
Journal of Network and Computer Applications 224 (2024) 103853

A
1

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Research paper

ActiveGuardian: An accurate and efficient algorithm for identifying active
elephant flows in network traffic
Bing Xiong a, Yongqing Liu a, Rui Liu a, Jinyuan Zhao b,∗, Shiming He a, Baokang Zhao c,
Kun Yang d, Keqin Li e

a School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
b School of Information Science and Engineering, Changsha Normal University, Changsha 410199, PR China
c School of Computer, National University of Defense Technology, Changsha 410073, PR China
d School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO43SQ, UK
e Department of Computer Science, State University of New York at New Paltz, New York 12561, USA

A R T I C L E I N F O

MSC:
00-01
99-00

Keywords:
Network traffic measurement
Active elephant flows
Sketch
Adaptive Counter Update
Leapfrog Hashing

A B S T R A C T

Active elephant flows, which indicate the real-time data transmission status, are of primary interest in
network management and various applications. However, existing network measurement efforts mainly focus
on finding elephant flows, and limited works on identifying active elephant flows suffer from low accuracy and
heavy overheads. To address this issue, this paper proposes ActiveGuardian to identify active elephant flows
with high accuracy, low memory, and high throughput. The key idea is to intelligently separate potential
elephant flows from mice flows, and guard and report the information of active elephant flows in every
time window. To obtain high accuracy, we devise a filtering module that adaptively filters unnecessary
flows with low arrival rates, by applying an Adaptive Counter Update strategy. To achieve high memory
utilization, we design a Leapfrog Hashing algorithm for the guarding module to effectively solve hash collisions.
Lastly, we perform theoretical derivation on the false positive and the error bound of ActiveGuardian, and
experimental evaluations on its performance with real network traffic traces. The experimental results show
that ActiveGuardian achieves higher accuracy (99.65%) with identical memory sizes, and higher throughput
(26.53Mps) than the state-of-the-art solutions.
1. Introduction

Network traffic measurement is indispensable to efficiently under-
stand and manage network performance. Until now, extensive efforts
have been carried out in this area to accurately identify elephant flows,
where a flow’s ID is usually defined as a combination of certain protocol
header fields, and flow size is defined as the number of transmitted
packets. Elephant flows contribute a large portion of network traffic,
and have a great impact on network performance. Hence, it is signifi-
cant to identify elephant flows, whose flow size exceeds a predefined
threshold. Accurate identification of elephant flows plays a significant
role in areas such as traffic engineering (Burnett et al., 2020), network
security (Wang et al., 2011; Curtis et al., 2011), data mining (Mirylenka
et al., 2015; Chang and Lee, 2003) and information retrieval (Dav-
enport, 2012). For instance in network management, administrators
can accurately estimate the demand for equipment and bandwidth
based on the situation of elephant flows, allowing for rational capacity
planning (Feldmann et al., 2001). In traffic engineering, traffic alloca-
tion and scheduling policies can be optimized by analyzing elephant

∗ Corresponding author.
E-mail address: zhaojy@csnu.edu.cn (J. Zhao).

flows to ensure priority and performance of critical applications or
services and improve Quality of Service (QoS) (Sivaraman et al., 2016).
In data mining, the analysis of elephant flows can identify the most
influential features and attributes to optimize feature selection and
dimensionality reduction, thereby improving the efficiency of model
training and predictive accuracy (Cheung and Fu, 2004).

Elephant flow identification strives to collect historical statistical
information of packet flows from the beginning of traffic measurement.
Nevertheless, many applications primarily focus on the real-time state
of packet flows, especially with a mass of packets arrived recently. For
example in intrusion detection (Garcia-Teodoro et al., 2009), Intrusion
Detection Systems (IDS) rely on real-time packet flow information to
promptly spot suspicious activity and rapidly respond to threats before
they can cause significant damage (Zhuang et al., 2021). In congestion
control (Zhu et al., 2020; Liao et al., 2020), by identifying recently
active elephant flows, network administrators can promptly detect
congestion situations and quickly pinpoint the source of the problem
vailable online 24 February 2024
084-8045/© 2024 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jnca.2024.103853
Received 15 July 2023; Received in revised form 26 December 2023; Accepted 21
 February 2024

https://www.elsevier.com/locate/jnca
https://www.elsevier.com/locate/jnca
mailto:zhaojy@csnu.edu.cn
https://doi.org/10.1016/j.jnca.2024.103853
https://doi.org/10.1016/j.jnca.2024.103853

Journal of Network and Computer Applications 224 (2024) 103853B. Xiong et al.
to implement congestion control measures. Additionally, bandwidth
management and optimization of these active elephant flows can ef-
fectively predict and avoid potential congestion, enhancing network
performance and stability. As for task offloading in network scenar-
ios (Sarrar et al., 2012), it can alleviate the load on main processor
to improve overall network performance, by offloading network tasks
associated with recently active elephant flows to specialized hard-
ware accelerators or dedicated network devices. Active elephant flows,
which have a large number of packets frequently arrived within a
certain time window, greatly influence the performance of network
applications. Therefore, there is a pressing need to identify and report
active elephant flows by time window.

Existing solutions for identifying active elephant flows, inspired
by traditional elephant flow identification methods, usually employ
sketch-based algorithms for efficient memory utilization. However, due
to hash collisions in sketches and highly skewed flow size distribu-
tion, mice flows are probably mistreated as elephant flows, leading to
low identification accuracy. To overcome this issue, several strategies
have been proposed, including the majority vote algorithm (Boyer
and Moore, 1991), exponential-weakening decay (Yang et al., 2018a,
2019), and pre-filtering stages (Garcia-Teodoro et al., 2009). While
these solutions have made progress in separating elephant flows from
mice flows, they still cannot support real-time queries and detect active
elephant flows. More recent works, such as Clock-Sketch (Chen et al.,
2021) and FastKeeper (Wang et al., 2021), have attempted to address
these two challenges by employing sliding-window-based algorithms
to accurately estimate flow rates of active elephant flows. However, it
will incur significant memory overhead to record flow ID. In summary,
existing solutions cannot simultaneously achieve high accuracy, low
overhead, and high throughput in identifying active elephant flows.

In this paper, we propose a novel algorithm, named ActiveGuardian,
to accurately identify active elephant flows. The key idea of Active-
Guardian is called separate-mice-and-guard-active. Specifically, ActiveG-
uardian consists of a filtering module intelligently separating suspected
elephant flows from mice flows, and a guarding module guarding
and reporting the information of active elephant flows in every time
window. To ensure the persistent effectiveness of the filtering module,
we propose an Adaptive Counter Update strategy that consistently filters
unnecessary flows. To enhance the accuracy of the guarding module,
we utilize a replacement policy evicting inactive flows that are wrongly
treated as active elephant flows. To optimize the memory efficiency
of the guarding module, we design a novel hashing algorithm called
Leapfrog Hashing that provides storage locations for each incoming flow
at all possible. Our main contributions can be summarized as follows:

• A novel algorithm called ActiveGuardian is designed for identi-
fying active elephant flows, which constantly filters unnecessary
flows and smartly guards elephant flows by time window, to
simultaneously achieve high accuracy, low overhead, and high
throughput.

• An Adaptive Counter Update strategy is proposed for the filtering
module of ActiveGuardian, which persistently filters numerous
mice flows and low-arrival-rate flows even under network traffic
fluctuation, to improve the precision of subsequent elephant flow
identification.

• A Leapfrog Hashing algorithm is devised for the guarding module
of ActiveGuardian, which smartly find storage locations for all
potential elephants via multiple mapping and kicking operations,
to greatly reduce hash collision rates, enhancing accuracy and
memory efficiency.

• We prove that ActiveGuardian can provide the precise estimation
of active elephant flows, by theoretically deriving the false pos-
itive error rate of its filtering module and the error bound of its
guarding module.

• We conduct extensive experiments with real network traffic
traces, which indicates that ActiveGuardian achieves higher ac-
2

curacy and throughput than the state-of-the-art.
The rest of the paper is organized as follows. Section 2 discusses
related work regarding the identification of active elephant flows. In
Section 3, we provide a detailed description of the ActiveGuardian
algorithm. Section 4 presents the theoretical analysis of our algorithm’s
error bounds. In Section 5, we present our experimental setup and
results, followed by a comparison with existing solutions. Finally,
Section 6 concludes the paper.

2. Related work

Early works regarding elephant flow identification mainly focus on
applying sketch-based algorithms to estimate the frequency of each
flow in network traffic. Sketches, a kind of probabilistic data structure,
have been widely employed for data stream summarization, achieving
high memory efficiency at the expense of slightly less accuracy. A
sketch is commonly manifested as a two-dimensional array, where
each array contains multiple counters and an associated hash func-
tion that randomly maps incoming packets to the counters. The well-
known CM Sketch (Cormode and Muthukrishnan, 2005) increases all
mapped counters by 1 for an arrived packet, and returns the minimum
value among these counters as the estimated size of its belonging
flow. On this basis, CU Sketch (Estan and Varghese, 2003) only in-
creases the smallest mapped counter by 1, which further improves
the estimation accuracy of flow size. To achieve unbiased estimation,
Count Sketch (Charikar et al., 2004) implements an additional hash
function to determine whether the mapped counters are incremented
or decremented, and returns their median as the query value. CMM
Sketch (Deng and Rafiei, 2007) inserts packets to the counters in the
same way as CM Sketch, but minuses noises during query operation.
However, due to hash collisions, a mice flow is probably mistreated as
an elephant flow when they share an identical counter. Moreover, it is
challenging to allocate adequate memory for sketches ahead of time,
due to unpredictable flow sizes in network traffic.

