
3430 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 11, NOVEMBER 2023

Digital Twin Constructed Spatial Structure for
Flexible and Efficient Task Allocation

of Drones in Mobile Networks
Bo Yi, Member, IEEE, Jianhui Lv , Member, IEEE, Jiahao Chen, Xingwei Wang , and Keqin Li , Fellow, IEEE

Abstract— Applying the Multiple Drones System (MDS) to
perform the repetitive and dangerous tasks for human in many
complex environments has become a trend all around the world,
due to the increasing capacity of mobile communication and the
increasing intelligence of drone robots. However, to fulfill the tar-
get with less cost as much as possible, drones need to collaborate
deeply with each other to make the optimal decision, which is now
important and challenging. In this work, we focus on addressing
the efficient task allocation among large-scale drones with the
object of minimizing the resource waste and cost, which is proved
to be NP-hard. Specifically, we first introduce the Digital Twin
(DT) technology to dynamically construct the spatial structure for
drones, in which a density clustering based algorithm is proposed
to decompose the large-scale task allocation problem among all
drones into smaller sub-problems among partial drones. Then,
for each sub-problem, we propose an improved auction algorithm
to allocate the sub-tasks to local drones according to the task
difficulty and drone ability. The experimental results indicate that
the proposed method outperforms the state-of-the-art methods
in terms of the moving distance, resource utilization and task
completion time, etc.

Index Terms— Digital twin, drones, mobile network, spatial
structure, task allocation.

I. INTRODUCTION

WITH the rapid development of wireless communication
technology (e.g., 5G/6G) and Artificial Intelligence

(AI) technology, robots are becoming more and more prac-
tical and useful, since 5G/6G [1] gives robots the ability to
communicate and AI gives robots the ability to think indepen-
dently [2]. In this case, robots can take the place of human
to perform the repetitive or heavy tasks efficiently in some
complex and even dangerous environments. For example, the
robots can be used to execute the search and rescue tasks
in disaster areas. Compared to the manual search and rescue
process, robots can finish the task safely using much less time,

Manuscript received 13 November 2022; revised 16 May 2023; accepted
4 August 2023. Date of publication 2 October 2023; date of current version
26 October 2023. This work was supported in part by the National Natural
Science Foundation of China under Grant 62002055, Grant 62202247, Grant
61872073, Grant 62032013, and Grant U22A2004; and in part by the Funda-
mental Research Funds for the Central Universities under Grant N2316006.
(Corresponding author: Jianhui Lv.)

Bo Yi, Jiahao Chen, and Xingwei Wang are with the College of Computer
Science and Engineering, Northeastern University, Shenyang 110169, China.

Jianhui Lv is with the Pengcheng Laboratory, Shenzhen 518055, China
(e-mail: lvjh@pcl.ac.cn).

Keqin Li is with the Department of Computer Science, The State University
of New York, Buffalo, NY 14260 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSAC.2023.3313193.

Digital Object Identifier 10.1109/JSAC.2023.3313193

so as to improve the survival opportunity of disaster victims
greatly [3].

Drone, as one particular kind of robots, becomes a hot topic
in mobile networks [4]. Similarly, drones can be applied to
execute repetitive or heavy tasks for human. The difference
is that the ground robot works in a two-dimensional space,
while the drone robot works in a three-dimensional space [5],
which makes the problem much more complex. Nowadays,
the task, as well as its execution environment, both become
more and more complex. In this condition, the traditional
single-drone mode is not able to handle such complex situation
efficiently, due to its capacity and power limitations. Then,
multiple simple drones are composed together to execute the
same task in a collaborative way, which is referred to as the
Multiple Drones System (MDS) [6].

By establishing the group collaborative model among
drones, MDS can be used to address much more complex
and diverse tasks compared to the single-drone mode. In this
case, there are already a lot of research being proposed
to discover the most optimal collaboration model among
drones [7], [8], [9], [10]. However, when taking the actual
environment into consideration, these work typically suffer
from: 1) in MDS, each drone needs not only perform its
own sub-tasks, but also collaborate with other drones to finish
the overall task, which makes the collaboration and decision
much more challenging; 2) multiple drones are used to fulfill
the same task, so that how to reach the consensus among
them on task allocation and how to make a trade-off when
task conflict occurs between single-drone and drone-group,
are both challenging; 3) the time complexity of obtaining
the optimal solution for task allocation among drones is
proportional to the number of drones and tasks, which makes
this problem NP-hard.

Aiming at addressing these challenges mentioned above,
we first apply the technology of Digital Twin (DT) and the
idea of auction theory into our design so as to propose a DT
supported novel framework for MDS spatial structure con-
struction, based on which an auction based algorithm is then
proposed to address the large-scale task allocation problem
among drones in MDS. Specifically, the main contributions of
this work are summarized as follows:

• We establish a DT supported novel MDS framework,
in which the spatial structure for drone is constructed
dynamically and can be used to guide the task allocation
and execution.

0733-8716 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on October 28,2023 at 14:18:30 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0884-6601
https://orcid.org/0000-0003-2856-4716
https://orcid.org/0000-0001-5224-4048

YI et al.: DT CONSTRUCTED SPATIAL STRUCTURE FOR FLEXIBLE AND EFFICIENT TASK ALLOCATION OF DRONES 3431

• We mathematically formulate the large-scale task alloca-
tion problem among drones in MDS, which is then proved
to be NP-hard.

• blueWe decompose the large-scale task allocation
problem with discrete clustering objects into several
non-intersecting and complete sub-problems for solving
using the density clustering and collaboration mech-
anisms respectively. These sub-problems are to be
addressed in parallel to reduce the computing and com-
munication cost.

• We propose an improved auction based algorithm to
establish the allocation relationship between drones and
sub-tasks in sub-problems, which jointly considers the
drone moving distance, drone capacity, task load balance
and task completion time, so as to avoid the drone
resource waste as much as possible.

The rest of this work are summarized as follows. Section II
summarizes the related work. Section III introduces the
designed system framework for spatial structure based MDS.
Section IV proposes an efficient algorithm to address the task
allocation among large-scale drones. Section V shows and
analysis the experimental results. Section VI concludes this
work.

II. RELATED WORK

The task allocation problem in MDS has been studied
by a lot of research. By analyzing the state-of-the-art work,
we summarize them into three categories which are the intel-
ligent optimization based task allocation, the auction based
task allocation and the spatial structure based task allocation
respectively.

A. Intelligent Optimization Based Task Allocation

As explained, the task allocation problem in MDS is
NP-hard, so that it usually takes very long time solve the for-
mulated Integer Linear Programming (ILP) [8] problem model.
Hence, many intelligent optimization methods are proposed.
For example, Ref. [9] proposed to address the large-scale task
allocation in the drone network using the genetic algorithm,
while Ref. [10] applied the variable neighborhood Simulated
Annealing (SA) [11] algorithm. In addition, the particle swarm
optimization is also another kind of intelligent optimization
method that was leveraged by Ref. [12] to implement a simple
but efficient task clustering among drones. Another work
using the dynamic distributed Particle Swarm Optimization
(PSO) [13] method to solve the task allocation of drones was
proposed in [14]. The difference between them was that the
former was carried out in a centralized manner while the latter
was in a distributed manner.

The SA and PSO based methods were usually unstable,
because their corresponding computational convergence speed
was greatly affected by the drone environment which was
very complex and dynamic. Therefore, Ref. [15] proposed
a meta method which generated multiple solutions for the
problem, so that the solution robustness towards achieving
the optimal single-object was improved. Besides, the robot

behavior was also used to help making decisions for task
allocation. For example, Ref. [16] separated the robots into two
kinds according to their behavior. Then, one kind focused on
high-level tasks such as communication and task recognition,
while the second kind focused on low-level tasks such as navi-
gation and obstacle avoidance. Moreover, Ref. [17] proposed a
threshold based clustering strategy for task allocation, in which
the threshold value was calculated also based on the robot
behavior to the available resource.

Generally, the SA/PSO based methods are suitable for
relatively static environments, while the behavior based intel-
ligent optimization methods are suitable for task allocation in
dynamic environments [18]. Nevertheless, we should be aware
that the task environment of drone is becoming more and more
complex, which makes the traditional intelligent optimization
methods no longer effective. Although the behavior based
methods provide scalable and robust solution for drone task
allocation, they also cost great energy consumption and time.

B. Auction Based Task Allocation

The relationship between tasks and drones can be easily
formulated as an auction model, where tasks are the items
for auction and drones are bidders. Following this idea, many
work have been proposed. For example, targeting on solving
the multiple robots collaboration problem, Ref. [19] proposed
an auction based algorithm. In this work, the centralized
auction mode was used, that is, all the tasks were allocated to
bidders in order. However, it is aware that the centralized mode
would easily results in performance bottleneck. Reconsidering
this situation in the drone task allocation scenario, the node
selected to perform auction process would also require high
cost and energy to remain reliability, since the failure of this
node may stop all drones from working [20].

