FDL within the available load paths until
the set of available load paths becomes empty; and

3. If the optimal load path for the user has been determined,
update the FDL of all the load paths effected by the selected
load path.

here may be some users whose resource requirements cannot
e satisfied due to the limited resources of the Cloud-of-Clouds.
n such a case, the algorithm will send a warning for system
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xtension, instead of rescheduling all of the users to meet the
equirements.

.2. Case studies of load paths

In this section, the analysis of a single load path is illustrated
s an example. The cost functions of bandwidth, storage, and
omputation for each CSP are initially constructed. Referring to
3), it is assumed that for CSPk, Pk = [PBk (bk), PSk (sk), PCk (ck)],
where

• PBk (bk) denotes the bandwidth cost function, where bk is the
bandwidth used;

• PSk (sk) denotes storage cost function, where sk is the total
utilized storage space;

• PCk (ck) denotes computation cost function, where ck is the
computation capacity used in CSPk.

Following the assumptions that the communication cost can be
modeled as M/M/1 system [7,19,29] and the communication cost
per unit time for CSPk is αk. Therefore, PBk (bk) can be formulated
as

PBk (bk) =
αk

µb
k − bk

, (11)

here µb
k is the communication processing rate of CSPk in KBPS

kilobit per second).
Further assumptions are made that the storage cost is inde-

endent on sk, and we can obtain

Sk (sk) = βk, (12)

here βk is a constant in the unit cost per gigabytes.
As per the discussion in [9], although an M/G/n queueing

ystem are taken into consideration in cloud computing, the
/M/n system is the only model that accommodates an analytical
nd closed-form expression of the probability density function to
alculate the waiting time of a new service request. Therefore,
he computational cost can be modeled as M/M/n system. The
omputational cost per unit time for CSPk is assumed to be γk.
ollowing [9,29], we can obtain PCk (ck) as

PCk (ck) = γk · Tck =
γkPQ

nkµ
c
k − ck

, (13)

here, PQ = P{Queueing} =
pa0(nkρk)nk

nk!(1 − ρk)
, (14)

and ρk =
ck

nkµ
c
k
, (ρk < 1).

n (14), nk is the number of virtual machines that can provide the
computation services to the users in CSPk, µc

k is the computation
rocessing rate of the virtual machines in MIPS (million instruc-
ions per second), and pa0 is the probability of no request waiting
n the queue of the node, which is given as:

a0 = (
nk−1∑
j=0

(nkρk)j

j!
+

(nkρk)nk

nk!(1 − ρk)
)−1. (15)

The unit of (13) is unit cost per MIPS.
We have two kinds of users within the system and we assume

that the resource requirements of the users with priority one is
denoted as r1i = [b1i , s

1
i , c

1
i ]. For example, if r1i = [200, 100, 20],

hen that means the users of priority one require 200 kbps band-
idth, 100 G storage space, and 20 MIPS computation capacities.
herefore, from (8), (12), and (13), Pk = [FB(bk), FS(sk), FC (ck)]

can be constructed for each CSP within the system and we can
obtain the closed-form of the load path by using (9) for users with
priority equal to one.

Following assumptions are also made:
 f
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• Users can be classified into multiple categories with differ-
ent resource requirements;

• The users of the same category have the same resource
requirements, that means r jx = r jy = r j, x ̸= y hold.

In (9), we can observe that r ji may vary with different j, and if
we consider only a single user, then the calculation will increase
rapidly. Therefore, in OSMC we calculate the FDL of each of the
load path for users with the same priority j by using r j. We also
can further simplify the calculations by using r̄ = [b̄, s̄, c̄], instead
of r ji in (9), where

r̄ =
1
m

[

m∑
i=1

bji,
m∑
i=1

sji,
m∑
i=1

c ji ], (16)

or all load paths in the system.
From the above discussion, it was observed fcost in (5) is the

um of communication cost (convex function), storage cost (linear
unction), and computational cost (convex function). Hence, fcost
n this model is also a convex function and the condition of
heorem 1 can be guaranteed.

