
Stackelberg Game Approach for Energy-Aware
Resource Allocation in Data Centers

Bo Yang, Zhiyong Li,Member, IEEE, Shaomiao Chen, Tao Wang, and Keqin Li, Fellow, IEEE

Abstract—Data centers hosting distributed computing systems consume huge amounts of electrical energy, contributing to high

operational costs, whereas the utilization of data centers continues to be very low. Moreover, a data center generally consists of

heterogeneous servers with different performance and energy. Failure to fully consider the heterogeneity of servers will lead to both

sub-optimal energy saving and performance. In this study, we employ game theoretic approaches to model the problem of minimizing

energy consumption as a Stackelberg game. In our model, the system monitor, who plays the role of the leader, can maximize profit by

adjusting resource provisioning, whereas scheduler agents, who act as followers, can select resources to obtain optimal performance.

In addition, we model the problem of minimizing average response time of tasks as a noncooperative game among decentralized

scheduler agents as they compete with one another in the sharing resources. Several algorithms are presented to implement the game

models. Simulation results demonstrate that the proposed technique has immense potential to improve energy efficiency under

dynamic work scenarios without compromising service level agreements.

Index Terms—Data centers, dynamic capacity provisioning, energy efficiency, game theory

Ç

1 INTRODUCTION

1.1 Motivation

LARGE data centers (DCs) as a cost-effective platform for
hosting large-scale Internet application, such as video

distribution networks, and content delivery networks etc.,
enjoy economies of scale by amortizing long-term capital
investments over a considerable number of machines. How-
ever, this DCs also incur enormous energy costs. The energy
consumption of DCs is expected to grow to 8 percent of the
global electricity supply by 2020 [1]. A 2 percent reduction
in energy cost for a few large companies (such as Akamai
Technologies) can translate to over a million dollars in cost
saving [2]. Therefore, energy efficiency in DCs has attracted
increasing interests from both the research community and
the industry. Consequently, reducing energy consumption
has become a primary concern for DC operators.

In practice, most modern DC servers are often utilized by
only approximately 10 to 50 percent on average[2]; that is,

they are rarely fully utilized during daily workloads. More-
over a distinct observation is that a server consumes at least
60 percent of its peak power when it is active, even without
serving any request. By contrast, this figure drops to only
5 W when the server is in sleep mode [1], [3]. Thus, the most
effective energy-saving strategy for DCs operators should be
to adjust the number of active machines in a DC dynamically
to reduce energy consumption while satisfying the quality of
service (QoS) requirements specified by end users via service
level agreements (SLAs). Therefore, DC operators are expect
to place some unnecessary servers in sleep or off mode to
improve the utilization of DCs when the incoming request
volume is low, such as during off-peak hours.

However, a trade-off frequently exists between energy
consumption and degraded processing performance.
Switching off servers can reduce energy consumption, but
doing so also decrease the service capacity and may conse-
quently incur high scheduling delay. To address this issue
and to promote green computing, DC resources should be
allocated to satisfy QoS for end-users while achieving high
energy savings.

In addition, DC users are naturally required to minimize
the response time for their tasks, and DC operators are
required to maximize their revenues by attracting users and
by improving resource utilization. However, achieving
these requirements is difficult in distributed systems such
as DCs, where no central authority is available to control
the allocation, whereas users or scheduler agents are free to
act in a selfish manner.

1.2 Our Contributions

In this study, we introduce the stackelberg game theoretic
approach to address aforementioned issues. Game theory
provides a natural paradigm to design decentralized mech-
anisms [27], which can help obtain an in-depth analytical
understanding of the service provisioning problem of DCs.
In our model, the scheduler agents, who act as followers

� B. Yang is with the College of Computer Science and Electronic Engineer-
ing, Hunan University, National Supercomputing Center in Changsha,
Key Laboratory for Embedded and Network Computing of Hunan Prov-
ince, Changsha 410082, China and the Department of Information and
Management of Hunan University of Finance and Economics, Changsha
410205, China. E-mail: bo_yang@hnu.edu.cn.

� Z. Li, S. Chen, and T. Wang are with the College of Computer Science and
Electronic Engineering of Hunan University, National Supercomputing
Center in Changsha, Key Laboratory for Embedded and Network Comput-
ing of Hunan Province, Changsha 410082, China. E-mail: {zhiyong.li,
chensm1987}@hnu.edu.cn, wangtao1999@foxmail.com.

� K. Li is with the College of Computer Science and Electronic Engineering,
Hunan University, National Supercomputing Center in Changsha, and
the Department of Computer Science, State University of New York, New
Paltz, NY 12561. E-mail: lik@newpaltz.edu.

Manuscript received 11 Aug. 2015; revised 31 Jan. 2016; accepted 25 Feb.
2016. Date of publication 3 Mar. 2016; date of current version 16 Nov. 2016.
Recommended for acceptance by I. Brandic.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2016.2537809

3646 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 12, DECEMBER 2016

1045-9219� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

who receive requirements from a set of users, can decide
which servers will process their requirements to minimize
response time. Accordingly, the provider, who act as a
leader who provisions resources to scheduler agents, can
determine how to configure its own servers to reduce
energy consumption.

We formulate the decentralized computation allocation
decision making problem among multiple scheduler agents
and one provider as a stackelberg game. The problem ana-
lyzes the limits of energy saving and strategies for configur-
ing the right set of servers that should be switched on and
off (sleep) to economize energy consumption, while main-
taining the necessary service performance for applications
use the computing resources in DCs.

In particular, we model the problem of minimizing aver-
age response time of tasks as a noncooperative game among
scheduler agents as they compete with one another in shar-
ing resources. Given the decentralized characteristics of
noncooperative game theory, the self-organizing feature of
scheduler agents can be added automatically into DCs. Con-
sequently, the heavy burden of complex centralized man-
agement can be alleviated.

In addition, a distinct observation made in this study is
that the size of users requirements fluctuates periodically
over time. Thus, the leader should adjust configuration to
react to such changes to realize energy- performance trade-
off. To address this problem, an algorithm is proposed for
the leader to determine which resources to switch on or off
while simultaneously ensuring that their customers will
receive acceptable QoS. In particular, we convert the prob-
lem into a binary programming problem to obtain the list of
the optimal resource configurations for various load rate
conditions in a DC. According to our approaches, the pro-
vider only aims to retrieve the right configurations from the
stored list depending on the current load rate, rather than
solve the problem directly again during runtime. The
results of the simulated experiments demonstrate that our
approaches are effective and efficient.

The rest of this paper is organized as follows. We first
discuss related works in Section 2, and then introduce the
system model in Section 3. We provide the formulation of
the resource allocation problem and present the detailed
description of the proposed algorithms in Sections 4 and 5,
respectively. We discuss the simulation results that demon-
strate the effectiveness of our approach in Section 6. Finally
conclusions are drawn in Section 7.

2 RELATED WORKS

According to Moore’s law, power consumption in computer
systems has increased at an exponential rate for decades.
The increasing energy consumption will cause severe eco-
nomic, ecological, environmental, and technical problems.
Developing high-performance and energy-efficient comput-
ing systems and DCs has gained increasing interest and
importance.

Intuitively, the operator would provision less server or
network resources to save power. In practice, however, a
trade-off exists between energy saving and scheduling
delay. Considering this trade-off, numerous studies on
strategies or enabling technologies that aim to optimize

power-performance tradeoff have been conducted, and an
explosively growing body of literature has been developed
for energy-efficient computing [3], [4], [5], [6], [7].

