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a b s t r a c t

A major challenging problem in clouds is designing efficient mechanisms for virtual machine (VM)
allocation and pricing. Failure to fully consider the incentives of cloud providers and customers can cause
undesirable outcomes, such as no envy-freeness and untruthfulness, whichmay lead to system instability
and relatively low profit for cloud providers. In this study, we proposed a combinatorial auction-based
mechanism to address such problem in the presence of multiple types of VMs in a single provider
scenario. The proposedmechanism combines two general ideas: consensus estimate that can avoidmarket
manipulation and yields an approximate optimal target revenuewith the consensus estimate technology,
and RevenueExtraction that can determine thewinners and equally shares the target revenue generated by
consensus estimate among themwith a single sale price. Using the two ideas, the proposedmechanism can
simultaneously promise truthfulness and envy-freenesswhile achieving an approximate optimal revenue.
The results of extensive simulation experiments demonstrate that our schemes can efficiently deliver
stable and desirable performance, especially in large-scale and over-supplied cloud markets.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

Cloud computing provides an attractive paradigm for offering
computing services in the pay-as-you-go model. Usually, the pro-
vided services refer to Software-as-a-Service (SaaS), Platform-as-
a-Service (PaaS), and Infrastructure-as-a-Service (IaaS) [1]. To de-
liver satisfying quality of service and efficient resource allocation,
simultaneously meeting the economic incentives of cloud users
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and cloud providers (CPs) has become a fundamental and un-
avoidable problem in cloud computing. Compared with the fixed-
priced mechanism, auction-based mechanisms can provide more
incentives to users to adjust consumption patterns according to
demand and supply, and also bring higher profit for Cps [2]. For
example, Amazons EC2 [3] has successfully adopted an auction-
like approach to expand its pricing plans with Spot instances.
Consequently, employing auction mechanisms to make decisions
for resource allocation and pricing in cloud markets has attracted
increasing interests from both the research community and the
industry [4].

In practice, it is undoubted that CPs always pursue the maxi-
mization of revenue. Therefore, they expect everyone participating
in auctions to report true bids such that the maximization of
their benefits can be guaranteed, that is, the auctions employed
by them are truthful. However, most truthful auctions, e.g., the
Vickrey–Clarke–Groves (VCG) auction and the ascending auction,
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for selling multiple goods to bidders can discriminate between
bidders by selling identical goods at different prices [5]. Likely, in
cloud environment, a cloud customer usually requests a bundle
of distinct type commodities (such as VMs or containers) from
cloud providers [6,7], so price discrimination also exists in cloud
markets while such auctions are conducted. Price discrimination
is problematic as pointed out by economic literature [8], which
makes a number of users envy the results of other users, placing
the system in an unstable state, and in several cases also forbidden
by international commerce law [9]. Envy-free allocations were
suggested tackling such problem by classical literatures [5,8]. The
key property of such allocations is that no one envies the allocation
and the price charged to anyone else. Obviously, envy-freeness
promising a fair treatment and truthfulness bringing highly ex-
pected revenue are themost important properties of auction-based
mechanisms.

However, it is hard to simultaneously achieve both envy-
freeness and truthfulness in the auction for selling multiple goods
to bidders in cloud markets. To tackle the problem, several com-
promising scenarios are acceptable, such as, under the premise of
ensuring envy-freeness, the auction-basedmechanism can provide
either truthfulness with high probability or suboptimal economic
efficiency while promising truthfulness. Hence, a trade-off fre-
quently exists among envy-freeness, truthfulness and economic
efficiency.

In addition, clouds present such a promise of providing infinite
capacity of resources, and recent studies also report that the overall
utilization in large data centers is lower than 50% most of the
time [10,11]. That is, the resource provisioning of CPs is often
oversupplied. However, traditional truthful mechanisms (such as
the VCG mechanism) usually fail to work in this scenario due
to they are born to serve for undersupplied markets. The price
produced by them in this case is very low such that CPs have little
profit, because of having to accept the bidders with low bid.

Furthermore, due to the lack of effective estimate method for
different type VMs, the provisioning VMs often are regarded as
type-oblivious commodities to respond to the heterogeneity of
VMs [12,13]. That is, either a single type of VMs exists in the
cloud market, or VMs are substitutes in which a high-end VM is
equivalent to a number of low-end VMs. While designing auction-
based approaches for selling multiple type VMs to users in cloud
markets, such estimates are inaccurate and unfair for users and
cannot be adapted straightforwardly to handle the existing VM
heterogeneity.

1.2. Contributions

In this paper, we model the resource allocation problem in a
cloud system as a combinatorial auction. The service provider is
defined as a seller who has different type VMs to be leased or
sold to cloud users, whereas the cloud users are defined as buyers.
The buyer asks a bundle of VMs with different configurations from
the seller. We solve the problem of VMs allocation and pricing
in a single provider scenario, aiming to achieve the maximization
of cloud providers’ revenue, envy-freeness and truthfulness. Our
main contributions are summarized as follows.

The sold items in our schemes are extended to multiple types
of resources, rather than type-oblivious commodities, to be con-
sistent with the diversity of VMs provisioning in cloud comput-
ing. Moreover, the multiple criteria decision making technique is
adopted in order to fairlymeasure the bundles of VMs requested by
distinct users with different requirements based on the provider’s
criteria.

A combinatorial auction mechanism framework (EFM) is pre-
sented to fulfill our goals. It combines two general ideas: consen-
sus estimate that can avoid market manipulation and yields an

approximate optimal target revenue with the consensus estimate
technology, and RevenueExtraction that equally shares the target
revenue generated by consensus estimate among winners with a
single sale price. Using the two ideas, the proposed mechanism
can promise the two properties of truthfulness and envy-freeness
while achieving an approximate optimal revenue. It can provide
computationally efficient solutions being suitable for execution
in short time window auctions, and deliver stable and desirable
performance, especially in large-scale and over-supplied cloud
markets.

The rest of this paper is organized as follows. We first discuss
relatedworks in Section 2, and then introduce the systemmodel in
Section 3. We provide the formulation of the resources allocation
problem and present the detailed description of the proposed
algorithms in Sections 4 and 5, respectively. We discuss the sim-
ulation results that demonstrate the effectiveness of our approach
in Section 6. Finally, the conclusions are drawn in Section 7.

2. Related works

Development of efficient and effective mechanisms to decide
computing resources allocating, pricing and provisioning has at-
tained increasing interest. Existing investigations have approached
this problem from various points of view, such as conventional
models, economic and game-theoretic models [14–16,11,17]. Con-
ventional models need the global and complete information of the
data center, andderive cost based on theusage of resources [14,15].
The models are mostly centralized in nature. Economic and game-
theoretic models for resource allocation derive cost based on the
value that the customer derives from their demands and the avail-
able services. Such models are not only decentralized but also
offer incentives to customers, and hence have recently aroused
extensive attention in industrial world and academe.

