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The continual growth of network traffic rates leads to heavy packet processing overheads, and a typical
solution is to partition traffic into multiple network processors for parallel processing especially in
emerging software-defined networks. This paper is thus motivated to propose a robust dynamic network
traffic partitioning scheme to defend against malicious attacks. After introducing the conceptual fra-
mework of dynamic network traffic partitioning based on flow tables, we strengthen its TCP connection
management by building a half-open connection separation mechanism to isolate false connections in
the initial connection table (ICT). Then, the lookup performance of the ICT table is reinforced by applying
counting bloom filters to cope with malicious behaviors such as SYN flooding attacks. Finally, we evaluate
the performance of our proposed traffic partitioning scheme with real network traffic traces and si-
mulated malicious traffic by experiments. Experimental results indicate that our proposed scheme
outperforms the conventional ones in terms of packet distribution performance especially robustness
against malicious attacks.

& 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The continual growth of network bandwidth results in the fact that
a single network device cannot real-timely process large-scale packet
traffic, especially in high-speed networks with bandwidth 1 Gps and
above. A typical solution is load balancing, which partitions heavy
network traffic into many parts and forwards them to multiple net-
work processors for parallel processing. Network traffic partitioning is a
key to load balancing, and has been extensively applied in network
applications, such as stateful firewalling (Fulp and Farley, 2006), in-
trusion detection (Patel et al., 2013; Vasiliadis et al., 2011), traffic
measurement (Cheng et al., 2003), high-speed packet switching
(Zhang, 2011), and content delivery (Manfredi et al., 2012; Mohamed
et al., 2013). In particular, emerging network paradigms such as soft-
ware-defined networking (Hakiri et al., 2014; Kreutz et al., 2015) make
load balancing much easier to be deployed without changing substrate
devices by using OpenFlow (Koerner and Kao, 2012; Bredel et al., 2014).

Network traffic partitioning in these applications is generally
required to satisfy the following properties. Firstly, network traffic
must be partitioned with flow granularity to support packet
Communication Engineering,
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processing at session levels above the network layer (Qi et al.,
2007; Zhao et al., 2004). In particular, all packets within a flow
must be assigned to an identical network processor to guarantee
session integrity. For convenience, the terms flow and session in
this paper both refer to packet traffic between two network end-
points, especially called connection for TCP. Secondly, network
traffic ought to be dynamically partitioned in terms of the pro-
cessing capacities of network processors to achieve good load
balance. Thirdly, each packet should be distributed at fast speeds
to real-timely process large-scale network traffic even in the
presence of malicious attacks.

Existing network traffic partitioning schemes can be classified
into three types: direct hashing (Kirsch et al., 2010; Jo and Kim,
2004; Cao et al., 2000), hash space division (Sun et al., 2004) and
dynamic schemes based on flow tables (Li et al., 2002; Jiang et al.,
2005, 2006; Xiong et al., 2013). The direct hashing schemes map
each packet to a network processor by a hash function, which is
only suitable for network processors with identical configurations.
The hash space division schemes divide the hash space into many
intervals assigned to network processors in terms of their pro-
cessing capacities. This type adapts to heterogeneous network
processors, but is still hard to achieve good load balance due to no
consideration of non-uniform distribution of network traffic. The
dynamic schemes maintain a hash table of simultaneous flows,
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and dynamically distribute packet traffic with flow granularity to
multiple network processors. This type keeps flow integrity during
packet distribution and adequately balances traffic load among
network processors. However, their packet distribution perfor-
mance becomes a great challenge especially when adversaries
launch malicious behaviors such as SYN flooding attacks.

Many literatures have achieved deep insights into the load
balancing capacity of dynamic network traffic partitioning. Chen
et al. (2008) dynamically remapped the flow bundle with the least
number of TCP flows to the lightest loaded processing unit when
traffic load became imbalanced between processing units. Sun
et al. (2004) mapped each incoming packet by hashing its key
header fields to an interval allocated for a processing unit, and the
interval was fine-tuned in terms of processing capacity and cur-
rent load of all processing units. These methods achieve real-time
traffic load balance, but will lead to frequent load migration due to
bursty network traffic. Shi et al. (2005) classified Internet flows
into two categories: the aggressive and the normal, and applied
dynamic scheduling policies to the aggressive flows. Kencl and
Boudec (2008) designed a feedback control mechanism to prevent
processor overload, and provided an adaptive extension of the
highest random weight (HRW) scheme to cope with biased traffic
patterns. These schemes achieve good load balancing and high
processor utilization, but pay little attention to packet distribution
performance especially robustness against malicious behaviors.

This paper focuses on how to promote the packet distribution
performance of dynamic network traffic partitioning. In particular,
the promotion is investigated with the following methodology. We
first give the conceptual framework of dynamic traffic partitioning
scheme based on flow tables. Then, its TCP connection manage-
ment is strengthened by isolating false connections to make them
much easier to control. As a further step, the management of false
connections is reinforced to mitigate the destructive effects of
malicious attacks especially on the lookup performance of TCP
connection tables. Next, we give the algorithmic implementation
of our dynamic traffic partitioning scheme based on packet clas-
sification in terms of TCP connection tables. Finally, the packet
distribution performance of our scheme is evaluated by carrying
out experiments with real network traffic traces and simulated
malicious traffic.