In recent years, numerous dynamic capacity provision-
ing (DCP) schemes, which actively or passively adapt the
provisioning of servers based on current or predicted future
loads, have been widely utilized in the power-performance
trade-off of DCs. Loads can be typically consolidated to
fewer servers during off-peak hours, and unused servers
can be temporarily disabled by conducting specific actions,
such as entering sleep mode. In [8], [9], [10], [11], [12] , such
strategies were adopted to reduce power consumption. [8],
[9] proposed a set of heuristics that aimed to conserver
power by dynamically reallocating virtual machines (VM)
and switching off idle ones. Decisions were made according
to a set of fixed thresholds that indicated VM utilization. the
authors exploited request admission control and bounds on
CPU utilizations to prevent SLA from being violated. In
[11], Xiao et al. presented a system that used virtualization
technology to allocate DC resources dynamically based on
application demands by optimizing the number of servers
used. They also designed a load predictive algorithm that
could accurately capture future resource usages of applica-
tions without looking inside VMs. Following the same line
of research, [10], [12] devised online control algorithms
based on predictive technology and then dynamically
adjusted the number of machines to minimize total energy
consumption and scheduling delay according to the predic-
tive results at runtime. Their works have generally focused
on predicting the future request of an end-user, and on
using centralized strategies to implement the allocation of
incoming content requests and turning machines on and
off. These previous studies have achieved significant prog-
ress in improving DC energy efficiency. However they
increase the complexity of the resource management of DCs
because of the centralized nature of control algorithms that
have been adopted in DCs. Furthermore, these studies have
given minimal attention on efficiently allocating workload
among DC servers to achieve optimal resource utilization,
and consequently, minimize mean response time while
reducing energy consumption.

Among studies on saving power, the dynamic voltage
and frequency scaling (DVFS) technology has played an
important role in power management schemes for DCs.
Technology is capable of dynamically adjusting the operat-
ing voltage or frequency of a CPU according to its load with
respect to a number of discrete operating points. In this
manner, the power consumption of a CPU will change
according to its load. Numerous studies on DVFS in DCs
are available [1], [3], [4], [13], [14], [15]. For example, the
authors of [13], [14], [15] explored power-performance
tradeoff by fixing one factor and minimizing another, from
the perspective of optimal load distribution, that is, power-
constrained performance optimization and performance-
constrained power optimization across DCs. However, such
technologies have two major drawbacks. First, they are
designed to remain at the component level, such as, an indi-
vidual CPU or a cooling fan. However, CPUs no longer
dominate server power consumption like they used to.
Hence, the effectiveness of DVFS has decreased. Second,
although they introduce partial energy proportionality to

YANG ETAL.: STACKELBERG GAME APPROACH FOR ENERGY-AWARE RESOURCE ALLOCATION IN DATA CENTERS 3647

the servers, the idle power consumption of a DVFS-enabled
server remains considerably higher than the value when the
server is in sleep mode [1], [3], [5].

To overcome the aforementioned drawbacks, dynamic
provisioning, request management and DVFS have been
jointly employed [16], [17], [18], [19], [20]. These schemes
follow similar power saving strategies. Future load is ini-
tially estimated, and then the servers are dynamically
provisioned. Accordingly, minimal yet sufficient amounts
of servers are activated to process the presented requests,
whereas the remaining ones are either turned off or put
in sleep mode. Meanwhile, requests are consolidated and
mapped onto DVFS-enabled active servers. Although
these schemes exhibited significant improvements in sav-
ing energy, they still gave insufficient focus on processing
performance.

Recently, game theoretic approaches which are emp-
loyed to manage DC resources, have gained increasing
attention in both the industrial world and the academe. The
authors of [21], [22], [23], [24] formulated the load balancing
problem in heterogeneous distributed systems as a nonco-
operative game or cooperative game among users. Several
mechanisms based on game theory were employed to bal-
ance the loads of the distributed systems and to minimize
the response time. [25] formulated the resource allocation
game under the proportional-share mechanism and studied
the efficiency and fairness of the equilibrium in this game.
Evidently, these schemes focus on improving processing
performance or efficiency without considering energy con-
sumption. In [26], Le�on et al. modeled the problem of mini-
mizing energy consumption while allocating resources to
networked applications as a Stackelberg leadership game in
DCs. They also developed strategies for determining the
right set of computing nodes that should be switched on
and off to minimize energy consumption, while maintain-
ing the right level of service. Their scheme considered the
trade-off between workload allocation efficiency and energy
consumption, and adopted the decentralized allocation
strategy to alleviate the burden of system management.
However their scheme disregarded the heterogeneity of
performance-energy trade-off in servers and overall proc-
essing performance in DCs.

Bi-level programming was originally described as a
Stackelberg game [34], [40] and was later generalized by
several researchers. An important feature of this game is
the hierarchical relationship between two autonomous,
and possibly conflicting, decision makers. To date, the
Stackelberg game has been extensively studied and
adopted in various fields, such as in congestion control,
revenue maximization, network design, and cooperative
transmission [35], [36], [37], [38], [39], [41]. These fields
employed a noncooperative or a cooperative game
framework among followers according to the selfish
interests of individual followers, which reach Nash equi-
librium relative to the strategy of the leader. In this man-
ner, a multi-agent system can be granted a degree of
autonomy which helps improve reliability and reduce
the complexity of centralized management in practice.
From the preceding discussions, the Stackelberg game
appears appropriate for resource management and opti-
mization in DCs.

3 SYSTEM MODEL

We introduce the system model in this section. For the con-
venience of the readers, the major notations used in this
paper are listed in Table 1.

3.1 DC Model

Following previous works, decentralized strategies were
adopted in our model to improve the reliability of the sys-
tem and to prevent access bottleneck. In such manner, when
failures arise on an access point, other normal access points
can also provide services to users. As shown in the Fig. 1, in
DCs, there are a set of heterogeneous servers connected by
an underlying communication network.

We assume that the system consists of some users, n
scheduler agents, m servers and a system monitor. The set
of scheduler agents is denoted by a vector A ¼ fA1; A2; . . . ;
Ang. The set of servers is denoted by a vector
N ¼ fN1; N2; . . . ; Nmg. Without losing generality, the num-
ber of users will more than the number of scheduler agents
in the system.

With the preceding classification, we can model a DC
using the hierarchical relationship between users, scheduler
agents, and system monitor. Each user may send tasks to a
scheduler agent or to more than one scheduler for process-
ing. Meanwhile, a scheduler agent receives tasks from a set
of users and decides which servers will process these tasks.
The system monitor responds to perform the provisioning
of service by turning the servers on and off in DC. The mon-
itor also periodically releases the information of each server
to scheduler agents, and thus, scheduler agents can decide
which servers will execute their tasks, while minimizing
response time.

TABLE 1
Notations

Symbol Meaning

A Set of scheduler agents
N Set of severs
n Number of scheduler agents
m Number of servers
i Subscript of scheduler agents
j Subscript of servers
Ai Scheduler agent i
Nj Server j

�i Average arrival rate at scheduler agent i
�j Average arrival rate at server j

� Total arrival rate of tasks
mj Average process rate at server j

mi
j

Available serving rates of server j for scheduler agent i

rij Probability of scheduler agent i to dispatch a task to server j

ri Assigned probability vector of scheduler agent i

pbusy Dynamic power of server

pidle Static power of server

Pj Utilization power of server j

bj Utilization of server j

TQoS QoS negotiated between users and operator

a Energy price
g Partition granularity of the aggregate power of the system
bj State of server j, 1 is active, and 0 is off or sleep

k Fraction of the total power partitioned by g

l Available number of the servers

3648 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 12, DECEMBER 2016

Workload heterogeneity can significantly affect on
resource allocation decisions. Hence, numerous studies [7],
[42], [44], [45] have discussed the problem from different
perspectives. Similar to literature [13], [14], [43], [45], we
use the exponential distribution function to model the ser-
vice time of user tasks. Each user generates tasks in terms of
a Poisson process and independently of other users. The
task execution requirements (measured by the number of
instructions to be executed) are independent and identically
distributed (i.i.d.) exponential random variables r with
mean r . Each server is modeled as an M=M=1 queuing sys-
tem and maintains a queue with infinite capacity for waiting
tasks. The first-come-first-served queuing discipline is
adopted. A server has execution speed s (measured by the
number of instructions executed in one unit of time), and
the execution times on the server are i.i.d. exponential ran-
dom variables x ¼ r=s with mean x ¼ r=s. Hence, the aver-
age service rate of the server, that is, the average number of
service requests can be completed by the server in one unit
of time, and can be denoted by m ¼ 1=x.

Let �j denote the arrival rate being sent by scheduler
agents at server j that executes the tasks at an average ser-
vice rate mj. According to Little’s law, the expected response

time at server j is denoted by lð�jÞ and given by

lð�jÞ ¼ 1

mj � �j
: (1)

For stability, we generally use the condition in which
tasks must not be generated faster than the system can pro-
cess them. Therefore, the inequality

Pm
j¼1 �j <

Pm
j¼1 mj

must hold; otherwise, the queues at the servers will build
up to infinity and the expected response time will be
infinite.