Then, distributed auction is leveraged to ease such bottle-
neck. For example, Ref. [21] proposed to solve the drone flying
path planning and the task allocation jointly. In particular, the
task allocation was solved by a distributed auction algorithm,
namely, there were not only one node that can perform
the auction process. In this case, the failure of one node
would not affect the other drones from working. Besides,
Ref. [22] divided the region into several parts and selected
one primary drone for each part to execute the task allocation
process locally. Similarly, Ref. [23] also proposed a distributed
algorithm to address such distributed task allocation problem.
Despite this, we should be aware that distributed structure
suffers from frequently communication and may not be able
to well response to dynamically arriving tasks.

Therefore, the above two auction modes are combined in
many other state-of-the-art studies. One typical example was
proposed in Ref. [24], where a hybrid auction algorithm was
proposed. This work first followed the ideas in [22] and [23].
The difference was that this work also selected a centralized
controller for these separated primary nodes.

C. Spatial Structure Based Task Allocation

It has been mentioned that the number of drones is continu-
ously increasing and the environment in which drones execute

Authorized licensed use limited to: Northeastern University. Downloaded on October 28,2023 at 14:18:30 UTC from IEEE Xplore. Restrictions apply.

3432 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 11, NOVEMBER 2023

the tasks is also becoming more and more complex. All these
trends lead to the poor performance of both the intelligent
optimization and auction based algorithms. In this regard,
Ref. [25] was proposed and it created a hierarchical structure
among drones, in which some drones were leaders and some
were followers. Based on this structure, the task allocation
was carried out following the greedy strategy. Obviously, this
algorithm reduced the time complexity, but it also suffered
from the priori allocation challenge of resource [26]. On one
hand, the resource allocation was difficult to obtain in advance.
On the other hand, the greedy strategy would easily lead to
resource waste.

Another work [27] also formulated the hierarchical structure
for drones which were separated into different groups. In par-
ticular, this work intended to decompose the problem into two
levels, that is, the group level and the individual level. Then,
the complex task beyond the individual drone’s capacity would
be assigned to the group drones. Moreover, Ref. [28] studied
the uncertain factors in the drone spatial structure, such as the
drone risk level and the chaos drone path. Then, it introduced
a task reassignment mechanism to ease the side-effects caused
by these uncertain factors.

Nevertheless, it is aware that these work focused on estab-
lishing the drone space using a hierarchical structure which
suffered from poor fault tolerance.

III. DT SUPPORTED MDS FRAMEWORK
AND PROBLEM MODEL

A. System Framework

Generally, the tasks in a MDS scenario can be divided
into two categories which are the searching task and the
rescue task. In particular, these tasks will gather as clusters
in different locations. Besides, the number of drones increases
with the increasing of the number of tasks, which results
in exponential growth of the computing complexity towards
optimal task allocation. Hence, the large-scale drone task
allocation in MDS should be considered and optimized. Since
drones work in the three-dimensional space, we first introduce
DT into this work to construct the spatial structure for drones.
Then, in this DT supported spatial structure, we mainly focus
on the task cluster division to reduce the complexity when
fulfilling the task allocation.

The DT supported MDS framework is designed and shown
in Fig. 1, where there are two planes, that is, the real-plane
and the emulated-plane. In particular, on one hand, the bottom
plane is the real-plane that consists of the elements in the
real world. The physical searching drones in this plane will
collect the corresponding task and environment data for DT
to construct the emulated-plane (i.e., the collected information
will be transferred to emulated-plane through the DT channel).
On the other hand, the upper plane is the emulated-plane that
is constructed using the DT technology, and it focuses on
emulating the practical environment on from the real world
including the drones, tasks, areas, etc. After the construction
of the emulated-plane, it can then be used to guide the drone
task allocation in a more flexible manner. Moreover, the drones
in the spatial structure are divided into different groups and

Fig. 1. DT enabled system framework.

responsible for tasks in different areas, thus to decompose the
large-scale and complex task allocation problem into smaller
sub-ones which can then be solved in parallel efficiently.

B. Problem Model

1) Drone: There are two kinds of drones in this model,
which are the searching drone and the rescue drone. The
searching drones are equipped with detecting sensors and the
rescue drones are equipped with resources such as medicine
and food. Thus, we denote the set of drones by D =
{DS , DR}, where DS = {dS

1 , dS
2 , . . . , dS

|DS |} and DR =
{dR

1 , dR
2 , . . . , dR

|DR|}. Given any drone di ∈ D, the maximum
number of tasks this drone can carry is set to dl

i, due to the
power limitation of drones. Meanwhile, the capacity of di is
denoted by dc

i , which indicates the task difficulty level that can
be processed by di. The position of any drone can be denoted
by a triple pos(di) = (xd

i , y
d
i , zd

i), where xd
i , y

d
i , zd

i indicate
the coordinates of three dimensions.

2) Task: Similarly, there are two kinds of tasks and
we denote them by T = {TS , TR}, where TS =
{tS1 , tS2 , . . . , tS|T S |} and TR = {tR1 , tR2 , . . . , tR|T R|}. In partic-
ular, TS represents the searching tasks and TR represents the
rescue tasks. Given any task tj ∈ T , it has a difficulty level
denoted by tdj and the task should be allocated to the drone
having close capacity in order to avoid resource waste as much
as possible. Each task is also attached with the coordinates that
are formulated as the triple pos(tj) = (xt

j , y
t
j , z

t
j).

3) Mapping Between Drones and Tasks: Now, the tasks
should be allocated to the drones, so that a binary variable
is defined as follows:

Xj
i =

{
1, if tj is allocated to di.

0, otherwise.
(1)

It is noted that Xj
i = 1 happens only when the following

constraints are satisfied,

(di ∈ DS&&tj ∈ TS)||(di ∈ DR&&tj ∈ TR) (2)

tdj ≤ dc
i (3)

where the first constraint makes sure that the task is allocated
to the same kind of drone and the second constraint guarantees
that the drone is able to process the allocated task.

Authorized licensed use limited to: Northeastern University. Downloaded on October 28,2023 at 14:18:30 UTC from IEEE Xplore. Restrictions apply.

YI et al.: DT CONSTRUCTED SPATIAL STRUCTURE FOR FLEXIBLE AND EFFICIENT TASK ALLOCATION OF DRONES 3433

Fig. 2. Basic structure for task allocation.

4) Objective: The object of this model is to minimize the
overall flying distance. Actually, it is proportional to the over-
all cost, because the drones need power to support its flying.
In this way, the longer the flying distance, the more power
consumed, which naturally leads to higher cost. In addition,
we should also be aware that the smaller the distance, the lower
the energy consumption and cost, and the faster the rescue
speed. Taking these conditions into consideration, our object
is to minimize the overall drone flying distance, as follows:

Minimize:
∑

i∈[1,|D|]

∑
j∈[1,|T |]

dis (pos(di), pos(tj)) Xj
i

s.t.
∑

i∈[1,|D|]

Xj
i = 1

1 ≤
∑

j∈[1,|T |]

Xj
i∑

j∈[1,|T |]

tdjX
j
i ≤ dc

i

(1), (2), (3) (4)

where dis(∗) indicates the Euclidean distance between any
two points. Assuming that the spatial geographical locations
of di and tj are (xd

i , y
d
i , zd

i) and (xt
j , y

t
j , z

t
j) respectively, then

the distance between them is calculated as follows:

dis (pos(di), pos(tj))

=
√

(xd
i − xt

j)2 + (yd
i − yt

j)2 + (zd
i − zt

j)2. (5)

IV. DT SUPPORTED SPATIAL STRUCTURE BASED DRONE
TASK ALLOCATION ALGORITHM

The large-scale drone task allocation problem in MDS
is NP-hard and the proof can be found in the Appendix.
Hence, we cannot solve it in linear time simply using the
integer linear programming based methods. In this work,
to reduce the computing complexity and time complexity,
we first decompose the large-scale task allocation problem into
several sub-problems which are then solved by a proposed
improved auction based algorithm. The basic structure for
task allocation is shown in Fig. 2, where the task clusters are
generated by density clustering based strategy and the drone
groups are created by a collaboration based strategy.

A. Spatial and Density Clustering Based Problem
Decomposition

According to the actual disaster situation in real world, the
rescue tasks usually exist in clusters, so that the places of task
clusters can be viewed as the dense region which is divided by
some low-density regions in the spatial space. In this regard,

the density clustering based method is leveraged to carry out
the task division in the spatial space created by DT.

