
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-023-05136-z

1 3

Thermal‑aware virtual machine placement based 
on multi‑objective optimization

Bo Liu1 · Rui Chen1 · Weiwei Lin2,3 · Wentai Wu3 · Jianpeng Lin2 · Keqin Li4

Accepted: 22 February 2023 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2023

Abstract
VMP (Virtual Machine Placement) is a crucial technology for energy consump-
tion optimization of the cloud data center. Existing works mainly focus on virtual 
machine consolidation to increase resource utilization and reduce computing energy 
consumption. However, existing studies usually ignore the thermal effect that an 
intensive workload on IT (Information Technology) equipment can raise energy 
consumption by cooling systems and generate hotspots. In addition, an excessive 
number of virtual machine migrations increases migration costs and risks violating 
the SLA (Service Level Agreement) signed with users. In this paper, we present 
a comprehensive system model and formulate the problem as a constrained multi-
objective optimization. We propose a novel thermal-aware VMP strategy to solve 
the problem by jointly considering virtual machines’ migration cost, energy con-
sumption, and heat recirculation around server racks. Our strategy makes placement 
decisions using MOPFGA (Multi-objective algorithm based on Pathfinder Algo-
rithm and Genetic Algorithm) that combines classic MOPFA and GA enhanced by 
OBL (Opposition Based Learning) for fast convergence and avoidance of local opti-
mum. Extensive experiments based on CloudSim using real data center workload 
data from PlanetLab show that our algorithm overcomes the defects of the MOPFA 
(multi-objective pathfinder algorithm) and GA (genetic algorithm) and significantly 
improves the overall efficiency of a data center. Compared with several state-of-the-
art algorithms, MOPFGA on average reduces virtual machine migrations by 77.52%, 
increases CRAC (Computer Room Air Conditioner) supply temperature by 1.24%, 
and reduces cooling energy consumption by 24.78% and computational energy con-
sumption by 23.62%.

 * Weiwei Lin 
 linww@scut.edu.cn

 * Wentai Wu 
 wentai_wu@outlook.com

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05136-z&domain=pdf


 B. Liu et al.

1 3

Keywords Cloud computing · Temperature · Virtual machine placement · Pathfinder 
algorithm · Energy efficiency · Data centers

1 Introduction

With the rapid growth of cloud computing’s popularity, the demand for com-
putation and storage resources is ever-increasing. Meanwhile, expanding cloud 
data centers has led to massive energy consumption and carbon emissions, rais-
ing global concerns. It was predicted that the energy consumption of global data 
centers will increase by 66% from 2011 to 2035, and the power consumption of 
data centers will account for about 2% of the total in the United States [1, 2]. 
Excessive energy usage inevitably leads to high operating costs—Amazon esti-
mates that energy costs accounts for over 42% of the total operation of their data 
centers [3].

It is imperative for Cloud providers to schedule workload to minimize total sys-
tem energy of both computing and cooling to reduce operational costs. Generally, 
the energy consumption of a data center is attributed to the energy consumption of 
computing equipment (e.g., servers, network) and that of non-computing equipment 
(e.g., cooling system). On the one hand, physical servers consume the majority of 
the power supply to the server room. Data center takes advantage of the virtualiza-
tion technology to provide multiple VM (virtual machine) resources for the cloud 
service, which is helpful for flexible resource management over the entire infrastruc-
ture. Through VM consolidation, the low-workload hosts are shut down or shifted 
to a low energy consumption mode, with the hosted VMs migrated to other hosts. 
VM consolidation optimizes load distribution and improves computing resources’ 
power efficiency. However, frequent VM migrations have a lot of negative impacts 
on the data center [4, 5]. For example, VM migration may undermine the perfor-
mance of VMs and even temporarily interrupt their service. The migration process 
incurs a considerable cost of data transmission, which indirectly leads to additional 
energy consumption and increases the probability of violating SLA. These negative 
factors due to MC (Virtual machine migration cost) complicate the decision of VM 
placement [6].On the other hand, the cooling system in the server room can, in some 
cases, consume more energy than the computing infrastructure due to excessive 
VM consolidation that leads to the high operating temperature of local nodes [7, 
8]. Moreover, the heat-recirculation effect of the server room intensifies the genera-
tion of hotspots [8–10]. In order to keep the overall temperature of the data center 
below the red line temperature (i.e., the maximum allowable operating temperature 
of the equipment), the CRAC (Computer Room Air Conditioner) must continue to 
operate at a high load level, which also leads to a sharp increase in overall energy 
consumption.

To deal with the above problems, optimizing VMP is an effective method. 
VMP is the process of placing a large number of VMs on appropriate physical 
hosts to improve operating efficiency and reduce management costs. Traditional 
VMP strategies typically focus on tackling the workload scheduling problem 
with a single objective of saving computational energy consumption and hardly 
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consider two crucial aspects, the migration cost of the VM and the cooling cost. 
Jointly reducing the energy consumption of computing and non-computing 
devices has become a significant challenge in cloud data center management.

Because of the problems above, this paper proposes a thermal-aware VMP strat-
egy, in which a novel algorithm called MOPFGA for optimized VM placement with 
the aim of reducing the VM migration cost and the total energy consumption of 
the data center under the premise of ensuring the temperature constraint. The pro-
posed strategy is distinct from existing solutions in three aspects. First, the strategy 
is designed to solve a multi-objective optimization problem of energy consump-
tion reduction and VM migration cost reduction while ensuring a low SLA viola-
tion rate. Second, the cooling system’s energy consumption the energy consumption 
is modeled in consideration of the heat-recirculation effect that impacts the ambi-
ent temperature and in turn the cooling efficiency. Third, by integrating MOPFA 
[11] and GA [12] with the OBL (Opposition-based Learning) technique [13], the 
proposed strategy effectively improves the decisions of VMP by optimizing global 
search efficiency and avoiding early convergence to local optimum in the process of 
decision search.

The main contributions of this paper are summarized as follows: 

1. We propose a new thermal-aware VMP strategy that jointly considers the migra-
tion cost of VMs, the power models of servers and the cooling system as well as 
the heat-recirculation effect.