Among the studies employing game theory to investigate the
resource allocation problems in clouds, several works [18,10,11]
focused on the system performance or the tradeoff between the
efficiency of resources allocation and energy consumption, and
adopted the decentralized allocation strategy to ease the burden
of system management. Although these schemes exhibited sig-
nificant improvement in the management of resource allocation,
they still gave insufficient focus on the economic incentive of both
the customers and the providers. For example, the customer’s
valuation for services was not taken into account, and CPs can
accept all user requests regardless of the operating cost and the
customer’s valuation.

Auction-based approaches have been explored in a series of
work in recent cloud computing literatures, due they require little
global information, are decentralized, and easy to be implemented
in distributed systems. Di Valerio et al. [19] formulated the service
provisioning problem as a Stackelberg game, and computed the
equilibrium price and allocation strategy by solving the associated
optimization problem. Zhang et al. [20] studied the resource al-
location problem with real-time demand arrivals, and propose a
truthful online auction-based allocation policy. Zaman et al. [12]
proposed an auction-based VM allocation mechanism, which is
approximately efficient and generates higher revenue than the
currently used fixed-price mechanisms for allocating VMs. In their
extendedwork [13], the set of VMs is selected in a dynamic fashion
that reflects themarket fluctuation over time. In the above studies,
the provisioning VMs are regarded as type-oblivious commodities
to respond to the diversity of VMs. The authors of [21,22] employed
the concept of bid density to measure the quantity of the VMs
bundle requested by the customer. However, they did not normal-
ize the numerical representation for different types of resources,
such as vCPU, memory and storage, to ensure the fairness of the
evaluation. Wang et al. [23] proposed a fitness-enabled auction,
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in which the key is to require a standard machine as evaluation
benchmark to address the VM heterogeneity in cloud computing.
However, finding a standard machine in practice is difficult.

Truthfulness, also known as strategy-proof or incentive-
compatible, is an essential property that avoids market manip-
ulation and ensures auction fairness and efficiency in economic
market. As the only type of auctions that can simultaneously guar-
antee truthfulness and economic efficiency, the VCG mechanism
has obtained widely attention for the resource allocation in cloud
markets. However, VCG-based mechanisms suffer from compu-
tational complexity because the winner determination is an NP-
hard problem [2]. Thus, to achieve truthfulness and reduce com-
puting complexity, numerous schemes [24,20,12,13,21,22] were
proposed by extending classic VCGmechanism, in which they first
designed an approximation algorithm or dynamic programming-
based algorithm and then resorted to the critical bid rule to calcu-
late sale price for each user. The authors of [24–26] utilized the
primal–dual optimization algorithms and randomized reduction
techniques to design a set of truthful, polynomial-time auctions
based on VCG for dynamic resource provisioning, which is compu-
tationally efficient and truthful in expectation. Tanaka et al. [27]
proposed a dynamic programming-based algorithm for service
selection andVCGpayment calculation.Mihailescu et al. [28] intro-
duced a reverse auctionmodel for the selection of services in cloud
platforms to exploit dynamic pricing by assuring truthfulness. The
studies aimed to maximize the utility of users and providers and
reduce the computational costwhile guaranteeing the truthfulness
of the mechanisms proposed by them. These schemes shown sig-
nificant improvement but disregarded the envy-free property and
the over-supplied scenario, which may result in the instability of
the system and the decrease of the provider’s revenue.

Envy-freeness induces the notion of a fair allocation which
can ensure that the auction mechanism is stable, such that no
bidder will be happier with the outcome of another bidder after
the auction is run. Hence, numerous studies [17,29–33] in various
fields viewed it as an in-ignorable attribute while implementing
the mechanism of resources allocation. The analysis of [29–33]
relied on the assumption that the available items, such as digital
goods and VMs, sold to customers were homogeneous commodi-
ties, which are not suitable to the cloud market that provides
multiple types of resources to users. Toosi et al. [17] extended the
above investigations and proposed an auction-based mechanism
called Online Ex-CORE that can generate near optimal profit for the
cloud provider in a single round of auction. They constructed an
auction-based mechanism that is envy-free and truthful with high
probability on price dimension. Although similar technologies are
used in ourwork, the difference from theirwork is thatwe consider
that the scenario of VMs provisioning is various types rather than
single type. Furthermore, the mechanism proposed by us is envy-
free and fully truthful on both of price and quantity dimensions.

3. Systemmodel

In this section, we introduce the system model and the prob-
lems formulation. For the convenience of the readers, the major
notations used in this paper are listed in Table 1.

3.1. Normalizing VMs

In cloud resource markets, commodities exchanged are various
types of VMs which are built by distinct types of resources, such as
the virtual CPU (vCPU) with the number of cores, the storage and
memory with G Byte. Hence, We may encounter the inconsistency
of measurement while conducting comparison and counting the
amount of the resources consumed by different types of VMs.

Table 1
Notations.

Symbol Meaning

i Subscript of customers
j Subscript of VMs
k Subscript of resource types
VM j VM of type j
rkj Amount of type k resource consumed by VM j

Nk
j Scaled value of type k resource of VM j

Rk
max Maximum amount of type k resource assigned to a VM in all VMs

σk Weighting value of Rk
max amount of type k resource

Nj Normalized value of total resources consumed by VM j
Ck Available capacity of type k resources in the system
Oi Order of the customer i
O Set of all customers’ orders
bi Bid of the customer i for her order
b−i Bid set of all customers without the customer i
Qi Normalized number of VMs ordered by the customer i
qji Number of VM j requested by the customer i
Di Set of the VMs ordered by the customer i
Vi(Di) customer i’s true valuation for resource set Di
p Set of the unit price for which the customers must pay
pi Unit price for which the customer imust pay
Ui Customer i’s utility
π Permitted supremum of VM units ordered by a customer
ξ Maximum VM units requested by a user in the submitted orders
S Aggregated units of sold VMs
F Target revenue
p̂i Payment of user i

Accordingly, only considering the cores of the CPU regardless
of the fact that cloud providers also offer matching resources for
memory and storage is unreasonable and unfair. Inspired by the
multiple criteria decision making (MCDM) technique [34], we first
scale and normalize the amount of each type of resource of VMs
before performing the resource allocation in clouds.

Assume a cloud provider offers m types of VMs, which are
denoted by set M = {VM1, VM2, . . . , VMm}. Each VM comprises
k different types of resources, k ∈ {1, 2, . . . , K }. Let rkj denote the
amount of type k resource assigned to VM j. The scaled valueNk

j for
type k resource of VM j is given by

Nk
j =

rkj
Rk
max

, (1)

where Rk
max ≜ maxj∈Mrkj denotes themaximum amount of the type

k resource observed across all the VMs provisioned by the cloud
provider. Therefore, we have 0 < Nk

j ≤ 1 for ∀j ∈ j, . . . ,m.
Additionally, to capture the cost level of distinct type resources,

it is necessary to assign a suitable weighting value for every type
resource. The Analytic Hierarchy Process (AHP) [35] is a well-
known technique used in these kinds of complex situations. In
our work, the AHP is used to measure the cost level for distinct
type resources based on the provider’s criteria, such as operating
costs, investment costs and so on. We construct a matrix Γ =

{akl; 1 ≤ k ≤ K , 1 ≤ l ≤ K } using the AHP, where akl
denotes the pairwise comparison that indicates how many times
more important Rk

max amount of type k resource is over that of type
l resource. Then, the weighting value σk for Rk

max amount of type k
resource is determined by

σk =
(
∏K

l=1 akl)
1
K∑K

k=1(
∏K

l=1 akl)
1
K

. (2)

Obviously, there are 0 < σk ≤ 1 and
∑

k∈Kσk = 1.
Next, using simple additive weighting, the normalize value Nj

for the aggregated resources assigned to VM j is calculated by

Nj =

K∑
k=1

Nk
j σk, ∀j ∈ j, . . . ,m. (3)
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Table 2
VM instance types offered by Amazon EC2.