With the above methodology, we aim to achieve the following
conclusions as the main contributions of this paper: (a) giving the
conceptual framework of dynamic traffic partitioning scheme
based on flow tables to guarantee flow granularity and achieve
real-time traffic load balance; (b) strengthening TCP connection
management by building a half-connection connection separation
mechanism to isolate false TCP connections in the initial connec-
tion table (ICT); (c) reinforcing the lookup performance of the ICT
table by applying counting bloom filters to defend against mal-
icious behaviors such as SYN flooding attacks.

The rest of this paper is organized as follows. Section 2 in-
troduces the related work. In Section 3, we describe the conceptual
framework of dynamic network traffic partitioning based flow ta-
bles, and promote its packet distribution performance by building
the half-open connection separation and employing counting
bloom filters to resist malicious attacks. Section 4 gives the algo-
rithmic implementation and complexity analysis of our proposed
dynamic network traffic partitioning scheme. In Section 5,
we evaluate the packet distribution performance of our proposed
scheme with real network traffic traces. Section 6 concludes the
paper.

2. Related work

In the last decade, there have been many literatures on traffic
load balancing in various network applications. Most of their work
focused on the load balancing capacity of network traffic parti-
tioning, but rarely contributed to the packet distribution perfor-
mance, especially robustness against malicious behaviors.

Cao et al. (2000) designed a table-based hashing scheme for the
scenario of several network processors with different capacities in
Internet traffic load balancing. The scheme splits a traffic stream
into multiple bins mapped into outgoing links based on an allo-
cation table. However, the algorithm has poor adaptability of load
balance, and it has been pointed out that hashing alone is not able
to balance network traffic workload (Shi et al., 2005). Lai et al.
(2007) proposed a traffic partitioning algorithm for parallel in-
trusion detection systems. They employed hash table to maintain
simultaneous TCP connections, and partitioned network traffic in
virtue of TCP connection state. The algorithm provides better load
balancing capacity than direct hashing schemes. However, it does
not consider TCP state accurately, and ruins the integrity of con-
nection context during packet scheduling.

Chen et al. (2008) presented a session-oriented adaptive load
balancing algorithm based on IP header multi-field classification.
The algorithm dynamically adjusts flow bundles to guarantee
session integrity when traffic load becomes imbalanced between
processing units. To keep dynamic balance between processing
units, they remapped the flow bundle with the least number of
TCP flows to the lightest loaded processing unit. Sun et al. (2004)
provided a novel load balancing algorithm for parallel intrusion
detection systems. The algorithm maps each incoming packet by
hashing its key header fields to an interval allocated for an IDS
sensor. The interval is fine-tuned in terms of processing capacity
and current load of all IDS sensors to achieve real-time balance of
traffic distribution. However, these algorithms will produce fre-
quent flow adjustment because of bursty network traffic, which
leads to a lot of load migration between the sensors.

Targeting load balancing between forwarding engines in In-
ternet routers, Shi et al. (2005) classified Internet flows into two
categories: the aggressive and the normal, and applied dynamic
scheduling policies to the aggressive flows to achieve both load
balancing and efficient system resource utilization. Kencl and
Boudec (2008) presented an adaptive load balancing scheme for
load sharing among multiple network processors within a router.
They designed a feedback control mechanism to prevent processor
overload, and provided an adaptive extension of the highest ran-
dom weight (HRW) scheme to cope with biased traffic patterns.
The scheme achieves significant improvement in processor utili-
zation, and minimizes the probability of flow reordering by ex-
ploiting the minimal disruption property of the adjustment of the
packet-to-processor mapping.

Li et al. (2002) proposed an application-based dynamic-least-
load-first algorithm for high-speed network intrusion detection
systems. They real-timely maintained a hash table of all assigned
sessions and dynamically scheduled new sessions in terms of
current load levels of all intrusion analyzers. Jiang et al. (2005,
2006) discussed a flow-based dynamic traffic partitioning algo-
rithm for intrusion detection systems in high-speed networks. The
algorithm divides packet stream with flow granularity and for-
wards a packet of a new session to the detection engine with the
least load currently. Xiong et al. (2013) dynamically maintained a
hash table of concurrent sessions, and assigned a session to a
network processor with the lightest load level when the session
appeared. These algorithms achieve good effect of traffic load
balancing, but their packet distribution performance is not ade-
quately considered.

For the above motivations, this paper proposes a robust dy-
namic network traffic partitioning scheme. In this scheme, we
strengthen its TCP connection management by building the half-
open connection separation mechanism to isolate false TCP con-
nections in the ICT table and reinforce the lookup performance of
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the ICT table by employing counting bloom filters to defend
against SYN flooding attacks. By this way, we strive to boost the
packet distribution performance of dynamic traffic partitioning
scheme especially in the presence of malicious attacks.
3. Dynamic traffic partitioning scheme

This section describes the conceptual framework of dynamic
traffic partitioning based on flow tables, and optimizes its TCP
connection management by building the half-open connection
separation mechanism and employing counting bloom filters for
robustness against malicious attacks.