2. We propose a multi-objective VM placement algorithm MOPFGA as a hybrid 
solution based on the MOPFA and GA. Compared with the traditional MOPFA, 
we introduce the crossover and mutation operations of reverse learning and 
genetic algorithm in MOPFGA, which improves over MOPFA in avoiding local 
optimum and GA in convergence speed.

3. We conduct a series of simulation-based experiments to verify the effectiveness of 
MOPFGA. The results show that compared with the existing algorithms, includ-
ing MITEC-GA, FC-BGSA, PPABFD, ETAS, RACC, and SABA, MOPFGA sig-
nificantly reduces the overall energy consumption and the cost of VM migrations 
at a low SLA violation rate while keeping a controllable probability of hotspots.

The rest of the paper is organized as follows: Sect. 2 discusses the related work on 
VM consolidation. Section 3 describes the system model and problem formulation. 
Section 4 details the proposed thermal-aware VMP strategy. Section 5 experimen-
tally validates the effectiveness of our MOPFGA. Finally, we conclude the paper in 
Sect. 6.

2  Related work

In order to reduce the total energy consumption of data centers, many factors need to 
be considered in scheduling VM migration, such as cooling system efficiency, heat 
recirculation, and SLA violation rate. However, the high migration cost of VMs also 
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leads to a large amount of waste of resources, so the negative impact of migrations 
on the server room environment and the cooling system should also be considered. 
Although much existing related work has studied migration cost control technol-
ogy and thermal management technology, they have yet to explore how to reduce 
energy consumption to an ideal level while considering the migration cost and ther-
mal recycling effect. This section summarizes the existing VM placement strategies 
considering migration costs and temperature factors.

2.1  VM placement based on migration cost in data centers

It is shown in the literature [5] that VM migration can cause additional energy 
consumption and performance degradation. Many efforts are devoted to reducing 
the operation cost of the data center by controlling the number of virtual machine 
migrations. Tao et al. [14] regarded the dynamic VM migration problem as a three-
objective optimization model and designed a bucket code learning algorithm based 
on binary graph matching. Mann et al. [15] proposed to use constraint programming 
techniques for VMP based on the number of migrations and overloaded CPUs when 
integrating virtual machines. Rym et al. [16] proposed a solution based on a multi-
objective mixed integer linear programming model (MOMILP) for virtual machine 
placement, aiming at simultaneously minimizing the VM rejection ratio, the amount 
of wasted resources and the number of used PMs. However, this work lacks a discus-
sion on bandwidth, which will lead to an increase in the SLA violation rate. Xu et al. 
[17] proposed the migration cost-aware virtual machine integration algorithm. How-
ever, they only focused on the number of physical hosts running rather than design-
ing the algorithm from the perspective of reducing energy consumption. Mapetu 
et al. [6] adopted HIB (Host Imbalance Degree), considering the bandwidth of VM 
to reduce the number of virtual machine migrations. Hariharan et al. [18] proposed 
a multi-objective equation based on VM migration cost and proposed an ABSO 
VM placement algorithm by improving Beetle Swarm Optimization. However, this 
work does not discuss the metric of the SLA violation rate. Ding et al. [19] com-
bined PPR (Performance-to-power-ratio) proposed host overload, low load detection 
algorithm, and VM placement algorithm, committed to reducing energy consump-
tion and migration costs. Monireh et al. [20] introduced the DTMC (Discrete-time 
Markov Chain) model to predict the server’s resource utilization efficiency to pre-
vent excessive VM consolidation and proposed an �-MOABC ( �-dominance-based 
multi-objective artificial bee colony) for VM placement. Wang et al. [21] proposed a 
VM selection policy called AUMT that selects VM with minimum cost in the com-
bination of both average CPU utilization and migration time

2.2  Thermal‑aware VM placement in data centers

Due to the increasing energy cost of the data center cooling system, thermal-aware 
resource management technology has become the research focus. The reference 
[22] points out that the unreasonable design of the cooling system in the data center 
will lead to heat-recirculation due to the lousy phenomenon of cooling efficiency 
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reduction caused by the mixing of cold and hot air. The objective of the thermal-
aware distribution scheme is to minimize the cooling system cost of the data center 
while maximizing the supply temperature of CRAC cold air. Sun et al. [23] intro-
duced the concept of thermal-aware load and proposed an online scheduling heu-
ristic algorithm for task scheduling and thermal management. Li Xiang et al. [24] 
designed a cooling model considering CRAC, air, and server thermal characteristics 
in the data center using CFD. They also designed a VM placement and migration 
algorithm called GRANITE to minimize computing and cooling resources. Ilager 
et  al. [25] proposed energy consumption and heat-aware scheduling algorithm 
ETAS, a meta-heuristic algorithm based on GRASP. ETAS can integrate virtual 
machines greedily in the case of active prevention of hotspots. Feng et al. [10] pro-
posed a multi-objective VM placement algorithm considering computation, cool-
ing, and network energy consumption. However, they only consider the energy con-
sumption of computation and cooling in the initial placement stage of the VM. In 
the VM placement process, they only consider the energy consumption of network 
equipment, and the computation and cooling equipment is lacking. In addition, the 
work ignores the SLA violation rate metric. In another work [26], they proposed a 
VM scheduling algorithm based on the heat-recirculation effect. Experiments show 
that the proposed algorithm can save cooling costs but does not consider the cost of 
computing equipment. In addition, the work [27] proposed a new failure model that 
leverages data center heat recirculation. This model considers the spatial distribu-
tion, time distribution, and the relevant change of the cross-interference matrix with 
failures. However, this work also does not consider the impact of migration cost and 
SLA. Xiao et  al. [28] proposed a machine learning approach for VM placement, 
but they only counted the energy cost of the cooling system in experiments; with-
out considering the temperature constraints and SLA violation, they could not avoid 
server losses due to high temperatures and the lack of stable service. Aghasi et al. 
[29] proposed a VM placement algorithm based on BGSA to minimize computa-
tional and cooling costs and designed an adaptive fuzzy mechanism to enhance the 
algorithm. However, there was no apparent advantage in reducing the SLA violation 
rate. Li et al. [30] innovatively added a fault model to the thermal model but did not 
consider an increase in SLA violation due to VM migration.