.3. Rate of convergence

Our algorithm is based on Newton’s method [25]. We denote
(rk) = D′(rk) for iteration k. If an optimal solution is at point r̄ ,
hen we have h(r̄) = 0. Alternatively, we have:

(rk) = rk − αk h(r
k)

h′(rk)
y the mean value theorem, we obtain:
k+1

− r̄ = φ(rk) − φ(r̄) = φ′(ξ k)(rk − r̄),

here ξ k lies between rk and r̄ . Then

rk+1
− r̄| =

|h′′(ξ k)h(ξ k)|
[h′(ξ k)]2

|rk − r̄|

nd

h(ξ k)| = |h(ξ k) − h(r̄)| = |h′(ηk)∥ξ k
− r̄| ≤ |h′(ηk)∥rk − r̄|

here ηr lies between ξ k and r̄ . Hence:

rk+1
− r̄| ≤

|h′′(ξ k)h|
[h′(ξ k)]2

|rk − r̄|
2

Let

β = sup
|h′′(ξ k)h′(ηk)|

[h′(ξ k)]2
,

then

|rk+1
− r̄| ≤ β|rk − r̄|

2

ence the convergence of our algorithm is 2, which exhibits a
uper-linear convergence.

. Performance evaluation and discussions

.1. Assumptions for simulations

In our simulations, we employ a discrete-event approach to
odel, simulate, and evaluate the system [18]. 10 CSPs are con-
idered for serial simulations. For the simulations different set-
ings of Multi-Cloud are taken into consideration. A number of
ther CSPs ranging from one to nine are randomly selected as
eighboring CSPs for each CSPk to construct the set of Nk within
he system. The resources, Rk, of CSPk are generated within the
ollowing ranges randomly. The bandwidth of the CSPs is set to
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Fig. 3. Performance comparisons of OSMC and round-robin algorithms with SA in large–medium size systems.
Table 4
The parameters of CSPs in small scale system.
Parameters CSP 1 to CSP 10

Band. (GBPS) 960 240 610 490 900 770 460 200 830 450
Storage(PB) 124 160 186 148 360 820 188 184 840 180
Number of VM 2000 4000 10000 2000 2000 4000 2000 8000 4000 2000
Comp. (MIPS) 1000 8000 5000 10000 5000 5000 9000 6000 3000 7000
αk 84 69 38 84 51 57 71 43 31 19
βk 20 69 31 55 16 70 38 87 86 60
γk 50 90 83 65 82 67 35 29 35 54
the value randomly selected from [10, 1000], with the unit in
gigabit per second (GBPS). The storage space of CSPs is set to
the value randomly generated from [2, 200] PB. The number of
virtual machines in CSPs is set to the value randomly selected
from [1000, 100000], and the value of µc

k is set to the random
value from [500, 5000] MIPS. Further, it is assumed that the
performance of all the virtual machines within the same CSP
remains the same. In the previous section, the costs of each of the
unit resource in the CSPs have been defined as αk for bandwidth,
βk for storage, and γk for computation, which are set to the value
randomly chosen from [1, 100] with the unit of cost per 24 hours.
For each CSP, the upper bounds of the resources are set to be 0.95
of the total CSP resources.

In the simulations, four types of users are assumed: (1) u1
i :

urveillance users; (2) u2
i : Health Care users; (3) u3

i : Smart home
sers; and (4) u4

i : Environmental monitor users. We assumed
hat the resource requirements of these four categories of users
ere defined as r1i = [200, 100, 100], r2i = [100, 50, 1000],

3
i = [50, 20, 30], and r4i = [10, 10, 10] with the units of [KBPS,
GB, MIPS], respectively.1 In each of the simulation experiment,
the number of users is increased till no more users could be
scheduled. For each user, categories were determined randomly
between one to four using uniform distribution.

To compare the performance with OSMC , the simulations use
round-robin algorithm [7] as the benchmark algorithm. Round-
robin algorithm is selected as it is simple and is efficient for job
scheduling. In the round-robin algorithm, a list of all paths is

1 It may be noted that the parameter values chosen are for the purpose of
emonstration of the strategies and are not restricted to the actual parameter
alues in a practical setting.
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selected one after another for each user, until no more users can
be added to the system.