3.1. Conceptual framework

Many network applications relating to stateful packet proces-
sing usually employ load balancing technologies to cope with
massive packet traffic. One of their key problems is traffic parti-
tioning scheme. The traffic partitioning scheme in stateful packet
processing usually needs to satisfy the following properties (Qi
et al., 2007): (a) flow granularity. Network traffic must be parti-
tioned with flow granularity to support packet processing at se-
mantic levels; (b) dynamic load balance. Network traffic ought to
be dynamically partitioned to achieve real-time load balance
among all network processors; (c) good packet distribution per-
formance. Each arrived packet should be distributed at fast speeds
to real-timely process large-scale network traffic even in the
presence of malicious attacks.

The first two properties can be adequately satisfied by dynamic
network traffic partitioning schemes based on flow tables, whose
basic idea is explained as follows. These schemes maintain si-
multaneous flows of each protocol above IP in a separate hash
table. Each flow in a table is associated with a network processor
assigned at its appearance. In particular, a new flow is assigned to
a network processor with the lightest traffic load level, and all
packets within the flow are forwarded to the network processor.
To determine the lightest loaded network processor, the load state
table is built to real-timely maintain the traffic load states of all
network processors.

According to the above basic idea, we illustrate the funda-
mental principle of dynamic traffic partitioning scheme in Fig. 1.
As for a continuous stream of arriving packets ( … …)p p p, , , ,i1 2 ,
the traffic partitioner looks up in its flow table FT with the length L
and forwards them one by one to N network processors in terms of
the load state table LST. With regard to a packet pi, we get its flow
identifier from its header fields and map the identifier to a hash
bucket of the flow table ( ≤ ≤ − )FT i L0 1i . Then, we look up the
flow list in the bucket FTl for a match fi k, . If the lookup succeeds,
we directly forward the packet to the network processor

( ≤ ≤ − )NP n N0 1n , whose number n is kept in the flow fi k, .
Otherwise, the packet pi is supposed to belong to a new flow. In
this case, the flow is assigned to the lightest-loaded network
processor ( ≤ ≤ − )NP j N0 1j in terms of the load state table LST,
which keeps real-time load information of each network
Fig. 1. The fundamental principle of dynamic traffic partitioning scheme.
processor. Meanwhile, we register the flow and its assigned net-
work processor number j in the flow table FT. Finally, the packet pi
is forwarded to the network processor NPj.

Dynamic traffic partitioning at the micro level is to distribute
each incoming packet to a network processor. As seen from the
above fundamental principle, an essential operation of packet
distribution is the flow table lookup, whose performance chiefly
relies on flow table management. A conventional scheme for flow
table management is to maintain all simultaneous flows of each
protocol in the IP header, typically TCP and UDP, in a single hash
table. This scheme works well for classical networks with
100 Mbps or even below, where the number of concurrent flows is
limited and the flow tables keep in moderate sizes. However, the
flow tables will begreatly enlarged when it comes to high-speed
networks with bandwidth 1 Gbps and above, where there will be
up to hundreds of thousands of simultaneous flows (Cai et al.,
2014; Wolf et al., 2007; Park et al., 2000). Fortunately, their lookup
overheads can still be moderately controlled by selecting a biggish
flow table length. Suppose there are up toa hundred thousand
flows for a transport-layer protocol, its flow table will hold the
load factor slightly larger than 1 if its table length is set as 216, and
its lookup overheads will be apparently acceptable with uniform
hashing.

Unfortunately, the conventional scheme can no longer perform
soundly in the presence of malicious behaviors such as SYN
flooding attacks. Such attacks subvert flow table management by
inducing an avalanche of false TCP connections into the TCP flow
table. Despite these false connections can be eliminated in a short
time by timeout mechanism, the TCP flow table still has to ac-
commodate a large number of unexpired connections besides of
massive normal connections. This results in its heavy lookup
overheads with the addition of highly intensive packets in high-
speed networks. Besides, the huge TCP flow table has to be fre-
quently traversed to clear out expired connections due to the
presence of malicious attacks. This leads to its additional heavy
timeout scanning overheads. In summary, the TCP flow table will
be confronted with great challenges under malicious attacks.
Therefore, it is necessary to optimize the flow table management
in dynamic traffic partitioning schemes for better packet dis-
tribution performance.

3.2. Half-open connection separation

Malicious behaviors such as SYN flooding attacks have a
destructive effect on flow table management especially TCP con-
nection table. The attackers bring a great amount of false con-
nections into the table by intensively sending spoofed SYN pack-
ets. This expands the table rapidly and its operation overheads rise
sharply. Note that all false connections induced by such attacks
will not complete three-way handshake to establish a TCP con-
nection. In virtue of this feature, we build a half-open connection
separation (HCS) mechanism to isolate false connections from
normal connections. The essential concept of the HCS mechanism
is to separate initial connections including all false connections
from the TCP connection table and manipulate them separately. As
for its implementation level, we run two TCP connection tables:
(a) the initial connection table (ICT), whose connections have been
initiated but not yet completed the three-way handshake; (b) the
established connection table (ECT), whose connections have been
established.