The comparison of the related work can be found in Table 1. Unlike the VMP 
strategy based on the above two resource management schemes, the proposed ther-
mal-aware VMP strategy considers both thermal-aware and VM migration costs to 
optimize VM consolidation. The advantages of the VM placement algorithm MOP-
FGA are mainly reflected in three aspects. Firstly, MOPFGA depends on the air tem-
perature distribution in the computer room, not only considering the computational 
cost but also the cooling energy consumption. Secondly, MOPFGA also integrates 
the VM migration cost model while managing resources. Finally, MOPFGA com-
plies with resource constraints in virtual machine consolidation to avoid increasing 
the SLA violation rate.



 B. Liu et al.

1 3

3  System model and problem description

Data centers are usually composed of computing devices (e.g., servers, networks) 
and non-computing devices (e.g., cooling systems). The energy consumption 
for computation is not only attributed to the capacity of physical hosts but is also 
affected by VM resources. In addition, the heat-recirculation effect in the server 
room leads to the generation of hotspots, and the cooling system needs to be dynam-
ically adjusted to ensure that the temperature of the host is within a safe range. 
Therefore, to propose the thermal-aware VMP strategy, we first propose a workload 
model to represent the computational resource constraints in the system and mini-
mize the migration cost target. Then, to reflect the effect of computer room heat-
recirculation on VM placement, we propose a heat-recirculation model to ensure 
that the computer room can run within thermal constraints. Finally, a power con-
sumption model considering computational and the cooling energy consumption is 
proposed according to the above model.

Table 1  Related work Migration 
cost based

Thermal-aware Consider-
ing SLAV

Tao et al. [14] ✔ ✖ ✖
Mann et al. [15] ✔ ✖ ✔
Rym et al. [16] ✔ ✖ ✖
Xu et al. [17] ✔ ✖ ✔
Mapetu et al. [6] ✔ ✖ ✔
Hariharan et al. [18] ✔ ✖ ✖
Ding et al. [19] ✔ ✖ ✔
Monireh et al. [20] ✔ ✖ ✔
Wang et al. [21] ✔ ✖ ✔
Sun et al. [23] ✖ ✔ ✔
Li Xiang et al. [24] ✖ ✔ ✖
Ilager et al. [25] ✖ ✔ ✔
Feng et al. [10] ✖ ✔ ✖
Feng et al. [26] ✖ ✔ ✔
Feng et al. [27] ✖ ✔ ✖
Xiao et al. [28] ✖ ✔ ✖
Aghasi et al. [29] ✖ ✔ ✔
Li et al. [30] ✖ ✔ ✖
Our work ✔ ✔ ✔
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3.1  Workload model

3.1.1  Physical machine resource model

Each heterogeneous host in the data center corresponds to a spe-
cific computing resource capacity. For the host hi at time t, quadruple 
Capacity

hi
t = (mips, storage, ram, bw) represents the remaining computing resources, 

where Capacityhit  represents the host hi at time t. mips represents the available per-
formance capacity in Mips (Million Instructions Per Second), storage represents the 
remaining storage capacity, ram represents the remaining internal storage capacity, 
and bw represents the remaining valid bandwidth. Vector represents the remain-
ing resources of all hosts at time t. When the resource utilization rate of the host 
approaches the limit, the VM performance level on the host will be limited by the 
host capacity, increasing SLA violation time.

All hosts in the computer room are expressed as:

Equation (1) denotes the data center host set M; the total number of computer room 
hosts is m.

3.1.2  VM resource model

The computing resources of vmk request at time t are expressed as quadruple:

In Eq. (2), Requestvm
k
(t) denotes the VM vmk at t time.

The increase in the number of VM migrations leads to increased migration costs 
[18]. VM migration cost is expressed as:

In Eq. (3), MC represents the migration cost and VMi represents a VM instance 
on host hi . Consolidating VMs will lead to performance degradation, leading to an 
increase in the SLA violation rate.

3.2  Heat‑recirculation model

As shown in Fig.  1, the cold air from CRAC is mainly sent to the main engine’s 
entrance through the room’s floor tile. The cold air flows through the host inlet and 
the hot air from the host outlet circulates into CRAC. However, the hot air from the 
host outlet will lead to heat-recirculation, increasing the inlet temperature of the host 
and even generating hotspots. Therefore, CRAC is required to guarantee a lower 

(1)M = {h1, h2, ...hm}

(2)Requestvmk (t) = (mips, storage, ram, bw)

(3)MC =
1

m

m∑

i=1

(
Total number of VMi

Number of migration in VMi

)
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temperature of cold air supply to maintain the host inlet temperature below the red 
line temperature. This phenomenon leads to more cold air energy consumption. This 
paper uses the low complexity heat-recirculation model proposed by Tang et al. [8]. 
The model calculates the equipment’s power based on the data center’s thermody-
namic and physical characteristics.

In order to calculate the CPU temperature considering the data center’s tempera-
ture, we should calculate the inlet temperature of the host. The inlet temperature of 
the host is mainly affected by the CRAC air supply temperature, server power con-
sumption, and heat-recirculation effect. We define the inlet temperature of the host 
as the following linear function:

In Eq. (4),  di,j represents the degree that the inlet temperature of the host hi is 
affected by the host hj . It is the number of i rows and j columns in the thermal dis-
tribution matrix D, which is the cooling supply temperature of CRAC. Equation (4) 
shows that the inlet temperature of the host is affected by its physical position and 
heat-recirculation effect.

The thermodynamic distribution matrix is defined as 
D ≡ [(K − ATK)−1 − K−1] , where K = diag(K1,K2, ...Km) is the thermodynamic 
coefficient matrix, and A = aij denotes the heat from the outlet of each host to 
the inlet of other hosts.

CPU temperature modeling is the most important indicator of temperature 
modeling, the and RC model [8] is one of the mature methods for calculating 
CPU temperature. Its model can be expressed as:

(4)T in
i
(t) = Tsup +

m∑

j=1

di,j × Pj(t)

Fig. 1  An illustration of heat-recirculation phenomenon in a data center server room
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In Eq. (5), Ti(t) is the CPU temperature of the host at time t. R and C are the server’s 
thermal resistance and heat capacity, respectively. P is the energy consumption of 
the active host, and T0 is the initial temperature of the CPU. The RC model assumes 
that the power and inlet temperature of the CPU is stable, and the stable CPU tem-
perature is expressed by PR + T in

i
 . At the same time t, it is also a function related 

to time t. With the increase of time, the CPU will continue approaching its stable 
temperature. Equation (5) shows the dynamic temperature change of a single host in 
a heat-recirculation environment.