To adapt to highly skewed flow size distribution, there are several
approaches to separate elephant flows from mice flows. CountMax (Yu
et al., 2018) and MV-Sketch (Tang et al., 2019) apply the majority vote
algorithm (MJRTY) (Boyer and Moore, 1991) to track the candidate
elephant flow in each bucket. HeavyGuardian (Yang et al., 2018a)
and HeavyKeeper (Yang et al., 2019) leverage a novel strategy, named
exponential-weakening decay, to actively remove mice flows through
decaying. Augmented Sketch (Roy et al., 2016) proposes a pre-filtering
stage to identify the elephants and only permits the mice to sketch. Elas-
tic Sketch (Yang et al., 2018b) monitors the elephants in the heavy part
and evicts the mice to the light part by voting. Pyramid Sketch (Yang
et al., 2017) develops a sketch framework to prevent counters from
overflowing by automatically enlarging their sizes, which significantly
improves the speed and accuracy of identifying elephant flows. Cold
Filter (Zhou et al., 2018) designs a two-layer sketch, which captures
mice flows in the first stage and elephant flows in the second stage, to
accurately estimate both mice flows and elephant flows. Unfortunately,
these solutions only support queries on the overall traffic from the
beginning of the measurement, unable to provide real-time information
of elephant flows by time window.

Closely related to our work, several notable studies have explored
the identification of the most recent elephant flows (i.e., active elephant
flows) by sliding window models. WCSS (Ben-Basat et al., 2016) ex-
tends Space Saving (Metwally et al., 2005) to keep track of the most
recent elephant flows in a sliding window and supports constant time
point queries. Sliding Sketch (Gou et al., 2020) presents a generic
sketch framework and utilizes a scanning pointer to delete outdated
flows. More recently, Clock-Sketch (Chen et al., 2021) adopts multiple
counters to preserve information about all flows within a time window,
and cleans information of inactive flows as quickly as possible. Fast-
Keeper (Wang et al., 2021) applies a sliding-window-based algorithm
to accurately estimate the flow rates of active elephants, and timely

replace flows that have become small through bitmap-voting. However,

Journal of Network and Computer Applications 224 (2024) 103853B. Xiong et al.
Table 1
Summary of works on active elephant flows identification.

Methods Core idea Shortcoming

Sketch-based algorithms
CU Sketch (Estan and Varghese, 2003) Increasing the smallest mapped counter by 1 Potential mistreatment of

mice flows as elephant
flows due to hash
collisions

Count Sketch (Charikar et al., 2004) Incrementing or decrementing the mapped
counters by an additional hash function

CMM Sketch (Deng and Rafiei, 2007) Subtracting noises during query operation

Separating elephant flows
from mice flows

CountMax (Yu et al., 2018) Utilizing the majority vote algorithm
for identifying elephant flows

Unable to provide
real-time information of
elephant flows by time
window.

MV-Sketch (Tang et al., 2019)

HeavyGuardian (Yang et al., 2018a) Adopting the exponential-weakening decay
strategy to actively remove mice flowsHeavyKeeper (Yang et al., 2019)

Augmented Sketch (Roy et al., 2016) Designing pre-filtering stage to identify
elephant flows

Elastic Sketch (Yang et al., 2018b) Monitoring elephants in the heavy part and
evicting mice to the light part by voting

Pyramid Sketch (Yang et al., 2017) Automatically enlarging the size of counters

Cold Filter (Zhou et al., 2018) Employing pre-filtering stage to filter mice
flows

Sliding window schemes

WCSS (Ben-Basat et al., 2016) Extending Space Saving (Metwally et al.,
2005) in a sliding window

Requiring to process a
large number of mice
flows, leading to low
memory efficiency and
poor estimation accuracy.

Sliding Sketch (Gou et al., 2020) Utilizing a scanning pointer to delete
outdated flows.

Clock-Sketch (Chen et al., 2021) Introducing CLOCK algorithm into item
batch measurement

FastKeeper (Wang et al., 2021) Applying a sliding-window-based algorithm
to estimate flow rates of active elephants

BurstSketch (Zhong et al., 2021) Employing the running track technique to
efficiently select potential burst flows
these sliding window schemes still need to process a large number of
mice flows, resulting in low memory efficiency and poor accuracy of
estimation. Further, BurstSketch (Zhong et al., 2021) first employs the
running track technique to efficiently select potential burst flows, and
then detects active elephant flows at the end of every time window by
the snapshotting technique. Yet, this algorithm requires recording all
flow IDs in the first stage with heavy memory overhead.

To provide a visualized overall comparison, Table 1 summarizes
the aforementioned works on the identification of active elephant
flows. As summarized from Table 1, Sketch-based algorithms suffer
from potential mistreatment of mice flows as elephant flows. Existing
solutions by separating elephant flows from mice flows are unable to
effectively identify active elephant flows. Sliding window schemes still
face the challenge of high memory overhead and low precision. In a
nutshell, existing solutions cannot accurately identify active elephant
flows while simultaneously achieving high throughput and memory
utilization. To solve the above problem, we are motivated to propose a
novel algorithm named ActiveGuardian, which achieves comprehensive
performance promotion by intelligently separating mice flows and
guarding active elephant flows.

3. The design of ActiveGuardian

In this section, we provide an identification scheme of active ele-
phant flows, design the data structure and algorithm of ActiveGuardian,
and present two optimization techniques to further improve the preci-
sion and memory efficiency of ActiveGuardian.

3.1. Scheme

To provide a comprehensive understanding on the operation of
ActiveGuardian, we design an identification scheme of active elephant
flows depicted in Fig. 1. The scheme consists of the following com-
ponents: (a) Network devices such as routers and Software-Defined
Networking (SDN) switches, typically performing packet forwarding
in the network domain; (b) Data collector, responsible for capturing
packet traffic from network devices and preprocessing data before
3

being transmitted to subsequent processing and analysis components;
(c) Flow identification component, namely ActiveGuardian, designed
for identifying active elephant flows from the collected packet traffic;
(d) Controller such as a central management host or SDN controller,
which learns about active elephant flows, conducts further analysis
and optimizes network management for better network application
performance.

In Fig. 1, we deploy the data collector on SDN switches to capture
incoming packet traffic. Subsequently, we run the ActiveGuardian to
aggregate statistics on active elephant flows based on predefined pa-
rameters. The identification results are then sent to the SDN controller.
The controller performs tasks such as traffic monitoring, performance
management, and network optimization through data analysis. Addi-
tionally, ActiveGuardian can be deployed on the controller, where it
identifies active elephant flows by receiving network traffic information
from data collector. In practical deployments, it is crucial to appro-
priately configure devices, components, and algorithms, in accordance
with specific network environment and requirements. By this way, the
scheme is expected to process large-scale network traffic.

3.2. ActiveGuardian algorithm

Rationale: In this paper, we propose an algorithm called ActiveG-
uardian for identifying active elephant flows. ActiveGuardian is com-
prised of two modules. To filter unnecessary flows and select potential
elephant flows efficiently, the first module adopts a compact two-
counter design to estimate current flow size and record historical
information of each incoming flow. In addition, we periodically reset all
counters to prevent from filtering failures of the first module, accommo-
dating the network traffic fluctuation. To identify active elephant flows
accurately, the second module guards the potential elephant flows with
a timely replacement policy, and reports active elephant flows at the
end of every time window. Furthermore, we propose a novel hashing
algorithm called Leapfrog Hashing, which spares storage locations for
all incoming flows as possible, to optimize the space efficiency of the
second module. The symbols frequently used in ActiveGuardian are
summarized in Table 2.

Journal of Network and Computer Applications 224 (2024) 103853B. Xiong et al.
Fig. 1. Identification scheme of active elephant flows.

Table 2
Symbols in ActiveGuardian.

Symbol Meaning

𝐴𝑖 The 𝑖th bucket in the filtering module
𝐵𝑖 The 𝑖th bucket in the guarding module
𝐶𝑐𝑢𝑟 The number of packets within a flow in current time window
𝐶𝑎𝑣𝑔 The weighted average flow size from the start of traffic measurement.
𝛼 The filtering threshold
𝛽 The guarding threshold
𝜃 The updating threshold of the filtering module
M The number of buckets in the filtering module
N The number of buckets in the guarding module
m The number of cells in a bucket in the guarding module
𝛾 The updating threshold in adaptive counter update strategy

Fig. 2. The data structure of ActiveGuardian.

Data Structure: As shown in Fig. 2, ActiveGuardian consists of a
filtering module evicting mice flows as well as low-arrival-rate flows
and a guarding module identifying active elephant flows. The filtering
module is a counter array with M buckets. There are k independent
hash functions ℎ1(.), ℎ2(.),. . . , h𝑘(.) mapping each flow to k buckets
randomly. Each bucket has two counters: a current counter (C𝑐𝑢𝑟)
and a weighted average counter (C𝑎𝑣𝑔). C𝑐𝑢𝑟 is used to estimate the
number of packets within a flow in current time window, while C𝑎𝑣𝑔
is utilized to preserve the weighted average flow size from the start of
traffic measurement. Note that we leverage a filtering threshold 𝛼 for
incoming flows to check whether they are potential elephant flows.

The guarding module is a bucket array B[1], B[2],. . . , B[N] associ-
ated with one hash function g(.). Each bucket consists of 𝑚 cells. Each
cell keeps the information of a flow: flow ID, count, and flag. The key is
the flow ID, which consists of five-tuples: source IP address, destination
IP address, source port, destination port, and protocol type. The count
value is its estimated frequency in network traffic, i.e., the number of
arrived packets within the flow. The flag indicates hashing offsets from
4

the directly mapped bucket of the flow. Specifically, if the flag is equal
to 0, the flow is preserved rightly in its hashed bucket. Otherwise, we
can calculate its mapped position by adding its current position and
hashing offset. Similarly, we leverage a guarding threshold 𝛽 for all
recorded flows to determine whether they are active elephant flows.