Notably, the service time of the tasks with general distri-
butions is considered, and thus, the M=G=1 queuing model
is appropriate for those tasks. However, a simple closed-
form solution for theM=G=1 that will help us to understand
the effect of task size variability on mean response time
remains unavailable [46].

3.2 Power Model

Ideally, the power consumption of a server should be pro-
portional to its workload to realize power saving. That is,
no power should be consumed by an idle server. However,
such an objective remains theoretical because the current
trend in performance-driven hardware design is the oppo-
site; difficulties are expected in convincing hardware ven-
dors to shift to energy-driven design.

In a DC, the energy curve of a server can be characterized
in terms of server workload by

P ¼ pidle þ bpbusy; (2)

where b is the utilization of a server, and its value is the
ratio of the number of tasks accepted and the processing

capacity at a server; b is formulated by b ¼ �=m. pidle repre-
sents the static power of a server, and is a fixed cost in main-
taining a server that is powered on and ready to perform

work; and pbusy is the dynamic fraction of the power con-
sumed when a server is fully utilized.

From the previous representations, several technologies
or strategies, such as DVFS and DCP, are employed to
reduce energy consumption in DCs. However, given that
idle power consumption is still existent, only partial energy
proportional is delivered with such technologies. From this
fact, idle consumption is not negligible in DCs.

Hence we argue that high saving can be achieved in
large-scale infrastructure if we consider the dynamic provi-
sioning problem of servers with the scheduling decisions
based on the current or predicted future workload.

4 ALLOCATION STRATEGY OF SCHEDULER AGENT

Following the discussion in previous sections, the scheduler
agents are regarded as the followers who respond to accom-
modate the tasks generated by users. Without losing gener-
ality, all the scheduler agents are considered selfish
individuals, and the strategies they used are intended to
maximize their own utility. In such cases, the problem faced
by scheduler agent Ai is to decide on how to assign tasks to
the servers such that each server will operate optimally.

4.1 Task Allocation Formulation

Given that the decentralized strategy is adopted in our
model, we assume that each scheduler agent distribute its
tasks to the servers independently depending on a probabil-
ity profile. Thus agent Ai should find probability rij
assigned tasks to server j to minimize the expected execu-
tion time of its tasks. The probability of agent Ai is denoted
by vector ri ¼ fri1;ri2; . . . ; rimg, and

Pm
j¼1 rij ¼ 1. We

assume that the arrival rate of scheduler agent Ai is denoted
by �i. Once rij is determined, scheduler agent i will send

tasks to server j at a rate �ij given by �ij ¼ �irij; that is, the

rate that is equal to the aggregated tasks of scheduler agent
Ai multiplied by the allocation probability for server j.
Moreover, the available processing capacity of each server

for scheduler agent Ai is denoted by vector Si ¼ fmi
1;

mi
2; . . . ;m

i
mg, where mi

j ¼ mj �
Pn

k¼1;k6¼i rkj�k indicates the

available processing rate at server j for scheduler agent i .
Hence, the overall expected responded time at scheduler

agent Ai is given by

Fig. 1. DC model.

YANG ETAL.: STACKELBERG GAME APPROACH FOR ENERGY-AWARE RESOURCE ALLOCATION IN DATA CENTERS 3649

T ðriÞ ¼
Xm
j¼1

rij

ðmi
j � rij�iÞ: (3)

Under the previous assumption, scheduler agents are
selfish and contest the sharing of computation resources
provisioned by the system monitor. The decision of sched-
uler agent Ai depends on the strategy profile of other sched-
uler agents, and thus, we formulate the preceding problem
as a decentralized game among scheduler agents. The vec-
tor r ¼ fr1; r2; . . . ; rng is called the strategy profile of the
task allocation game.

Definition 4.1. The decentralized tasks allocation game is com-
posed of a set of players, a set of strategies, and the best
response over a set of strategy profiles:

1) Players: n scheduler agents.
2) Strategies: feasible tasks allocation strategies of each

scheduler agent.
3) Best response: each scheduler agent prefers strategy

profile r to strategy profile r0 if and only if
T ðrÞ < T ðr0Þ.

Evidently, the most commonly used solution concept for
such games is that of the Nash equilibrium that we consider
in this study.

Definition 4.2. A strategy profile is a Nash equilibrium of the
decentralized task allocation game if no player at equilibrium
r� can further reduce its overall response time by unilaterally
changing its strategy; that is,

T ðr�i ; r��iÞ < T ðri; r��iÞ:

The Nash equilibrium has a beneficial self-stability prop-
erty, such that the scheduler agents at equilibrium can
achieve a mutually satisfactory solution and no agent has
the incentive to deviate. Furthermore, given that the overall
expected response time functions are continuous, convex
and increasing, a unique Nash equilibrium exists in our
task allocation game [28].

In summary, all the scheduler agents play the best
response strategies toward one another at the Nash equilib-
rium. Accordingly, the overall expected responded time is
minimized. Hence, given a set of the available processing
rates at each server, the best response of an agent is to find
the distributed probability of a set of tasks. In particular, the
best response is the solution for the following optimization
problem (labeled P1):

Minimize T ðriÞ ¼
Xm
j¼1

rij�
mi
j � rij�i

�; (4)

subject to the constraints

Xm

j¼1 rij ¼ 1; (5)

rij � 0; (6)

Xn

i¼1 rij�i < mj: (7)

Equation (5) represents the conservation constraint,
which ensures that the sum of tasks assigned to each server
by scheduler agent Ai is equal to its total tasks arriving

within a tasks allocation period. Constraint (6) assures that
the distribution probability of all tasks always satisfies non-
negativity. Finally, Constraint (7) guarantees the stability of
servers, given that the response time of the tasks queuing to
run will be infinite if the available processing rate is lower
than the arrival rate at a server according to queuing theory.

4.2 Follower Best Response Algorithm

In this study, we assume that the Constraint (7) is always
satisfied at the Nash equilibrium because the total arrival
rate does not exceed the total processing rate of the system.
Accordingly, Constraint (7) can be ignored. Constraints (5)
and (6) have continuous first partial derivatives and T ðriÞ is
a convex function in rij. This information implies that the

first-order Kuhn-Tucker conditions are necessary and suffi-
cient for optimality. Hence, problem P1 can be translated
into a Lagrangian with Lagrange multipliers and can be
deduced toward the optimal solution.

In [21], an algorithm called BEST-REPLY was presented
to address similar problems efficiently. In our work, we
directly use this algorithm to compute the best response of a
follower. For the convenience of the readers, the complete
details of the algorithm are provided (labeled Algorithm 1
in this paper).

Algorithm 1. BEST-REPLY(Si, �i)[21]: the best response
algorithm for scheduler agent i

Require:
Available serving rates of each server for scheduler agent i:

Si ¼ fmi
1;m

i
2; . . . ;m

i
mg:

The total tasks arrival rate of scheduler agent i: �i.
Ensure:
fri1;ri2 . . . ; rimg, the tasks allocation probability of sched-
uler agent i.

1: Sort the servers in decreasing order of their available proc-
essing rates, mi

1 � mi
2 � � � � � mi

m.
2: k m
3: while ðPk�1

j¼1 m
i
j � �iÞ

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk�1
j¼1 m

i
j

q
�

ffiffiffiffiffiffi
mi
k

q
do

4: k k� 1
5: end while
6: t ðPk

j¼1 m
i
j � �iÞ

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
j¼1 m

i
j

q
7: for j ¼ 1 to m do
8: if j � k then
9: rij ðmi

j � t
ffiffiffiffiffi
mi
j

q
Þ
.
�i

10: else
11: rij 0
12: end if
13: end for
14: return fri1;ri2 . . . ; rimg

In our work, the Algorithm 1 is distributed in the sense
that each scheduler agent searches the set of distribution
probability that minimizes the overall response time, when
the number of servers provisioned by the system monitor
has been determined. Following an iterative process of
updating the vector of the distribution probability, the pre-
ceding algorithm will converge to an efficient equilibrium,
and then the optimal distribution probability set of each
scheduler agent can be obtained. In this manner, we can
draw an effective conclusion, which is described in the fol-
lowing paragraphs.