3.3  Power model

Based on the models defined in the last section, we can formulate the comput-
ing and cooling system energy consumption given a cooling system supply 
temperature.

3.3.1  Computing system power model

A Cloud data center comprises heterogeneous servers with different physical 
capacities, power, and processing capabilities. The power consumption of the 
host is mainly determined by its CPU utilization. We use the following power 
consumption model to represent the power consumption of a single active host 
[8]:

In Eq. (6), Pi(t) represents the energy consumption of host hi at time t ; Pidle
i

 repre-
sents energy consumption without load ; Pdynamic

i
 represents energy consumption at 

full load; U(vmi,k(t)) represents the utilization rate of computing resources when the 
VM k runs in hi at time t; Vi is the total number of VMs running in hi . It is necessary 
to shut down the idle host ( Vi = 0) to save unnecessary energy consumption.

3.3.2  Cooling system power model

CRAC is the primary cooling equipment of cloud data centers and accounts for 
most of the cooling energy cost [7]. The efficiency of CRAC is usually measured 
by calculating the power consumption ratio of the system to the cooling system, 
also known as the Coefficient of Performance (CoP):

(5)Ti(t) = PR + T in
i
+ (T0 − PR − T in

i
) × e

−
t

RC

(6)Pi(t) =

�
Pidle
i

+
∑Vi

j=1
U(vmi,k(t)) × P

dynamic

i
(Vi > 0)

0 (Vi = 0)

(7)CoP(Tsup) =
PIT

Pcooling

,
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where Pcooling is the power of the cooling system, PIT is the power consumption of 
the IT system, and Tsup is the temperature of the CRAC’s cold air supply.

A higher CoP value indicates higher cooling efficiency. Studies have shown 
that CoP positively correlates with the temperature of the cold supply air. We use 
the CoP determined by HP laboratory [31]:

where Tsup is CRAC cold air supply temperature. Equation (8) shows that increasing 
the cooling supply temperature can improve the cooling system’s efficiency.

3.4  Problem definition

The total energy consumption of a cloud data center is mainly composed of com-
puting system energy consumption and cooling system energy consumption. The 
sum of the energy consumption of all servers is the energy consumption of the 
computing system, which can be expressed as:

where Pi(t) is the calculated energy consumption of host h from Eq. (6), and xj is a 
binary variable. When hi is active from time 0 to t, its value is 1; otherwise, it is 0. 
Timely shutting down the low-load host can save unnecessary overhead, so the key 
is adjusting the host workload allocation.

In order to maintain a reliable running state, the inlet temperature of each host needs 
to be kept below the threshold:

From Eqs. (7) and (8), it can be seen that CoP is positively correlated with Tsup . 
Under the same calculation of energy consumption, higher Tsup can consume less 
cooling cost. Combined with Eqs. (5) and (10), it can be obtained:

The energy consumption of cooling system is defined as the ratio of calculated 
energy consumption to CoP:

It can be seen from Eq. (12) that in order to provide colder airflow, the cooling sys-
tem needs to consume more energy to remove the heat brought by the host computa-
tion. The total energy consumption is expressed by Eq. (13):

(8)CoP(Tsup) = 0.0068 ⋅ T2
sup

+ 0.0008 ⋅ Tsup + 0.458,

(9)PIT =

T∑

t=0

m∑

i=1

xjPi(t),

(10)T in
i
(t) ≤ Tredline

(11)Tsup ≤ Tredline −

m∑

j=1

di,j × Pj(t)

(12)Pcooling =
PIT

CoP(Tsup)
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In this paper, the problem is formulated as a workload scheduling problem that aims 
to minimize the total energy consumption and migration cost under the constraints 
of server utilization, host CPU critical temperature, and server workload (repre-
sented by VMs).

where VMhi
 is a collection of VMs running on the host hi . The constraint conditions 

in Eq. (14) ensure that the CPU utilization and temperature of the host do not exceed 
the threshold due to the increase in workload, at the same time, ensure that the target 
host selected for the VM can meet the resource requirements of this VM.

4  Thermal‑aware VMP strategy

In the data center, workloads submitted by different users are assigned to different 
VMs hosted by servers in the server room according to the allocation policy. During 
the operation of the server, a large amount of heat is released, leading to the heat-
recirculation phenomenon and resulting in increased temperature of the entire room 
and thus affecting the inlet temperature of each server [8]. Excessive inlet tempera-
ture may affect the reliability and safety of the host. In order to keep the computer 
room at a relatively stable temperature, CRAC needs to reduce the supply tempera-
ture of cold air. However, it also leads to an increase in cooling energy consump-
tion. In order to reduce the calculation and cooling energy consumption of the com-
puter room, the placement strategy needs to schedule the VM to the target server 
reasonably and close or adjust the low-load server to sleep mode to save unneces-
sary energy consumption [30]. At the same time, it is necessary to actively prevent 
hotspots caused by excessive VM consolidation, which will cause server loss. In the 
process of VM migration, the system dynamically adjusts the CRAC cooling supply 
temperature according to the host CPU temperature detected at any time to prevent 
the waste of cooling energy. Based on this, appropriate regulation can be carried out 
in the VM placement stage to minimize the host inlet temperature and reduce the 
cooling cost.