6.2. Experiments on small size of Multi-Cloud

In this set of experiments, we randomly generate a Multi-
Cloud with 10 CSPs. The parameters assumed for all CSPs are as
shown in Table 4. We generate a set of users with random classes
and schedule the users by using the OSMC and round-robin (RR)
algorithm, respectively. Initially, only the SA sequence is used. In
the later sections the effect of the sequences will be discussed by
carrying out further experiments.

For simulations purposes, the number of users are generated
from one to infinite. The simulation is stopped until no load
paths are available for the users. The upper bound utilizations
of bandwidth, storage, and computation capability were set to
0.95. For every set of users within the experiments, the average
utility costs per user are recorded with the increasing of user
numbers, until the end of the procedures, and the results are
illustrated in Fig. 3(b). It was observed that when the number
of users raises up to 754,054, both OSMC and RR terminate the
scheduling. It can be inferred that the current system settings
can support only 754,054 users. The resource utilizations of all
the CSPs are elaborated when the system cannot support adding
more users, as reported in Table 5.

In Table 5, computation capability is observed to be the bottle-
neck of the entire system. We can find that in either OSMC or RR
ρk = ck/(nk · µk)|∀CSPk has reached the upper limit of the system,
namely 0.95. The utilizations of other resources (e.g., storage and
bandwidth) are at very low levels, rarely exceeding 10%.

In Fig. 3(b), since the utilization of bandwidth and computa-

tion are very low when the number of users is at a very small
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Table 5
The utilizations of resources in CSPs.
Types Utilizations of CSP 1 to CSP 10

OSMC (ρk) 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
RR (ρk) 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
OSMC (band.) 0.001 0.004 0.007 0.011 0.012 0.013 0.039 0.041 0.448 0.075
RR (band.) 0.012 0.009 0.016 0.02 0.029 0.029 0.053 0.036 0.93 0.017
OSMC (storage) 0.003 0.018 0.031 0.013 0.016 0.021 0.029 0.066 0.024 0.932
RR (storage) 0.046 0.043 0.076 0.024 0.035 0.047 0.04 0.06 0.051 0.21
Fig. 4. Performance comparisons of algorithms with sequences SA, SB, and SC.
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cale, the user cost will account for the storage costs. Thus,
or each user, the OSMC searches for the best load paths, and
ensure the lowest costs. The RR considers whether resources can
support users, and schedules users one by ones. However, the
resources utilizations along the paths are not considered. The
RR will allocate more and more users to certain paths which
will lead to overloading while, many other paths remain very
low utilizations. With the user number increasing, the lowest
resources in the system soon dominate the costs, which then rises
rapidly. Herein, the CSP with the lowest computation power is
the lowest resource in this setting. Hereafter the path with the
lowest resources turn out to be saturated, the load paths with
the second, third lowest resources become saturated successively.
This clarifies that the costs of the RR grows steadily when the
number of users reaches certain small point. Since the cost per
user is considered, the cost may fluctuate when more users join
in the system, as indicated in the figure. It is anticipated that the
users with lowest resources along the paths will possess much
more costs compared with the average. By contrast, users are con-
sidered equally in the proposed OSMC algorithm which promotes
nearly the same costs for each user in the system. Merely after the
number of users increases around 400,000 that the cost begins to
rise slightly until the entire system becomes saturated. It may be
noted that when some thresholds of resources are set, and single
type of resources are the bottleneck in the system, both the RR
nd OSMC algorithms can take full usage of the entire system.

.3. Experiments on medium to large size of Multi-Cloud

To observe the scalability of the OSMC algorithm, in this set of
xperiments, the OSMC is compared with RR on Multi-Cloud, the
ize of which is large to medium. 50 Multi-Cloud are randomly
enerated. The topology of the system is generated randomly and
105
for each CSP, a range of one to nine neighboring CSPs may exist.
Similar to Section 6.1, the computation of the system is at first
set to be the system bottleneck and then, balance the recourses
to examine the performance of the OSMC and RR algorithms.