Type Small Medium Large Extra-large

vCPU(core) 1 1 4 8
Memory(GB) 1.7 3.75 7.5 15
Storage(GB) 160 410 850 1690

For example, the four types of VMs offered by Amazon EC2
are presented in Table 2, and vCPU represents Type 1 resource,
memory, Type 2 resource, storage, Type 3 resource. The maximum
amount of vCPU, memory, and storage is 8, 15, and 1690 respec-
tively (Table 2). Let 3-tuple ⟨σ1, σ2, σ3⟩ represent their weighting
values. The normalized values of Small (j = 1) and Medium (j = 2)
VM can be computed by N1 = 1σ1/8 + 1.7σ2/15 + 160σ3/1690
and N2 = 2σ1/8+ 3.75σ2/15+ 410σ3/1690, respectively.

In good agreement with the cloud’s promise of delivering an
unlimited supply of resources, the provider’s capacity far exceeds
the total demand of the users in most cases. Nevertheless, the
capacity of a cloud data center still is constrained in fact. We
assume that Ck denotes the available capacity of type k resources
at a given time slot in the data center.

3.2. Customer utility formulation

Suppose n customers requesting computing resources from
the cloud provider at time t . Each customer can submit an order
(request) as a vector Oi = (Di, bi), which specifies the number of
VMs and her bid, Di = ⟨q1i , q

2
i , . . . , q

m
i ⟩ denotes the bundle of VMs

requested by the customer i for different types of VMs, qji repre-
sents thenumber of typeVMj, and bi represents themaximumprice
that the customer i is willing to pay for using the requested bundle
for a unit time. For example, Oi = (⟨2, 8, 5, 1⟩, $26) represents the
order of the customer i, who requests two SmallVMs, eightMedium
VMs, five Large VMs and one Extra-Large VM, and her bid is $26.

According to Eq. (3), the quantity of the VMs ordered by the
customer i can be converted into the following normalized value.

Qi =

m∑
j=1

Njq
j
i. (4)

Throughout the paper, we will utilize Eq. (4) to count the total
number of the VMs requested by the customer i. In such ways, the
comparison of the VM bundles ordered by different customers can
be fairly conducted under a common decision making technique.

In our model, the customers are single-minded. That is, the par-
tial fulfillment of requests, in which only a fraction of the number
of VMs requested is allocated to the customer, is not accepted
by the customers. Moreover, the customers are not aware of the
future and have no time-dependent valuation for resources, p =
(p1, . . . , pi, . . . , pn) denotes the set of the unit price for which the
customers must pay, b = (b1, . . . , bi, . . . , bn) is the set of all users’
bids, and Vi(Di) represents the customer i’s true valuation for the
resource set Di. We define the customer i’s utility at time t for one
time slot of VM usage as follows:

Ui(Di, b) = (Vi(Di)− piQi)xi, (5)

subject to

0 ≤ piQi ≤ bi ≤ Vi(Di), ∀i ∈ {1, 2, . . . , n},

where the allocation vector x = (x1, x2, . . . , xn) represents the
decision variable, its ith component xi is defined as follows:

xi =
{
1 if Di is assigned to customer i,
0 otherwise. (6)

A customer for which xi = 1 is called a winner and pays the
corresponding price piQi, and then acquires the requested bundle
Di; otherwise, the customer is called a loser and does not make any
payment to the cloud provider, and no resource is assigned to her.

Furthermore, the customers are assumed to be individually
rational, which means that no client has negative expected utility
for taking part in the mechanism. Hence, as long as a customer is
deemed beneficial, she will strategically misreport her bid bi and
the bundle of demanded VMs D′i (i.e., bi ̸= Vi(Di) or D′i ̸= Di) in
order to maximize her utility, where Vi(Di) and Di are the private
information known only by herself.

Truthfulness is capable to avoid market manipulation and en-
sure auction fairness and efficiency. Besides, truthfulness can sim-
plify the strategic decision process for all clients, and the client can
report her true valuation irrespective of other client’s valuation [2].
Hence, the truthfulness is taken into account in our models and
described as follows.

Definition 3.1 (Truthfulness). A mechanism is truthful, if any
customer reports her truthful valuation b∗i , for any bi ̸= b∗i and
any valuation profile of others b−i, her utility Ui(Di, (b∗i , b−i)) ≥
Ui(Di, (bi, b−i)) always holds.

3.3. Formulation of VM allocation and pricing

In fact, the optimal bidding strategy of each customer is to
maximize her utility function in Eq. (5). Similarly, the objective
of the cloud provider is to maximize her profit generated by the
function A(p, x) formulated as follows:

A(p, x) =
n∑

i=1

Qipixi − c(x), (7)

where c(x) is an inherent cost in producing the outcome x which
must be paid by the cloud provider, it is typically viewed as a
constant.

Therefore, we formulate the problem of VMs pricing and allo-
cation in clouds as an integer program as follows:

maximize A(p, x), (8)

subject to
n∑

i=1

m∑
j=1

xiq
j
ir

k
j < Ck, ∀k ∈ K , (9)

xi ∈ {0, 1}, ∀i ∈ {1, 2, . . . , n}, (10)

0 ≤ piQi ≤ bixi, ∀i ∈ {1, 2, . . . , n}. (11)

The solution of the above problem consists of an allocation
vector x = (x1, x2, . . . , xn), that maximizes the cloud providers
revenue and the unit price p = (p1, p2, . . . , pn) for each customer
i that requests her bundle Di. Constraints (9) ensure that the allo-
cation of each resource type does not exceed the available capacity
of the cloud provider’s resources. Constraints (10) represent the
integrality requirements for the decision variables, which satisfy
the case wherein the customers are single-minded. Constraints
(11) promise that the customer’s payment charged by the cloud
provider is not greater than her bid. Notably, our models assume
that the information about all customers orders is available, and
the information about the future orders of the customers is un-
available at time of solving it.

4. Mechanism design framework

In this section, we employ the combinatorial auction scheme to
design anmechanism promising the properties of truthfulness and
envy-freeness. Fig. 1 presents themechanism framework proposed
by us, which will be elaborated in Section 4.3.
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Fig. 1. Mechanism framework.