(13)Ptotal = PIT + Pcooling

(14)

Minimize Ptotal = PIT + Pcooling =

ttotal∑

t=0

m∑

p=1

(
1 +

1

CoP

)
⋅ PIT

Minimize MC =
1

m

m∑

i=1

(
Total number of VMi

Number of migration in VMi

)

S.t. ∀i = 1, 2, ..,m,

VMhi∑

k=1

ttotal∑

t=0

Request

vmk

t

≤ Capacityhi(t)

Tsup ≤ Tredline −

m∑

j=1

di,j × Pj(t)
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Figure 2 illustrates the overall workflow of the proposed thermal-aware VMP 
strategy. The process entails three roles, namely users, the placement system, and 
the infrastructure. Users submit requests to the deployed VM. The placement sys-
tem is responsible for processing user requests, allocating computing resources 
for requests, and monitoring the CPU utilization and temperature of the host. At 
the same time, the VM, energy consumption, and heat-recirculation model pro-
vide parameters and constraints for the operation of the MOPFGA algorithm. 
Infrastructure includes computing equipment, cooling equipment, and other phys-
ical equipment. The system dynamically adjusts the supply temperature of CRAC 
to prevent the host temperature from exceeding the threshold. The procedure for 
placing a VM takes the following steps: 

1. VM requests submission: Users submit VM requests to perform one or more 
tasks.

2. Host selection: The placement system uses MOPFGA to select the data center 
server to place the VM.

3. Placement decision execution: the execution of VM placement based on MOP-
FGA.

Fig. 2  An overview of the proposed thermal-aware VMP strategy
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4. System resource information update: after placing the VM, the system updates 
the host and VM resource information in the data center.

In our thermal-aware VMP strategy, the placement system uses MOPFGA, a 
multi-objective VM placement algorithm based on MOPFA [11] and GA [12]. 
MOPFGA aims to minimize computational and cooling energy consumption 
while reducing the effect of heat-recirculation. This algorithm overcomes the 
characteristics of MOPFA that it quickly falls into local optimum and slow GA 
iteration and introduces the OBL (Opposition-based Learning) method [13] to 
increase the global search ability of the algorithm and reduce the probability that 
the algorithm is trapped in a local optimum. In order to study the MOPFGA algo-
rithm, we first introduce the classic MOPFA algorithm [11].

4.1  Traditional MOPFA algorithm

The pathfinder algorithm [11] is inspired by the behavior of animal groups in nature. 
Usually, there is a pathfinder in an animal group as a minority of individuals who 
know information about food sources, hunting areas, and routes. On the contrary, other 

Fig. 3  Process of MOPFA
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individuals in the population are called followers. In addition to following the path-
finder, they are also affected by other individuals in the population. Figure 3 shows the 
process of the MOPFA algorithm. A swarm intelligence algorithm that shares search 
space information through pathfinder leadership and members’ movement. For a popu-
lation of size pop, each member x has its current location:

where K is the number of iterations of the algorithm. The movement of a follower of 
the population is random and affected by other members:

where R1 = � ⋅ r1 , R2 = � ⋅ r2.r1,r2 are random numbers in [0,1]. � and � represent 
the degree of influence between adjacent members and set them to the random num-
ber in [1, 2, 11]. xj represents the corresponding xi in the previous iteration. � guar-
anteed random movement of members:

In Eq. (17), u1 is the random number in [–1,1]. Dij = ‖xi − xj‖ represents Euclid-
ean distance between two members. There is always a pathfinder in the population, 
updated as follows:

where r3 is the random number in [0, 1] and A is generated by Eq. (19):
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Fig. 4  Pareto optimal front
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where u2 is a random number in [–1,1].
Instead of a single solution in single-objective problems, multi-objective algo-

rithms include different solutions, the so-called Pareto Optimal Front. The Pareto 
optimal front is defined as the set of non-dominated solutions where each objective 
is considered equally good, as shown in Fig. 4. Compared with other meta-heuristic 
algorithms, MOPFGA can be seen that MOPFA can close to the true Pareto optimal 
front [11]. In addition, we have formulated VMP as a multi-objective optimization 
problem to minimize energy consumption and migration cost, so MOPFA is a suit-
able algorithm for VMP.

4.2  MOPFGA algorithm

On the one hand, we have formulated VMP as a multi-objective optimization prob-
lem to minimize energy consumption and migration cost, so we need to transform 
the traditional MOPFA algorithm into a multi-objective algorithm that can be 
applied to VMP. On the other hand, the traditional MOPFA algorithm has the defects 
of easy loss of population diversity and easy to fall into local optimum. It needs to 
be continuously improved to improve the versatility of the algorithm. Therefore, the 
proposed MOPFGA algorithm combines the MOPFA and the crossover and muta-
tion operations of GA. Furthermore, this paper introduces the OBL strategy, which 
can improve the slow convergence defects of the traditional MOPFA and GA. In the 
scheduling process, MOPFGA migrates the VMs in the overloaded and low-load 
hosts to the selected target host to save unnecessary energy consumption.

Step 1. Solution encoding: initializing the solution to a string code is the first step 
in the optimization problem [29]. First, MOPFGA generates a group of population 
and a pathfinder randomly. All members of the population represent a solution. The 
solution is a sequence with the length of the number of VMs to be migrated. A code 
is randomly generated for each location representing the VM’s target host. An exam-
ple of the encoding format for the solution is shown in Fig. 5.

Step 2. Fitness calculation: Multi-objective optimization algorithms often use 
Pareto optimality to compare fitness. However, in VMP, there is usually no single 
solution but Pareto Optimal Front. The Pareto front is defined as the set of non-
dominated solutions where each objective is considered equally good, as shown in 
Fig.  4. Calculating Pareto optimal front will make it difficult for the algorithm to 

(19)A = u2 ⋅
−2K

Kmax

,

Fig. 5  Examples of population members
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obtain an individual optimal solution. In addition, computing the Pareto optimal 
frontier will significantly increase the algorithm’s complexity. We calculate the fit-
ness of each member by calculating the sum of the ratio of energy consumption and 
migration costs to their maximum:

where totalFitness is the total fitness corresponding to each member’s solution. pow-
erFitness is the fitness of energy consumption by calculating the increased energy 
consumption after allocation. maxPowerFitness is the maximum energy consump-
tion fitness. mcFitness is the migration cost fitness by calculating the increased 
migration cost after allocation. maxMcFitness is the fitness of maximum energy 
consumption.