According to the above scheme, we illustrate the lifetime of a
TCP connection within our connection management in Fig. 2.
When a new connection appears, its record will be generated into
the ICT table. Once the connection is established, the record will be
immediately transferred to the ECT table. When the connection is
terminated, we will delete the record from the ECT table.



Fig. 2. The lifecycle of a connection in the HCS mechanism.
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Subsequently, a TCP connection is manipulated as follows on the
arrival of packets. When a SYN packet appears, we create its
connection and insert it into the ICT table. If the third handshake
ACK arrives, we take the connection out of the ICT table and put it
in the ECT table. Once the last packet ACK arrives, we remove the
connection from the ECT table. In addition, whenever a RST packet
resetting a connection arrives, we immediately delete its connec-
tion from the ICT table or the ECT table.

The above HCS mechanism results in two controllable TCP
connection tables, i.e., the ICT table and the ECT table. The ECT
table is immune to malicious behavior in terms of the above
working principle, and always keeps in an acceptable size usually
no more than a hundred thousand according to Internet traffic
measurements (Benetazzo et al., 2007; Williamson 2001;
Thompson et al., 1997). The ICT table only contains a small amount
of connections under normal conditions, due to the fact that 93%
and 99% of TCP connections respectively take less than 1 s and 4 s
to complete three-way handshake (Kim et al., 2005; Kang and
Kim, 2003). When malicious attacks appear, a continuous se-
quence of false connections will swarm into the ICT table, and we
strive to eliminate them from theICT table as early as possible by
setting a small timeout interval (e.g. 1 s). As a consequence, the ICT
table maintains a limited number of false connections produced
during the interval besides of normal initial connections. In sum-
mary, the HCS mechanism divides a oversize TCP connection table
into two size-controllable tables, and makes malicious attacks
much easier to resist.

3.3. Counting bloom filters

When malicious attacks occur, the ICT table is sharply ex-
panded by an avalanche of false connections, which leads to its
Fig. 3. The principle of the ICT table e
heavy lookup and traversal overheads. On the one hand, the ICT
table is looked up frequently due to the emergence of a large
number of falsified packets. On the other hand, we need to go
through the ICT table for all SYN packets including falsified ones.
These factors result in a significant increase in the overall lookup
overheads. Note that the lookups of the ICT table are destined to
be failures for dominant SYN packets. Therefore, we can employ
counting bloom filters to predict the lookup failures without
searching the table.

A bloom filter (Bloom, 1970) is a simple space-efficient data
structure for representing a set in order to support membership
queries. A counting bloom filter (Fan et al., 2000) generalizes a
bloom filter data structure so as to allow that the set can be
changing dynamically via insertions and deletions. Fig. 3 illustrates
the working principle of the ICT table employing a counting bloom
filter. It is described by an array A of m counters (with several bits),
initialized to 0. And it uses k independent hash functions

…h h h, , , k1 2 , each with range { … }m1, , . It has a set C of n elements
…c c c, , , n1 2 , i.e., connection identifiers in the ICT table.

If an element c is to be inserted into the set C, the counters
[ ( )]( ≤ ≤ )A h c i k1i at position ( ) ( ) … ( )h c h c h c, , , k1 2 in A are in-

cremented by 1 accordingly. If an element c is to be deleted from
the set C, the counters [ ( )]A h ci at position ( ) ( ) … ( )h c h c h c, , , k1 2 in A
are decremented by 1 accordingly. If we want to query for an
element c, we check all the value of the counters

( ) ( ≤ ≤ )⎡⎣ ⎤⎦A h c i k1i . If any of them is 0, then certainly c is not in the
set C. Otherwise, we conjecture that the element c is in the set C,
although there is a certain probability that we are wrong. This is
called a “false positive”. In such case, we still need to search the ICT
table for an exact result. Table 1 summarizes the above discussion
regarding the operations on the ICT table employing a counting
bloom filter.

The probability for a false positive error is dependent on the
parameters k, m/n. For the counting bloom filter, after n connec-
tions were inserted at random into the counter array of size m, the
probability that a particular counter is 0 is exactly ( − )m1 1/ kn.
Hence the probability of a false positive in this situation is Fan
et al. (2000) and Cohen and Matias (2003)

( ) ( )− ( − ) ≈ − ( )−m e1 1 1/ 1 . 1kn k kn m k/

The right-hand expression in (1) is minimized for = ⁎k m nln 2 / ,
in which case the error rate is ( ) = ( )1/2 0.6185k m n/ . For example,
the false positive error rate is slightly larger than 2.15%, when

=m n/ 8, =k 6. The false positive error rate is only 0.314%, when
=m n/ 12, =k 8.

For the counting bloom filter, it is also important to know how
large the memory of the counters can become. In order to de-
termine a good counter size, we consider this situation: after in-
serting n connections with k hash functions into a counter array of
size m, the probability that the jth counter is greater or equal i is
mploying a counting bloom filter.