As explained, the tasks are denoted by the set of T
with the size n = |T | and each task tj is drawn from a
three-dimensional space of the real values (xt

j , y
t
j , z

t
j), where

(xt
j , y

t
j , z

t
j) ∈ R3. Now, given any task tj , we set its nearest

neighbor distance as ϵ, based on which two neighborhood
functions are firstly defined for tj as follows:

Definition 1: The ϵ-nearest neighborhood of the task tj is
defined by the set of Nϵ(tj) = {θi

j |i ∈ [1, |Nϵ(tj)|]}, where
the following constraints should be satisfied.

• Nϵ(tj) ⊆ T/{tj},
• |Nϵ(tj)| = ϵ,
• dis(pos(tj), pos(tj′)) ≤ dis(pos(tj), pos(tj′′)),
∀tj′ ∈ Nϵ(tj), tj′′ ∈ T/(Nϵ(tj) + {tj}).

Definition 2: The reverse ϵ-nearest neigborhood of the task
tj is defined by the set of Rϵ(tj) = {ϕi

j |i ∈ [1, |Rϵ(tj)|]},
where the following constraints should be satisfied.

• Rϵ(tj) ⊆ T/{tj},
• tj ∈ Nϵ(tj′), ∀tj′ ∈ Rϵ(tj).

It is commonly known that there are three types of samples
in density clustering, which are observed to be core, boundary
and noise. In this paper, each task is a sample and set to core,
boundary or noise according to the distance between it and
other tasks. Based on such mapping relationship, it is stated
that: 1) a task tj ∈ T is a core observation iff Nϵ(tj) ≥ ϵ; 2) tj
is a boundary or noise observation if Nϵ(tj) < ϵ. In particular,
the core and boundary observations indicate tasks that will be
finally clustered, while the noise observations are interfering
samples that do not need to be clustered.

There exists the reachability relationship between any two
task observations, which is an important metric to generate
task clusters, so that we define it as follows:

Definition 3: A task tj is directly density reachable to
another task tj′ , if

• Nϵ(tj) ≥ ϵ,
• tj′ ∈ Nϵ(tj).

where the first constraint indicates that tj should be a core
observation and the second constraint indicates that tj′ should
be within the ϵ-nearest neighbors of tj . For simplicity, we use
→ to represent directly density reachable.

In fact, the directly density reachable is non-symmetric.
However, according to definition 3, we can say that a task
tj is density reachable (represented by the notation ⇝) to
another task tj′ if there exists a chain of observations like
(tj1 , tj2 , . . . , tjm

), where tj1 = tj′ , tjm
= tj and tji

is directly
density reachable to tji+1 ,∀i ∈ (1, m). This concludes to the
following lemma:

Lemma 1: The density reachable is transitive, that is, tx is
density reachable to tz , if ∃ty is density reachable to both tx
and tz .

Apparently, in definition 3, the density reachable is a
canonical extension of the directly density reachable with the
transitive feature. Taking this characteristic into consideration,
we have the following theorem:

Authorized licensed use limited to: Northeastern University. Downloaded on October 28,2023 at 14:18:30 UTC from IEEE Xplore. Restrictions apply.

3434 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 11, NOVEMBER 2023

Theorem 1: The task observation tj is symmetrically den-
sity connected to the task observation tj′ if they are both
density reachable from tj′′ .

Proof: Let the three task observations be in the same
task observation chain denoted by (tj′ , tj′′ , tj) in sequence,
on one hand, tj′ is density reachable to tj′′ and tj′′ is density
reachable from tj , that is, tj′ ⇝ tj′′ ⇝ tj . Based on the
transitive characteristic among task observations, we have
tj′ ⇝ tj . On the other hand, we denote the observation
chain by (tj , tj′′ , tj′) on the contrary sequence, so that similar
reduction process can be applied to achieve that tj ⇝ tj′′ ⇝
tj′ . Combining the two cases, Theorem 1 is proved. □

Now, based on the above definitions, we give the task cluster
definition as follows:

Definition 4: A cluster C consists of many tasks within
the ϵ-nearest neighbors and C(̸= ∅) ⊆ T should meet the
following constraints that
• ti ⇝ tj ,∀ti, tj ∈ C,
• tj ∈ C(⊆ T),∀ti ∈ C&&ti ⇝ tj .
It is noted that there are soft clustering and hard clustering.

The former allows one task been assigned to multiple clusters
while the latter do not. In this work, we also define that
one task can only be assigned to one cluster. Despite this,
we should be aware that, for any boundary task ∈ C, it may
also be the boundary of another cluster C ′, such that a
selection process must be provided to fulfill this constraint.
Since the boundary tasks do not have much effects on the
overall clustering, so that a random approach is used to make
the selection.

Given any cluster C, it includes many tasks (core or
boundary). To better describe the features of C, we define that
the density of C is equal to the maximum directly density
reachable distances among all core task observations in C.
In this way, the density of C is calculated as follows:

dens(C) = max
ti,tj∈C

dis(pos(ti), pos(tj)), (6)

where 1)Nϵ(ti) ≥ ϵ; 2)Nϵ(tj) ≥ ϵ; 3)ti ⇝ tj ; 4)ti, tj ∈ C,
should be satisfied.

Based on the above definitions, we can carry out the task
clustering process in terms of the task set T and the nearest
neighbor parameter ϵ. Firstly, for any initial and unclustered
task tj , we first calculate its neighbors as follows:

neighbors(tj) = Nϵ(tj) + {tj′ ∈ Rϵ(tj) : |Rϵ(t′j)| ≥ ϵ}.
(7)

For any neighbor of tj , let’s say ni ∈ neighbors(tj),
it follows two conditions that 1) ni will be classified in a
new cluster as the core if it is unclustered and Nϵ(ni) ≥ ϵ. 2)
otherwise ni is in the cluster whose core is tj . Following the
above principle, we formulate the task division problem as a
directed ϵ nearest neighbor graph denoted by Gϵ(V,E), where
V equals to the task set T and E describes the connection
relations. For example, for any (u, v) ∈ E (u, v ∈ V), let u
be the core task observation, then, v is one of the ϵ nearest
neighbors of u (i.e., v ∈ Nϵ(u)). In this way, the core nodes
in V is calculated as follows:

core = {v ∈ V |Nϵ(v) ≥ ϵ} (8)

According to (8), we can obtain some new clusters denoted
by C = {C1, C2, . . . , Cl} which is initially defined by weakly
connected components (i.e., tasks) within the core observation
subgraph Gϵ/(V/core). Then, these new clusters will be
expanded by the breadth first search through all unclustered
reachable task observations. Specifically, given any unclus-
tered node v /∈ Ci,∀i ∈ [1, l], if ∃u, making

1) u ∈ Ci,
2) u ∈ core,
3) v ∈ Nϵ(u),

satisfied, v is assigned to the cluster Ci by cluster expansion
of Ci = Ci ∪ v. Repeating the above process until all tasks
are clustered.

According to the calculated task clusters, we next need to
separate drones into different groups, so that one drone group
can serve one task cluster. As explained, the tasks around the
same area are in one cluster, so that the smaller the task
cluster, the shorter the survival time may be, because this
situation means that such rescue tasks occur in some remote
regions with less resource. In addition, considering the urgent
characteristics of the rescue task, we need to first fulfill the
cluster with less tasks. Based on the above consideration,
we sort the cluster set C = CS ∪ CR in ascending order
of the task number in each cluster Ci ∈ C,∀i ∈ [1, |C|].
In particular, CS represents the searching task set and CR

represents the rescue task set.
Since the searching drones do not need to carry special

things and perform the same function, so that the rescue task
cluster should be satisfied in the first place. For all the clusters
in CR, the rescue drones are assigned according to their rate,
as follows:

GR
i =

|CR
i |∑

i∈[1,|CR|
CR

i

× |DR|, (9)

where GR
i indicates the number of rescue drones assigned to

perform the tasks in CR
i under the constraint that:

|CR
i | ≤

∑
i∈[1,|GR

i |]

dc
i . (10)

Note that, if there exists any pair of CR
i and GR

i that violates
the constraint in (10), i.e., |CR

i | >
∑

i∈[1,|GR
i |]

dc
i , we need to

exchange GR
i and GR

i′ which is searched to fulfill the following
linear target.

Minimize : ||GR
i′ | − |GR

i′ ||

s.t.
∑

i′∈[1,|GR
i′ |]

dc
i′ > |CR

i |

∑
i∈[1,|GR

i |]

dc
i′ > |CR

i′ |

|GR
i′ | > |GR

i | (11)

Now, assuming that the groups are already classified for
the rescue drones and denoted by G = {Gi|∀i ∈ [1, |G|]},
then, given the group Gi, the searching drones are assigned
by |Gi|∑

i∈[1,|G|
Gi
×|DS |, where the drones in Gi are used to serve

Authorized licensed use limited to: Northeastern University. Downloaded on October 28,2023 at 14:18:30 UTC from IEEE Xplore. Restrictions apply.