Step 3. Improved pathfinder update with OBL: As the number of iterations 
increases, the population members are surrounded by pathfinders, and the range of 
activities gets limited. As a result, traditional MOPFA tends to stop at local optima 
at a decreased convergence rate. This paper introduces the OBL strategy to improve 
the local optimization strategy of pathfinders. The principle is to search for the 
direction solution based on the current solution and to compete for the current solu-
tion with the reverse solution to leave a more favorable solution. The mathematical 
expressions are as follows:

In Eq. (21), b and a are the maximum and minimum values in the range of xK+1
p

 , 
respectively; oppxK+1

p
 is the reverse solution; rand is the random number in the range 

of [0, 1]. We use OBL to generate a new set of reverse candidate solutions, extend-
ing the range of candidate solutions for pathfinders. Therefore, the algorithm can 
find better new solutions on a broader search range to improve the convergence abil-
ity of the algorithm in the late iteration.

Step 4. Improved follower updating using GA: GA is used to expand its local 
search range and make its search more accurate when updating followers. It mainly 
includes two parts: crossover and mutation. Crossover exchanges partial sequences 
of two chromosomes (member’s solution) to generate two new sub-chromosomes. 
The mutation operation mutates partial sequences of the two chromosomes. Finally, 
the better of the two sub-chromosomes are left as the updated followers.

Step 5. VM placement: After the MOPFGA iteration, the VM is assigned to the 
target host according to the solution corresponding to the members with the lowest 
fitness value.

The worst-case time complexity of MOPFGA is 
O
(
K ⋅

(
pop ⋅ log (pop) + Numvms × pop + (F) × pop

))
 , where K is the number 

of iterations, pop is the number of population, Numvms is the number of VMs to 

(20)totalFitness =
maxPowerFitness

powerFitness
+

maxMcFitness

mcFitness
,

(21)b = max(xK+1
p

), a = min(xK+1
p

)

(22)oppxK+1
p

= rand ⋅ (b + a) − xK+1
p
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be migrated, and F is the cost of calculating the fitness (which is roughly equal to 
Numvms).

4.3  Algorithmic detail

As shown in algorithm 1. First, we initialize the population randomly (line 1). Then 
we calculate the fitness of each initial member and find the initial Pathfinder (lines 2 
to 3). After entering the iteration, we use the quick sort algorithm to sort the popu-
lation members in ascending order according to their fitness (line 5). First, update 
the Pathfinder, use Eq. (18) to get the position of the new Pathfinder, and then use 
OBL to get the reverse solution. Compare the two to leave a better solution, and then 
compare the new solution with the old Pathfinder to leave a better solution as the 
new Pathfinder (lines 6 to 10). Traverse all followers, use Eq. (16) to get the position 
of the new follower, use GA’s crossover and mutation operation (algorithm 2) to get 
the sub-solution, and compare the two to leave the better solution as the new fol-
lower (lines 11 to 14). Then traverse the population and find the optimal solution to 
replace the Pathfinder (line 15). Finally, MOPFGA returns the optimal members of 
the population (line 17).
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The details of GA crossover and mutation operations are shown in Algorithm 2.

5  Experiments and results

5.1  Experimental setup

We establish a simulation-based experiment environment similar to the actual data 
center to evaluate the effectiveness of the proposed VMP strategy. The cloud data 
center is set to contain 10 zones, each composed of 10 racks. The racks are arranged 
according to the layout of 5 × 2 grids, and each rack has ten servers. It is assumed 
that each zone is affected by the heat-recirculation effect, and the host temperature 
is affected by other hosts. The experiment uses the thermal distribution matrix used 
by Tang et al. [8]. The entire data center contains 1000 hosts. Each host is an IBM 
x3550 M3 machine with 8 processors and 4GB of RAM. The hosts are equipped 
with two types of processors: Intel Xeon X5670 (6 judges, 2.93 GHz, 12MB L3 
Cache) processor and Intel Xeon X5675 (6 judges, 3.07 GHz, 12MB L3 Cache) pro-
cessor. According to the instance type of Amazon EC2 [32], we set four types of 
single-core virtual machines, as shown in Table 2.

In order to evaluate the performance of dynamic migration, detailed settings 
of our experiments are listed in Table 3. We adopt data center room layout as per 
the work of Tang et al. We assume that the heat-recirculation effect exists in each 
region, and the thermal distribution matrix provided by Tang et  al. [8] is used to 
simulate the thermal cycle effect in the region. This paper applies it to the experi-
ment. According to ASHRAE[31], the CPU Tredline in Eq. (10) is set to 25◦ C. In Eq. 
(5), the heat capacity and resistance are set to 340 J/K and 0.34 K/W, respectively, 
and the initial CPU temperature is set to 318 K [33].

Our simulation-based experiment uses the real data center workload obtained 
by the PlanetLab system [34], which tracks the utilization data of multiple VMs 
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Table 2  VM types VM size Core Processing 
speed (MIPS)

Ram (MB) Band-
width 
(Mbits/s)

Extra Large 1 870 870 100
Large 1 2000 1740 100
Micro 1 1000 1740 100
Nano 1 500 613 100

Table 3  Experimental 
parameters

Item Value

Data center Number of zones 20
Number of racks in zone 10
Number of hosts in rack 5

nServer Heat capacity 340[J/K]
Thermal resistance 0.34[K/W]
Initial CPU temperature 318K
Threshold of CPU temperature 25◦C

Simulation Simulation time 24hours
Simulation platform CloudSim V.4.0

Table 4  Workload data characteristics

Workload datasets Date Number of VMs Mean(%) SD(%)

CoMon project workload trace 03/03/2011 1052 12.31 17.09
06/03/2011 898 11.44 16.83
09/03/2011 1061 10.70 15.57
22/03/2011 1516 9.26 12.78
25/03/2011 1078 10.56 14.14
03/04/2011 1463 12.39 16.55
09/04/2011 1358 11.12 15.09
11/04/2011 1233 11.56 15.07
12/04/2011 1054 11.54 15.15
20/04/2011 1033 10.43 15.21

in more than 500 places around the world. In this paper, the actual workload trace 
with a sampling window of 10 days in the CoMon project is used to evaluate the 
proposed scheme. The workloads of all VMs are reported every 5 minutes in the 
dataset, as shown in Table 4. All algorithms are written in Java programming lan-
guage, running on the Core i5-8500 CPU, 3.00GHz, 16GB RAM machine.
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5.2  Metrics

The experiment evaluates the efficiency of the proposed scheme based on six 
standard metrics: energy consumption, migration cost, SLAV, ESV, ESM, and 
number of host shutdowns.