Table 1
The operations on the ICT table employing a counting bloom filter.

The search (including deletion) of the
ICT table

The insertion of the ICT table The timeout scanning of the ICT table

ICT_CBF_search(FlowIdentifier key) ICT_CBF_insert(connection np) ICT_CBF_timeout(int interval)
1. for i ← 1, k do 1. FT_insert(ICT, p) 1. keyset ← FT_timeout(ICT, interval)
2. pos ← Hi(key) 2. for i ← 1, k do 2. while ≠ ∅keyset do
3. if [ ] ≠CBF pos 0, then 3. pos ← ( → )H p keyi 3. get a key from keyset

4. break 4. [ ]CBF pos ← [ ] +CBF pos 1 4. for i ← 1, k do

5. if ≤i k, then 5. return 1 5. pos ← Hi(key)
6. p ← FT_search(ICT, key) 6. [ ]CBF pos ← [ ] −CBF pos 1
7. if ≠p NULL , then 7. else break
8. for i ← 1, k do 8. return 1
9. pos ← ( → )H p keyi

10. [ ]CBF pos ← [ ] −CBF pos 1
11. return p
12. return 0
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As mentioned above, we can optimize the false positive rate
with = ⁎k m nln 2 / , so we assume that we restrict ourselves to
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If we set 4 bits per counter, the counter will overflow if and
only if some counter reaches the value 16. From the above, we
know that
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16
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16
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Thus, 4 bits per counter will suffice for most applications. In
conclusion, the counting bloom filter is highly effective. With the
aid of the counting bloom filter, we can foresee the lookup results
of the ICT table without need to search any flow table for most SYN
packets. As a consequence, the lookup overheads of the ICT table
will be greatly decreased especially under SYN flooding attacks. By
this way, we significantly mitigate the damage of malicious attacks
on the lookup performance of flow tables.
4. Algorithmic implementation and analysis

This section describes the algorithmic implementation of our
dynamic traffic partitioning scheme called DTP-CBF based on TCP
packet classification, and analyzes its algorithmic complexity in terms
of average search length.

4.1. TCP packet classification

Dynamic traffic partitioning at the micro level is packet dis-
tribution performed by four basic steps: (a) parsing the packet to
get its key fields and calculating its flow identifier; (b) looking up
the corresponding flow table for a match by the flow identifier;
(c) distributing the packet to the network processor in the mat-
ched flow or else with the lowest traffic load level; (d) operating
(creating, inserting, shifting or deleting) the flow in the flow table
after its update. An essential work of packet distribution is to look
up the respective flow table. There is no doubt for a non-TCP
packet since we maintain a respective flow table for each protocol
above IP header except TCP. As for a TCP packet, we must de-
termine which table is to be looked up as there are two TCP
connection tables in our scheme. If the lookup fails, we still need
to decide whether the other table should be further searched. To
clarify these problems, we classify TCP packets into five types as
follows.

(1) Packets with SYN flag: A packet with SYN flag initiates its half
of a TCP connection and appears during connection estab-
lishment phase. Thus its connection must reside in the ICT
table if being exists.

(2) Packets with FIN flag: A packet with FIN flag tears down its half
of TCP connection and appears during connection termination
phase. So its connection must be reserved in the ECT table.

(3) Packets with RST flag: A packet with RST flag is sent whenever
a segment arrives which apparently is not intended for the
current connection. The packet is generated in 3 typical cases
(Fall and Stevens, 2011): (a) a connection request is delivered
to a non-existent port. This situation happens at the beginning
of connection establishment, and its connection must reside in
the ICT table; (b) a connection endpoint aborts its connection
in response to an unacceptable segment or a termination
command from its application. These causes generally arise at
the end of data transfer, and its connection should stay in the
ECT table; (c) one end detects a half-open connection, whose
other end has closed or aborted the connection without its
knowledge. This case occurs at data transfer phase, and its
connection must be saved in the ECT table.

(4) Pure ACK: A pure ACK packet does not carry any payload and
key TCP flags, i.e., SYN, RST and FIN. The packet has three
possibilities: (a) the 3rd handshake during connection estab-
lishment, whose connection lies in the ICT table; (b) an ac-
knowledgment of some transmitted segment during data
transfer phase, whose connection is located in the ECT table;
(c) an acknowledgment of connection tear-down request,
whose connection also resides in the ECT table. In summary,
its connection is more likely to stay in the ECT table. Therefore,
we will first look up the ECT table on its arrival. If the lookup
fails, we continue to search the ICT table for a match.

(5) Impure ACK: An impure ACK packet carries payload but no key
TCP flags (SYN, RST and FIN). The packet usually turns up
during data transfer phase, and its connection must be
maintained in the ECT table.

4.2. Algorithmic description

Upon receiving a packet, we first parse it to get its key fields
with respect to protocol header format at each layer, and calculate
its flow identifier with its source/destination IP addresses and port



Table 3
The flow table timeout of the DTP-CBF scheme.