Algorithm 1: FilteringModuleInsert(Flow ID)
Input: The flow ID F𝑒 of an incoming packet e; the filtering

threshold 𝛼; the updating threshold 𝜃; the packet
counter C𝑝𝑘𝑡; the weight 𝜔

1 if F𝑒 is in 𝐵[𝑔(𝐹𝑒)] then
2 increment the frequency of F𝑒 by 1;
3 else
4 for each 𝑖 ∈ [1, 𝑘] do
5 𝐴[ℎ𝑖(𝐹𝑒)].𝐶𝑐𝑢𝑟 ← 𝐴[ℎ𝑖(𝐹𝑒)].𝐶𝑐𝑢𝑟 + 1;
6 𝐶𝑐𝑢𝑟

𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝐶𝑐𝑢𝑟
𝑚𝑖𝑛, 𝐴[ℎ𝑖(𝐹𝑒)].𝐶𝑐𝑢𝑟);

7 𝐶𝑎𝑣𝑔
𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝐶𝑎𝑣𝑔

𝑚𝑖𝑛 , 𝐴[ℎ𝑖(𝐹𝑒)].𝐶𝑎𝑣𝑔);
8 end
9 if 𝐶𝑐𝑢𝑟

𝑚𝑖𝑛 ≥ 𝛼 or 𝐶𝑎𝑣𝑔
𝑚𝑖𝑛 ≥ 𝛼 then

10 GuardingModuleInsert (F𝑒);
11 end
12 C𝑝𝑘𝑡 ← C𝑝𝑘𝑡 +1;
13 if 𝐶𝑝𝑘𝑡 ≥ 𝜃 then
14 for each 𝑖 ∈ [1,𝑀] do
15 𝐴[𝑖].𝐶𝑎𝑣𝑔 ← (𝐴[𝑖].𝐶𝑎𝑣𝑔 + 𝜔𝐴[𝑖].𝐶𝑐𝑢𝑟)∕(1 + 𝜔);
16 reset 𝐴[𝑖].𝐶𝑐𝑢𝑟 to 0;
17 end
18 end
19 end

Insertion: Initially, all fields in the two modules of ActiveGuardian
are 0 or null. Given an incoming packet within the flow f, we first
check whether f is already in the guarding module. If so, we increment
the frequency of flow f by 1. Otherwise, we insert it into the filtering
module. Below we show the details of our solution.

(1) Insertion of the filtering module: When inserting a packet
within the flow f into the filtering module, ActiveGuardian first com-
putes k hash functions to map f into k buckets A[h𝑖(f)] (1 ≤ 𝑖 ≤
𝑘). Then A[h1(f)].C𝑐𝑢𝑟, A[h2(f)].C𝑐𝑢𝑟,. . . , A[h𝑘(f)].C𝑐𝑢𝑟 are respectively
incremented by 1, and applies different strategies for the following
three cases:

Case 1: When min{A[h𝑖(f)].C𝑐𝑢𝑟} ≥ 𝛼. In this case, the flow f is a
potential elephant flow in current time window, and then we insert
the packet into the guarding module, which corresponds to lines 9–10
in Algorithm 1.

Case 2: When min{A[h𝑖(f)].C𝑎𝑣𝑔} ≥ 𝛼. In this case, the flow 𝑓 is a
potential elephant flow in the latest few time windows, and we also let
the packet enter into the guarding module, manifested as lines 9–10 in
Algorithm 1.

Case 3: When 𝑚𝑖𝑛{𝐴[ℎ𝑖(𝑓)]}.𝐶𝑐𝑢𝑟 < 𝛼 and 𝑚𝑖𝑛{𝐴[ℎ𝑖 (𝑓)]}.𝐶𝑎𝑣𝑔 < 𝛼.
In this case, the flow 𝑓 is not a potential elephant flow by far, and then
we discard the packet directly.

Note that we set a packet counter C𝑝𝑘𝑡 tracking the number of ar-
rived packets in current time window, along with an updating threshold
𝜃 determining whether the bucket will be updated. Specifically, after
the insertion of an incoming packet, we increase the packet counter
C𝑝𝑘𝑡 by 1 (line 12 in Algorithm 1). When C𝑝𝑘𝑡 reaches the updating
threshold 𝜃, we periodically accumulate each value in C𝑐𝑢𝑟 into C𝑎𝑣𝑔
by the weight 𝜔, and subsequently resets the current counter C𝑐𝑢𝑟 to 𝜃
for each bucket of the filtering module (lines 13–15 in Algorithm 1).

(2) Insertion of the guarding module: When inserting a packet
within the flow f into the guarding module, we first maps f to the
bucket B[g(f)] by the hash function g(f) (1 ≤ 𝑔(𝑓) ≤ 𝑁). For the
mapped bucket, there are three cases as follows.

Journal of Network and Computer Applications 224 (2024) 103853B. Xiong et al.

i
3

f

W
B
t
8
f
t
t
i

s
f
q
d
f
m
A
t
a
r

p
g
(
m
I
𝛼
t
𝐹
i
i
f
t
t
t
t
t
g
a
f
𝐹
t
m
s
𝐹
g
a

3

n
t
f
f
p
s
t
t
c
f
t
s
t
2
b
s

A
t
s
w
w
r
l
t
a
n
I
f
o

U
t
6

Algorithm 2: GuardingModuleInsert(Flow ID)
Input: The flow ID 𝐹𝑒 of an incoming packet e; the guarding

threshold 𝛽;
1 if 𝐹𝑒 is in 𝐵[𝑔(𝐹𝑒)] then
2 increment the frequency of e by 1;
3 else if 𝐵[𝑔(𝐹𝑒)] is empty then
4 insert F𝑒 into 𝐵[𝑔(𝐹𝑒)] and set the frequency of F𝑒 to 1;
5 else
6 look up two logical adjacent buckets of 𝐵[𝑔(𝐹𝑒)];
7 if an empty cell is found then
8 insert 𝐹𝑒 into the empty cell;
9 set 𝐹𝑒.𝑓 𝑙𝑎𝑔 as the hashing offset of 𝐹𝑒;
10 else
11 find out the minimum flow 𝐹𝑚𝑖𝑛 in 𝐵[𝑔(𝐹𝑖)] and its two

adjacent buckets;
12 if 𝐹𝑚𝑖𝑛.𝐶𝑜𝑢𝑛𝑡 < 𝛽 then
13 replace 𝐹𝑚𝑖𝑛 with 𝐹𝑒 and set the frequency of 𝐹𝑒 to

𝐹𝑚𝑖𝑛.𝐶𝑜𝑢𝑛𝑡 + 1;
14 set 𝐹𝑒.𝑓 𝑙𝑎𝑔 as the hashing offset of 𝐹𝑒;
15 end
16 end
17 end

Case 1: f is not in B[g(f)], and the bucket still has empty cells. We
nsert f into an empty cell with the frequency of 1 according to lines
–4 in Algorithm 2.
Case 2: f is in one cell in B[g(f)]. We just increase the corresponding

requency in the cell by 1 according to lines 1–2 in Algorithm 2.
Case 3: f is not in B[g(f)], and the bucket has no empty cells.

e initially look up the two logical adjacent B[(g(f) + 1)%N] and
[(g(f) − 1)%N]. If there exists an empty cell, then we insert f into
he cell and update the flag according to the hashing offset (lines 7–

in Algorithm 2). Otherwise, we evict the flow with the minimum
requency in the mapped bucket and two logical adjacent buckets, and
hen insert f into the corresponding cell. Particularly, we just increase
he count by 1, and set the flag of f with its hashing offset (lines 11–14
n Algorithm 2).

Algorithm 3: IdentifyAndUpdate()
Input: the last report time 𝑇𝑙𝑎𝑠𝑡; the current time 𝑇𝑐𝑢𝑟; the

guarding threshold 𝛽; the time window size W ;
1 if 𝑇𝑐𝑢𝑟 − 𝑇𝑙𝑎𝑠𝑡 ≥ 𝑊 then
2 for each 𝑖 ∈ [1, 𝑁] do
3 if 𝐵[𝑖].𝐶𝑜𝑢𝑛𝑡 ≥ 𝛽 then
4 return 𝐵[𝑖].𝐼𝐷 and 𝐵[𝑖].𝐶𝑜𝑢𝑛𝑡 + 𝛼;
5 end
6 clear B[i] to empty;
7 end
8 end
9 𝑇𝑙𝑎𝑠𝑡 ← 𝑇𝑐𝑢𝑟;

The identification of active elephant flows: ActiveGuardian con-
tantly monitors potential elephant flows, and reports active elephant
lows illustrated in Algorithm 3. We define time window as a fixed
uantity of measured data packets, and denote the size of time win-
ow as W. At the end of every time window, we first examine the
requencies of guarded elephant flows in each bucket of the guardian
odule. If their frequencies are higher than the guarding threshold 𝛽,
ctiveGuardian identifies them as active elephant flows, and reports

heir flow sizes. Finally, in preparation for next time window, we empty
ll buckets of the guarding module and set current time to the last
eport time.
5

c

A running example: Fig. 2 shows a running example of flow
rocessing by ActiveGuardian. In this example, in the filtering module,
iven a bucket with (2, 15), where 2 represents the current counter
C𝑐𝑢𝑟), and 15 is the weighted average counter (C𝑎𝑣𝑔). In the guarding
odule, given a cell in a bucket with (𝐹2, 12), where 𝐹2 is the flow