4.1. Envy-free property

Themechanisms, inwhich the customers are charged at distinct
prices even though identical services or resources are provisioned
to them, are unstable and unfair. The losing customer envies the
winning customer’s outcome. Hence, designing a practical auction
mechanism should consider not only the truthful property but also
the envy-free property,which has been suggested as a highly desir-
able property of auctionmechanism in the literatures [2,17,30,32].
The definition of envy-freeness is described as follows.

Definition 4.1 (Envy-Freeness). An auction-based mechanism is
said to be envy-free if for every bidders i, i’, it holds that:

Vi(Di)− piQi ≥ Vi(Di′ )− pi′Qi′

Envy-freeness is capable to provide equal treatment among
bidders and induces the perception of a fair allocation. No bidder in
an envy-free auction can increase her utility by adopting another
bidder’s outcome. It is clear that the auctionusing a single sale price
p is envy-free, in which all bidders with bid value greater than p
win, whereas all bidders with bid value lower than p lose. In our
schemes, we attempt to follow such a strategy to implement the
envy-freeness of mechanisms.

4.2. Upper bound of revenue

To achieve the envy-freeness and the revenue maximization
of CPs simultaneously, we introduce the optimal single-priced
auction to calculate the upper bound of CPs’ revenue, in which
goods are sold to thewinners at an identical unit price. It is defined
as follows.

Definition 4.2. Given that the customers are sorted in descending
order by their bid densities, the upper bound of revenue with at
least two winners is decided by

G(O) = max
L

bL
QL

L∑
i=1

Qi, (12)

where O = {O1, . . . ,On} represents the order set of the users,
and bL/QL is the Lth largest user’s bid density, that is, how much
she is willing to pay for using one normalized VM in a time slot.
Obviously, G(O) is the maximum revenue achieved by the service
provider at the user-affordable price bL/QL, and thus viewed as the
upper bound of the available revenue.

The mechanism constructed by above definition has a single
sale price bL/QL and thus is envy-free. Each customer iwith bi/Qi ≥

Algorithm 1 EFM(O, Cavailable): Framework of envy-free mecha-
nism
Input:

the orders of the users: O = {O1, ...,On},
the vector of available resource capacities: Cavailable =

(C1
available, . . . , C

K
available).

Output:
the payment vector for the users: P̂ = (p̂1, p̂2, . . . , p̂n),
the allocation vector for the users: x = (x1, x2, . . . , xn).

1: Sort the customers in descending order of their bid densities,
b1/Q1 ≥ b2/Q2... ≥ bn/Qn

2: Determine the upper bound the revenue G(O)
3: Calculate the target revenue F with a consensus estimate f (.)

on G(O)
4: Determine the payment vector P̂ and the allocation vector x

with RevenueExtractor(F ,O)

bL/QL wins at unit price bL/QL, and then is charged (bL/QL)Qi.
Notably, this mechanism is untruthful because customers canmis-
report their bid to obtain a more favorable outcome for them.
Therefore, the question arises as to how a single price can be
computed for an order-independent auction while approaching
the upper bound of the revenue.

4.3. Framework of envy-free mechanism

The EFM mechanism is proposed and briefly summarized in
Algorithm 1 and Fig. 1. It combines two general ideas. The first
is consensus estimate that picks a randomized function f (.) that
estimates the upper bound of the revenue and achieves consensus
with high quality [2,32]. The objective of using this idea is to avoid
market manipulation.

Let O−i = {O1, . . . ,Oi−1,Oi+1, . . . ,On} denotes the order set of
all users without the user i. Assume there is some ρ > 1 such
that for each customer i, G(O−i) ∈ [G(O)/ρ,G(O)], the consensus
estimate is described as follows.

Definition 4.3 (Consensus Estimate). A randomized function f (.) is
a consensus estimate ofG(O) > 0 if for anyG(O−i) ∈ [G(O)/ρ,G(O)]
satisfies f (G(O)) = f (G(O−i)).

The second is RevenueExtraction that is a special case of the
Moulin–Shenker cost sharing mechanism [36], which has proven
to be truthful and envy-free. Given the customers sorted in de-
scending order by the bid density of each user bi/Qi and the
target revenue F , the RevenueExtraction finds the largest L such
that the Lth highest customer’s bid density bL/QL ≥ F/

∑L
i=1Qi,

then the highest L customers equally share the target revenue F .
In our schemes, the quantity of goods requested by the customer
is extended to multiple units rather than one unit in the original
algorithm.

In the EFM mechanism, first all customers are sorted by the
bid density of each user bi/Qi, and then G(O) (the upper bound of
the revenue) is drawn. Next, it estimates G(O) with a randomized
function f (.), and acquires the target revenue F . Finally, the Rev-
enueExtractor finds the highest L customers (winners), xi = 1, i ≤
L, and charges p̂i = Qi(F/

∑L
i=1Qi) for user i. Otherwise 0. The

mechanism is performed periodically by the cloud provider.

5. Envy-free mechanism for VM allocation and pricing

In this section, we present several key technologies implement-
ing EFM, such as, determining the randomized function f (.) and its
related parameters. Moreover, the detailed procedures of Steps 2
to 4 in EFM are given with several algorithms.
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Fig. 2. Probability distribution of ⌊(logαv − u)⌋ + u.

5.1. Consensus estimate

Here, we are interested in a function that provides a sufficiently
accurate estimate of G(O) that is constant on G−i(O) for all i (i.e., it
achieves consensus). If G−i(O) could be limited by a constant frac-
tion of G(O), it is possible to capture a good estimate of G(O).
Accordingly, the parameter ρ for achieving such a function needs
to be decided.

In our model, to prevent customer collusion, in which the cus-
tomers collaborate to gain an unfair market advantage or limit fair
competition, the supremum of the aggregated number of the VMs
requested by arbitrary customer is set to a constant π . Let ξ ≤ π
denotes the maximum quantity of VMs requested by the customer
and is given as follows according to Eq. (4):

ξ = max(Q1,Q2, . . .,Qn). (13)

Removing any one order can change G(O) to at most a factor of
(S − ξ )/S, when the quantity of sold items in the auction is S. For
the case that G−i(O) is a constant fraction of G(O), let ρ = S/(S−ξ ),
the following conclusion is hold
1
ρ
G(O) ≤ G(O−i) ≤ G(O) (14)

Next, we need to seek a function f (.) obeying a distribution
of functions that estimates G(O) with high quality and achieves
consensus with high probability. Inspired by reference [32], the
randomized function f (.) for any v ∈ [G(O)/α,G(O)] is formally
formulated as follows:

f (v) = α⌊logαv−u⌋+u, (15)

where u is a constant chosen uniformly on [0,1], and α > ρ is
a constant picked to maximize the quality of the estimate. Fig. 2
describes the probability distribution of ⌊(logαv−u)⌋+u as varying
u on [0,1]. It is clear that the randomized function f (v) obeys the
distribution of functions of the formαu−1vwithu chosenuniformly
on [0,1]. Therefore, we have following conclusion:

Lemma 5.1. Randomized function f (G(O)) is a consensus estimate for
any G(O−i) ∈ [G(O)/ρ,G(O)] if f (G(O)) ≤ G(O)/ρ.