Pseudo-code for the timeout scanning of a flow table

Alogrithm 2 Timeout(FlowTable table)
1. if table is the ICT, then
2. if > _ _table size ICT MAX SIZE. , then
3. ICT_CBF_timeout(1);
4. else
5. ICT_CBF_timeout(4);
6. else if table is the ECT, then
7. FT_timeout(ECT, 60);
8. else
9. FT_timeout(table, 60);

Table 2
The packet distribution of the DTP-CBF scheme.

Pseudo-code for the distribution of a packet

Algorithm 1 PacketDistribution(Packet p)
1. Parse the received packet p to get its key fields, including

ip ip port port proto, , , ,src dst src dst

2. p FID. ← { }ip ip port port proto, , , ,src dst src dst

3. if ≠p proto TCP. , then
4. f ← FT_search(FTp proto. , p FID. )
5. if f¼NULL, then
6. k ← { ( )}LoadLevel NPmini i

7. f ← NewFlow(p, k)
8. Forward the packet p to the network processor in the flow f, and update

the flow f with the packet p
9. FT_insert(FTp proto. , f)
10. return 1
11. else return DTP-ICM_TCP(p)
12. if p is a SYN, then
13. c ← ICT_CBF_search(p FID. )
14. if c¼NULL, then
15. k ← { ( )}LoadLevel NPmini i

16. c ← NewFlow(p, k)
17. else if p is a SYN/ACK or RST/ACK, then
18. c ← FT_search(ICT, p FID. )
19. else c ← FT_search(ECT, p FID. )
20. if c¼NULL and p is a pure ACK, then
21. c ← FT_search(ICT, p FID. )
22. if ≠c NULL , then
23. Forward the packet p to the network processor in the connection c, and

update the connection c with the packet p
24. if c is not yet established, then
25. ICT_CBF_insert(c)
26. else if c is terminated, then
27. delete c
28. else FT_insert(ECT, c)
29. return 1
30. else return 0

B. Xiong et al. / Journal of Network and Computer Applications 87 (2017) 20–31 25
numbers defined below. The port numbers are set as zero for any
protocol in which header there is no port number field, such as
ICMP. Then we operate the flow table corresponding to the pro-
tocol in its IP header. As for a non-TCP packet, we directly search
the respective flow table for a match. If we fail to get a match, we
create a new flow and assign it to a network processor with the
lightest load degree in terms of the load state table. Then, we
distribute the packet to the network processor, update the flow
with the packet, and insert it to the respective flow table.

Definition 4.1 (Flow Endpoint Identifier (FEI)). An endpoint of a
network flow can be identified as a 2-tuple ( )FEI IP PT, , where IP
and PT respectively represent IP address at the network layer and
port number at the transport layer.

Definition 4.2 (The relationship of two FEIs). Suppose there are
two flow endpoints, ( )FEI IP PT,1 and ( )FEI IP PT,2 . Considering IP and
PT in each FEI as a 32-bit and 16-bit integer respectively, we define
the relationship of the two FEIs as <FEI FEI1 2, iff (a) · < ·FEI IP FEI IP1 2

or (b) · = ·FEI IP FEI IP1 2 and · < ·FEI PT FEI PT1 2 .

Definition 4.3 (Flow Identifier (FID)). There are two opposite
endpoints in a flow. Suppose FEIS and FEIB is respectively the
smaller and the bigger of them in accordance with Definition 4.2,
the flow can be identified as 2-tuple ( )FID FEI FEI,S B .

The distribution of a TCP packet is performed in terms of the
packet classification above. As for a SYN packet, we search the ICT
table with counting bloom filters. If the search fails, the packet is
confirmed to initiate a new connection. Then we create a new
connection for it and assign it to a network processor with the
lightest traffic load degree. As for a SYN/ACK or RST/ACK packet,
we directly look up the ICT table for its connection. The ECT table
is searched for any other packet. If the search fails and the packet
is a pure ACK, the packet is probably the third handshake and we
continue to directly look up the ICT table. Up to now, we are
supposed to get a connection. Then, we distribute the packet to
the network processor recorded in the connection and update the
connection with the packet. Finally, the connection is manipulated
in terms of its state. In particular, the connection will be directly
deleted if it reaches the termination state. Otherwise, we insert it
into the ICT table if it is not yet established and the ECT table for
any other case. Table 2 summarizes the above discussion regarding
the packet distribution of our proposed DTP-CBF scheme.

In the meanwhile, the timeout scanning is manipulated on each
flow table to clear out expired flows in time. In particular, the re-
moval of expired flows from the ICT table triggers the update of its
counting bloom filter. The timeout interval of the ICT table is set as
4 s under normal conditions due to the fact that 99% of TCP con-
nections take less than 4 s to complete three-way handshake. When
malicious attacks occur, the interval is tuned to 1 s as 93% of TCP
connections can also be established. As for other flow tables includ-
ing the ECT table and the UDP session table, their timeout intervals
are configured as 60 s. Table 3 demonstrates the pseudo-code for the
flow table timeout of our proposed DTP-CBF scheme.