D, and 12 represents 𝐹2’s frequency. Suppose the filtering threshold
= 10, and the guarding threshold 𝛽 = 50. (1) To insert 𝑃2 within

he flow 𝐹2, we find it in the guarding module, so we just increment
2.𝐶𝑜𝑢𝑛𝑡 by 1. (2) To insert 𝑃5 within the flow 𝐹5, we do not find it

n the guarding module, so we insert it into the filtering module and
ncrement A[h𝑗(𝐹5)].C𝑐𝑢𝑟 (1 ≤ j ≤ k) by 1. (3) To insert 𝑃3 within the
low 𝐹3, we do not find it in the guarding module, so we insert it into
he filtering module similarly to 𝑃5. After the increment, we find that
he 𝑚𝑖𝑛(𝐴[ℎ𝑗 (𝐹3)].𝐶𝑎𝑣𝑔) (1 ≤ j ≤ k) reaches the filtering threshold 𝛼 and
here is an empty cell in the guarding module. Then we insert 𝐹3 with
he frequency of 1. (4) To insert 𝑃6 within the flow 𝐹6, which passes
hrough the filtering module, we observe that the mapped bucket of the
uarding module is full, so we try to find an empty cell in its two logical
djacent buckets. Then we insert it into the guarding module with the
requency of 1 and set its flag to +1. (5) To insert 𝑃8 within the flow
8 admitted by the filtering module, we do not find any empty cell in
he mapped bucket as well as its two adjacent buckets in the guarding
odule, so we replace the minimum flow 𝐹18 with 𝐹8. Meanwhile, we

et the frequency to 19 and the flag to −1; Therefore, we report 𝐹1, 𝐹7,
13, and 𝐹4 as active elephant flows, since their frequencies reach the
uarding threshold 𝛽 at the end of time window. Eventually, we clean
ll the buckets in the guarding module.

.3. Optimization 1: Adaptive Counter Update strategy

In filtering module, we update all counters after inserting a fixed
umber of packets, irrespective of packet arrival rates. This leads to
he steady operation of the filtering module even under network traffic
luctuations. However, it is challenging to determine an appropriate
iltering threshold for a given number of packets in each updating
eriod, due to variable flow size distributions even in a specific network
cenario. In particular, a low filtering threshold may result in misiden-
ifying potential elephant flows, while a high one probably leads to
he omission of real elephant flows. The filtering threshold is typically
onfigured based on average flow size varying with network traffic
luctuations. It is worth noting that the filtering threshold determines
he size of each counter in the filtering module. Precisely, the counter
ize generally rounds up to the logarithm base two of the filtering
hreshold (Cormode and Muthukrishnan, 2005; Estan and Varghese,
003; Charikar et al., 2004). Consequently, the counter size has to
e set by the maximum of possible filtering thresholds under different
tates of network traffic, which incurs unnecessary memory overhead.

To address the above issue, we propose a novel strategy named
daptive Counter Update, which supports arbitrary configurations of

he counter size, and adapts to network traffic fluctuations. In this
trategy, we set the filtering threshold as the maximum of each counter
ith an arbitrary size, to ensure optimal memory utilization. Then
e update all counters when the proportion of overflowed counters

eaches a predetermined threshold, to steadily filter mice flows with
ower-ranking number of packets in flow size distribution. By this way,
he counter size barely influences the accuracy of filtering mice flows,
nd can be flexibly configured in accordance with the constraints of
etwork applications on the memory space of traffic measurement.
n addition, the threshold limits the number of packets entering the
iltering module, resulting in that the filtering accuracy is independent
f packet arrival rates.

Fig. 3 presents a typical instance of the proposed Adaptive Counter
pdate strategy. Suppose the counter size is 4 bits with the filtering

hreshold 𝛼 is 15, the weight 𝜔 is 1, and the updating threshold 𝛾 is
0%. When inserting an incoming packet, we increment each current

ounter C𝑐𝑢𝑟 in its mapped buckets by 1, and monitor the proportion of

Journal of Network and Computer Applications 224 (2024) 103853B. Xiong et al.

o
4
u

t

a
o
e
f
t
i
r
b
i

g
p
b
a
i

w

b
s

Fig. 3. The Adaptive Counter Update strategy.

verflowed counters to decide if an update is necessary. In this instance,
out of 6 current counters have overflowed, already surpassing the

pdating threshold 𝛾. Therefore, we update each average weighted
counter C𝑎𝑣𝑔 by average weighted accumulation, and reset all current
counters to 0. Taking the first bucket for example, the C𝑐𝑢𝑟 is 10, and
he C𝑎𝑣𝑔 is 12. We update the C𝑎𝑣𝑔 through computing the weighted

average of 10 and 12 with the weight 𝜔. Thus, we set C𝑎𝑣𝑔 to 11 and
subsequently empty C𝑐𝑢𝑟.

3.4. Optimization 2: Leapfrog Hashing algorithm

In guarding module, we guard and track potential elephant flows
in each bucket, so as to accurately identify and report active elephant
flows at the end of each time window. However, a large number of
flows passing through the filtering module will result in high hash
collision rates when network traffic surges. This is likely to further
cause the omission of real active elephant flows, thereby degrading
identification accuracy. To alleviate this problem, we propose a novel
hashing algorithm called Leapfrog to promote memory utilization. The
lgorithm makes room for each incoming flow via iterative kicking
perations, striving to evict an inactive flow while retaining active
lephant flows. Specifically, if all candidate positions for an incoming
low are occupied, we select a flow with minimum packets from the
wo logical adjacent buckets of its mapped position, and kick it into
ts adjacent bucket away from the mapped position. Subsequently, we
epeatedly kick the minimum flow in current bucket into its adjacent
ucket in same direction, until we find an empty location for it or an
nactive flow for replacement.
Query: For an incoming packet within the flow f, we query the

uarding module to check whether f has already been recorded. In
articular, we initially map f into a bucket in the guardian module
y hashing, and look up the mapped bucket along with its two logical
djacent buckets. If the lookup succeeds to match the flow f, we
ncrement its frequency by 1.
Insertion: Given a new flow f passing through the filtering module,

e insert f into the guarding module. Specifically, we first locate its
mapped bucket and two logical adjacent buckets. Then we insert the
flow f into these buckets with three cases:

Case 1: There exists an empty cell in the mapped bucket. We insert
f into the empty cell, and set its frequency to 1.

Case 2: There exists an empty cell in the two logical adjacent
uckets. We insert f into the empty cell with the frequency of 1, and
et its flag with its hashing offset.
Case 3: There exists no empty cell in the three buckets. We choose

the minimum flow with the frequency below the guarding threshold
𝛽 in the three buckets for replacement. If no flow can be replaced,
we select a flow from a logical adjacent bucket to be kicked out, and
6

insert f. For the kicked flow, we continue to look for an empty bucket
Fig. 4. A typical example of the Leapfrog hashing algorithm.

Table 3
Symbols in mathematical analysis.

Symbol Meaning

L The 𝑖th bucket of the filtering module
M The 𝑖th bucket of the guarding module
‖𝑓‖ The average number of packets in mice flows
G The number of flows inserted into the guarding module
𝜎 The average number of packets per flow of G
g The number of flows carrying more than 𝛽 packets
𝑓 The number of packets in the flow 𝑓
𝑓 The estimated number of packets in the flow 𝑓

to insert, or select the minimum flow with the frequency below the
guarding threshold 𝛽 to replace, in the adjacent bucket in the kicking
direction. After the insertion or replacement, we update its flag with
its new hashing offset. If there are no empty cell and no flow can be
replaced, we iteratively perform the above operations until the number
of kicking operations reaches a preset threshold.

Fig. 4 displays a typical example of the proposed Leapfrog Hashing
algorithm. Suppose the guarding threshold 𝛽 is 50. (1) To insert 𝐹1,
we find an empty cell in its mapped bucket, and insert it with the
frequency of 1. (2) To insert 𝐹2, we do not find an empty cell in its
mapped bucket, but find one in an adjacent bucket. Thus, we insert 𝐹2
with the frequency of 1 and set its flag to +1. (3) To insert 𝐹3, we do
not find any empty cell for insertion or flow for replacement, so we
kick out 𝐹5 with the minimum frequency 64 to its adjacent bucket and
increment its flag by 1. Subsequently, we insert 𝐹3 to the cell that has
just been emptied, and set its flag to +1.

4. Mathematical analysis

In this section, we present the theoretical analysis of ActiveG-
uardian, including false positive error rate of the filtering module and
error bound of the guarding module. The symbols frequently used in
mathematical analysis are summarized in Table 3.

4.1. False positive error rate of filtering module

Theorem 1. Suppose there are L elephant flows and S mice flows
in network traffic. The filtering module consists of M buckets, with k
independent hash functions. Given a flow entering the filtering module, the
false positive error rate P𝐹𝑃𝑅 can be estimated as follows:

𝑃𝐹𝑃𝑅 =

[

1 −
(

1 − 1)𝐿
+ 1 −

𝜆−1
∑

(1)𝑖 (
1 − 1)𝑆−𝑖

]𝑘

(1)

𝑀 𝑖=0 𝑀 𝑀

Journal of Network and Computer Applications 224 (2024) 103853B. Xiong et al.

n

P
i
t
a
t
l
f
t

i
b

𝑃

4

T
m
p
m
t
c
l
f

𝐸
g
t
p
t

𝑃

where 𝜆 =
⌈

𝛼
‖𝑓‖

⌉

, 𝛼 is the filtering threshold and ‖𝑓‖ represents the average
umber of packets in mice flows.

roof. For an incoming mice flow f, it is first mapped to k buckets
n the filtering module through k hash functions. If all 𝑘 buckets reach
he filtering threshold 𝛼, this mice flow will be erroneously classified
s an elephant flow, which constitutes a false positive error. There are
wo cases for each bucket to reach the filtering threshold: (1) with at
east one mapped elephant flow, or (2) with at least 𝜆 mapped mice
lows. We will proceed to respectively determine the probabilities of
hese two cases.