Energy: This metric represents the energy consumption of each scheme in 
kWh.

Migration cost (MC): This metric represents the number of VM migrations dur-
ing the experiment.

SLAV: This metric indicates the performance overhead caused by the dynamic 
consolidation of VMs. Meeting QoS requirements is significant for Cloud comput-
ing environments. Since the minimum throughput, maximum response time and 
bandwidth delivered by the system can vary depending on the application running. 
It is necessary to define a workload-independent metric SLAviolation.When the utili-
zation rate of the host is close to 100%, the VM performance level on the host will 
be limited by the host capacity, which can be described as SLA violation time for 
each active host. When the utilization rate of the host is close to 100%, the VM per-
formance level on the host will be limited by host capacity, which can be described 
as SLA violation time SLATAH for each active host. In addition, the consolidation of 
VMs will lead to performance degradation, which can be described as Performance 
Degradation due to Migration (PDM).

In Eq. (23), the N is the number of hosts; tsi is the total time during which the hi has 
experienced the utilization of 100% leading to an SLA violation; tai is the total of the 
hi being in the active state; M is the number of VMs; Cdj

 is the estimate of the perfor-
mance degradation of the jth VM caused by migrations; Crj

 is the total CPU capacity 
(MIPS) requested by the jth VM during its lifetime. The overall SLA violation SLA 
for cloud infrastructure can be obtained by combining SLATAH and PDM, as shown 
in Eq. (24).

ESV (energy and SLA violations): This metric is the product of energy consump-
tion and SLA violation rate. The goal is to compare the energy consumption and 
SLA violation rate of the proposed algorithm and the benchmark algorithm at the 
same time. If ESV is significantly reduced, the energy consumption and SLAV reach 
a balance.

ESM (energy, SLA violations and migration): ESM is a comprehensive metric of 
SLA violation rate and VM migration cost. The goal is to simultaneously compare 
the proposed and baseline algorithms’ energy consumption, SLA violation rate, and 
VM migration cost.

(23)SLATAH =
1

N

N∑

i=1

tsi

tai
PDM =

1

M

M∑

j=1

Cdj

Crj

(24)SLAV = SLATAH × PDM

(25)ESV = EC × SLAV
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The number of host shutdowns: This metric indicates the number of VM migrations 
during the experiment.

5.3  Baseline algorithms

We verify the effectiveness of MOPFGA by comparing it with several baseline algo-
rithms. We implement the five state-of-the-art VM placement algorithms:

PPABFD: Mapetu et al. [6] improved the power-aware best fit reducing (PABFD) 
[35] algorithm based on the Pearson coefficient. Optimize the placement of VMs by 
calculating the Pearson coefficients of CPU, ram, and bandwidth.

ETAS: A dynamic VM placement algorithm was proposed by Ilager et al. [25]. 
This algorithm uses GRASP, a meta-heuristic online scheduling algorithm, to 
reduce energy consumption while preventing hotspots.

RACC: Ding et  al. [19] proposed a VM consolidation framework based on 
resource utilization and heterogeneous host PPR. In the VM placement phase, 
RACC (Residual Available Computing Capacity) based technology detects over-
loaded hosts. This framework can effectively solve the trade-off between host com-
puting overhead and performance.

IGA-POP: An improved permutation-based genetic algorithm (IGA-POP) pro-
posed by Abohamama et al. [36] proposed a VM placement algorithm by balancing 
exploration and utilization in search space.

MOPFA: Metaheuristic algorithm for solving multi-objective problems proposed 
by Yapici et  al. [11]. To prove the effectiveness of OBL, crossover, and mutation 
operations of MOPFGA, we compare the proposed algorithm with the traditional 
MOPFA.

The setting of algorithm parameters  and VM selection criterion is shown in 
Table 5. In addition, through experimental analysis, the CPU utilization threshold of 
all algorithms is set to 80%.

5.4  Experimental results and analysis

Figure  6 compares the average total energy consumption, the average number of 
MC, and the average number of closed hosts between MOPFGA and the baseline 

(26)ESM = EC × ESV ×MC

Table 5  Algorithm parameters and VM selection criterion

Algorithm Parameter Value VM selection criterion

MOPFGA and MOPF Population size 50 Minimum Migration Time (MMT) [35]
Number of iteration 300

PPABFD � 0.4
� 0.1

IGA-POP Population size 50
Number of iteration 300
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algorithm in all workloads. As shown in Fig.  6a, it is observed that MOPFGA has 
a remarkable effect on limiting energy consumption, which reduces the total energy 
consumption by 23.84% on average compared with all the baseline algorithms. 
The cooling energy consumption decreases by 24.78% on average, and the calcu-
lated energy consumption decreases by 23.62% on average. ETAS consumes the 
most energy. It uses GRASP to improve the greedy selection of the target host and 
reduces the time complexity of selecting the host when the VM is placed. How-
ever, it also reduces the possibility of finding the optimal solution, increases a large 
number of VM migrations costs, and opens a large number of unnecessary hosts 
(Fig. 6b and c). Compared with PPABFD and RACC, they tend to choose the greedy 
strategy of the host with minor energy consumption, and the energy consumption of 
IGA-POP based on GA is slightly higher than that of the first two. RACC algorithm 
is more inclined to place VMs on high PPR hosts than traditional PABFD, which 
will cause VMs to concentrate on high PPR hosts and close many low PPR hosts, 
so RACC causes the most host closures and high energy consumption (Fig. 6a and 
c). PPABFD has the characteristics of a greedy selection of PABFD and uses the 
Pearson coefficient to reduce the probability of host utilization overload and indi-
rectly reduce the energy consumption caused by VM migrations. In PPABFD, the 
host with a lower Pearson coefficient is more likely to become the target host of VM, 
which can reduce the probability of host overload, which is also the reason for less 
VM migration. However, the algorithm does not consider the thermal factor, making 
generating hotspots quickly (Fig. 6b and c). Compared with the baseline algorithm, 
MOPFA takes energy consumption and migration cost as the dual goals to reduce 
the excessive migrations of VMs while reducing the total energy consumption 
and the number of MC by 77.52% compared with all the baseline algorithms. On 
this basis, MOPFGA adds the operation of GA and OBL to make the search in the 

Fig. 6  Average total energy consumption, average number of MC and average number of host shutdowns
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iteration more accurate. The results show that MOPFGA is better than the traditional 
MOPFA in each metric because of the combination of GA and OBL to improve the 
ability to search for the global optimum.