4.3. Algorithmic complexity analysis

As shown in the above algorithmic description, flow table
lookups dominate the packet distribution performance of our
proposed dynamic traffic partitioning scheme DTP-CBF especially
under malicious attacks. Therefore, we analyze the algorithm
complexity of the DTF scheme for TCP traffic in terms of average
search length. The analysis is carried out with the following as-
sumptions: (a) TCP connections are uniformly distributed in a hash
table with the load factor α under normal conditions; (b) a normal
connection contain ω packets on average; (c) the number of attack
packets are υ times that of normal packets; (d) the counting bloom
filter determine the lookup result of a SYN packet with the false
positive error rate p.

With the above assumptions, the ECT table is supposed to hold
the load factor close to α, since the established connections
dominate TCP connections under normal conditions. As seen form
the algorithmic description, we only need to search the ECT table
for all normal packets except three-way handshakes. Therefore, it
is reckoned that a normal packet approximately takes the search
length in (5) on average to find its connection.

α= + ( )ASL 1 /2. 5normal

As for attack packets typically falsified SYN ones, we do not
need to search any flow table if the counting bloom filter succeeds
to predict their failed lookups. In such case, it is supposed to take



Table 4
The properties of the 4 traffic traces used in our experiments.

Traffic trace Duration (s) TCP packets (M) Initial connections (K) Established connections (K) Terminated connections (K) Total connections (M)

TRACE20110418 107 8.75 282 107 97.9 0.49
TRACE20140509 58.3 9.21 195 92.6 74.8 0.38
TRACE20120921 86.4 11.5 324 142 139 1.07
TRACE20120725 83.7 9.79 318 95.7 89.9 1.42
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the search length 1 as the price of computing hashes for each
packet. Otherwise, we should continue to search through the ICT
table probably in failure. With the same hash table length of the
ECT table, the ICT table is considered to keep the load factor υωα.
So an attack packet will take the search length υωα + 1 for un-
successful prediction of its lookup result. With the false positive
error rate p, it can summarized that we need to take the average
search length in (6) for attack packets.

υωα υωα= ( − )· + ( + ) = + ( )ASL p p p1 1 1 1. 6attack

In summary, we can calculate the average search length of our
proposed scheme in (7) with (5) and (6).
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As for conventional dynamic traffic partitioning schemes that
maintain all simultaneous flows of each protocol above IP header
in a single hash table, we need to match α υωα( + ) +/2 1 times on
average in the TCP connection table for normal packets and take
the average search length α υωα+ to go through the table for
malicious packets. Consequently, we can compute the average
search length of the conventional schemes in (8).
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Subsequently, we can deduce the packet distribution perfor-
mance speedup of our proposed scheme DTP-CBF compared to the
conventional one DTP-SHT in (9) with (7) and (8).

υ υω α
υ ω α υ

= = ( + )( + ) +
( + ) + + ( )

−

−
Speedup

ASL
ASL p

0.5 1 1
0.5 1

.
9

DTP SHT

DTP CBF
2

As in (9), the false positive error rate p is supposed as no more
than 0.1 by setting the number of hash functions as k=6 and the
ratio between the size of the counter array to the number of initial
connections as =m n/ 8. The load factor α is expected to take ap-
proximately 1, if the hash table length of the TCP connection table
is configured closely to the number of TCP connections under
normal conditions. The average number of packets within a con-
nection ω is measured to fall around 16 for most of the time. Then,
the speedup in (9) can be simplified in (10).
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Fig. 5. The average search length of both s
As seen from (10), the speedup chiefly depends on the ratio
between the number of malicious packets and that of normal ones
υwhich reflects the intensity of malicious attacks. For example, the
speedup will be respectively 4.17, 6.46 and 8.43, if υ=1/2, 1 and 2.
In conclusion, the average search length of our proposed scheme
will be much shorter than that of the conventional ones.
5. Experiments

This section evaluates the packet distribution performance of
our proposed traffic partitioning scheme DTP-CBF especially under
malicious attacks with real network traffic traces.

5.1. Traffic trace properties

For convenient multiple evaluation and comparison, we oper-
ate network traffic partitioning offline on traffic traces previously
captured from backbone network links. The traces for our eva-
luation should contain a large number of simultaneous flows.
Unfortunately, most published traffic traces are unsatisfactory
because of anonymization. Eventually, our experiments use
4 traffic traces (Network traffic traces, 2015) collected from a
10 Gps main channel in the CERNET (Jiangsu), each of which
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chemes for the selected traffic traces.
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Fig. 6. The ASLs with the packet hybrid ratio 1:2.
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consists of 15,420,235 packets, and whose other properties are
illustrated in Table 4.