Suppose that all flows randomly map intoM buckets, the probability
of any bucket not mapped by an elephant flow is 1-1/M. Since there are
L elephant flows in total, the probability of any bucket mapped by at
least one elephant flow can be derived as:

𝑃𝐿 = 1 −
(

1 − 1
𝑀

)𝐿
(2)

Similarly, the probability of any bucket not mapped by a mice flow
s 1-1/M. Since there are a total of S mice flows, the probability of any
ucket mapped by i (0 ≤ i ≤ S) mice flows can be deduced as:

𝑖 =
(1
𝑀

)𝑖 (
1 − 1

𝑀

)𝑆−𝑖
(3)

Therefore, we can compute the probability that any bucket is
mapped by at least 𝜆 mice flows as:

𝑃𝑆 = 1 −
𝜆−1
∑

𝑖=0
𝑃𝑖 = 1 −

𝜆−1
∑

𝑖=0

(1
𝑀

)𝑖 (
1 − 1

𝑀

)𝑆−𝑖
(4)

In summary, the probability that any bucket reaches the filtering
threshold can be expressed as P𝐿 + P𝑆 . Consequently, we can obtain
the probability that all k buckets mapped by a mice flow reach the
threshold, that is, the false positive error rate as:

𝑃𝐹𝑃𝑅 =
(

𝑃𝐿 + 𝑃𝑆
)𝑘

=

[

1 −
(

1 − 1
𝑀

)𝐿
+ 1 −

𝜆−1
∑

𝑖=0

(1
𝑀

)𝑖 (
1 − 1

𝑀

)𝑆−𝑖
]𝑘 (5)

Theorem holds. □

.2. Error bound of the guarding module

heorem 2. Assume that there are G flows passing through the filtering
odule and inserted into the guarding module, and the average number of
ackets per flow is 𝜎. Let N be the total number of buckets in the guarding
odule, m be the number of cells in each bucket, 𝛽 be the packet number
hreshold of the guarding module. Suppose there are g flows each of which
arries more than 𝛽 packets. For a flow f with the number of packets 𝑓 ,
et 𝑓 be its estimated frequency, we can bound the error expectation of its
requency estimation in the guarding module as:

(|𝑓 − 𝑓 |) ≤ 𝛽
𝜎 − 𝛼

(

𝑒𝜆𝜆𝑚

𝑚!

)3 𝐺 − 𝑔
𝐺𝑁𝑚

(6)

where 𝜆 = G/N.

Proof. To determine the error in estimating the frequency of any flow f,
we first analyze all cases that have an impact on the flow for an arrived
packet entering the guarding module as follows.

Case 1: The packet resides in the flow f. In this case, we locate the
flow in the guarding module, and increment its count value by 1. Thus,
there is no error in estimating the frequency of f, i.e., |𝑓 − 𝑓 | = 0.

Case 2: The packet belongs to a new flow 𝑓 ′, and there is no empty
cell in its mapped bucket and adjacent buckets, where f is the minimum
flow with a frequency lower than the guarding threshold 𝛽. In this
case, the flow f will be replaced by 𝑓 ′ and its estimated frequency will
become zero. Hence, the estimation error of its frequency equals to its

̃ ̂
7

count value, i.e., |𝑓 − 𝑓 | = 𝑓.𝐶𝑜𝑢𝑛𝑡.
Case 3: The packet is affiliated to a new flow 𝑓 ′, and there is no
vacancy in its mapped bucket and adjacent buckets, where all flows
have higher frequencies than the guarding threshold 𝛽 and f is the
minimum flow among them. In this case, the flow f will be kicked out
to a new cell in one of its adjacent buckets for preserving 𝑓 ′. Therefore,
there is also no error in estimating the frequency of f, i.e., |𝑓 − 𝑓 | = 0.

According to the above analysis, we can conclude that the estima-
tion error of flow frequency primarily stems from flow replacements in
case 2. Then, we analyze the probability of case 2 with the following
conditions: (1) A new flow 𝑓 ′ is arrived; (2) There is no empty cell in
its mapped and adjacent buckets; (3) The flow f is preserved in these
buckets B[g(𝑓 ′)], B[(g(𝑓 ′) + 1)%N], and B[(g(𝑓 ′) − 1)%N]; (4) The
flow f is the minimum one in the buckets. (5) The count value of the
flow f is lower than the guarding threshold 𝛽.

For a flow 𝑓 ′, it is classified as a new flow only when its first packet
comes into the guarding module. Since the average number of packets
per flow is 𝜎, and a flow must first reach the filtering threshold 𝛼
before getting into the guarding module. Therefore, we can derive the
probability of the condition 1 as the ratio of the number of flows to the
total number of packets entering the guarding module in (7).

𝑃1 =
𝐺

𝐺 (𝜎 − 𝛼)
= 1

𝜎 − 𝛼
(7)

Given that each bucket operates independently, the probability of
all three buckets having no empty cells can be considered as a classic
bin packing problem. Then, we model this problem with the Poisson
stream, where the parameter 𝜆 = G/N represents the average number
of flows in each bucket. Accordingly, the probability that a bucket is
full can be expressed as:

𝑃𝑓𝑢𝑙𝑙 =
𝑒−𝜆𝜆𝑚

𝑚!
(8)

Consequently, we can calculate the probability of the condition 2
that all three buckets are full in (9).

𝑃2 = 𝑃 3
𝑓𝑢𝑙𝑙 =

(

𝑒−𝜆𝜆𝑚

𝑚!

)3
(9)

Owing to that each flow is randomly mapped across N buckets by
hashing, all buckets have the equal probability 1/N to accommodate
the flow f. Therefore, we can get the probability of the condition 3 that
the flow f is preserved in the three buckets B[g(𝑓 ′)], B[(g(𝑓 ′) + 1)%N],
and B[(g(𝑓 ′) − 1)%N] in (10).

𝑃3 =
3
𝑁

(10)

Since each bucket contains m cells, we can obtain the probability of
the condition 4 that the flow f is the minimum one in the three buckets
in (11).

𝑃4 =
1
3𝑚

(11)

Due to that there are G flows entering into the guarding module and
flows each of which carries more than 𝛽 packets, we can compute

he number of flows with a frequency lower than 𝛽 as G-g, and the
robability of the condition 5 that the count value of flow f is lower
han the guarding threshold 𝛽 in (12).

5 =
𝐺 − 𝑔
𝐺

(12)

By integrating the above probabilities of 5 conditions in (7), (9),
(10), (11) and (12), we can infer the probability of flow replacements
in (13).

𝑃𝑟𝑒𝑝𝑙𝑎𝑐𝑒 = 𝑃1𝑃2𝑃3𝑃4𝑃5 =
1

𝜎 − 𝛼

(

𝑒𝜆𝜆𝑚

𝑚!

)3 𝐺 − 𝑔
𝐺𝑁𝑚

(13)

Since the frequency of a replaced flow is lower than the guarding
threshold 𝛽, we can conclude that the error in estimating the frequency

Journal of Network and Computer Applications 224 (2024) 103853B. Xiong et al.
Fig. 5. Parameter settings.

of f satisfies |𝑓 − 𝑓 | < 𝛽. By combining with (13), we can eventu-
ally bound the error expectation of flow frequency estimation in the
guarding module as:

𝐸(|𝑓 − 𝑓 |) ≤ 𝛽𝑃𝑟𝑒𝑝𝑙𝑎𝑐𝑒 =
𝛽

𝜎 − 𝛼

(

𝑒𝜆𝜆𝑚

𝑚!

)3 𝐺 − 𝑔
𝐺𝑁𝑚

(14)

Theorem holds. □

5. Experiments

In this section, we introduce our experimental setup, metrics, and
parameter settings, and validate the superiority of ActiveGuardian by
comparative experiments with existing solutions.

5.1. Experimental setup

Platform: Our testbed is comprised of 2 servers connected directly
to each other. Each server is an HP ProLiant DL380 Gen10, equipped
with two 10-core Intel(R) Xeon(R) Gold 5218 CPU @ 2.30 GHz and
128 GB RAM. One server assumes the role of the sender, while the
other functions as the receiver. ActiveGuardian is implemented on the
receiver side. Each server is outfitted with one Broadcom NetXtreme
E-Series dual-port 100GbE NIC.

Dataset:
MAWI Dataset: The MAWI dataset was collected from daily traces

at the transit link of WIDE to the upstream ISP (MAWILab, 2019). As for
each packet in the dataset, we extract its packet size, timestamp, and
a standard 5-tuple (IP address and port number for source and desti-
nation, and protocol type) utilized to construct flow ID. We select 20M
packets in total, belonging to 4.6M flows with 6579 active elephants
by setting the window size as 100K items.

WebDocs Dataset: The WebDocs dataset is downloaded from the
website (dataset, 2005). This dataset was created with a collection of
crawled web pages. Each item in the dataset is 4-byte long, representing
the number of distinct items in a web page. We select 20M items with
8761 active elephants by setting the window size as 100K items.

Implementation: We have implemented BurstSketch (Zhong et al.,
2021), FastKeeper (Wang et al., 2021), HeavyKeeper (Yang et al.,
8

2019), ASketch (Roy et al., 2016), WCSS (Ben-Basat et al., 2016) and
our ActiveGuardian in C++. For BurstSketch, the size of Stage 1 and
Stage 2 are determined by the memory size. For HeavrKeeper, the
number of arrays is 3, and the width of each array is determined by
the memory size. For ASketch, the size of the filter is set from 0.1 kB
to 12 kB, the sketch occupies the rest memory size. For WCSS, the size
is also determined by the memory size. In our algorithm, we set the
number of hash functions k to 3, the updating threshold 𝛾 to 0.85, the
filtering threshold 𝛼 to 15, the guarding threshold 𝛽 to 500, and the
size of ActiveGuardian depends on the memory size. The counter field
in the filtering module and the guarding module are 4 bits and 16 bits
respectively. In particular, some of the parameters mentioned above are
based on experimental evaluations to obtain the best performance.