3650 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 12, DECEMBER 2016

Theorem 4.1. At equilibrium, servers to which tasks are assigned
to be executed will have the same average response time if each
scheduler agent uses the Algorithm 1 to distribute tasks on the
servers.

Proof. Let u � 0; hj � 0; j ¼ 1; 2; . . . ;m denote the
Lagrange multipliers. The Lagrangian of problem P1 is
given as follows:

Lðri1; . . . ; rim; u; h1; . . . ; hmÞ

¼
Xm
j¼1

rij

ðmi
j � rij�iÞ � uð

Xm

j¼1 rij � 1Þ �
Xm

j¼1 hjrij:

The first-order Kuhn-Tucker conditions and constraints are
given as follows:

@L=@rij ¼
mi
j

ðmi
j � rij�iÞ2

� u � hj ¼ 0;

subject to the constraints

@L=@u ¼
Xm

j¼1 rij � 1 ¼ 0;

hjrij ¼ 0; hj � rij � 0; j ¼ 1; . . . ;m:

Hence, the following result can be achieved with respect to
Lagrange multiplier u:

mi
j�

mi
j � rij�i

�2 ¼ u; if rij > 0
� u; if rij ¼ 0:

�

The first item on the left side of the preceding expression
is the first partial derivative of Equation (3) for rij. This item
implies that each scheduler agent has the same marginal
value on machines where all scheduler agents place tasks
but has higher marginal value on machines where all sched-
uler agents do not distributed any tasks at equilibrium. The

aforementioned expression will be 1=mi
j if rij ¼ 0; that is,

the available processing rate mi
j ¼ mj �

Pn
k¼1;k6¼i rkj�k at

server j for scheduler agent i is equal to the reciprocal of the
response time of server j before scheduler agent i assign
any task to server j. Therefore, by intuitively considering
Algorithm 1, the server with higher available processing
rate will have the priority to be assigned tasks until its avail-
able processing rate is lower than that of the others. Conse-
quently, servers that are assigned with tasks will provision
the same available processing rate for any scheduler agent;
that is, they will have the same average response time (not
exceeding constant u) when the system reaches equilibrium.

This remark completes the proof.

5 ENERGY MANAGEMENT OF DCS

In our model, the system monitor is regarded as the leader
who has the privilege to move first and is expected to maxi-
mize its profit by operating DCs to provision computation
service for users. Evidently, reducing energy consumption
can improve the profit of the leader. Hence, the system
monitor can consider a resources provisioning strategy that

utilizes the fewest servers to guarantee the SLA while put-
ting the unused ones to sleep or off mode.

5.1 Energy Optimization Formulation

With the improvement of the management level of DCs,
energy consumption will occupy a higher proportion of the
entire operating cost of DC. Hence, the energy saving is
the chief objective considered by us, whereas other factors
are disregarded. The primary difficulty of the system moni-
tor is how to determine which resources should be switched
on and off while provisioning an acceptable QoS to their
customers. In particular, the challenge is finding the solu-
tion for the following optimization problem:

MaximizeP ðb1; b2; . . . ; bmÞ
¼ rev�

Xm

j¼1 abj
�
Pidle
j þ bjP

busy
j

�
;

(8)

where rev denotes the total revenue of the system; a is the
per unit price of energy; and bj is a binary variable, which
indicates the status of the jth server. Notably, a value of 1
indicates “on”, whereas other value indicates “off”.

From theorem 1, we learn that the average response times
of the available servers are ideally the same. In addition, the
utilization of these servers will be increased as much as pos-
sible by the provider unless their response time exceeds the
acceptable QoS to reduce energy consumption. In particular,
the average response time of each available server approxi-
mates TQoS ¼ 1=ðmj � �jÞ in extreme cases. Thus the arrival
rate in server j is decided by �j ¼ mj � 1=TQoS , the utilization

of the server can be deduced as

bj ¼
�j

mj

¼ mj � 1
�
TQoS

mj

¼ 1� 1

mjTQoS
: (9)

We also learn that the per unit price of energy a is a con-
stant and the revenue of the system is fixed because the
expected number of arrival tasks are constant during a run-
ning period. Hence, the problem can be translated into
deciding the value of each bj. that is, the problem is to select
which servers to run to maximize profit while maintaining
SLA. This problem can be formulated by the following opti-
mization equation (labeled P2):

Minimize P ðb1; b2; . . . ; bmÞ ¼
Xm

j¼1 bj
�
Pidle
j þ bjP

busy
j

�
;

(10)

subject to the constraints:

lð�jÞ � TQoS; 8j 2 f1; 2; . . . ;mg; (11)

bj 2 f0; 1g; 8j 2 f1; 2; . . . ;mg: (12)

The performance guarantee for users is set by these con-
straints, which promise that the QoS approved by users and
DC operator are not violated.

5.2 Energy Optimization Algorithm

The processing rate and power of all the servers in a DC are
different from one another because of the heterogeneity of
their capability and performance. Hence, directly resolving
problem P2, which is an NP-hard problem, is difficult.

YANG ETAL.: STACKELBERG GAME APPROACH FOR ENERGY-AWARE RESOURCE ALLOCATION IN DATA CENTERS 3651

However, the essence of problem P2 is to determine an
appropriate combination of servers to minimize energy con-
sumption. We are inspired by dynamic programming that
tackles similar problems. Accordingly, problem P2 can be
converted into an alternative optimization problem that
addresses the maximization of the processing rate for every
available power given by the distinct proportion of aggre-
gate power of the system. The following paragraphs pro-
vide a full representation of our routines.

First, on the basis of queuing theory, the Constraint (11)
of problem P2 can be converted into an alternative appro-
ximate representation denoted by

Pm
j¼1 bjmj � �þPm

j¼1 bj=
TQoS , where � is the total arrival rate of all the tasks. Then,
the bj in Equation (10) is substituted into Equation (9). The

constraint of problem P2 is used as the objective, and the
original objective becomes the constraint. The formulation
is presented as follows (labeled P3):

Maximize
Xm

j¼1 bjmj; (13)

subject to the constraints:

Xm

j¼1 bj P idle
j þ 1� 1

mjTQoS

� �
Pbusy
j

� �
¼ k ; (14)

k 2 1

g

Xm

j¼1 Pj;
2

g

Xm

j¼1 Pj; . . . ;
g

g

Xm

j¼1 Pj

� 	
; g 2 N; (15)

bj 2 f0; 1g; 8j 2 f1; 2; . . . ;mg; (16)

where g is the partition granularity of the aggregate utiliza-
tion power of the system, the Pj denotes the utilization
power of server j and is decided by equations (2) and (9),
and k is one of the powers partitioned by g in a DC. For
example, the aggregate utilization power is 9 and the g is
set to 3, then the possible values of k are 3, 6 and 9.

Considering that k can have different power values, g
subproblems are clearly presented in P3. That is, the objec-
tive of problem P3 is to minimize processing performance
for each given power k by determining an appropriate com-
bination of the servers. Following the dynamic program-
ming method [29], we obtain an insight into the problem, as
given by the following claim.

Claim 5.1. k�, which is the optimal value of problem P2,
exists. In problem P3, if we let k ¼ k�, then the optimal
solution fb1; b2; . . . ; bmg for problem P3 must be the opti-
mal solution for problem P2.

Inspired by this conclusion, we first solve the optimal
solution of problem P3 for each parameter k. Then, we
determine the optimal value of problem P2 in terms of
the set of optimal solutions achieved from problem P3.
In particular, we search for the least k�, which guarantees
that the optimal value of problem P3 is not lower than
�þPm

j¼1 bj=TQoS under k ¼ k�.
The 2-tuple <k; l> defines a subproblem of P3, in which

k is a given power value, and l 2 ½0;m� , indicates that the
number of available servers in this subproblem is between 0
and l. Mðk; lÞ denotes a set of machines, which is the opti-
mal solution for subproblem <k; l> . For example, if server
Nj is selected in the optimal solution of subproblem

< k; l > , then server Nj 2Mðk; lÞ and bj ¼ 1. sðk; lÞ denotes
the optimal value of subproblem < k; l > ; that is, sðk; lÞ is
the maximal processing rate for subproblem < k; l > . Con-
sequently, the relations among them are given by the fol-
lowing descriptions.