YI et al.: DT CONSTRUCTED SPATIAL STRUCTURE FOR FLEXIBLE AND EFFICIENT TASK ALLOCATION OF DRONES 3435

Algorithm 1 Spatial and Density Clustering Based
Task and Drone Decomposition
Input: Task set T , drone set D, ϵ
Output: Task cluster set C and drone group set G

1 C, G, core← ∅;
2 i← 0;
3 for ti ∈ T do
4 Nϵ(ti)← Calculate the ϵ neighbors for ti;
5 if Nϵ(ti) ≥ ϵ then
6 core← core ∪ ti;

7 for ti ∈ core do
8 Ci ← {ti};
9 for tj that is directly reachable to Ci do

10 if tj ∈ Nϵ(ti) and unclustered then
11 Ci ← Ci ∪ tj ;

12 Sort C in ascending order based on the number of
tasks;

13 for Ci ∈ C do
14 Calculate the drone group Gi for Ci based on (9);
15 if (10) is violated between Gi and Ci then
16 Find Gj ∈ G according to (11) and exchange

Gi and Gj ;

17 G← G ∪Gi;

18 return C, G;

the tasks in Ci. The corresponding pseudo-code is shown in
Algorithm 1.

B. Improved Auction for Decomposed Task Allocation

Since the large-scale task allocation is decomposed into
small-scale ones, we next can address the small-scale task allo-
cation problems in parallel, so as to improve the efficiency. For
one task cluster Ci = {tji |j ∈ [1, |Ci|]} and the corresponding
drone group Gi = {dk

i |k ∈ [1, |Gi|]}, we propose an improved
auction algorithm to solve the task allocation between Ci and
Gi. Apparently, to establish the mapping relationship, we have:
1) the tasks in Ci are auction items; 2) the drones in Gi are
the bidders; 3) a virtual auction agent should be introduced so
as to manage and host the auction process.

Firstly, for each auction task tji , it requires a basic starting
bidding price which is evaluated by its difficulty level (i.e.,
tj,di). Secondly, for each bidder dk

i , it needs to bid during
each round of auction. Considering the special nature of
drone rescue, the bid price of each drone is comprehensively
determined by the distance between dk

i and tji , the gap between
its capacity (i.e., dk,c

i) and task difficulty level (i.e., tj,di), and
the task loads on dk

i . In addition, Different drones may offer
different prices, so that we should also normalize the three
price indicators. Then, according to the previous definitions,
the three aspects can be calculated and normalized as follows:

distance(dk
i , tji) =

dis(pos(dk
i), pos(tji))

max
dk

i ∈Gi,t
j
i∈Ci

dis(pos(dk
i), pos(tji))

(12)

gap(dk
i , tji) =

|dk,c
i − tj,di |

max
dk

i ∈Gi,t
j
i∈Ci

|dk,c
i − tj,di |

(13)

load(dk
i) =

∑
j∈[1,|Ci|] X

j
k

max
k∈[1,|Gi|]

∑
j∈[1,|Ci|] X

j
k

, ∀k ∈ [1, |Gi|]

(14)

Apparently, the farther the distance between the task and the
drone, the higher the cost will be spent to perform this task.
Besides, the drone can bid the task item, only when its capacity
exceeds the task difficulty level. However, the larger the gap,
the higher the cost, because the extra capacity maybe wasted.
Lastly, the more tasks auctioned by this drone, the higher cost
will be for this drone to bid other task items, because these
tasks are usually not in the same place. One task may be
very far from drone and all the task geographical positions
maynot be fully taken into consideration when executing the
task allocation, such that the drone would need to pay more
cost on the extra flying distance and power consumption from
the position of one task to the position of another. Therefore,
we formulate the bidding price for the bidder dk

i , as follows:

pricej,k
i = ω1distance(dk

i , tji)

+ ω2gap(dk
i , tji) + ω3load(dk

i), (15)

where ω1, ω2, ω3 are the coefficiencies limited by the con-
straint that ω1 + ω2 + ω3 = 1.

Then, based on the above definitions, the problem becomes

Minimize :
∑

j∈[1,|Ci|]

∑
k∈[1,|Gi|]

pricej,k
i ×Xj

k

s.t.
∑

j∈[1,|Ci|]

Xj
k ≤ 1, ∀k ∈ [1, |Gi|]∑

k∈[1,|Gi|]

Xj
k ≤ 1, ∀j ∈ [1, |Ci|]

dk,c
i ≥ tj,di , ∀j, k, Xj

k = 1, (16)

where the first constraint means that one bidder can only
successfully bid one task item in one round auction. The
second constraint means that one task item can only be
assigned to one bidder. The third constraint makes sure that
the bidder has the capacity to process the task item.

Next, we need to fulfill the task allocation for searching
drones and rescue drones respectively. For the searching tasks,
its difficulty level reduces to zero, so that we do not need
to consider the second part in (15) and the corresponding
coefficiencies are set as ω1 = 0.6, ω2 = 0, ω3 = 0.4 according
to their effects on the cost. Unlike the traditional auction that
selects the solution which can maximize the profits. In this
paper, the goal is to minimize the cost spent on performing
the searching and rescue tasks.

In order to make it clear and easy to follow, we simplify
the three-dimensional scenario as a two-dimensional scenario,
in which the searching task allocation principle is explained.
For example, as shown in Fig. 3, there are two searching
drones and three searching tasks in (a). The bidding prices of
dS
1 and dS

2 can be calculated according to (15) and we can see

Authorized licensed use limited to: Northeastern University. Downloaded on October 28,2023 at 14:18:30 UTC from IEEE Xplore. Restrictions apply.

3436 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 11, NOVEMBER 2023

Fig. 3. Searching task allocation illustration. (a) 2 drones and 3 tasks scenario. (b) First round bidding. (c) Second round bidding. (d) Third round bidding.
(e) tS4 appear. (f) New round bidding.

Fig. 4. Rescue task allocation illustration. (a) 2 drones and 2 tasks scenario. (b) Bidding. (c) New task arrival. (d) Task sequence adjustment.

that the normalized bidding prices in the first round are shown
in (b), where dS

2 provides the lowest price for tS1 , so that tS1 is
added to the task list of dS

2 as List(dS
2) = List(dS

2) ∪ {tS1 }.
Note that, the searching distance will be doubled if the drone
begins executing the second task from its origin, so that
the ending position of the previous task will be the starting
position of the next task. This design is reflected in the auction
process, so that we have

pos(dS
2) = pos(tS1). (17)

The second round auction is shown in Fig. 3(c), where
dS
2 provides a bid on the basis of tS1 , which means that

the corresponding distance, gap and load of dS
2 are changed

in this round. In this way, the normalized bidding prices
are 0.18 (dS

1 for tS2), 0.32 (dS
1 for tS3), 0.39 (dS

2 for tS2),
0.28 (dS

2 for tS3) respectively. Hence, dS
1 provides the lowest

price for tS2 , so that tS2 is added to the task list of dS
1 as

List(dS
1) = List(dS

1)∪{tS2 }. Similarly, the third round auction
is carried out after dS

1 and dS
1 update their positions, and shown

in Fig. 3(d). However, new searching tasks would appear
suddenly. For example, a new searching task tS4 appears next
to tS3 in 3(e) and the bidding process is shown in 3(f), in which
we can also observe that this new round bidding is carried out
based on the result of the previous auction.

On the other hand, for the rescue task, the auction process
follows similar principles as in the searching task auction and
the coefficiencies are set as ω1 = 0.42, ω2 = 0.28, ω3 = 0.3.
Then, an example is given in Fig. 4, where 4(a) provides
a scenario with 2 rescue drones and tasks and 4(b) shows
the bidding process. Apparently, the bid price is calculated
according to equation (15) and dR

1 offers the lower cost
for tR1 and tR2 . However, unlike the searching task with the
execution difficulty approaching to zero, the rescue task has
basic requirements, that is, the rescue task difficulty exceeds
zero. Hence, although dR

1 offers the lower cost for tR1 , its
capacity is lower than the requirements of tR1 , that is, dc

1 < td1.
In this case, the auction results are that tR1 is allocated to dR

2

and tR2 is allocated to dR
1 .

Nevertheless, we should be aware that the position and the
load of the rescue drone will be changed after every round
of auction, which would result in a situation that the drone
may need to go back to the origin for re-supply before it can
perform the next task. Returning to the origin will increase
the flying distance and leads to extra cost. In this regard, the
task execution sequence should be dynamically adjusted for
drones. Given the drone dR

i and its task list List(dR
i), if new

bidding tRj is obtained by dR
i , then, we can 1) insert tRj into

appropriate position in List(dR
i); 2) re-arrange all elements

in List(dR
i)∪{tRj }. Regarding the two ways, we come to the

following theorem.
Theorem 2: Let |List(dR

i)| = n, the new task insertion
operation can improve the computing efficiency by O(n!) with
up to twice the distance cost compared with task re-ordering.