For each dataset, we read 20M packets. We set the length of the
window W = 100K, and vary the memory size between 10 kB and
50 kB. When the frequency of a flow in the present time window is
more than 500, we consider it as an active elephant flow. We compare
the precision rate, recall rate, ARE, AAE and throughput of the above
solutions under the same memory size.

5.2. Metrics

(1) Precision Rate (PR): The ratio of the number of correctly
reported to the number of reported instances.

(2) Recall Rate (RR): The ratio of the number of correctly reported
to the number of true instances.

(3) ARE (Average Relative Error): 1
|𝑍|

∑

𝑓𝑖∈𝑍
|𝑛𝑖−𝑛𝑖|

𝑛𝑖
, where Z is

estimated set of active flows, 𝑛𝑖 is the estimated size of flow f𝑖,
n𝑖 is the real size of flow f𝑖. We use ARE to evaluate the accuracy
of flow size estimation and the identification of active elephant
flows.

(4) AAE(Absolute Average Error): AAE is defined as 1
|𝑍|

∑

𝑓𝑖∈𝑍 |𝑛𝑖−
𝑛𝑖|, similarly to ARE.

(5) Throughput: 𝑁
𝑇 , where N is the total number of packets, and T

is the total measurement time. We use Million of insertions per
second (Mps) to measure the throughput.

5.3. Parameter settings

In this subsection, we measure the effects of key parameters in
ActiveGuardian on its performance, including the filtering threshold 𝛼,
the guarding threshold 𝛽, the update threshold 𝛾, and the window size
W. In the following experiments, we set memory to 50 kB and conduct
experiments on the MAWI dataset. Fig. 5 illustrates the valuing of
performance metrics PR, RR, AAE, and ARE, under different parameter
settings.

Effects of 𝛼: We obtain the performance metrics of ActiveGuardian
in Fig. 5(a), by incrementally increasing the filtering threshold 𝛼 from
23 − 1 to 26 − 1, with the constancy of other parameters. As shown in
Fig. 5(a), the optimal value for 𝛼 is 7 or 15. With the filtering threshold
continues to rise, there is a slight increase in RR, while PR decreases,
and AAE and ARE increase. This phenomenon is attributed to the fact
that the update cycle of the filter becomes longer with a higher filtering
threshold. This further lets mice flows easily pass into the Guardian
module due to hash collisions, and leads to misjudgments and overesti-
mation of active elephant flows. We also observe that ActiveGuardian
achieves superior overall performance, with RR exceeding 99%, PR
over 98%, and the lowest AAE and ARE, when 𝛼 is set to 15. Therefore,
𝛼 defaults to 24 − 1 = 15.

Effects of 𝛽: We incrementally increase the guarding threshold 𝛽
from 300 to 700, while keeping the remaining parameters constant.
With these settings, we gain the performance metrics of ActiveGuardian
in Fig. 5(b). We can see from Fig. 5(b) that PR shows an increasing
trend, and AAE and ARE gradually decrease with the increase in the
guarding threshold. When 𝛽 = 500, RR exceeds 99%, PR goes beyond
98%, and AAE and ARE reach relatively low levels. As 𝛽 continues

Journal of Network and Computer Applications 224 (2024) 103853B. Xiong et al.
Fig. 6. Precision vs. memory size.

to rise, the performance tends to become stable and is hard to be
further optimized. Since our goal is to find out flows that potentially
impact network performance, it is unsuitable to set too high guarding
threshold. In summary, 𝛽 is set as 500 by default.

Effects of 𝛾: We achieve the performance metrics of ActiveGuardian
in Fig. 5(c), by incrementally increasing the update threshold 𝛾 from
0.75 to 0.95, with the constancy of other parameters. As illustrated
in Fig. 5(c), RR and AAE show an upward trend while PR exhibits
a downward trend, with the growth of the update threshold. This is
because higher update threshold means longer update period, which
result in that the filter is prone to misjudge mice flows as elephant ones.
It is evident that ActiveGuardian achieves optimal overall performance
in the case of 𝛾 = 0.85. Therefore, 𝛾 defaults to 0.85.

Effects of W : We incrementally increase the window size W from
10K to 200K, while keeping the rest parameters constant. With these
settings, we get the performance metrics of ActiveGuardian in Fig. 5(d).
We can observe from Fig. 5(d) that, RR keeps above 99%, PR initially
rises, then slightly decreases and finally stabilizes at around 98%,
while AAE and ARE gradually decrease, for the increasing window
size. This suggests that ActiveGuardian consistently maintains excellent
performance even as packet traffic grows. In order to report active
elephant flows in short periods, W is configured as 100K by default.

5.4. Precision and recall

Precision vs. memory size: As shown in Fig. 6(a) with the MAWI
dataset, the precision of ActiveGuardian, BurstSketch, FastKeeper,
HeavyKeeper, ASketch, and WCSS is respectively 92.96%, 87.62%,
84.64%, 93.32%, 88.08%, and 71.62% at the memory size of 10 kB.
With the increase in memory, the precision of ActiveGuardian grad-
ually increases from approximately 92.96% to around 98.65%. As
seen from Fig. 6(b) with the WebDocs dataset, the precision rates for
ActiveGuardian, BurstSketch, FastKeeper, HeavyKeeper, ASketch, and
WCSS are respectively 90.12%, 83.62%, 78.64%, 94.00%, 86.08%, and
70.62% when the memory size is 10 kB. In addition, ActiveGuardian
provides higher accuracy in memory sizes between 20 kB and 50 kB,
with the precision rate ranging from approximately 96.76% to 99.65%.
In summary, ActiveGuardian achieves relatively high precision rates
under the same memory constraints. This is because ActiveGuardian
handles mice flows and elephant flows separately for efficient flow
tracking, and we can accurately and effectively identify active elephant
flows.

Recall vs. memory size: As shown in Fig. 7(a) with the MAWI
dataset, the recall rates for ActiveGuardian, BurstSketch, FastKeeper,
HeavyKeeper, ASketch, and WCSS are respectively 99.77%, 88.62%,
76.64%, 42.89%, 98.55%, and 66.56% at a memory size of 10 kB. As
the memory size increases, the recall rate of ActiveGuardian shows a
gradual improvement from approximately 99.77% to around 99.96%.
As displayed in Fig. 7(b) with the WebDocs dataset, the recall rates
for ActiveGuardian, BurstSketch, FastKeeper, HeavyKeeper, ASketch,
and WCSS are respectively 99.67%, 87.62%, 74.64%, 51.89%, 90.55%,
9

Fig. 7. Recall vs. memory size.

Fig. 8. ARE vs. memory size.

and 70.56% when the memory size is 10 kB. ActiveGuardian also
maintains relatively high recall rates in memory sizes from 20 kB
to 50 kB, ranging from approximately 99.96% to 99.89%. In con-
clusion, ActiveGuardian consistently achieves high recall rates with
the same memory size, and exhibits a pronounced advantage in low-
memory scenarios. This indicates that ActiveGuardian is more suitable
for resource-constrained measurement environments. This is primar-
ily due to that ActiveGuardian utilizes an Adaptive Counter Update
strategy to filter out mice flows continuously and effectively even at
significantly variable flow rates and with limited memory resources.

5.5. ARE and AAE

ARE vs. memory size: As depicted in Fig. 8(a) with the MAWI
dataset, the log10 𝐴𝑅𝐸 of ActiveGuardian, BurstSketch, FastKeeper,
HeavyKeeper, ASketch, and WCSS are respectively 2.48, 2.90, 3.41,
1.85, 3.75, and 2.90 at a memory size of 10 kB. As the memory
size varies, the log10 𝐴𝑅𝐸 of ActiveGuardian exhibits relatively low
log10 𝐴𝑅𝐸 across all memory conditions, ranging from 2.53 to 2.18.
Conversely, other solutions like BurstSketch, FastKeeper, ASketch, and
WCSS consistently exhibit higher log10 𝐴𝑅𝐸, with ASketch reaching a
peak log10 𝐴𝑅𝐸 of 3.75 at 10 kB memory. As seen from Fig. 8(b) with
the WebDocs dataset, the log10 𝐴𝑅𝐸 of ActiveGuardian, BurstSketch,
FastKeeper, HeavyKeeper, ASketch, and WCSS are respectively 2.38,
2.50, 2.81, 1.75, 3.45, and 2.60 when the memory size is 10 kB. On
top of that, ActiveGuardian also maintains relatively low log10 𝐴𝑅𝐸 in
memory sizes varying from 20 kB to 50 kB, with log10 𝐴𝑅𝐸 ranging
from approximately 2.96 to 2.71. In brief, ActiveGuardian maintains a
relatively low ARE compared with other algorithms. This is primarily
because that ActiveGuardian reports active elephant flows and cleans
expired information at the end of each time window, significantly
enhancing memory utilization.

AAE vs. memory size: As shown in Fig. 9(a) with the MAWI
dataset, ActiveGuardian achieves log10 𝐴𝐴𝐸 between 2.11 and 2.38,
while the log10 𝐴𝐴𝐸 of BurstSketch ranges from 2.49 to 2.96, Fast-
Keeper changes from 2.24 to 2.91, HeavyKeeper varies from 2.44 to
2.66, ASketch goes from 2.75 to 2.85, and WCSS varies from 3.15 to

Journal of Network and Computer Applications 224 (2024) 103853B. Xiong et al.
Fig. 9. AAE vs. memory size.

Fig. 10. Throughput of different algorithms.