If Pj � k, Mðk� Pj; l� 1Þ, is an available solution and
sðk; l� 1Þ < sðk� Pj; l� 1Þ þ mj, then

Mðk; lÞ ¼Mðk� Pj; l� 1Þ [fNjg;
otherwise,

Mðk; lÞ ¼Mðk; l� 1Þ:
The detailed procedure for solving the subpro-

blems is summarized by Algorithm 2 who is called
LeaderBestResponseðLBRÞ.

Algorithm 2. LeaderBestResponse(P , m): Leader’s best
response algorithm

Require:
Serving rates of each server: m ¼ fm1;m2; . . . ;mmg.
The utilization power of each server: P ¼ fP1; P2; . . . ; Pmg.

Ensure:
the set of solution of all sub problems:M.
the optimal value of all sub problems: s.

1: M f ; s 0
2: g power partition granularity
3: Power Pm

j¼1 Pj

4: for j ¼ 1 to m do
5: k Pj

6: while k � Power do
7: if sðk; j� 1Þ < sðk� Pj; j� 1Þ þ mj then
8: sðk; jÞ sðk� Pj; j� 1Þ þ mj

9: Mðk; jÞ Mðk� Pj; j� 1Þ [fNjg
10: else
11: sðk; jÞ sðk; j� 1Þ
12: Mðk; lÞ Mðk; l� 1Þ
13: end if
14: end while
15: k kþ Power=g
16: end for
17: returnM; s

The computation complexity of this algorithm is OðmgÞ.
Hence, the overhead of this algorithm is acceptable. After
executing this algorithm, two results can be obtained. One
is M, which comprises the optimal configuration of all the
subproblems; and the other is s, which consists of the opti-
mal value of all the subproblems.

5.3 Stackelberg Game Algorithm

As mentioned earlier, the result of executing the LBR algo-
rithm is only influenced by power and the available proc-
essing rate of each server in a DC. Moreover, the operators
cannot frequently change the physical structure of DCs;
otherwise they will have no capability to receive any ben-
efit from their investments. Therefore, the LBR algorithm
does not need to be executed repeatedly. This algorithm
will only need to be executed again when the physical
composition of the system is changed to update the opti-
mal solution and the value. Hence, the result of the algo-
rithm can be stored in a disk after completing the update.

3652 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 12, DECEMBER 2016

The system monitor aims to retrieve only the result list of
the algorithm to determine the optimal solution during
runtime.

After obtaining the optimal result of each subproblem,
the next step is to decide which solution of which subprob-
lem is the best configuration scheme under the current oper-
ating environment. When the previous steps have all been
completed, the leader advertises its optimal configuration
to all its followers. Sequentially, the followers employ the
Algorithm 1 to distribute their tasks according to the infor-
mation. Algorithm 3 summarizes the tasks allocation pro-
cess between the leader and the followers through the
stackelberg game approach.

Algorithm 3. Stackelberggame(P , m)

Require:
Serving rates of each server: m ¼ fm1;m2; . . . ;mmg.
The utilization power of each server: P ¼ fP1; P2; . . . ; Pmg.
The appointed average responsible time: TQoS .

1: M; s LeaderBestResponseðP;mÞ
2: Obtain the aggregate arrival rates of all tasks: �
3: Power Pm

j¼1 Pj

4: k Power=g
5: num Mðk;mÞj j the number of servers
6: while sðk;mÞ � �þ num=TQoS do
7: k kþ Power=g
8: num Mðk;mÞj j the number of servers
9: end while
10: Configure the system byMðk;mÞ and advertise those infor-

mation to all scheduler agents
11: repeat
12: for all scheduler agent i do
13: Obtain Sifmi

1;m
i
2; . . . ;m

i
mg by inspecting

each machine ðmi
j mj �

Pn
k¼1;k 6¼i rkj�kÞ

14: ri BEST �REPLY ðSi; �iÞ
15: Set the tasks assigned probability of scheduler agent i

by ri
16: end for
17: until convergence

Once given the overall arrival rate of tasks and the maxi-
mum average response time negotiated by the users and the
provider in a DC, the optimal configuration scheme of the
system can be derived by retrieving the result list of
the LBR algorithm. Then the servers that are out of the
scheme will be put in off or sleep mode to reduce the energy
consumption of the system. The overhead of Algorithm 3
mainly focuses on the computation of the distribution prob-
ability, which is the allocation strategy profile determined
by scheduler agents for the tasks received from users.
Therefore, considering the external loop, the computation
complexity of the StackelbergGame algorithm is Oðnmlog ðmÞÞ.
After several iterations, this algorithm will converge to an
efficient equilibrium, and then terminates.

In general, the arrival rate of tasks can fluctuate over
time, so we need to employ a suitable prediction model to
forecast the future requirement. Some predicting models,
such as the autoregressive model and the autoregressive
integrated moving average model have been demonstrated
to be effective in predicting workload arrival rate [12], [30].
Accordingly, the models can be adopted to predict the

workload arrival rate. Furthermore, we ignore the cost in
time of moving tasks between servers. Recent studies [31],
[32] on live migration in several VMs exhibit migration
latencies at the millisecond level, which supports our deci-
sion to disregard this cost.

5.4 Example

To help understand our methods, an example is presented
in this section. We assume that the appointed average
response time TQoS is less than 0.5 time unit. Let 3-tuple
G ¼< c; p; q > define a group in which servers have same
parameters c , p, and q, which denotes the service rate, utili-
zation power and quantity of servers, respectively. We
assume that four available groups exist: G1 ¼<15; 4; 2> ;
G2 ¼<25; 4; 2> ;G3 ¼<10; 2; 2> , and G4 ¼<30; 4; 2> .
Therefore, the aggregate processing capability is 160 units,
and the total utilization power and number of servers is 28
units and 8, respectively. The partition granularity g is set
to 14.

The executing results of Algorithm 2 in case the afore-
mentioned parameters are used are provided in Fig. 2. In
Fig. 2a, the first row represents available server combina-
tions, in which the server is jointed with the system to provi-
sion service for the users in turn. The first column denotes
the available power divided by the partition granularity g;
and each cell of the other columns denotes an optimal value
sðk; lÞ, which corresponds a given power k and the number
of available servers l. In the last column, the available

Fig. 2. Example for our methods.

YANG ETAL.: STACKELBERG GAME APPROACH FOR ENERGY-AWARE RESOURCE ALLOCATION IN DATA CENTERS 3653

servers are set to {2,2,2,2}, which implies that all the servers
are available and that each cell of the column highlighted in
green denotes a final optimal value associated with a given
power. For example, when a given power k is 24 or 12, the
maximal service capabilities provisioned by the system are
145 and 85, respectively.

Similarly, Fig. 2b represents the optimal solutions Mðk; lÞ
under different given power k and the number of available
servers l with Algorithm 2. The last column highlighted in
green describes the optimal solution in the case of all servers
being available; that is, this column records final provisioning
strategies. For example, when a given power k is 24 or 12, the
optimal combinations of the servers provisioned by the
system are Mð24; 8Þ ¼ f2; 2; 1; 2g and Mð12; 8Þ ¼ f0; 1; 0; 2g,
respectively.

In the following, the Algorithm 3 is performed using
the results of Algorithm 2. We assume that the aggregate
arrival rate of tasks is 100 units. Accordingly Algorithm
3 can determine that the optimal solution is Mð16; 8Þ ¼
f0; 2; 0; 2g because sð16; 8Þ ¼ 110 depending on the results
of Algorithm 2 is exactly higher than �þ jMð16; 8Þj=
TQoS ¼ 100þ 4=0:5. Then the system monitor configures
the system through Mð16; 8Þ. Tasks executed on the serv-
ers that will be set to sleep mode or will be turned off
are migrated to other servers that are kept active in the
next period. Then, the scheduler agents can obtain the
information of available servers advertised by the system
monitor and can distribute their tasks on the servers
using Algorithm 1.

6 EVALUATION

In this section, we evaluate the performance of our methods
under various scenarios and compare it with alternative
approaches.