Proof: Denoting the new bidding task by tRk′ , then there are
two cases. Firstly, we can insert tRk′ into List(dR

i), so that
we have |List(dR

i)| = n + 1 with the worst searching
complexity of O(n + 1). Secondly, if we re-order all the
elements in List(dR

i) to achieve a global optimal execution
order, the worst time complexity is O((n + 1)!) according to
the permutation theory. Hence, the time complexity can be
improved by about O((n+1)!)

O(n+1) = O(n!).
In addition, assuming that tRk′ is inserted between tRk and

tRk+1, then we have

dis(pos(tRk), pos(tRk′)) ≤ dis(pos(tRk), pos(tRk+1))

dis(pos(tRk′), pos(tRk+1)) ≤ dis(pos(tRk), pos(tRk+1)). (18)

Regarding tRk , tRk′ , t
R
k+1 as the three vertices of a triangle,

then according to the length relationship between the three
edges of a triangle, it follows that

dis(pos(tRk), pos(tRk′)) + dis(pos(tRk′), pos(tRk+1))

≥ dis(pos(tRk), pos(tRk+1)) (19)

Now, substituting (18) into (19), we can obtain the lower and
upper distance bounds, that is, [1, 2]×dis(pos(tRk), pos(tRk+1)).
In addition, the distance is directly proportional to the cost in
this phase, so that the cost spent on new task insertion is up

Authorized licensed use limited to: Northeastern University. Downloaded on October 28,2023 at 14:18:30 UTC from IEEE Xplore. Restrictions apply.

YI et al.: DT CONSTRUCTED SPATIAL STRUCTURE FOR FLEXIBLE AND EFFICIENT TASK ALLOCATION OF DRONES 3437

Algorithm 2 Auction Based Task Allocation
Input: cluster set C, drone group set G
Output: Task allocation solution

1 i← 0;
2 for Ci ∈ C and Gi ∈ G do
3 for tji ∈ Ci do
4 for dk

i ∈ Gi do
5 pricej,k

i ← Calculate the bidding price for
dk

i towards tji ;

6 Select the dk
i with the lowest price as winner

of tji ;
7 Update the position and load of dk

i according
to equations (14) and (17);

8 pre_cost(dk
i)← Calculate the flying cost for

dk
i to put tji at the end of its task list;

9 for λ ∈ [1 : |list(dk
i)|] do

10 new_cost(dk
i)← Calculate the flying cost

for dk
i to insert tji at the λ-th position on its

task list;
11 if pre_cost(dk

i) > new_cost(dk
i) then

12 index← λ;

13 Insert tji into the index-th position of list(dk
i);

14 return list(G);

to twice that of the original solution, so that Theorem 2 is
proved. □

The task insertion process is explained with the example
given in Fig. 4(c), where tR1 , tR3 , tR4 are successfully auctioned
by dR

2 . For the last task item tR4 , there are three insertion
solutions, that is, 1) {tR4 → tR1 → tR3 } with cost of 6.58;
2) {tR1 → tR4 → tR3 } with cost of 3.83; 3) {tR1 → tR3 →
tR4 } with cost of 4.41. In this way, the second insertion
solution is selected. The corresponding pseudo-code is shown
in Algorithm 2.

V. PERFORMANCE EVALUATION

A. Setup

The experiments are carried out based on ROS Kinetic,
an open source platform for multi-robot simulation, using
the python programming language. It is also a distributed
platform, so as to well simulate the practical drone actions.
Besides, in order to provide a simulation environment as real
as possible, the searching drones are set to equip sensors for
searching and the rescue drones are set to equip medicine for
rescuing, which are power consuming. The parameter details
are summarized and shown in Table I. Specifically, the flying
speed of a searching drone is set to 3 m/s, while that of a
rescue drone is set to 1 m/s, because the rescue drones are
heavier than the searching drones. Meanwhile, the maximum
number of tasks that can be accepted by the searching/rescue
drone is 6. The capacity of rescue drone is set in {3,6,9}
and the task difficulty level is set within the scope of [1,9].
Moreover, considering the characteristics of the searching and

TABLE I
PARAMETERS AND TESTING CASES

TABLE II
TASK ALLOCATION SOLUTIONS IN SMALL SCALE SCENARIOS

rescue tasks, we set their execution time by 5 seconds and
10 seconds respectively.

The hardware environments are Intel(R) Core(TM) i7-6700
CPU 3.40GHz with 16G memory and 1T hard disk space with
the OS of Ubuntu 16.04.

B. Metrics and Benchmarks

In order to comprehensively evaluate the proposed
algorithm, we select four testing metrics which are:
• Average flying distance, it reflects the average moving

distance of all drones during the task execution process.
• Average utilization of drone capacity, it reflects the

resource utilization of drones, so that the higher this
metric, the more tasks that will be accepted.

• Task load balance, it reflects the task distribution among
drones and is evaluated using the standard deviation
among the number of tasks carried by drones.

• Task completion time, it reflects the total time that a drone
group finishes the allocated tasks. The smaller the better.

Besides, the task load balance reflects the task distribution
among drones and it is evaluated using the standard deviation
among the number of tasks carried by drones.

In addition, we compare the proposed method with two
novel benchmarks over two testing cases. Specifically, the
three comparison methods are:
• SSI, a Sequential and Single-Item based auction

algorithm that is used to address the task allocation for
heterogeneous drones [29].

Authorized licensed use limited to: Northeastern University. Downloaded on October 28,2023 at 14:18:30 UTC from IEEE Xplore. Restrictions apply.

3438 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 11, NOVEMBER 2023

• CBBA, a Consensus and Binding Based Algorithm that
is used to group decentralized tasks and allocate these
tasks to distributed drones [30].

• DCAA, the proposed method that uses the Density Clus-
tering and Auction based Algorithm to address the large
scale task allocation among drones.

C. Results

The results are achieved under two testing cases and the
details are summarized in Table I. The first one is a small
scale testing case with a 100×100×100 m3 three-dimensional
space, in which there are 6 kinds of scenarios that have (6,
12), (6, 18), (6, 24), (10, 20), (10, 30), (10, 40) drones and
tasks respectively. As for the large scale testing case, it is a
2000×2000×100 m3 three-dimensional space, in which there
are also 6 scenarios that have (30, 60), (30, 80), (30, 100),
(50, 100), (50, 120), (50, 140) drones and tasks respectively.
The above testing scenarios are set to build a perfect match
relationship between the number of drones and the number of
tasks by taking the capacity of drones and the task difficulty
into consideration. Because on one hand, if the number of tasks
is much lower than the drones’ capacities, which means that a
lot of drones maybe idle for a long time, so that their capacity
utilization will be extremely lower. On the other hand, if the
number of tasks is much higher than the drones’ capacities,
then all the drones will be extremely overloaded, such that
there is almost no room for optimization and all methods may
perform the same.

The task allocation solutions under the two cases are sum-
marized and shown in Tables II and III respectively. It is noted
that the terms “S-D” and “R-D” are short for “Searching-
Drone” and “Rescue-Drone” respectively. Besides, it is aware
the number of searching drone is equal to the number of
rescue drone, and the number of searching task is also equal to
the number of rescue task. Despite this setting, the searching
and rescue tasks are randomly generated and distributed in
different locations. Moreover, the values in the two tables
indicate the task serial number that starts from zero, for
example, S-D1 in “6-12” has two searching tasks with one
numbered zero.

Firstly, for the results in Table II, we can see that 1) all
the tasks are allocated to drones. For example, for the sce-
nario with 6 drones and 12 tasks, there are 3 searching
drones responsible for 6 searching tasks and 3 rescue drones
responsible for 6 rescue tasks. The difference is the task
allocation solution, because each searching drone is allocated
with 2 searching tasks, while the three rescue drones are in
charge of {3,2,1} rescue tasks respectively. 2) the task load
of any drone is in a relatively balanced state. For example,
for the scenario with 10 drones and 24 tasks, the maximum
and minimum number of tasks carried by drones are 5 and
3 respectively. Despite this, it is note that only one drone (i.e.,
S-D2) has 3 tasks and one drone (i.e., S-D3) has 5 tasks. The
rest drones all have 4 tasks. 3) there are some empty spaces in
Table II. This is reasonable, because some drones do not exist
at all. For example, for the case of 6-12 in terms of S-D4,
it means that the fourth searching drone is not allocated with

any task. In this case, there are 6 drones. Half of them are the
searching drones, while the rest half are the rescue drones.
In this case, the fourth searching drone (i.e., S-D4) does not
exist at all.