3.29. As seen from Fig. 9(b) with the WebDocs dataset, ActiveGuardian
achieves a log10 𝐴𝐴𝐸 between 2.18 and 2.53, while the log10 𝐴𝐴𝐸 of
BurstSketch changes from 2.49 to 2.96, FastKeeper ranges from 2.24
to 2.85, HeavyKeeper varies from 2.05 to 2.56, ASketch goes from
2.75 to 2.95, and WCSS changes from 2.99 to 3.30. Overall, ActiveG-
uardian obtains lower AAE than the other algorithms on two real-world
datasets, which can further promote the performance of actual network
applications. This is because we apply Leapfrog hashing algorithm to
provide multiple storage locations for active elephant flows, and timely
replace mice flows and low-arrival-rate flows.

5.6. Throughput

Throughput vs. memory size: According to the testbed described
in Section 5.1, we allocate 6 CPU cores for packet generation in the
sender server, and its throughput can reach 30 Mps. In the receiver
server, two dedicated cores are assigned to packet reception, with each
core achieving a maximum throughput of 15 Mps. Various flow iden-
tification algorithms are deployed on an additional CPU core, tasked
with obtaining packet traffic from the receiving cores.

As illustrated in Fig. 10, ActiveGuardian and HeavyKeeper exhibit
higher throughput performance compared to ASketch and WCSS for
the MAWI dataset. Specifically, ActiveGuardian achieves a throughput
of 26.53 Mps and HeavyKeeper achieves 25.27 Mps, while ASketch
and WCSS respectively exhibit lower throughput performance, with
14.49 Mps and 16.23 Mps. As for the WebDocs dataset, ActiveG-
uardian maintains the highest throughput performance of 25.34 Mbps,
followed by HeavyKeeper with 24.98 Mps. Conversely, ASketch and
WCSS respectively exhibit lower throughput performance, measuring at
14.62 Mbps and 17.43 Mbps. In a nutshell, ActiveGuardian has higher
throughput than other algorithms, which can meet the demand of
identifying active elephant flows in high-speed network environments.
This is mainly owing to that ActiveGuardian utilizes efficient data
structures and algorithms, and leverages parallel processing techniques,
allowing for simultaneous insertion and query operations.
10
6. Conclusion

Accurate and efficient identification of active elephant flows is an
essential task in network traffic measurement. Due to the unbalanced
flow size distribution and changeable flow rates, existing works in real-
time measurement suffer from limited precision and high error rates
with restricted space memory. In this paper, we propose an algorithm
for accurately and efficiently identifying active elephant flows, named
ActiveGuardian. We design an Adaptive Counter Update strategy to
adaptively guarantee the persistent separation of unnecessary flows,
and a Leapfrog Hashing algorithm to greatly reduce hash collision rates,
therefore improving accuracy and efficiency.

Experimental evaluation confirms that ActiveGuardian achieves up
to 99.65% precision for identifying active elephant flows, and also
maintains around 90% precision even in low-memory scenarios. The
recall rate consistently remains above 99%, significantly outperforming
existing methods. In summary, ActiveGuardian can achieve accurate
identification of active elephant flows with low memory usage. This
implies that ActiveGuardian is more suitable for network devices with
limited memory resources than other methods. Additionally, ActiveG-
uardian achieves a higher throughput of 26.53 Mps compared to the
state-of-the-art algorithms. This suggests that it has better adaptability
to high-speed network environments.

In our future work, we will extend ActiveGuardian to report contin-
uous time windows of active elephant flows. Simultaneously, we will
explore robust update strategies and adaptive capacity expansion mech-
anisms for filtering module and guarding module, for better adaptivity
to network traffic jitters or even malicious attacks. In the future, we
also plan to deploy ActiveGuardian into various network applications
such as intrusion detection systems, network management platforms
and online network devices.

CRediT authorship contribution statement

Bing Xiong: Funding acquisition, Methodology, Writing – original
draft, Writing – review & editing. Yongqing Liu: Formal analysis,
Visualization, Writing – review & editing. Rui Liu: Formal analysis,
Software, Writing – original draft. Jinyuan Zhao: Funding acquisition,
Investigation, Project administration. Shiming He: Funding acquisi-
tion, Validation. Baokang Zhao: Funding acquisition, Supervision. Kun
Yang: Conceptualization, Methodology. Keqin Li: Conceptualization,
Resources.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Shiming He reports financial support was provided by National Natural
Science Foundation of China. Baokang Zhao reports financial support
was provided by National Natural Science Foundation of China. Bing
Xiong reports financial support was provided by Hunan Provincial Nat-
ural Science Foundation of China. Bing Xiong reports financial support
was provided by Scientific Research Foundation of Hunan Provincial
Education Department. Jinyuan Zhao reports financial support was pro-
vided by Scientific Research Foundation of Hunan Provincial Education
Department. Bing Xiong has patent pending to Changsha University of
Science and Technology.

Acknowledgments

This work was supported in part by National Natural Science Foun-
dation of China (62272062, U22B2005, 61972412), Hunan Provincial
Natural Science Foundation of China (2023JJ30053), and Scientific
Research Fund of Hunan Provincial Education Department, PR China
(22A0232, 23A0735).

Journal of Network and Computer Applications 224 (2024) 103853B. Xiong et al.
References

Ben-Basat, R., Einziger, G., Friedman, R., et al., 2016. Heavy hitters in streams and
sliding windows. In: IEEE International Conference on Computer Communications.
INFOCOM, San Francisco, USA, pp. 1–9.

Boyer, R.S., Moore, J.S., 1991. MJRTY—a fast majority vote algorithm. In: Automated
Reasoning: Essays in Honor of Woody Bledsoe. Springer Netherlands, Dordrecht,
pp. 105–117.

Burnett, S., Chen, L., Creager, D.A., et al., 2020. Network error logging: Client-side
measurement of end-to-end web service reliability. In: 17th USENIX Symposium
on Networked Systems Design and Implementation. NSDI, Santa Clara, USA, pp.
985–999.

Chang, J.H., Lee, W.S., 2003. Finding recent frequent itemsets adaptively over online
data streams. In: 9th ACM Conference on Knowledge Discovery and Data Mining.
SIGKDD, Washington, USA, pp. 487–492.

Charikar, M., Chen, K., Farach-Colton, M., 2004. Finding frequent items in data streams.
Theoret. Comput. Sci. 312 (1), 3–15.

Chen, P., Chen, D., Zheng, L., et al., 2021. Out of many we are one: Measuring item
batch with clock-sketch. In: ACM Special Interest Group on Management of Data.
SIGMOD, Xi’an, China, pp. 261–273.

Cheung, Y.L., Fu, A.W.C., 2004. Mining frequent itemsets without support thresh-
old: with and without item constraints. IEEE Trans. Knowl. Data Eng. 16 (9),
1052–1069.

Cormode, G., Muthukrishnan, S., 2005. An improved data stream summary: the
count-min sketch and its applications. J. Algorithms 55 (1), 58–75.

Curtis, A.R., Mogul, J.C., Tourrilhes, J., et al., 2011. DevoFlow: Scaling flow man-
agement for high-performance networks. In: ACM Special Interest Group on Data
Communication. SIGCOMM, Toronto, Canada, pp. 254–265.

Real-life transactional dataset. 2005, http://fimi.ua.ac.be/data/.
Davenport, M., 2012. Introduction to modern information retrieval. J. Med. Libr. Assoc.:

JMLA 100 (1), 75.
Deng, F., Rafiei, D., 2007. New estimation algorithms for streaming data: Count-min

can do more. Webdocs. Cs. Ualberta. Ca.
Estan, C., Varghese, G., 2003. New directions in traffic measurement and accounting:

Focusing on the elephants, ignoring the mice. ACM Trans. Comput. Syst. (TOCS)
21 (3), 270–313.

Feldmann, A., Greenberg, A., Lund, C., et al., 2001. Deriving traffic demands for
operational IP networks: Methodology and experience. IEEE/ACM Trans. Netw. 9
(3), 265–279.

Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., et al., 2009. Anomaly-based
network intrusion detection: Techniques, systems and challenges. Comput. Secur.
28 (1–2), 18–28.

Gou, X., He, L., Zhang, Y., et al., 2020. Sliding sketches: A framework using time
zones for data stream processing in sliding windows. In: 26th ACM Conference on
Knowledge Discovery and Data Mining. SIGKDD, New York, USA, pp. 1015–1025.

Liao, L.X., Chao, H.C., Chen, M.Y., 2020. Intelligently modeling, detecting, and
scheduling elephant flows in software defined energy cloud: A survey. J. Parallel
Distrib. Comput. 146, 64–78.

MAWILab, 2019. Mawi working group traffic archive. http://mawi.wide.ad.jp/mawi/.
Metwally, A., Agrawal, D., Abbadi, A.E., 2005. Efficient computation of frequent and

top-k elements in data streams. In: International Conference on Database Theory.
Berlin, Heidelberg, pp. 398–412.

Mirylenka, K., Cormode, G., Palpanas, T., et al., 2015. Conditional heavy hitters:
detecting interesting correlations in data streams. VLDB J. 24, 395–414.

Roy, P., Khan, A., Alonso, G., 2016. Augmented sketch: Faster and more accurate stream
processing. In: ACM Special Interest Group on Management of Data. SIGMOD,
California, USA, pp. 1449–1463.

Sarrar, N., Uhlig, S., Feldmann, A., et al., 2012. Leveraging Zipf’s law for traffic
offloading. ACM SIGCOMM Comput. Commun. Rev. 42 (1), 16–22.

Sivaraman, A., Subramanian, S., Alizadeh, M., et al., 2016. Programmable packet
scheduling at line rate. In: ACM Special Interest Group on Data Communication.
SIGCOMM, Florianopolis, Brazil, pp. 44–57.