The SLAV, ESV, and ESM of MOPFGA are slightly higher than PPABFD and far 
lower than other baseline algorithms as shown in Table 6. The SLAV, ESV and ESM 
decreased by 96.799%, 98.210% and 98.962%, respectively. PPABFD calculates 
different CPU, RAM, and bandwidth to obtain the Pearson coefficient, which sig-
nificantly avoids the resource conflict caused by VM allocation and obtains the best 
SLA violation rate level. However, the energy consumption and maximum cooling 
temperature of PPABFD are much higher than those of MOPFGA. In addition, the 
experimental results show that the allocation strategy of MOPFGA significantly 
reduces the SLA violation rate level and energy consumption caused by excessive 
VM consolidation by reducing the VM migrations cost. In particular, compared with 
the MOPFA results, it can be found that the improved algorithm can find the optimal 
global solution more accurately.

The average supply temperature of each algorithm at different times is shown 
in Fig. 7. Higher CRAC cooling supply temperature means saving more cooling 
energy [36]. Each increase in temperature can save about 2% to 5% of energy 
consumption [37]. Among them, the proposed MOPFGA and ETAS provide 
the highest cooling supply temperature, but ETAS performs more inefficiently 
in terms of energy consumption. Although PPABFD performs well in SLA, it 
needs a lower cooling supply temperature to prevent hotspots in the computer 

Table 6  Average SLAV, ESV 
and ESM SLAV(×10−5) PPABFD 4.70354

ETAS 1070.9352
RACC 146.4901
IGA-POP 36.724
MOPFA 47.1506
MOPFGA 8.35979
Average improvement(%) 96.799

ESV(×10−3) PPABFD 12.349101
ETAS 4919.810467
RACC 429.82569
IGA-POP 112.191745
MOPFA 130.865773
MOPFGA 20.068973
Average improvement(%) 98.210

ESM PPABFD 3.375331202
ETAS 2170.501065
RACC 129.8087274
IGA-POP 35.28042807
MOPFA 37.42260659
MOPFGA 4.935329674
Average improvement(%) 98.962
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room. PPABFD is too negative for virtual machine migration to make the host 
temperature overload. In addition, RACC, IGA-POP, and MOPFA supply tem-
perature slightly lower than MOPFGA. It can be seen that the proposed MOP-
FGA not only considers the computational energy consumption of the host but 
also reduces the possibility of hotspots by balancing the workload. Compared 
with all benchmark algorithms, MOPFGA increases the cooling supply tempera-
ture by 1.24% on average.

The proposed algorithm is affected by the utilization threshold level. In order 
to analyze the influence of different utilization thresholds and reflect the algo-
rithm’s improvement effect, we conducted a sensitivity analysis and found the 
best parameter setting. We take the CoMon project workload of 03/03/2011 as 
an example. The performance of MOPFA and MOPFGA under different CPU 
utilization thresholds is shown in Fig.  8. A smaller CPU utilization threshold 
requires more energy to run more hosts to complete the workload. At the same 
time, the lower CPU utilization makes the host can accommodate the number 
of VMs reduced, and VM resource requirements can not be met in a short time, 
forcing the number of VM migrations between hosts to increase. Therefore, 
a high threshold is needed to utilize data center resources to save energy effi-
ciently. In addition, it can be found that the SLA violation rate level increases 
when the threshold reaches 90% because although the host can accommodate 
more VMs in CPU utilization, other resources (such as storage capacity, ram, 
bandwidth, etc.) cannot meet the needs of all VMs. Therefore, we set the experi-
ment’s CPU utilization threshold at 80%.

In conclusion, the MOPFGA not only reduces the computing energy con-
sumption of the data center but also saves much cooling system energy con-
sumption. MOPFGA increases the CRAC supply-air temperature to a higher 
level, with the server inlet temperature not exceeding the red line temperature. 
Also, avoid excessive VM consolidation to reduce the SLA violation rate.

Fig. 7  Average CRAC cooling supply temperature of different algorithms
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6  Conclusion

In this paper, we consider the VMP in a data center as a multi-objective optimization 
problem and propose a VMP strategy that aims at improving the energy efficiency 
of data centers by comprehensively considering the workload, computing resources, 
cooling overhead, and heat-recirculation effect. The strategy features a multi-objec-
tive VM placement algorithm MOPFGA developed to improve the data center’s 
energy consumption and thermal efficiency while ensuring thermal constraints. As a 
combination of the classic MOPFA and GA, the proposed MOPFGA integrates OBL 
to prevent premature convergence to local optima and thus significantly improves 
the quality of VMP solutions. Extensive experiments on real-world workload data 
from the PlanetLab system show that MOPFGA outperforms MOPFA, PPABFD, 
ETAS, RACC, and IGA-POP regarding total energy consumption, SLA violation 
rate, and CRAC supply temperature, which is mainly attributed to the awareness 
of heat recirculation for our solution. As an insight, we also observe that frequent 
migration of VMs will increase the data center’s energy cost and SLA violation rate.

On this basis, we plan to expand the model in the future further, such as using a 
more accurate fluid dynamics/heat transfer model (CFD/HT) model or a data-driven 
model to predict the thermal distribution of the computer room. At the same time, 
after some modifications, the proposed algorithm can be applied to different sce-
narios, such as fan speed and cooling system failure. We can add the joint optimi-
zation of VMP strategy and dynamic control cooling technology. According to the 
heat distribution of the cloud data center, the system can reduce the waste of cooling 
system resources by controlling the VM distribution and dynamically adjusting the 
fan speed of the host chassis. We will continue to study related issues in future work.

Fig. 8  Comparison of total energy consumption, number of VM migrations and SLAV under different 
utilization thresholds
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