Proof. Consider that f (G(O)) is distributed identically to αu−1G(O)
for u uniform on [0,1]. Hence, for any G(O), there is

G(O)/α ≤ f (G(O)) ≤ G(O).

Additionally, G(O)/ρ is the lower bound of G(O−i) according
to Eq. (14), we therefore have

G(O)/(ρα) ≤ f (G(O)/ρ) ≤ G(O)/ρ.

Fig. 3 givesmore details for the probability distribution of exponent
fraction of the function when v = G(O) and v = G(O)/ρ.
The second sub-figure and the third sub-figure characterize the
probability distributions for logα(G(O)/ρ) ≥ ⌊logαG(O)⌋ and
logα(G(O)/ρ) < ⌊logαG(O)⌋ respectively. Obviously, to ensure the
existing of consensus estimate for anyG(O−i) ∈ [G(O)/ρ,G(O)], the
following inequality must be met

⌊logα(G(O)− u)⌋ + u ≤ logα(G(O)/ρ),

Fig. 3. Probability distribution of ⌊(logαv − u)⌋ + u for ①v = G(O) and ②③v =

G(O)/ρ.

such that there is u ∈ [0, 1] for any user i and G(O − i), which
allow ⌊logαG(O) − u⌋ + u = ⌊logαG(O−i) − u⌋ + u to be satisfied.
Using above conclusion,we hence can say the randomized function
f (G(O)) is a consensus estimate, if

f (G(O)) ≤ G(O)/ρ.

This remark completes the proof.

Given f (G(O)) is a randomized function and using its estimate
value as the target revenue, it is reasonable to consider the ex-
pected value of f (G(O)) for achieving high payoff. Furthermore, the
probability density function for αu

≤ x is 1/(x lnα) for 1 ≤ x ≤ α.
Hence, given f (G(O)) ∈ [G(O)/α,G(O)/ρ] and referred to [32], the
expected value is described as follows:

E(f (G(O))) =
G(O)
lnα

(
1
ρ
−

1
α

)
. (16)

5.2. Picking parameter

Following the aforementioned discussions, the choice of pa-
rameter α is considerably significant in the implementation of our
proposed mechanism. To consensus to work on the order set O on
which at least S items are sold, we need α > ρ = S/(S − ξ ).
Otherwise, no consensus is achievable. Considering a large cloud
market, as S →∞, we have

lim
S→∞

E(f (G(O))) = lim
S→∞

G(O)
lnα

(
1
ρ
−

1
α

)
= lim

S→∞

G(O)
lnα

(
S − ξ

S
−

1
α

)
= lim

S→∞

G(O)
lnα

(
1−

1
α

)
= lim

S→∞

G(O)
lnα

(
1+ 1

α−1

) .

(17)

Let α = 1+ t , t = τξ

S−ξ
, and τ is a constant, τ > 1, τ ∈ ℜ, then

Eq. (17) can be converted as follows:

lim
S→∞

E(f (G(O))) = lim
S→∞

G(O)(
ln(1+ t)+ ln(1+ t)

1
t

) . (18)

For S →∞ and fixed ξ ≪ S, we have t → 0. This means that

lim
S→∞

E(f (G(O))) = lim
S→∞

G(O)
(ln 1+ ln e)

= G(O).
(19)
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Fig. 4. Expectation, τ and ρ.

It is clear that α = 1+ τξ

S−ξ
> ρ = 1+ ξ

S−ξ
, if τ > 1, τ ∈ ℜ, and

ensures achieving a consensus for the mechanism. Furthermore,
just doing so can make the expectation approach the upper bound
of revenue as S →∞. Hence, it is appropriate that parameter α is
set to such value for our mechanism.

In the following, we will discuss how to determine the value of
τ . For ρ = 1 + ξ

S−ξ
, we have t = τ (ρ − 1). Accordingly, α can be

rewritten as follows:

α = 1+ τ (ρ − 1). (20)

Based on above equation, Eq. (16) can be rewritten as follows:

E(f (G(O))) =
G(O)

ln(1+ τ (ρ − 1))

(
1
ρ
−

1
1+ τ (ρ − 1)

)
. (21)

Fig. 4 shows the affection of varying τ and ρ on the ratio of the
expected value to G(O). It is obvious that the ratio is concave if
ρ is fixed. Hence, given ρ, τ maximizing the expected payoff can
be determined by numerical methods such as binary searching.
Furthermore, the ratio is close to 1 as ρ declines. That is, the
expected payoff can approach the optimal value when the cloud
market is enough large.

5.3. Determining the upper bound of revenue

The procedure of determining the upper bound of revenue is
elaborated in Algorithm 2 (DUBRE) which correspond to Steps 1
and 2 of EFM. Cloud providers typically preset a reserve price for
their resources to ensure that their incomes are not less than the
operating cost. Let CR and CI be the costs associated with running,
respectively, idling a unit VM instance for one unit of time. A
distinct observation is that CR − CI is the critical price running a
unit VM by the cloud providers. Hence, the reserve price is set to
Cres = CR − CI in DUBRE algorithm (line 2).

DUBRE calculates the bidding density for each user and then
removes the users for which bi/Qi < Cres, such that the accepted
users pay at least the reserve price. The users with the quantity of
request VMs greater than the permitted value also are discarded
(lines 3–8). Then, DUBRE algorithm under the available resource
capacities decides the set of acceptable users’ orders A in de-
creasing order of the users’ bidding densities bi/Qi(lines 10–24).
Notably, Ck

available denotes the available capacities for the k type
of resource, such as CPU, memory and storage. DUBRE measures
whether it can implement the request of the user i (lines 11–19). If
there are insufficient resources, user i will be rejected, otherwise,

Algorithm 2 DUBRE(O, Cavailable): Determining the upper bound of
revenue
Input:

the orders of all customers: O = {O1, ...,On},
the vector of available resources capacities: Cavailable =

(C1
available, . . . , C

K
available).

Output:
the upper bound of revenue: P ,
the set of acceptable user’s order: A,
the sum of the VMs determined by DUBRE: S.

1: A← φ

2: Cres ← CR − CI //set the reserve price
3: for all Oi ∈ O do
4: Qi ←

∑m
j Njq

j
i

5: di ← bi/Qi
6: if di < Cres or Qi > π then
7: O← O\{Oi}

8: end if
9: end for

10: Sort the set O in non-increasing order of di
11: for all Oi ∈ O do
12: Ĉavailable ← Cavailable
13: flag ← true
14: for all k ∈ K do
15: Ĉk

available ← Ĉk
available −

∑m
j=1 q

j
ir

k
j

16: if Ĉk
available < 0 then

17: flag ← false
18: break
19: end if
20: end for
21: if flag then
22: Cavailable ← Ĉavailable
23: A← A ∪ {Oi}

24: end if
25: end for

26: P ← max
L

bL
QL

L∑
i=1

Qi, ∀Oi ∈ A

27: S ← argmax∑L
i=1 Qi

bL
QL

L∑
i=1

Qi, ∀Oi ∈ A

28: return P, A, S

she will be allocated and the amount of available resources will
be updated (lines 23 and 24). Finally, according to Definition 4.2,
DUBRE draws the upper bound of revenue P and corresponding
overall number of the sold VMs S (lines 26 and 27). P, S and the
set of acceptable users’ orders A are returned to the mechanism.