Referring to Fig. 3(a), which are the results of large to medium
ize systems when the bottleneck is from computation capacity,
t is observed that compared to the small size of Multi-Cloud, the
ystem can support much more users. For small number of users,
he cost per user of the RR shows a rapid increase and almost
eaches the peak around 0.2 × 106, which is 0.6% of 5.8 × 106

(i.e., the number of total users). On the other side, in most cases,
the cost per user of the OSMC can be maintained within a very
low scale, and reaches one when the number of users surpasses
5 × 106; whereas for the RR, the cost per users again retains
round 50.
The computation capacities of CSPs are balanced out with

he same methods used in Section 6.1 and carry out the ex-
eriments again. The results are presented in Fig. 3(b), where
he OSMC can support 28, 196, 493 users and the RR can merely
support 26, 388, 862 users. It also indicates when the cost of
users exceeds one for both the OSMC and RR algorithms.

From these experiments, it can be concluded that our pro-
posed OSMC is efficient, flexible and extensible, and can be ap-
plied for large scale systems.

6.4. Effects of scheduling sequences on OSMC and RR algorithms

As mentioned earlier, in our simulations, four categories of
users are generated that have distinct resource requirements or
priorities. Given a set of users, they can be scheduled one by
one by the algorithms, and follow certain pre-defined sequences,
e.g., SA, SB, and SC , as presented in the previous section. Fur-
thermore, we carry out several experiments based on small size
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ulti-Cloud for the OSMC and RR algorithms, to examine the
ffects of scheduling sequences on the final results. We assume
hat we have 100,000 users and the number of each type users
s set to 25,000. We report the final results of the OSMC and RR
lgorithms in Fig. 4.
In Fig. 4(a) OSMC-SA, OSMC schedules the users following the

A sequence, which performs steadily and the cost per user shows
slight fluctuation, which is around 4×10−5 units. For OSMC-SB,
he users with the lowest priorities are scheduled firstly, as more
nd more users are scheduled, the cost per user increases. On
he other side, for OSMC-SC , in which the users with the highest
priorities are scheduled firstly, the cost per user decreases. The
three curves converge to a single point, until all users have been
scheduled. In Fig. 4(b), we also observe that when all of the
users have been scheduled, the curves of RR-SA, RR-SB, and RR-SC
converge to a point, which is around 1 × 10−4.

From these experiments, we can find that there is no or
very small effect of scheduling sequences on the final results.
Because in the Multi-Cloud, millions of users are considered, it is
impossible to re-schedule all of the users that have been resolved
for some newcomers. It is very interesting to point out that
because the user sequences have no effect on the final results, our
proposed OSMC algorithm also has potential usage in dynamic
scenarios.

7. Conclusions and future work

This study proposed an optimal user scheduling algorithm for
CWA applications, named the Optimal user Scheduling for Multi-
Cloud (OSMC). Various factors were considered, including the
user requirements of bandwidth, storage, and computation, the
resources of CSPs that can provide, CSPs for data backup, and the
configurations of Multi-Cloud, cost models of CSPs. By using the
M/M/1 queueing model for communication cost, M/M/n queueing
model for computation cost and a fix value model for storage cost,
we formulate the problem of optimal user scheduling to minimize
the cost per user in the Multi-Cloud environment. In our proposal
solution, we develop a list of potential load paths and choose the
optimal one with the MFDL for each of user within the system.

The performance of OSMC algorithm was compared with RR
in our experiments. Simulations were carried out on Multi-Cloud
with 10 CSPs, Further, we were able to prove that the OSMC is
scalable, extensible, and convenient for implementation. In all
areas considered, the OSMC outperforms the RR, including cost
per user, maximum number of users supportable by the system,
resource utilizations of CSPs. Our methodology can be applied to
other utility cost models, such as learning curve, to satisfy various
requirements of different Multi-Cloud. We also find that the order
of the user scheduling has no effect on the final cost per user and
the OSMC can be easily extended to dynamic situations without
pre-defined set of users.

In cloud/edge computing systems, privacy-preserving [20], se-
curity [23], etc., are very important. In our future work, we
shall address these challenges and consider the corresponding
computational cost in our framework.
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