6.1 Configurations

While performing our experiment on a large-scale real-life
DC, several servers will be switched on or off over time.
Consequently, uncertain risks that may result in the instabil-
ity and may cause enormous economic losses for both pro-
vider and other users are present. Therefore, we simulate a
heterogeneous DC composed of a mixture of servers from
multiple manufacturers and models in our experiments.
Their parameters are elaborated as follows.

The system consists of 1250 simulated servers that reflect
the characteristics of four types of servers: QuantaGrid
D51B-2U, NEC Express5800, IBM x3755 M3, and Dell
PowerEdge R610. The parameters of these servers are
obtained from the SPECpower_ssj2008 benchmark, which is
available to the public through the Standard Performance
Evaluation Corporation website [33]. These machines are
manufactured by various enterprises using different tech-
nologies in the last five years.

We present the characteristics of the simulated servers in
Table 2. The five sets of parameters of the servers are listed
in this table. The second column provides the processing
rate of the simulated servers. The third column shows the
idle power of the servers. The forth column indicates the
full power as the server runs under full utilization. The last
column provides the number of each type of server. A sub-
stantial difference exists in the ratio of the energy to the per-
formance of each servers. Fig. 3 shows energy consumption
as a function of server usage. It illustrates the importance of
considering machine heterogeneity when scheduling tasks
to reduce energy consumption.

A total of 12 scheduler agents are present in the system.
The total load rate � is determined by the product of the sys-
tem utilization and the aggregate processing rate of the sys-
tem, i.e., the 60 percent total load rate means that the
utilization of the system is 60 percent. The arrival rate of
each scheduler agent is equal to the product of the scaling
factor fi and the total load rate �. It is denoted with
�i ¼ �fi, where the scaling factors fi are provided in
Table 3.

In our evaluation experiments, the partition granularity
of power g is decided by

Xm

j¼1 Pj=5
l m

;

where 5 is the approximate value of the GCD of the utiliza-
tion power of the four types of servers. In addition, our
method is labeled as STG, and several other methods are
implemented for comparison, as follows: (1) a none power-
aware algorithm (called NPA), which turns on all the serv-
ers during runtime and assigns tasks to each server in pro-
portion to its processing rate, is primarily used as a lower
bound for energy saving; (2) the DVFS method discussed in
[13], [14] (called DVFS); (3) the DCP scheme shown in [10],
[11] (denoted as DCP), which always provides machines in
a greedy manner by turning them on in descending order of

TABLE 2
Servers Configurations

Model Service rate
(tasks/s)

Idle power
(watts)

Full power
(watts)

Num of
machines

Type1 82 49.6 272 100
Type2 10 15.9 45.1 500
Type3 57 122 580 150
Type4 14 63.2 236 500

Fig. 3. Server energy consumption.

TABLE 3
Scaling factors fi for Each Scheduler Agent

schedule agents 1 2-3 4-6 7-10 11-12
fi 0.2 0.12 0.02 0.1 0.5

3654 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 12, DECEMBER 2016

energy efficiency (e.g., always turning on Type1 machines
first). To simplify the evaluation, we ignore uncompleted
tasks and communication delays in the system while mak-
ing decisions.

6.2 Effect of Load Rate

An important issue is the influence of load rate on energy
saving. To study this issue we vary the total load rate of the
system from 10 to 90 percent on a simulated heterogeneous
distributed system. Then, we perform experiments to mea-
sure the effect of energy consumption with NPA, DVFS,
DCP, and STG. In the experiment, the parameters of the
simulated servers are provided by previous configurations,
and the maximal average response time is set to 280 ms. For
easy comparison, we set the evaluation metric of energy
saving as the ratio of the actual power consumption
between these schemes and the NPA scheme. this ratio is
characterized by

1� Pactual=PNPA;

where the Pactual represents the actual power consump-
tion of each scheme, and the PNPA is viewed as the bench-
mark power consumed by NPA scheme, thus the higher
value means more energy saving.

The Fig. 4 shows the results of the experiment, when the
load rate of the system is varied from 10 to 90 percent. As
expected, given that all the servers are active under the
NPA scheme, this scheme incurs the highest energy cost,
and can be regarded as the baseline algorithm. In addi-
tional, the DCP scheme which provisions resources with
respect to the current requirements, is similar to our
scheme. Hence, the results of the two schemes are close in
the experiment. However, the Fig. 4 illustrates that our
method is superior to the DCP scheme, primarily because
DCP does not optimize the supply combination of the serv-
ers and tasks allocation.

The results presented in the Fig. 4 indicate that DVFS
technology can also reduce energy consumption. However,
because of the existence of static power, the energy-saving
effect of this scheme can only achieve half of the perfor-
mance of our method at low utilization (load rates range
from 10 to 40 percent). Furthermore, when the load rate of
the system is higher than 70 percent, more servers are
employed to provision service for users to prevent violating

the SLA. Therefore, fewer machines can be scaled and the
effect of the energy saving gradually narrows down among
the four schemes.

6.3 Effect of Average Response Time

Intuitively, in order to promote the performance of the sys-
tem, the operator has to provision more machines or scale
up the voltage or frequency of machines to reduce the aver-
age response time of tasks. However, the reduction of the
average response time of the tasks and energy saving is con-
flicting. Therefore, we explore the relationship between
energy saving and the average response time in the four
scheduling schemes in the section.

In this experiment, the parameters of the simulated serv-
ers are the same as those in the previous experiment, and
the load rate of the system is given at 50 percent of the total
processing capacity of the system. Fig. 5 shows the power
requirement for different schemes at three levels of the aver-
age response time: 280, 240, and 200 ms. Notably, the four
schemes always satisfy the average response time in the
three levels. The plot shows the NPA scheme yields almost
the same consumption power at three levels of the average
response times. The main reason is that NPA always turns
on all the servers to provision service for users without any
power-aware strategy.

The results presented in Fig. 5 show that the consumption
power of the STG, DCP, and DVFS schemes increases with
the decrease in average response time. This means that the
three schemes supply more computation capacity with the
increasing demands of users. Essentially, they only provision
so those minimal yet sufficient service rates to prevent the
negotiated SLAs from violating for the minimization of
energy consumption.

To a certain extent, the strategies of STG and DCP are
similar; that is, they generally consolidate the workload to
fewer servers, and then put the unused servers in sleep or
off mode. However, the STG scheme significantly outper-
forms DCP and DVFS in our evaluation. Using STG scheme
the consumption power is less than using other schemes in
all levels of the average response times. The main reason for
this result is that STG scheme distributes the tasks with the
aid of Algorithm 1, which can achieve the approximate opti-
mal average response time using less number of machines.
Futhermore, given that the STG scheme combines machines
with Algorithm 2, its energy consumption is less than that
of DCP while maintaining the same average response time.

Fig. 4. Ratio of energy saving versus load rate.

Fig. 5. Average response time versus energy.

YANG ETAL.: STACKELBERG GAME APPROACH FOR ENERGY-AWARE RESOURCE ALLOCATION IN DATA CENTERS 3655

6.4 Effect of Dynamic Load

To validate and evaluate our method further, the statistical
data of the actual workload trace are drawn from the China
National Supercomputer Center in Changsha. By analyzing
and normalizing the statistical data, the final results that
reflect the periodic fluctuation of the workload at the center
are presented in Fig. 6. In this figure, the maximum load
rate is approximated to be 80 percent of the service capacity
of the cluster. In this section, we examine the dynamic capa-
bility of the four schemes under the simulated situation pre-
sented in Fig. 6.

Without losing generality, we assume that the computa-
tional resources of the system always satisfy the require-
ment of the users, and the overall workload of the system
also varies periodically in our experiment environment. In
addition, the maximum average response time is set to
280 ms. In order to facilitate comparison, we disregard the
delays of turning servers on and of the predicting strategies
for load fluctuations when using the DCP and STG schemes
in our simulated experiments.

In the Fig. 7, the average response time of NPA is the
shortest, and the curve of average response time of NPA
fluctuates with the change of the system load rate. The main
reason is that all the servers of the system are active and
ready to provision service for users at any time when opera-
tor employs NPA scheme that is a no power-aware strategy.