5.4. Calculating target revenue

Having obtained the upper bound of revenue for the set of
orders submitted by users, we proceed to calculate the target
revenue corresponding to Step 3 of EFM. The related details are
elaborated in Algorithm 3 (CATAR). The essence of CATAR is to fulfill
the randomized function f (.) formulated in Eq. (15), such that the
designedmechanism satisfies the properties of both envy-freeness
and truthfulness. Its input parameters, such as P, the upper bound
of revenue, A, the set of acceptable user order, and S, the sum
of requested instances in the set A, can be acquired by executing
DUBRE algorithm.

In CATAR algorithm, the parameters for the randomized func-
tion f (.) is first determined (lines 1–4). Next, u is chosen uniformly
on [0,1] and then the target revenue F is calculated by Eq. (15).
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Algorithm 3 CATAR(P, A, S): Calculating the target revenue
Input:

the upper bound of revenue: P ,
the set of acceptable user’s order: A,
the sum of the VMs selected by DUBRE: S.

Output:
the target revenue: F .

1: ξ ← max(Q1,Q2, ...,Q|A|)
2: ρ ← S

S−ξ

3: find τ maximizing Eq. (21)
4: α← 1+ τξ

S−ξ
5: repeat
6: u← random(0, 1)
7: F ← α⌊logα P−u⌋+u

8: until F ≤ P/ρ

9: return F

The algorithm ends when the target revenue F is not more than
P/ρ (lines 5–8).

5.5. Determining payment and allocation

The approach of resource allocation and payment for users is
presented in Algorithm 4 (RevenueExtractor), which is based on the
cost-sharing mechanism [36]. In this algorithm, given the target
revenue F and the sorted orders A, the RevenueExtractor finds
the largest L such that the sale price is not greater than the Lth
user’s bidding density (lines 3–10). The target revenue F is then
shared among the L users (winners) based on the number of VMs
requested by them, that is, each of these users are charged the same
sale price δ = F/

∑L
i=1

∑m
j=1Njq

j
i for using one unit normalized VM

in a time slot (Line 11). If the user i is one of the winners, her total
payment is computed by δ

∑m
j=1Njq

j
i, and her allocation variable xi

is set to 1 (lines 12–15). Otherwise, her payment and allocation
variable are equal to 0 in the auction. In doing so, the final sale
price is order-independent and single such that the properties of
truthfulness and envy-freeness is guaranteed.

5.6. Properties of EFM

In this subsection, we investigate the properties of EFM, and
show that the mechanism is truthful and envy-free. We first show
that it is individual rational.

Theorem 5.1. EFM is individual rational.

Proof. Given user i as a winning user, we need to prove that if
user i reports her true request then her utility is non-negative.
It is easily seen that the sale price for using one unit VM is not
greater than the winning user’s bidding density in lines 5–9 of
Algorithm 4. Hence, the utility of user i (e.g., Ui = bi − p̂i ≥ 0)
is non-negative. Additionally, a truthful user who does not win is
not incurring a loss due to she obtains 0 utility. This proves the
individual-rationality of EFM.

RevenueExtractor is a significant part of EFM,We nowprove that
it is truthful and envy-free for single-minded users.

Lemma 5.2. RevenueExtractor is truthful and envy-free for single-
minded users.

Proof. We first prove the property of envy-freeness. It is obvious
that the sale price produced by RevenueExtractor for using one unit
VM is single. In terms of Definition 4.1, no bidder in themechanism

Algorithm4 RevenueExtractor(F , A): Determining the VMs alloca-
tion and payment
Input:

the set of acceptable user’s order: A,
the target revenue: F .

Output:
the payment vector for each users: P̂ = (p̂1, p̂2, . . . , p̂n),
the allocation vector for each users: x = (x1, x2, . . . , xn).

1: P̂ ← (0, · · · , 0)
2: x← (0, · · · , 0)
3: sum←

∑
|A|
i=1

∑m
j=1 Njq

j
i

4: for L← |A| to 1 do
5: if F

sum >
bL∑m

j=1 Njq
j
L
then

6: sum← sum−
∑m

j=1 Njq
j
L

7: else
8: break
9: end if

10: end for
11: δ← F

sum
12: for i← 1 to L do
13: p̂i ← δ

∑m
j=1 Njq

j
i

14: xi ← 1
15: end for
16: return P̂, x

can increase her utility by adopting another bidder’s outcome.
Hence, RevenueExtractor is envy-free.

Next, we will prove that no bidder can increase her utility by
reporting any false bid value or request quantity. Here, there are
two situations that need to be considered respectively. The first
is that the user varies only her bid value to increase the utility.
Let L be the number of winning users. RevenueExtractor in this
case shares the target revenue F among the winners, and charges
each winner at the same sale price δ = F/

∑L
i=1

∑m
j=1Njq

j
i for

using one unit normalized VM in a time slot. Hence, it can be
regarded as a special case of the Moulin–Shenker cost sharing
mechanism [36] that has been proven to be truthful. Accordingly,
we can say RevenueExtractor is truthful for the price dimension.

The second scenario is that the user varies only her request
quantity to increase the utility. Specially, in our model, the users
are single-minded. That is, the partial fulfillment of requests is not
accepted by the user. Therefore, the request quantity reported by
the user is not less than her true request quantity. Firstly, assume
user i is a loser, reporting more request quantity means lower bid
density, thus she is still a loser and her utility is 0. Just doing so
cannot increase her utility.

Whereas, let user i is a winner, i ≤ L, Q ∗i is her true request
quantity and Q−i denotes the total request quantity of the L win-
ners without user i. We have following conclusions:

F∑L
i=1

∑m
j=1 Njq

j
i

=
F

Q−i + Q ∗i
≤

bL∑m
j=1 Njq

j
L

(22)

and
F

Q−i + Q ∗i + QL+1
>

bL+1∑m
j=1 Njq

j
L+1

(23)

Eq. (22) implies that the L winners’ bid densities are not less
than the sale price for using one unit VM. Assume user i is still a
winner when she reports her request quantity Q ∗i + x, x ≥ 0. If
x ≤ QL+1, we know that themember of thewinnerswill not change
by observing Eqs. (22) and (23) . Hence, the payment of user i is



688 B. Yang et al. / Future Generation Computer Systems 86 (2018) 680–693

given as follows:

p̂i =
F (Q ∗i + x)

Q−i + Q ∗i + x
. (24)

The derivative of the above equation on x is:

dp̂i
dx
=

FQ−i
(Q−i + Q ∗i + x)2

. (25)

If x > QL+1 and she is still a winner, then more users may become
winners. It is obvious that x is not less than the aggregated request
quantity of those new winners. Accordingly, the payment of user i
is near to following expression:

p̂i =
F (Q ∗i + x)

Q−i + Q ∗i + 2x
. (26)

The derivative of the above equation on x is:

dp̂i
dx
=

F (Q−i − Q ∗i )
(Q−i + Q ∗i + 2x)2

. (27)

Obviously, Eq. (25) is positive. Moreover, as the cloud market is
enough large, we have Q−i ≫ Q ∗i . Thus Eq. (27) also is positive.
They mean that user i has to pay more and then her utility is
reduced when the request quantity reported by her is greater than
her true demand.