Then, for the results in Table III, we can also observe
similar phenomena as in Table II. The difference is that the
results in Table III are obtained in the large scale testing case.
Taking the first scenario as an example, there are 30 drones
and 60 tasks, so that each drone needs to carry two tasks on
average. Since the proposed algorithm has already taken the
load balance into consideration, we can see that most drones
have been allocated with two tasks in this scenario, except
S-D1, S-D4, S-D6, S-D10, R-D7 and R-D9. Note that the
gap between the maximum and minimum number of tasks
carried by drones is only 2 in this scenario, which means that
we achieve a perfect load balance among drones. Observing
the other five scenarios, we can see that such gap values
are 2 (for 30 drones and 80 tasks), 1 (for 30 drones and
100 tasks), 2 (for 50 drones and 100 tasks), 2 (for 50 drones
and 120 tasks), 3 (for 50 drones and 140 tasks), which also
reflect the similar conclusion. Moreover, we can also observe
similar empty spaces in Table III, due to the same reasons
explained in terms of the results in Table II.

Now, reviewing the results in Table II, we can see that the
maximum number of tasks carried by one drone is 5 (only
one drone has five tasks, i.e., S-D3 in “10-40”), while that in
Table III is 4 (most drones have 4 tasks). Besides, the average
task load balance in Table III is better than that in Table II.
Hence, all these conditions reflect that the proposed algorithm
is more suitable for processing the large scale task allocation
problem in MDS.

Based on the task allocation solutions, the drones need to
execute their tasks accordingly, during which we calculate
their flying paths which are shown vividly in Fig. 5. In par-
ticular, we can see that there are 12 sub-figures, where the
first 6 sub-figures display the flying paths of solutions from
Table II and the rest 6 sub-figures show the flying paths of
solutions from Table III. In addition, the drone is represented
by the circle and the task is represented by the square. Note
that in the small case scenarios (i.e., 5(a)-5(f)), there are a
few tasks that are distributed randomly in the spatial structure,
so that we do not form the task clusters. However, as for
the large scale scenarios (i.e., 5(g)-5(l)), we can easily see
that there are task clusters formed, because the number of
tasks becomes large, so that they tend to gather together
gradually.

Besides, let’s observe the drone distribution in these sub-
figures. Apparently, we can see that the initial positions of
all the searching and rescue drones are along the x-axis in
the small scale testing scenarios, while that in the large scale
testing scenarios are along the x-axis and the y-axis. This is
because the maximum number of drones is 10 in the small
scale testing scenarios, while the minimum number of drones
is 30 in the large scale testing scenarios. Such difference leads
to the situation that if we set the initial starting positions of
all drones along the same axis in large scale scenarios, these
drones may frequently complete the tasks closer to them and
cause extra calculation cost.

Authorized licensed use limited to: Northeastern University. Downloaded on October 28,2023 at 14:18:30 UTC from IEEE Xplore. Restrictions apply.

YI et al.: DT CONSTRUCTED SPATIAL STRUCTURE FOR FLEXIBLE AND EFFICIENT TASK ALLOCATION OF DRONES 3439

TABLE III
TASK ALLOCATION SOLUTIONS IN LARGE SCALE SCENARIOS

One more detail can be found is that the most drones
start their task execution following a strict principle, that
is, the closer the task, the larger probability this task will
be executed in advance, which then can reduce the total
flying distance, so as to reduce the overall cost. For example,
as shown in Fig. 5(a), the position points of its path are
(x, y, z) = {(45, 16, 13), (65, 87, 27)}. Since the drones all
begins at the x-axis, so that the second position (65,87,27) is
farther from the starting point than the first position (45,16,13).
As for the other subfigures, we can also observe the same
flying principle which is satisfied by most drones. In this
way, by carefully taking the positions of different tasks into
consideration and building the relationship among them for
task allocation decision making, then the overall cost can be

greatly reduced, due to the reduction of the flying distance
that is proportional to the cost.

Based on the above evaluation, the correctness and robust-
ness of the proposed method are reflected in a certain extend.
Hence, we next compare it with the benchmark methods. The
experiments are carried out 30 times and the average results
are shown in Figs. 6-9 respectively, where Fig. 6 shows the
statistical results about the average flying distance, Fig. 7
shows the utilization of drone capacity, Fig. 8 shows the task
load balance of drones and Fig. 9 shows the task completion
time.

Firstly, for the results of the average flying distance in Fig. 6,
it is a vital important metric to evaluate the effectiveness of the
methods, because the longer the flying distance, the larger the

Authorized licensed use limited to: Northeastern University. Downloaded on October 28,2023 at 14:18:30 UTC from IEEE Xplore. Restrictions apply.

3440 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 11, NOVEMBER 2023

Fig. 5. Flying path. (a) 6 drones and 12 tasks. (b) 6 drones and 18 tasks. (c) 6 drones and 24 tasks. (d) 10 drones and 20 tasks. (e) 10 drones and 30 tasks.
(f) 10 drones and 40 tasks. (g) 30 drones and 60 tasks. (h) 30 drones and 80 tasks. (i) 30 drones and 100 tasks. (j) 50 drones and 100 tasks. (k) 50 drones
and 120 tasks. (l) 50 drones and 140 tasks.

cost. In addition, the long flying distance will also consume
more power of drones, which results in the condition that
this drone may not be able to make full use of its capacity
before running out its power. Apparently, the average flying
distance achieved in case2 is larger than that in case1, due
to the fact that the number of tasks in case2 is over triple
times that in case1. Besides, we can see that the proposed
method achieves the second shortest distance in case1. On one
hand, the proposed method jointly considers the distance,
load balance and the capacity utilization when calculating the
overall cost, so that we may not be able to achieve the optimal
performance toward the metric of flying distance. On the other
hand, implementing load balance among drones means that
more drones will participate in task execution, such that the
overall distance of the drone group will also increase.

Despite this, we should be aware that such non-optimal
performance only happens in the small scale case, due to
the limited number of drones/tasks and resource. As for the
large scale case, the proposed method achieves the shortest
flying path than the other two benchmarks. This is reasonable,
because we evaluate the distance between task cluster and
drone group, instead of establishing the mapping relationship
between any drone and any task. For the other benchmarks,
their flying distance increases greatly with the increasing
of the number of drones/tasks. That is because they lack
of dynamic adjustment strategy, so that their task allocation
solution in large scale scenarios would easily lead to the
drone overload which prevents them from accepting more
tasks. Observing the details in Fig. 6, we can see that the
decreasing rate of the average flying distance achieved by the
proposed method is around [25%,45%] in terms of the large-
scale case. The larger the value of flying distance decreasing
rate, the less power consumed, so that more tasks can be
executed.

Secondly, for the results of the utilization of drone capacity
in Fig. 7, several phenomena can be observed, that is, 1) the
proposed method achieves the highest utilization (i.e., about
80%) in both case1 and case2. The higher the utilization
of drone capacity, the higher the resource utilization, since
this metric describes the matching degree between the task

Fig. 6. Average flying distance.

Fig. 7. Utilization of drone capacity.

difficulty level and drone capacity. Besides, SSI has the lowest
utilization (about 50%) and CBBA is slightly higher (about
60%) than that of SSI, because they do not consider the
matching degree between the task difficulty level and drone
capacity. Then, this will lead to the situation that the drone
capacity may exceed the task difficult greatly, so that a lot of
resource would be wasted. 2) the drone capacity utilization
achieved by the proposed method in both case1 and case2
are similar (i.e., around 80%), which means that the proposed
can better adapt to the scale of the number of tasks/drones.
As for SSI and CBBA, we can observe similar phenomenon.
Despite this, it is aware that the utilization achieved by SSI
and CBBA are about 50% and 60% respectively, which are
both lower than that of the proposed method. Compared
with the proposed method, such performance gap is around
[20%, 30%].

Authorized licensed use limited to: Northeastern University. Downloaded on October 28,2023 at 14:18:30 UTC from IEEE Xplore. Restrictions apply.

YI et al.: DT CONSTRUCTED SPATIAL STRUCTURE FOR FLEXIBLE AND EFFICIENT TASK ALLOCATION OF DRONES 3441

Fig. 8. Task load balance.

Thirdly, the task load balance conditions are calculated and
presented in Fig. 8, where we can see several phenomena
that: 1) the proposed method achieves the smallest value
(about 0.8 in case1 and 0.5 in case2) of task load balance.
As explained, the load balance is evaluated by the standard
deviation, so that the smaller this value, the more balance
the task load among drones. In addition, the load balance
condition can also reflect the cooperation degree within the
whole drone group. In other words, unbalanced task load
means that some drones may be allocated with many tasks,
while the others may not be allocated with tasks. In this case,
the heavy loaded drones are always busy working, while the
others are idle. Such situation would accelerate the damage
of the heavy loaded drones and may even take long time to
complete the tasks. 2) the load balance of the proposed method
remains very stable (the gap is less than 0.5) in different
scenarios, which can also be observed in Tables II and III.
However, the minimum and maximum values of load balance
achieved by SSI and CBBA are within [1.8, 3.5] and [1.4, 2.5]
respectively. Comparing the gap values (0.5 for DCAA; 1.7 for
SSI; 1,1 for CBBA), the proposed method outperforms the
benchmarks. 3) the values of load balance in case1 and case2
does not increase strictly with the increasing of the number of
tasks/drones. Taking case1 as the example, the load balance
values of the three methods are {0.8, 0.79, 0.9, 0.75, 1, 1.2}
(DCAA), {2.8, 3.4, 2.9, 2.7, 3.1, 1.9} (SSI) and {1.9, 1.6,
1.5, 2.2, 1.85, 1.55} (CBBA) respectively. That is because the
ratio between the task number and drone number is different
in terms of the six scenarios.