The results presents in the Fig. 7 show that the curves of
DFVS, DCP and STG are close. The experimental results just
coincide with our expectation. It reveals that the three
schemes do not supply more computation capacity than the

demands of the current workload in order to maximize
energy saving without violating the negotiated SLAs.
Hence, the computation capacity provisioning for users
exactly satisfy or approach the maximal average response
time in the schemes.

Specially, the average response time of DCP fluctuates by
the change of load rate and is less than that of DVFS and
STG when the load rate is relative lower, e.g., the load rate
is 20 percent. The reason is that DCP method prefers the
machines having higher energy-performance efficiency
without considering their power. It ignores the fact that
energy-performance efficiency only represents the perfor-
mance per unit energy rather overall processing rate.
Accordingly, the computation capacity provisioning for
users may exceed the essential demands of the current
workload because of adopting higher energy efficiency
servers having higher processing rate.

Fig. 8 shows the number of active machines used in the
STG algorithm. This algorithm always minimizes energy
costs by combining the machines having different energy
efficiencies, rather than prioritizing machines with more
energy efficiency to pick up. By contrast, to reduce the over-
all energy consumption of DC, the DCP prefers to select
more energy efficient machines. Therefore, this approach
always turns on machines in decreasing order of energy effi-
ciency. However, note that the static power of these servers
with high energy efficiency may be more than that of serv-
ers with low energy efficiency, e.g., the energy efficiency of
Type1 is superior to that of type2, but its static power is also
higher than Type1. Therefore, under the DCP approach,
energy consumption may not be the least in some cases.

Following the preceding discussions, the energy con-
sumption of STG will not exceed that of DCP when these
approaches maintain identical QOS performance. Fig. 9
shows the average energy consumption of using the four
methods. STG incurs the lowest energy costs, which corre-
spond to a 5.1 percent reduction in energy cost compared
with DCP.

6.5 Convergence of Algorithm

The number of scheduler agents can significantly influence
the convergence of our method. In this study, we also evalu-
ate the relationships between the number of scheduler
agents and the convergence of the proposed scheme. In our
evaluation, the parameters of the simulated servers are set

Fig. 6. Workload trace.

Fig. 7. Average response time.

Fig. 8. Number of machines used by STG.

3656 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 12, DECEMBER 2016

by the configurations presented in Section 6.1. We measure
the number of iterations needed to reach equilibrium for the
system with 60 percent load rate and a variable number of
scheduler agents (from 5 to 30), in which the deviation of
stopping iterations is set to " < 0:001 and the amount of ini-
tial tasks assigned on each server is proportional to their
computation capacity in our evaluation. The experimental
results show that our method exhibit similar convergence
performance with that of the method proposed in [21]. This
similarity validates the effectiveness of our scheme.

7 CONCLUSION

In this study, we investigated the power-performance trade-
off problem in allocating DC resources. We also presented a
game-theoretic framework and associated algorithms to
reduce energy consumption as much as possible while
meeting the minimum performance requirements specified
via SLAs. The presented algorithms have relatively low
complexity and distribution execution characteristic, and
thus, they can be easily implemented to improve the reli-
ability and robustness of system. The effectiveness of our
approach was assessed by performing simulated experi-
ments in a real prototype environment. A comparison with
popular technologies demonstrated that our approach
could outperform alternative methods achieving better
energy saving while maintaining the same processing per-
formance. To a certain extent, our work is significant to pro-
moting energy saving in DCs. Our methodology can be
applied to other resource allocation models.

In the future, we plan to explore operating cost optimiza-
tion and the VM allocation among multiple cloud providers
while considering the heterogeneity of workloads from the
perspective of the operator. We are also interested in inves-
tigating energy saving for geographically distributed DCs
as an extension of our work.

ACKNOWLEDGMENTS

The authors are grateful to three anonymous reviewers for
their constructive comments. The work reported in this
paper was supported by the National Natural Science Foun-
dation of China (Grant No. 61173107), the National High
Technology Research and Development Program of China
(Grant No. 2012AA01A301-01), the Special Project on
the Integration of Industry, Education and Research of

Guangdong Province, China (No. 2012A090300003) and the
Science and Technology Planning Project of Guangdong
Province, China (No. 2013B090700003). Zhiyong Li is the
corresponding author.

REFERENCES

[1] C. Ge, Z. Sun, and N. Wang, “A survey of power-saving techni-
ques on data centers and content delivery networks,” IEEECom-
mun. Surveys Tuts., vol. 15, no. 3, pp. 1334–1354, Jul./Sep. 2013.

[2] L. A. Barroso, J. Clidaras, and U. H€olzle, “The datacenter as a com-
puter: An introduction to the design of warehouse-scale machines,”
Synthesis Lectures Comput. Archit., vol. 8, no. 3, pp. 1–154, 2013.

[3] F. Kong and X. Liu, “A survey on green-energy-aware power
management for datacenters,” ACM Comput. Surveys, vol. 47,
no. 2, pp. 30–67, 2015.

[4] Y. C. Lee and A. Y. Zomaya, “Energy efficient utilization of
resources in cloud computing systems,” J. Supercomput., vol. 60,
no. 2, pp. 268–280, 2012.

[5] A. Rahman, X. Liu, and F. Kong, “A survey on geographic load
balancing based data center power management in the smart grid
environment,” IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 214–
233, Jan./Mar. 2014.

[6] M. Guzek, P. Bouvry, and E.-G. Talbi, “A survey of evolutionary
computation for resource management of processing in cloud
computing [review article],” IEEE Comput. Intell. Mag., vol. 10,
no. 2, pp. 53–67, May. 2015.

[7] K. Li, X. Tang, and K. Li, “Energy-efficient stochastic task schedul-
ing on heterogeneous computing systems,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 11, pp. 2867–2876, Nov. 2014.

[8] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for
Cloud computing,” Future Generation Comput. Syst., vol. 28, no. 5,
pp. 755–768, 2012.

[9] A. Beloglazov and R. Buyya, “Energy efficient allocation of virtual
machines in cloud data centers,” in Proc. 10th IEEE/ACM Int. Conf.
Cluster, Cloud Grid Comput., 2010, pp. 577–578.

[10] A. Gandhi, Y. Chen, D. Gmach, M. Arlitt, and M. Marwah,
“Hybrid resource provisioning for minimizing data center SLA
violations and power consumption,” Sustainable Comput. Informat.
Syst., vol. 2, no. 2, pp. 91–104, 2012.

[11] Z. Xiao, W. Song, and Q. Chen, “Dynamic resource allocation
using virtual machines for cloud computing environment,” IEEE
Trans. Parallel Distrib. Syst., vol. 24, no. 6, pp. 1107–1117, Jun. 2013.

[12] Q. Zhang, M. F. Zhani, R. Boutaba, and J. L. Hellerstein, “Dynamic
heterogeneity-aware resource provisioning in the cloud,” IEEE
Trans. Cloud Comput., vol. 2, no. 1, pp. 14–28, Mar. 2014.

[13] K. Li, “Optimal power allocation among multiple heterogeneous
servers in a data center,” Sustainable Comput. Inform. Syst., vol. 2,
no. 1, pp. 13–22, 2012.

[14] J. Cao, K. Li, and I. Stojmenovic, “Optimal power allocation and
load distribution for multiple heterogeneous multicore server pro-
cessors across clouds and data centers,” IEEE Trans. Comput.,
vol. 63, no. 1, pp. 45–58, Jan. 2014.

[15] J. Cao, H. Kai, K. Li, and A. Y. Zomaya, “Optimal multiserver con-
figuration for profit maximization in cloud computing,” IEEE
Trans. Parallel Distrib. Syst., vol. 24, no. 6, pp. 1087–1096, Jun. 2013.

[16] B. Guenter, N. Jain, and C. Williams, “Managing cost, perfor-
mance, and reliability tradeoffs for energy-aware server
provisioning,” in Proc. IEEE INFOCOM, 2011, pp. 1332–1340.

[17] D. Kliazovich, P. Bouvry, and S. U. Khan, “DENS: Data center
energy-efficient network-aware scheduling,” Cluster Comput.,
vol. 16, no. 1, pp. 65–75, 2013.

[18] T. Imada, M. Sato, Y. Hotta, and H. Kimura, “Power management
of distributed web savers by controlling server power state and
traffic prediction for QoS,” in Proc. IEEE Int. Symp. Parallel Distrib.
Process., 2008, pp. 1–8.