Additionally, due to the increase in the request quantity leads
to a decline in the bid density, user imay have not enough compet-
itive capability to become awiner. In this case, as a loser, her utility
is 0. Therefore, the optimal strategy for user i is to report her true
bid value and request quantity.

This remark completes the proof.

Theorem5.2. EFM is truthful and envy-free for single-minded users.

Proof. EFM combines two general ideas. First is RevenueExtrac-
tor (F ,O), which has been proven to be truthful and envy-free
in Lemma 5.2. Given a target revenue F , the sale price yielded
by RevenueExtractor (F ,O) is single for one unit VM, hence, the
mechanism is envy-free.

The second technique for the design of EFM is that of using a
order-independent consensus estimate. According to Lemma 5.1,
Algorithm 3 (CATAR) can promise that the randomized function
f (G(O)) used by it is a consensus estimate. That is, there is
f (G(O−i)) = f (G(O)) for every user i. Consider the effect of user i
changing her order Oi to O′i resulting in a new order vector O′ that
is the same as the original O except for user i ( that is, O′

−i = O−i ),
user i hence cannot change the target revenue F by submitting any
O′i because f (G(O′

−i)) = f (G(O−i)) = f (G(O)) = F . Furthermore,
RevenueExtractor is truthful, therefore, user i cannot benefit from
misreporting her order, and EFM is truthful.

This remark completes the proof.

6. Experimental results

In the section, we perform extensive simulation experiments
with real workload data extracted from Google Cluster Trace [7] to
investigate the performance of our proposed auction framework.
Tomeasure the performances of the proposedmechanism, we also
compare our proposed mechanism with several auction mecha-
nisms presented as follows.

Optimal Single Price Auction (OSPA) is presented in Defi-
nition 4.2. The maximum revenue for cloud providers can be
achieved in a single-round, single-price auction by OSPA. Thus,
OSPA is viewed as a benchmark in our experimental evaluation.

Vickrey–Clarke–Groves Mechanism (VCGM) is a mechanism
where the allocation function Γ (.) maximizes social welfare, and
the payment function p̂i of user i is formulated as follows:

p̂i(Oi,O−i) =
∑

j∈Γ (O−i)

bj −
∑

j∈Γ (O),j̸=i

bj (28)

where
∑

j∈Γ (O−i)
bj is the maximum social welfare that would

have been achieved without user i, and
∑

j∈Γ (O),j̸=ibj is the
aggregated users’ valuations except user i. VCGM can achieve
the property of truthfulness in an auction and has been ex-
tensively employed to design auction mechanisms, such as re-
searches [24,20,12,13,21,22,25–28].

UniformPriceAuction (UPA) is an envy-free auction,where the
provider serves thehighest bidders first by allocating the requested
number of VMs until their supply is exhausted or no more orders
are placed. The sale price for one unit VM is single and decided
by the lowest winning bid, thus, the mechanism is envy-free but
untruthful.

6.1. Configurations

The users’ requests in our simulation experiments are extracted
from Google Cluster Trace, in which the resource (RAM, vCPU and
Storage) information is provided in normalized units. Thus, the
exact number of cores or the amount of memory demanded by
tasks cannot be obtained. Google Cluster traces reveal that users
usually submit multiple jobs in a time interval while needing to
run different types of tasks with different resource requirements
simultaneously. In other words, a usermay havemultiple jobs, and
a job is composed of one to tens of tasks, which generally execute
the same binary with the same options and resource requests.
Accordingly, we map each job of the user to a group of VM and her
each task to one VM in the simulation experiments. Additionally, to
simplify the simulations, the weighted price of each type resource
of VMs is set to the same value 1; the request resources of the
user with the smallest resource request amount in all the users
are treated as one unit VM, and then the request quantity of other
customers is scaled by it.

As a result, a user request contains the requested number of
vCPU, the amount of memory, and the storage. The data can be
collected fromGoogle Cluster Trace (i.e., Task Events Tables), but the
user bids have not been publicly released by any cloud providers
yet. Hence, similar to [21,22], we utilize the random value that
obeys a normal distribution N (0.5, 0.4) as the bid of the user
for one unit VM. Bid price that is less than or equal to zero is
discarded, and a new bid price is drawn from the distribution
again. Furthermore, we also consider another user bid distribution
that follows a log-normal distribution adopted in [37]. As this
distribution is employed, the user bid for one unit VM is given as ez
with z ∼ N (−1, 1) a standard normal variable in our experiments.
The reserve price for one unit VM in the simulations is set to 0.12.

Moreover, the statistical results of the trace files (Task Events
Tables) show that there are approximately 300 to 500 users who
submitted their jobs to the system in an hour interval in a cell
of a single cluster. The number of users in a cell is insufficient to
simulate the largemarket. Thus, to achieve sufficient experimental
data and evaluate our method for the experiments, we randomly
pick 10 time periods from the trace files. Each time period lasts an
hour.

To simplify experiments, assume one user in a time period
submits at most one order, which consists of various types of
jobs. Moreover, to prevent the customers’ collusion, the permitted
quantity of the resources requested by one user is up to π=300
units in our simulation experiments. Therefore, users with more
than 300 unit VMs are removed, and the aggregated quantity of
the effective users is rounded to 2586, and the total quantity of
effective tasks approximates to 362100 unit VM in our simulation
experiments.
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(a) Normal distribution.

(b) Log-normal distribution.

Fig. 5. Box plots of revenue for distinct VM provisioning.

6.2. Revenue measure

An important issue is the influence of the quantity of VM provi-
sioning on the revenue of the provider. Our simulations investigate
the issue by varying the quantity of VMprovisioning from10 to 150
times the amount of the users in the cluster. The quantity of the
effective users and their orders are givenwith the above simulation
configurations. We perform the experiments to measure the rev-
enue produced by different auction mechanisms. Each experiment
is carried out 100 times to reflect the randomized nature of the
auction.

As we can expect, OSPA produces the highest revenue in our
experiments, and hence can be regarded as the benchmark in the
simulations. For easy comparison, we set the evaluation metric of
the revenue as the ratio of the revenue between othermethods and
OSPA scheme (optimal revenue). The ratio is denoted by Rev/Opt in
our evaluation experiments.

Fig. 5 shows separate box plots of revenue generated by various
VM provisioning under the simulation setting. Statistical analysis
indicates that the revenue ofVCGM andUPA increases firstwith the
increase of VM provisioning, but rapidly drops while the quantity
of provisioning VMs exceeds 60 times the aggregated quantity of
the effective users. Whereas, the revenue of EFM is lower than that
of the above methods when the VM provisioning is insufficient.
With the increase of the VM provisioning, the revenue of EFM
always approaches to that of OPSA. It implies that EFM is superior
to above schemes in large-scale cloud markets.