Fig. 4 demonstrates the number of simultaneous connections in
the traces, which has a significant impact on the packet distribu-
tion performance of dynamic traffic partitioning scheme. The
number is counted by respectively setting 4 s and 60 s for the
timeout interval of initial connections and established connec-
tions. As seen from Fig. 4, the number of established connections
grows up linearly during the timeout interval and tends to stabi-
lize after that, while the number of initial connections fluctuates in
a wide range between 2K and 40K.
5.2. Packet distribution performance

With the above traffic traces, we contrast our proposed dy-
namic traffic partitioning scheme DTP-CBF with the conventional
one in terms of packet distribution performance. The conventional
scheme (Jiang et al., 2005, 2006; Li et al., 2002; Xiong et al., 2013)
maintains simultaneous TCP connections in a single hash table,
called DTP-SHT. As for TCP connection tables in both schemes,
their hash table lengths are uniformly configured as 214. In addi-
tion, the counting bloom filter in our proposed scheme employs
6 hash functions, BOB, OAAT, TWMX, RS, Hsieh, and SBox (Henke
et al., 2008; Molina et al., 2005).
5.2.1. Experiment 1 (Normal Conditions)
We first evaluate the packet distribution performance of both

dynamic traffic partitioning schemes with the selected traffic
traces under normal conditions. The counting bloom filter of the
ICT table in our proposed scheme is configured in terms of m =
nklog2e, where m, n and k respectively represent the number of
counters, initial connections and hash functions. As seen from
Fig. 4, the number of initial connections n is approximately 8K on
average. Then, the number of counters m is suitable to be set as
64K since the number of hash functions k equals to 6. With the
above configurations, we run both dynamic traffic partitioning
schemes on the TCP traffic in the selected traces, and get their
average search length for each second in Fig. 5.

As seen from Fig. 5, our proposed DTP-CBF scheme outperforms
the DTPSHT scheme in terms of average search length (ASL). In
particular, our proposed scheme performs packet distribution with
the ASLs about 1 almost at all times. In a striking contrast, the ASLs
of the DTP-SHT scheme are much larger and always fluctuate with
approximately 2 on average. This is chiefly attributed to the half-
open connection separation mechanism by which most packets
only need to look up one of the connection tables, i.e., the ICT table
and the ECT table.

5.2.2. Experiment 2 (Malicious Attacks)
Then, we evaluate the packet distribution performance of

both dynamic traffic partitioning schemes under malicious
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Fig. 7. The ASLs with the packet hybrid ratio 1:1.
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attacks especially SYN flooding attacks. The attacks are simu-
lated by inserting falsified SYN packets into normal TCP traffic
in our selected traces. In particular, falsified packets are mixed
with normal packets in different proportions to reflect diverse
attack intensity.

As for the counting bloom filter, the number of its counters is
configured in terms of m = nklog2e, where the number of initial
connections n, i.e. the size of the ICT table, is closely related to the
attack intensity. The ICT table is dominated by unexpired false
connections in the presence of malicious attacks, and its size de-
pends on the timeout interval of each initial connection, the
number of normal packets per second, and the hybrid ratio of
falsified packets and normal packets. The timeout interval is
generally adjusted to 1 second once SYN flooding attacks occur
(Kim et al., 2005; Kang and Kim, 2003). The number of normal
packets per second is around 128K in each traffic trace illustrated
in Table 4. Besides, the number of hash functions k is fixed as 6. In
summary, the number of counters m can be configured as 1M
times as the packet hybrid ratio.

In our experiments, falsified SYN packets are inserted into TCP
traffic in the 4 selected traces respectively during the 20th-30th
second, 30th-50th second, 30th-50th second and 35th-65th sec-
ond. Then we operate both dynamic traffic partitioning schemes
on mixed traffic respectively with the packet hybrid ratio 1:2, 1:1
and 2:1, and calculate their average search length in Fig. 6, Fig. 7
and Fig. 8.
As seen from Fig. 6, Fig. 7 and Fig. 8, our proposed scheme DTP-
CBF performs packet distribution with much shorter average
search length than the conventional one DTP-SHT. In particular,
the DTP-CBF scheme always takes steady short search lengths no
matter how fierce the attacks are. In contrast, the DTP-SHT scheme
degrades sharply in the presence of SYN flooding attacks. In con-
clusion, our proposed scheme provides much better robustness
against SYN flooding attacks than the conventional one. This is
attributed to the fact that all falsified SYN packets no longer need
to search any flow tables as a result of the application of the
counting bloom filter.
6. Conclusion and future work

Dynamic traffic partitioning schemes have been widely applied
in high-speed network packet processing, which achieve excellent
load balance effect at the price of heavy packet distribution
overheads. This paper proposes a robust dynamic traffic parti-
tioning scheme against malicious attacks, which builds the half-
open connection separation mechanism to isolate false TCP con-
nections in the ICT table, and applies counting bloom filters to the
ICT table to defend against SYN flooding attacks. The experimental
evaluations indicate that our proposed scheme performs much
better than the conventional ones in terms of packet distribution
performance. In particular, our proposed scheme performs packet
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Fig. 8. The ASLs with the packet hybrid ratio 2:1.
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distribution with the average search length steadily at about
1 even in the presence of SYN flooding attacks.

In our future work, more traffic traces from different high-speed
network lines will be utilized to evaluate and validate our dynamic
traffic partitioning scheme. After that, we plan to deploy it in specific
network applications such as content delivery. Furthermore, appli-
cations of our proposed scheme to the environment of future
networks, such as software defined networks, are also within our
future work plan.
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