Tang, L., Huang, Q., Lee, P.P.C., 2019. Mv-sketch: A fast and compact invertible sketch
for heavy flow detection in network data streams. In: IEEE International Conference
on Computer Communications. INFOCOM, Paris, France, pp. 2026–2034.

Wang, Y., Li, D., Wu, J., 2021. FastKeeper: A fast algorithm for identifying top-k real-
time large flows. In: IEEE Global Communications Conference. GLOBECOM, Madrid
Madrid, Spain, pp. 01–07.

Wang, W., Zhang, X., Shi, W., et al., 2011. Network traffic monitoring, analysis and
anomaly detection. IEEE Netw. 25 (3), 6–7.

Yang, T., Gong, J., Zhang, H., et al., 2018a. HeavyGuardian: Separate and guard
hot items in data streams. In: 24th ACM International Conference on Knowledge
Discovery and Data Mining. SIGKDD, New York, USA, pp. 2584–2593.

Yang, T., Jiang, J., Liu, P., et al., 2018b. Elastic sketch: Adaptive and fast network-wide
measurements. In: ACM Special Interest Group on Data Communication. SIGCOMM,
Budapest, Hungary, pp. 561–575.

Yang, T., Zhang, H., Li, J., et al., 2019. HeavyKeeper: An accurate algorithm for finding
top-k elephant flows. IEEE/ACM Trans. Netw. 27 (5), 1845–1858.

Yang, T., Zhou, Y., Jin, H., et al., 2017. Pyramid sketch: A sketch framework for
frequency estimation of data streams. Proc. VLDB Endow. 10 (11), 1442–1453.
11
Yu, X., Xu, H., Yao, D., et al., 2018. CountMax: A lightweight and cooperative sketch
measurement for software-defined networks. IEEE/ACM Trans. Netw. (ToN) 26 (6),
2774–2786.

Zhong, Z., Yan, S., Li, Z., et al., 2021. Burstsketch: Finding bursts in data streams. In:
ACM Special Interest Group on Management of Data. SIGMOD, Xi’an, China, pp.
2375–2383.

Zhou, Y., Yang, T., Jiang, J., et al., 2018. Cold filter: A meta-framework for faster and
more accurate stream processing. In: ACM Special Interest Group on Management
of Data. SIGMOD, New York, USA, pp. 741–756.

Zhu, J., Jiang, X., Yu, Y., et al., 2020. An efficient priority-driven congestion control
algorithm for data center networks. China Commun. 17 (6), 37–50.

Zhuang, W., Shen, Y., Li, L., et al., 2021. Develop an adaptive real-time indoor intrusion
detection system based on empirical analysis of OFDM subcarriers. Sensors 21 (7),
2287.

Bing Xiong received the Ph.D. degree in Computer Science by master-doctorate
program from Huazhong University of Science and Technology (HUST), China, in 2009,
and the B.S. degree from Hubei Normal University, China, in 2004. He worked as
a visiting scholar in the Department of Computer and Information Science, Temple
University, USA, from 2018 to 2019. He is currently an associate professor in the School
of Computer and Communication Engineering, Changsha University of Science and
Technology, China. His main research interests include furture network architecture,
network measurements, network security and artificial intelligence applications..

Yongqing Liu received the B.S. degree in Network Engineering from Changsha
University of Science and Technology, China, in 2019. He is currently pursuing the M.S.
degree with Changsha University of Science and Technology, advised by B. Xiong. His
research interests include network measurements, sketches and data stream processing.

Rui Liu received the B.S. degree in Network Engineering from Jiangxi University of
Technology, China, in 2020. He is currently pursuing the M.S. degree with Changsha
University of Science and Technology, advised by B. Xiong. His research interests
include network measurements, sketches and data stream processing.

Jinyuan Zhao received the Ph.D. degree in Computer Science from Central South
University, China, in 2020, and the M.S. degree from Central China Normal University,
China, in 2007. She worked in the School of Computer and Communication, Hunan
Institute of Engineering, China, from 2007 to 2020. She is currently an assistant
professor in the School of Information Science and Engineering, Changsha Normal
University, China. Her main research interests include future network architecture,
network measurements.

Shiming He received the B.S. degree in information security and a Ph.D. degree in
computer science and technology from Hunan University, China, in 2006 and 2013,
respectively. She is currently an Associated Professor with the School of Computer
and Communication Engineering, Changsha University of Science and Technology,
Changsha, China. Her research interests include machine learning, data analysis, and
anomaly detection.

Baokang Zhao received the B.S., M.S., and Ph.D. degrees from National University of
Defense Technology, all in computer science. He is currently an Associate Professor in
the School of Computer Science, NUDT. His research interests include system design,
protocols, algorithms, and security issues in computer networks.

Kun Yang received his Ph.D. from the Department of Electronic & Electrical Engi-
neering of University College London (UCL), UK. He is currently a Chair Professor in
the School of Computer Science & Electronic Engineering, University of Essex, leading
the Network Convergence Laboratory (NCL), UK. He is also an affiliated professor
at UESTC, China. Before joining in the University of Essex at 2003, he worked at
UCL on several European Union (EU) research projects for several years. His main
research interests include wireless networks and communications, IoT networking, data
and energy integrated networks and mobile computing. He manages research projects
funded by various sources such as UK EPSRC, EU FP7/H2020 and industries. He has
published 400+ papers and filed 30 patents. He serves on the editorial boards of both
IEEE (e.g., IEEE TNSE, IEEE ComMag, IEEE WCL) and non-IEEE journals (e.g., Deputy
EiC of IET Smart Cities). He was an IEEE ComSoc Distinguished Lecturer (2020–2021).
He is a Member of Academia Europaea (MAE), a Fellow of IEEE, a Fellow of IET and
a Distinguished Member of ACM.

Keqin Li received a B.S. degree in computer science from Tsinghua University in 1985
and a Ph.D. degree in computer science from the University of Houston in 1990. He is
a SUNY Distinguished Professor with the State University of New York and a National
Distinguished Professor with Hunan University (China). He has authored or co-authored

http://refhub.elsevier.com/S1084-8045(24)00030-4/sb1
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb1
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb1
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb1
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb1
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb2
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb2
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb2
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb2
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb2
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb3
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb3
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb3
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb3
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb3
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb3
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb3
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb4
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb4
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb4
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb4
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb4
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb5
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb5
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb5
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb6
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb6
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb6
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb6
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb6
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb7
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb7
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb7
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb7
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb7
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb8
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb8
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb8
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb9
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb9
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb9
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb9
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb9
http://fimi.ua.ac.be/data/
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb11
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb11
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb11
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb12
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb12
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb12
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb13
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb13
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb13
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb13
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb13
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb14
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb14
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb14
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb14
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb14
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb15
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb15
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb15
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb15
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb15
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb16
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb16
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb16
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb16
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb16
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb17
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb17
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb17
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb17
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb17
http://mawi.wide.ad.jp/mawi/
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb19
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb19
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb19
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb19
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb19
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb20
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb20
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb20
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb21
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb21
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb21
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb21
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb21
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb22
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb22
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb22
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb23
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb23
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb23
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb23
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb23
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb24
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb24
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb24
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb24
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb24
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb25
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb25
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb25
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb25
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb25
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb26
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb26
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb26
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb27
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb27
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb27
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb27
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb27
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb28
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb28
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb28
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb28
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb28
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb29
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb29
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb29
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb30
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb30
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb30
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb31
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb31
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb31
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb31
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb31
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb32
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb32
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb32
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb32
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb32
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb33
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb33
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb33
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb33
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb33
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb34
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb34
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb34
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb35
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb35
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb35
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb35
http://refhub.elsevier.com/S1084-8045(24)00030-4/sb35

Journal of Network and Computer Applications 224 (2024) 103853B. Xiong et al.
more than 970 journal articles, book chapters, and refereed conference papers. He re-
ceived several best paper awards from international conferences including PDPTA-1996,
NAECON-1997, IPDPS-2000, ISPA-2016, NPC-2019, ISPA-2019, and CPSCom-2022. He
holds nearly 75 patents announced or authorized by the Chinese National Intellectual
Property Administration. He is among the world’s top five most influential scientists
in parallel and distributed computing in terms of single-year and career-long impacts
based on a composite indicator of the Scopus citation database. He was a 2017 recipient
of the Albert Nelson Marquis Lifetime Achievement Award for being listed in Marquis
Who’s Who in Science and Engineering, Who’s Who in America, Who’s Who in the
World, and Who’s Who in American Education for over twenty consecutive years.
12
He received the Distinguished Alumnus Award from the Computer Science Department
at the University of Houston in 2018. He received the IEEE TCCLD Research Impact
Award from the IEEE CS Technical Committee on Cloud Computing in 2022 and the
IEEE TCSVC Research Innovation Award from the IEEE CS Technical Community on
Services Computing in 2023. He won the IEEE Region 1 Technological Innovation
Award (Academic) in 2023. He is a Member of the SUNY Distinguished Academy. He
is an AAAS Fellow, an IEEE Fellow, an AAIA Fellow, and an ACIS Founding Fellow. He
is an Academician Member of the International Artificial Intelligence Industry Alliance.
He is a Member of Academia Europaea (Academician of the Academy of Europe).

	ActiveGuardian: An accurate and efficient algorithm for identifying active elephant flows in network traffic
	Introduction
	RELATED WORK
	The Design of ActiveGuardian
	Scheme
	ActiveGuardian Algorithm
	Optimization 1: Adaptive Counter Update Strategy
	Optimization 2: Leapfrog Hashing Algorithm

	Mathematical Analysis
	False Positive Error Rate of Filtering Module
	Error Bound of the Guarding Module

	Experiments
	Experimental Setup
	Metrics
	Parameter Settings
	Precision and Recall
	ARE and AAE
	Throughput

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