Fig. 6 also presents similar results for the average revenue of
the provider with same experiment configurations. The average
revenue produced by VCGM and UPA is near to the optimal value
when the range of the quantity of the provisioning VMs is between
10 and 60 times the total quantity of the users. Their average
revenue rapidly drops while the number of VM provisioning ex-
ceeds 60 times the total quantity of the users. That is, VCGM and
UPA can achieve relatively high revenue when the cloud market is
under-supplied, but their performance is theworstwhen the cloud
market is over-supplied.

Whereas, as the quantity of VM provisioning increases, the
results presented in Fig. 6 show that the revenue produced by EFM
is always close to OSPA, regardless of the relationship between
supply and demand. The primary reason is that EFM allocates
the VM instances to users until the total revenue is no longer
improved, even though there are free resources in the system
and a number of users waiting for VM allocation. In contrast,
VCGM and UPA assign VM instances to users until no users request
resources or no available resources are remained in the system.
In doing so, a number of users with relatively lower bid become
winners such that the sale price drops and results in less revenue
for the cloud provider, especially during over-supplied scenario.
Moreover, while the provisioning VM instances are more than 100
times, the supply of the cloudmarket is saturated, and the revenue
generated by VCGM or UPA remains constant.

6.3. Social welfare

This subsection aims to measure the social welfare and the
number of the accepted users when distinct auction mechanisms
are performed. Due the winning users and the social welfare de-
termined by UPA are consistent with VCGM, the associated de-
tails of UPA are omitted. In the simulations, adopting the same
configurations as previous simulation experiments, we change the
quantity of the provisioning VMs to compare the social welfare and
the number of accepted users for different auction mechanisms.
According to VCGM, the social welfare is formulated by

S(O) =
∑

j∈Γ (O)

bj (29)

where the allocation function Γ (.) maximizes social welfare and
gives the set of winning users.

The experimental results are shown in Figs. 7 and 8. As seen in
Fig. 7, the quantity of the users accepted by the mechanisms first
increases with the increase of the quantity of provisioning VMs.
When the provisioning VMs is more than 50 times, the quantity of
accepted users by EFM and OSPA keep constant because the lower
bid users are rejected for the maximization of the revenue.

As presented in Fig. 8, EFM can achieve the highest social wel-
fare among these auction mechanisms in the range [10X, 40X].
Moreover, VCGM can obtain the highest social welfare while the
number of provisioning VMs is more than 50 times, however, the
revenue produced by it also rapidly decreases with the increase of
VM provisioning. Generally, the cloud providers naturally aim to
maximize their revenue by providing computing services for users.
Hence, we argue that straightforwardly adopting VCGM to allocate
and price cloud resources needs to be reconsidered, especially in
over-supplied markets.

6.4. Evaluation of varying user quantity

Generally, the number of users participating in the VM compe-
tition can significantly impact the outcome of the auction-based
mechanism. This subsection evaluates the performance of the
mechanism by varying the quantity of the users at two levels of
VM provisioning: over-supplied level and under-supplied level.
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(a) Normal distribution. (b) Log-normal distribution.

Fig. 6. Average revenue.

(a) Normal distribution. (b) Log-normal distribution.

Fig. 7. Average number of served users.

(a) Normal distribution. (b) Log-normal distribution.

Fig. 8. Average social welfare.

In the simulations, the quantity of the users participating in the
VM competition is increased by the step size of 0.1 times the
maximumnumber of users configured by previous experiments. In
addition, following previous experiments, the state of the market
is over-supplied if the quantity of provisioning VMs approaches
100times the number of the users participating in the VM com-
petition, whereas, it will be under-supplied if the number of VM
provisioning is 20 times. Accordingly, the number of provisioning

VMs in the over-supplied level and under-supplied level is set to
100 and 20 times respectively.

The results presented in Figs. 9 and 10 show that the revenue of
EFM rises with the increase of the users, and is lower than that of
VCGM and UPA in the under-supplied market. By contrary, in the
over-supplied market, EFM scheme is superior to other schemes
regardless of the variation of the user quantity. Figs. 9 and 10 reveal
that the quantity of the users and the relationship between supply
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(a) Normal distribution. (b) Log-normal distribution.

Fig. 9. Revenue VS the number of users in the under-supplied case.

(a) Normal distribution. (b) Log-normal distribution.

Fig. 10. Revenue VS the number of users in the over-supplied case.

and demand can significantly influence the revenue produced by
EFM. EFM can achieve desirable revenue being near to the optimal
profit in the large-scale cloud market.

6.5. Discussion of multiple cloud providers

In this subsection, we will discuss the performance of our
method in the scenario of multiple cloud providers. Assume
that there are three cloud providers: provider1, provider2 and
provider3, who have the same service capacity and offer the same
products for users. The providers conduct auction with our pro-
posed method. In the initial stage, all users are randomly allocated
to providers according to the proportion of 20%, 30%, and 50%,
e.g., the number of users allocated to provider1 is the product of 0.2
and the total number of users. We evaluate their average sale price
per unit at two levels of VM provisioning: over-supplied level and
under-supplied level. Associated experimental parameters are set
in terms of the previous configurations. Each experiment is carried
out 100 times to react the randomized nature of the auction.

As seen in Fig. 11(a), whether the market is over-supplied or
under-supplied, the average sale price per unit of provider3 with
the highest number of users is the highest, and provider1 has the
lowest sale price due to the smallest number of users. Without loss
of generality, because of the existence of price differences, some
users will inevitably move to the providers with lower sale price.
Accordingly, when the market reaches a stable state, the number
of users assigned to all providers will be almost no difference.
Fig. 11(b) shows the price comparison between only one provider

in the market and three providers in the stable market. We can see
that the sale price of the three providers is identical and close to
that of only one provider in the market. It demonstrates the effec-
tiveness of our approach under multiple providers. Nevertheless,
due to the complexity of themarket is far beyond the experimental
environment, this issue still needs further study.

7. Conclusion

In this paper, we investigated the problem of VM allocation and
pricing in the presence of multiple types of resources in clouds.
We resort to the consensus auction and cost sharingmechanism to
present an auction-basedmechanism that is truthful, yields a close
optimal profit for the cloud provider, and achieves envy-freeness
through the use of a uniform price that ensures the stability of
the proposed mechanism. The proposed mechanism in the over-
suppliedmarket is far superior to other schemes, such as themech-
anisms based on VCG.Moreover, themechanism has relatively low
complexity of computation comparing with VCG, and thus, can be
easily implemented in the large-scale cloud market. The results of
simulation experiments demonstrated that our proposed mecha-
nism can achieve desirable revenue for the cloud provider in the
mass market while promising the properties of truthfulness and
envy-freeness. Besides, our proposed mechanism can be applied
to other resource allocation and pricing models.

In the future, we plan to explore the VM allocation and pricing
among multi cloud providers as an extension of our work. We
are also interested in implementing a prototype allocation system
in an experimental cloud computing system to further study the
performance of our proposed mechanism.
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(a) In the initial state. (b) In the stable state.

Fig. 11. The average sale price per unit for providers.
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