[19] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao,
“Energy-aware server provisioning and load dispatching for
connection-intensive internet services,” in Proc. 5th USENIX
Symp. Netw. Syst. Des. Implementation, 2008, pp. 337–350.

[20] S. Wang, J. J. Chen, J. Liu, and X. Liu, “Power saving design for
servers under response time constraint,” in Proc. IEEE 22nd Euro-
micro Conf. Real-Time Syst., 2010, pp. 123–132.

[21] D. Grosu and A. T. Chronopoulos, “Noncooperative load balanc-
ing in distributed systems,” J. Parallel Distrib. Comput., vol. 65,
pp. 1022–1034, 2005.

Fig. 9. Comparison of energy consumption.

YANG ETAL.: STACKELBERG GAME APPROACH FOR ENERGY-AWARE RESOURCE ALLOCATION IN DATA CENTERS 3657

[22] R. Subrata, A. Y. Zomaya, and B. Landfeldt, “A cooperative game
framework for QoS guided job allocation schemes in grids,” IEEE
Trans. Comput., vol. 57, no. 10, pp. 1413–1422, Oct. 2008.

[23] R. Subrata and A. Y. Zomaya, “Game-theoretic approach for load
balancing in computational grids,” IEEE Trans. Parallel Distrib.
Syst., vol. 19, no. 1, pp. 66–76, Jan. 2008.

[24] R. Subrata, A. Y. Zomaya, and B. Landfeldt, “Cooperative power-
aware scheduling in grid computing environments,” J. Parallel
Distrib. Comput., vol. 70, no. 2, pp. 84–91, 2010.

[25] M. Feldman, K. Lai, and L. Zhang, “The proportional-share alloca-
tion market for computational resources,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 20, no. 8, pp. 1075–1088, Aug. 2009.

[26] X. Le�on and L. Navarro, “A Stackelberg game to derive the limits
of energy savings for the allocation of data center resources,” Fut.
Gen. Comput. Syst., vol. 29, no. 1, pp. 74–83, 2013.

[27] R. B. Myerson, Game Theory. Cambridge, MA, USA: Harvard
Univ. Press, 2013.

[28] P. J. Reny, “On the existence of pure and mixed strategy Nash
equilibria in discontinuous games,” Econometrica, vol. 67, no. 5,
pp. 1029–1056, 1999.

[29] R. E. Bellman and S. E. Dreyfus, Applied Dynamic Programming.
Princeton, NJ, USA: Princeton Univ. Press, 1962.

[30] M. R. Hines and K. Gopalan, “Post-copy based live virtual
machine migration using adaptive pre-paging and dynamic self-
ballooning,” in Proc. ACM SIGPLAN/SIGOPS Int. Conf. Virtual
Execution Environ., 2009, pp. 51–60.

[31] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S.
Singhal, and A. Merchant, “Automated control of multiple virtual-
ized resources,” inProc. ACMEur. Conf. Comput. Syst., 2009, pp. 13–26.

[32] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu, “Live migration of virtual
machine based on full system trace and replay,” in Proc. 18th ACM
Int. Symp. High Performance Distrib. Comput., 2009, pp. 101–110.

[33] Spec power benchmarks. (2015). [Online]. Available: http://
www.spec.org/power_ssj2008/results/power_ssj2008.html.

[34] B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel
optimization,” Ann. Oper. Res., vol. 153, no. 1, pp. 235–256, 2007.

[35] U. Bhaskar, L. Fleischer, and E. Anshelevich, “A stackelberg strat-
egy for routing flow over time,” Games Econ. Behav., vol. 10, no. 1,
pp. 192–201, 2013.

[36] Y. Chu, F. You, J. M. Wassick, and A. Agarwal, “Integrated plan-
ning and scheduling under production uncertainties: Bi-level
model formulation and hybrid solution method,” Comput. Chem.
Eng., vol. 72, pp. 255–272, 2015.

[37] T. Roughgarden, “Stackelberg scheduling strategies,” SIAM
J. Comput., vol. 33, no. 2, pp. 332–350, 2004.

[38] B. Wang, Z. Han, and K. Liu, “Distributed relay selection and
power control for multiuser cooperative communication networks
using stackelberg game,” IEEE Trans. Mobile Comput., vol. 8, no. 7,
pp. 975–990, Jul. 2009.

[39] S. Maharjan, Q. Zhu, Y. Zhang, S. Gjessing, and T. Basar,
“Dependable demand response management in the smart grid: A
stackelberg game approach,” IEEE Trans. Smart Grid, vol. 4, no. 1,
pp. 120–132, Mar. 2013.

[40] H. Von Stackelberg, Marktform Und Gleichgewicht, Berlin,
Germany: Springer, 1934.

[41] G. E. Asimakopoulou, A. L. Dimeas, and N. D. Hatziargyriou,
“Leader-follower strategies for energy management of multi-
microgrids,” IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 1909–1916,
Dec. 2013.

[42] T. D. Braun, H. J. Siegel, A. A. Maciejewski, and Y. Hong, “Static
resource allocation for heterogeneous computing environments
with tasks having dependencies, priorities, deadlines, and multi-
ple versions,” J. Parallel Distrib. Comput., vol. 68, no. 11, pp. 1504–
1516, 2008.

[43] H. Goudarzi, M. Ghasemazar, and M. Pedram, “SLA-based opti-
mization of power and migration cost in cloud computing,” in
Proc. 12th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput., 2012,
pp. 172–179.

[44] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, andM. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace
analysis,” in Proc. 3rd ACMSymp. Cloud Comput., 2012, Art. no. 7.

[45] G. Lee, B.-G. Chun, and R. H. Katz, “Heterogeneity-aware
resource allocation and scheduling in the cloud,” in Proc. Hot-
Cloud, 2011, pp. 1–5.

[46] M. Harchol-Balter, Performance Modeling and Design of Computer
Systems: Queueing Theory in Action. Cambridge, U.K.: Cambridge
Univ. Press, 2013.

Bo Yang received the MSc degree in computer
science and technology from Hunan University,
China, in 2005. He is currently working toward
the PhD degree at Hunan University, China. His
current research interests include parallel com-
puting and high-performance computing, distrib-
uted computing, energy-efficient computing
and communication, heterogeneous computing
systems, game theory, and mobile computing.

Zhiyong Li received the MSc degree in system
engineering from the National University of
Defense Technology, Changsha, China, in 1996
and the PhD degree in control theory and control
engineering from Hunan University, Changsha,
China, in 2004. Now, he is a full professor with
Hunan University, member of China Computer
Federation. His research interests include embed-
ded computing system, visual object tracking,
dynamic multi-objective evolutionary algorithm
and tasks scheduling optimization in cloud com-

puting. He obtained several awards from academic organizations and
conferences, such as the Champion of the Future Challenge: Intelligent
Vehicles and Beyond, FC’09, which was hosted by the National Natural
Science Fund Committee of China in 2009. He is a member of IEEE.

Shaomiao Chen received the MSc degree in
computer science and technology from Hunan
University, Changsha, China, in 2014. He is cur-
rently working toward the PhD degree at Hunan
University. His research interests include parallel
computing, evolutionary computation and sched-
uling optimization.

Tao Wang received the PhD degree in computer
application from Central South University, in
2014. He is an assistant professor at Hunan Uni-
versity. . His research interests include evolution-
ary computing, complex system and network

.

Keqin Li is a SUNY distinguished professor of
computer science. His current research interests
include parallel computing and high-performance
computing, distributed computing, energy-effi-
cient computing and communication, heteroge-
neous computing systems, cloud computing, big
data computing, CPU-GPU hybrid and coopera-
tive computing, multicore computing, storage and
file systems, wireless communication networks,
sensor networks, peer-to-peer file sharing sys-
tems, mobile computing, service computing,

Internet of things and cyber-physical systems. He has published more
than 390 journal articles, book chapters, and refereed conference
papers, and has received several Best Paper Awards. He is currently or
has served on the editorial boards of IEEE Transactions on Parallel and
Distributed Systems, IEEE Transactions on Computers, IEEE Transac-
tions on Cloud Computing, Journal of Parallel and Distributed Comput-
ing. He is Fellow of IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

3658 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 12, DECEMBER 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