Lastly, for the results of the task completion time in Fig. 9,
we can also see several phenomena. On one hand, the task
completion time increases with the increasing of the number
of tasks for the three methods. However, when the number of
tasks exceeds four times that of drone, the task completion
time increase slowly. That is because the strategy of SSI and
CBBA would easily overload some drones and make the rest
drones idle. Only when the number of tasks far exceed the
number of drones, SSI and CBBA would consider to allocate
the tasks to the idle drones, so that the task load balance
is improved. As for the proposed method DCAA, its task
completion time increases slowly with the increasing of the
number of tasks, due to the perfect task load balance achieved
by DCAA. On the other hand, the proposed method achieves
the lowest task completion time, because most drones in the
same group are allocated with almost the same number of
tasks, so that they can execute the tasks on parallel to reduce

Fig. 9. Task completion time.

the task completion time as much as possible. On the contrary,
the task allocation provided by SSI and CBBA is unbalanced,
so that the task completion time depends on the time that the
last drone finishes its tasks. Moreover, looking deep into the
results, we can see that the proposed method can decrease
the overall task completion time by around 22.5% on average.

VI. CONCLUSION

The MDS are gradually used to perform the repetitive and
dangerous tasks for human in many complex environments
with the rapid development of drones. However, the task
allocation in large scale MDS is a critical and challenging
problem that need to be addressed urgently. In this work,
we design a DT enabled system framework and propose
a density clustering and auction based method to address
the task allocation in large scale MDS. Experimental results
indicate that the proposed method outperforms the state-of-the-
art benchmarks. Despite this, how to apply the task allocation
theory and method proposed in this work into real application
still needs to be explored.

APPENDIX

Theorem: The task allocation problem in MDS is NP-hard.
Proof: We use a reduction from the Multiple Knapsack

Problem (MKP) to prove that the task allocation problem in
MDS is NP-hard. In an instance of MKP, we are given a set
of m knapsacks with the capacity ci(i ∈ [1, m]) and a set of n
objects with value vj and weight wj(j ∈ [1, n]). Then, MKP
is to select m disjoint subsets of objects for each knapsack
under the constraint that the total weight of the objects does
not exceed the capacity of this knapsack and the overall value
should be maximized, as follows:

P1: Maximize:z =
m∑

i=1

n∑
j=1

vjxi,j

s.t.
n∑

j=1

wjxi,j ≤ ci, ∀i ∈ [1, m]

m∑
i=1

xi,j ≤ 1, ∀j ∈ [1, n]

xi,j ∈ {0, 1}, ∀i ∈ [1, m], j ∈ [1, n] (20)

Reviewing the model of task allocation in MDS in
equation (4), we can see that they have different optimization

Authorized licensed use limited to: Northeastern University. Downloaded on October 28,2023 at 14:18:30 UTC from IEEE Xplore. Restrictions apply.

3442 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 11, NOVEMBER 2023

objects. In this way, let v′j = −vj and substituting v′j into (20),
a new model objective (P2) is formulated as

P2: Minimize:z′ =
m∑

i=1

n∑
j=1

v′jxi,j . (21)

On one hand, we assume that one object must be allocated to
one knapsack, so that the constraint

∑m
i=1 xi,j ≤ 1 becomes∑m

i=1 xi,j = 1. On the other hand, for each knapsack, it is
allowed to contain many objects within its capacity, so that
the new constraint

∑n
j=1 xi,j ≥ 1 is applied. Based on the

above definition, P2 is updated as:

P3: Minimize:z′ =
m∑

i=1

n∑
j=1

v′jxi,j

s.t.
m∑

i=1

xi,j = 1, ∀j ∈ [1, n]

1 ≤
n∑

j=1

xi,j

n∑
j=1

wjxi,j ≤ ci, ∀i ∈ [1, m]

xi,j ∈ {0, 1}, ∀i ∈ [1, m], j ∈ [1, n] (22)

Now, reviewing the model in (4), we simplify
dis(pos(di), pos(tj)) as V i

j , so that the objective in (4)
becomes:

Minimize:
∑

i∈[1,|D|]

∑
j∈[1,|T |]

V i
j Xj

i (23)

Since v′j is a fixed value and V i
j is not, we let V i

j = Vj +
(V i

j − Vj) where the value of Vj is fixed, such that we can
decompose the objective in (4) as follows:

Minimize:
∑

i∈[1,|D|]

∑
j∈[1,|T |]

VjX
j
i

+
∑

i∈[1,|D|]

∑
j∈[1,|T |]

(V i
j − Vj)X

j
i . (24)

Then, the overall problem of (4) can be decomposed into
two sub-problems as follows:

P4: Minimize:
∑

i∈[1,|D|]

∑
j∈[1,|T |]

VjX
j
i

s.t.
∑

i∈[1,|D|]

Xj
i = 1

1 ≤
∑

j∈[1,|T |]

Xj
i∑

j∈[1,|T |]

tdjX
j
i ≤ dc

i

(1), (2), (3) (25)

P5: Minimize:
∑

i∈[1,|D|]

∑
j∈[1,|T |]

(V i
j − Vj)X

j
i

s.t.
∑

i∈[1,|D|]

Xj
i = 1

1 ≤
∑

j∈[1,|T |]

Xj
i∑

j∈[1,|T |]

tdjX
j
i ≤ dc

i

(1), (2), (3) (26)

Observing the forms of P3 in (22) and P4 in (25), while
let the knapsack represents the drone and the item represents
the task, we can conclude that they are the same model. Since
P3 is reduced from P2 and P2 is reduced from P1, where
P1 (MKP) has already been proved to be NP-hard, so that
P4 is NP-hard naturally. It is aware that the problem of task
allocation in MDS is the combination of P4 and P5, so that
this theorem is proved. □

REFERENCES

[1] F. Wilhelmi, M. Carrascosa, C. Cano, A. Jonsson, V. Ram, and
B. Bellalta, “Usage of network simulators in machine-learning-assisted
5G/6G networks,” IEEE Wireless Commun., vol. 28, no. 1, pp. 160–166,
Feb. 2021.

[2] Y. Roh, G. Heo, and S. E. Whang, “A survey on data collection for
machine learning: A big data-AI integration perspective,” IEEE Trans.
Knowl. Data Eng., vol. 33, no. 4, pp. 1328–1347, Apr. 2021.

[3] L. Jin and S. Li, “Distributed task allocation of multiple robots: A control
perspective,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 48, no. 5,
pp. 693–701, May 2018.

[4] X. Shi, C. Yang, W. Xie, C. Liang, Z. Shi, and J. Chen, “Anti-
drone system with multiple surveillance technologies: Architecture,
implementation, and challenges,” IEEE Commun. Mag., vol. 56, no. 4,
pp. 68–74, Apr. 2018.

[5] E. Yanmaz, S. Yahyanejad, B. Rinner, H. Hellwagner, and C. Bettstetter,
“Drone networks: Communications, coordination, and sensing,” Ad Hoc
Netw., vol. 68, pp. 1–15, Jan. 2018.

[6] V. Hassija, V. Saxena, and V. Chamola, “Scheduling drone charging for
multi-drone network based on consensus time-stamp and game theory,”
Comput. Commun., vol. 149, pp. 51–61, Jan. 2020.

[7] R. Zhang, Q. Lv, J. Li, J. Bao, T. Liu, and S. Liu, “A reinforcement
learning method for human-robot collaboration in assembly tasks,”
Robot. Comput.-Integr. Manuf., vol. 73, pp. 1–10, Feb. 2022.

[8] F. Maaroufi, H. Camus, and O. Korbaa, “A mixed integer linear
programming approach to schedule the operating room,” in Proc. IEEE
Int. Conf. Syst., Man, Cybern. (SMC), Oct. 2016, pp. 3882–3887.

[9] S. Mousavi, F. Afghah, J. D. Ashdown, and K. Turck, “Use of a quantum
genetic algorithm for coalition formation in large-scale UAV networks,”
Ad Hoc Netw., vol. 87, pp. 26–36, May 2019.

[10] O. Ozkan, “Optimization of the distance-constrained multi-based multi-
UAV routing problem with simulated annealing and local search-based
matheuristic to detect forest fires: The case of Turkey,” Appl. Soft
Comput., vol. 113, pp. 1–10, Dec. 2021.

[11] K. Wang, X. Li, L. Gao, P. Li, and S. M. Gupta, “A genetic simulated
annealing algorithm for parallel partial disassembly line balancing
problem,” Appl. Soft Comput., vol. 107, pp. 10–17, Aug. 2021.

[12] N. Geng, Z. Chen, Q. A. Nguyen, and D. Gong, “Particle swarm
optimization algorithm for the optimization of rescue task allocation
with uncertain time constraints,” Complex Intell. Syst., vol. 7, no. 2,
pp. 873–890, Apr. 2021.

[13] X. Xia et al., “Triple archives particle swarm optimization,” IEEE Trans.
Cybern., vol. 50, no. 12, pp. 4862–4875, Dec. 2020.

[14] A. Asma and B. Sadok, “PSO-based dynamic distributed algorithm
for automatic task clustering in a robotic swarm,” Proc. Comput. Sci.,
vol. 159, pp. 1103–1112, Jan. 2019.

[15] L. Huang, Y. Ding, M. Zhou, Y. Jin, and K. Hao, “Multiple-solution
optimization strategy for multirobot task allocation,” IEEE Trans. Syst.,
Man, Cybern. Syst., vol. 50, no. 11, pp. 4283–4294, Nov. 2020.

[16] P. Schillinger, M. Bürger, and D. V. Dimarogonas, “Simultaneous task
allocation and planning for temporal logic goals in heterogeneous
multi-robot systems,” Int. J. Robot. Res., vol. 37, no. 7, pp. 818–838,
Jun. 2018.

Authorized licensed use limited to: Northeastern University. Downloaded on October 28,2023 at 14:18:30 UTC from IEEE Xplore. Restrictions apply.

YI et al.: DT CONSTRUCTED SPATIAL STRUCTURE FOR FLEXIBLE AND EFFICIENT TASK ALLOCATION OF DRONES 3443

[17] W. Lee and D. Kim, “Adaptive approach to regulate task distribution in
swarm robotic systems,” Swarm Evol. Comput., vol. 44, pp. 1108–1118,
Feb. 2019.

[18] A. Yaghoubzadeh-Bavandpour, O. Bozorg-Haddad, B. Zolghadr-Asli,
and A. H. Gandomi, “Improving approaches for meta-heuristic algo-
rithms: A brief overview,” in Computational Intelligence for Water
and Environmental Sciences (Studies in Computational Intelligence),
vol. 1043, O. Bozorg-Haddad and B. Zolghadr-Asli, Eds. Singapore:
Springer, 2022.

[19] D.-H. Lee, “Resource-based task allocation for multi-robot systems,”
Robot. Auton. Syst., vol. 103, pp. 151–161, May 2018.

[20] V. Hassija et al., “Fast, reliable, and secure drone communica-
tion: A comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 23,
no. 4, pp. 2802–2832, 4th Quart., 2021.

[21] J. Hu and J. Yang, “Application of distributed auction to multi-UAV
task assignment in agriculture,” Int. J. Precis. Agricult. Aviation, vol. 1,
no. 1, pp. 1–10, 2018.

[22] X. Fu, P. Feng, and X. Gao, “Swarm UAVs task and resource dynamic
assignment algorithm based on task sequence mechanism,” IEEE Access,
vol. 7, pp. 41090–41100, 2019.

[23] X. Chen, P. Zhang, G. Du, and F. Li, “A distributed method for dynamic
multi-robot task allocation problems with critical time constraints,”
Robot. Auton. Syst., vol. 118, pp. 31–46, Aug. 2019.

[24] H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized
auctions for robust task allocation,” IEEE Trans. Robot., vol. 25, no. 4,
pp. 912–926, Aug. 2009.

[25] M. Otte, M. J. Kuhlman, and D. Sofge, “Auctions for multi-robot
task allocation in communication limited environments,” Auton. Robots,
vol. 44, nos. 3–4, pp. 547–584, Mar. 2020.

[26] M. G. Bakulin, V. B. Kreyndelin, V. A. Grigoriev, V. O. Aksenov,
and A. S. Schesnyak, “Bayesian estimation with successive rejection
and utilization of a priori knowledge,” J. Commun. Technol. Electron.,
vol. 65, no. 3, pp. 255–264, Mar. 2020.

[27] J. Chen and D. Sun, “Resource constrained multirobot task allocation
based on leaderfollower coalition methodology,” Int. J. Robot. Res.,
vol. 30, no. 12, pp. 1423–1434, 2011.

[28] Z. Talebpour and A. Martinoli, “Risk-based human-aware multi-
robot coordination in dynamic environments shared with humans,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2018,
pp. 3365–3372.

[29] N. Sullivan, S. Grainger, and B. Cazzolato, “Sequential single-item
auction improvements for heterogeneous multi-robot routing,” Robot.
Auton. Syst., vol. 115, pp. 130–142, May 2019.

[30] K.-S. Kim, H.-Y. Kim, and H.-L. Choi, “A bid-based grouping method
for communication-efficient decentralized multi-UAV task allocation,”
Int. J. Aeronaut. Space Sci., vol. 21, no. 1, pp. 290–302, Mar. 2020.

Bo Yi (Member, IEEE) is currently a Lecturer
of computer science and engineering with North-
eastern University, China. He has authored and
coauthored more than 20 journals and conference
papers on IEEE TRANSACTIONS ON PARALLEL
AND DISTRIBUTED SYSTEMS, IEEE TRANSAC-
TIONS ON CLOUD COMPUTING, IEEE GlobeCom,
IEEE COMMUNICATIONS LETTER, and Computer
Networks. His current research interests include ser-
vice computing, routing, virtualization, and cloud
computing in SDN, NFV, and DetNet. He is cur-

rently a reviewer of IEEE COMMUNICATIONS SURVEY AND TUTORIAL,
IEEE COMMUNICATIONS LETTER, and Computer Networks.

Jianhui Lv (Member, IEEE) received the B.S.
degree in mathematics and applied mathematics
from the Jilin Institute of Chemical Technology,
Jilin, China, in 2012, and the M.S. and Ph.D. degrees
in computer science from Northeastern University,
Shenyang, China, in 2014 and 2017, respectively.
He is currently an Associate Professor with the
Pengcheng Laboratory, China. He has published
more than 40 journals and conference papers. His
current research interests include artificial intelli-
gence, ICN, in-network caching-enabled networks,

the IoT, bio-inspired networking, evaluation computation, edge computing,
and smart city. He has served as the Leader Guest Editor (LGE) for several
international journals, such as Applied Soft Computing, Digital Communica-
tions and Networks, Expert Systems, Wireless Networks, International Journal
on Artificial Intelligence Tools, and Mobile Information Systems.

Jiahao Chen received the B.S. degree in communi-
cation engineering from the Central South Univer-
sity of Forestry and Technology, Changsha, China,
in 2020. He is currently pursuing the M.S. degree
with Northeastern University, Shenyang, China. His
current research interests include network routing
optimization and the application of artificial intel-
ligence technology in networks.

Xingwei Wang received the B.S., M.S., and Ph.D.
degrees in computer science from Northeastern
University, Shenyang, China, in 1989, 1992, and
1998, respectively. He is currently a Professor with
the College of Computer Science and Engineering,
Northeastern University. He has published more than
100 journal articles, books and book chapters, and
refereed conference papers. His current research
interests include cloud computing and future inter-
net. He has received several best paper awards.

Keqin Li (Fellow, IEEE) is currently a SUNY
Distinguished Professor of computer science with
The State University of New York. He is also a
National Distinguished Professor with Hunan Uni-
versity, China. He has authored or coauthored more
than 780 journal articles, book chapters, and refereed
conference papers. He holds more than 60 patents
announced or authorized by the Chinese National
Intellectual Property Administration. His current
research interests include cloud computing, fog com-
puting and mobile edge computing, energy-efficient

computing and communication, embedded systems, cyber-physical systems,
heterogeneous computing systems, big data computing, high-performance
computing, CPU-GPU hybrid and cooperative computing, computer archi-
tectures and systems, computer networking, machine learning, and intelligent
and soft computing. He has received several best paper awards. He is among
the world’s top 10 most influential scientists in distributed computing based
on a composite indicator of Scopus citation database. He has chaired many
international conferences. He is currently an Associate Editor of the ACM
Computing Surveys and the CCF Transactions on High-Performance Com-
puting. He has served on the editorial boards of the IEEE TRANSACTIONS
ON PARALLEL AND DISTRIBUTED SYSTEMS, the IEEE TRANSACTIONS ON
COMPUTERS, the IEEE TRANSACTIONS ON CLOUD COMPUTING, the IEEE
TRANSACTIONS ON SERVICES COMPUTING, and the IEEE TRANSACTIONS
ON SUSTAINABLE COMPUTING.

Authorized licensed use limited to: Northeastern University. Downloaded on October 28,2023 at 14:18:30 UTC from IEEE Xplore. Restrictions apply.

