IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025

4257

TECache: Traffic-Aware Energy-Saving Cache With
Optimal Utilization for TCAM Flow Tables
in SDN Data Plane

Bing Xiong
and Keqin Li

Abstract—In the paradigm of Software-Defined Networking
(SDN), its data plane generally perform packet forwarding based
on flow table lookup on TCAM with high energy consump-
tion. Popular energy-saving methods employ caching techniques
for most packets to bypass energy-intensive TCAM lookups.
However, existing energy-saving caches cannot adapt to network
traffic fluctuation with sufficient utilization of cache space due to
non-negligible hash conflicts. To overcome this issue, we design
a traffic-aware energy-saving cache with optimal utilization for
TCAM flow tables in SDN data plane. In particular, we first
devise a nearly conflict-free hashing algorithm for the cache
called FelisCatus, which provides three candidate locations for
each incoming flow by adjacent hopping, and searches for an
empty or replaceable entry for each conflicting flow by co-
directional kicking. Then, we propose an adaptive adjustment
mechanism of flow activity criterion, i.e., packet inter-arrival time
threshold, for enabling the cache to consistently accommodate
the most active exact flows in network traffic. Furthermore, we
build an energy-efficient SDN flow table storage architecture by
applying the above cache and exploiting the accessing features
of different memories. Finally, we verify the performance of
our designed energy-saving cache and flow table storage archi-
tecture by experiments with backbone network traffic traces.
Experimental results indicate that, our designed energy-saving
cache obtains stable and high hit rates around 75% even under
network traffic fluctuation, and our proposed flow table storage
architecture achieve high energy saving rates around 71%, with
the increase of 7.89% compared to state-of-the-art ones.

Index Terms—SDN data plane, TCAM flow tables, energy
consumption, traffic-aware energy-saving cache, nearly conflict-
free hashing, network traffic fluctuation.

Received 9 January 2025; revised 8 May 2025; accepted 29 June 2025.
Date of publication 3 July 2025; date of current version 7 October 2025. This
work was supported in part by National Natural Science Foundation of
China (U22B2005, 61972412), Hunan Provincial Natural Science Foundation
of China (2023JJ30053), Scientific Research Fund of Hunan Provincial
Education Department (22A0232, 23A0735). The associate editor coordi-
nating the review of this article and approving it for publication was
P. Papadimitriou. (Corresponding author: Baokang Zhao.)

Bing Xiong, Guanglong Hu, Songyu Liu, and Jin Zhang are with the School
of Computer Science and Technology, Changsha University of Science and
Technology, Changsha 410114, China.

Jinyuan Zhao is with the School of Information Science and Engineering,
Changsha Normal University, Changsha 410100, China.

Baokang Zhao is with the College of Computer Science and Technology,
National University of Defense Technology, Changsha 410073, China
(e-mail: bkzhao@nudt.edu.cn).

Keqin Li is with the Department of Computer Science, State University of
New York at New Paltz, New Paltz, NY 12561 USA.

Digital Object Identifier 10.1109/TNSM.2025.3585703

1932-4537 © 2025 IEEE. All rights reserved, including rights

, Guanglong Hu"', Songyu Liu, Jinyuan Zhao, Jin Zhang"', Baokang Zhao™,
, Fellow, IEEE

I. INTRODUCTION

HE EMERGENCE of Software-Defined Networking

(SDN) marks a revolutionary transformation in network
architecture, by decoupling control logic from data forwarding
and centralizing network control logic, to form independent
data plane and control plane. By employing Protocol-
independent Packet Processing Programming language P4,
SDN achieves uniform management over network devices,
simplifies network configuration, and promotes network flex-
ibility and innovation capabilities. This architecture has been
applied in a variety of environments such as data centers, wide
area networks and cloud computing [1], [2]. For example,
Facebook extensively applied SDN technology in its Altoona
data center with SDN controllers and automated tools, to
quickly configure and manage its huge data center networks,
significantly reducing network configuration time and error
rate [3]. Furthermore, Microsoft Azure employs SDN technol-
ogy to provide virtual network services, which allows users
to flexibly configure and manage their network resources
in the cloud environment, achieving dynamic allocation and
optimization of network resources [4].

SDN data plane commonly utilizes Ternary Content
Addressable Memory (TCAM) to store flow tables for
rapid wildcarding [5], [6]. This facilitates fast flow table
lookup and packet forwarding in SDN switches. However,
TCAM achieves rapid wildcarding by performing parallel
lookup on flow tables at the cost of high energy consump-
tion. Specifically, each lookup on TCAM consumes energy
approximately 448 times that on SRAM for 1K flow table
entries [7], [8]. More seriously, large-scale SDN deployments
will be confronted with a large amount of packet traffic
and a substantial number of concurrent flows, especially in
supercomputing centers and cloud data centers [9]. This gives
rise to intensive lookup on large-scale flow table, inducing the
performance bottleneck of extremely high energy consumption
of TCAM lookup. Moreover, TCAM energy consumption is
vulnerable to network traffic fluctuation. Therefore, it is urgent
to realize efficient and stable energy saving of TCAM flow
tables under network traffic fluctuation.

Until now, there have been much research progress on
reducing the energy consumption of TCAM flow tables
through flow entry compression, flow table aggregation,
and TCAM lookup bypass, etc. Initially, several researchers
have substituted match fields in SDN flow tables with flow

for text and data mining, and training of artificial intelligence

and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

)) o See htt 9://WWW.ieee.or,%/éaublications/ri
Authorized licensed use limited to: CHANGSHA UNIV O

SCIENCE AND TECHNOLOGY.

%hts/index.html for more information

ownloaded on October 08,2025 at 03:37:55 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3006-7295
https://orcid.org/0009-0007-2232-3037
https://orcid.org/0000-0002-7464-2247
https://orcid.org/0000-0001-9200-9018
https://orcid.org/0000-0001-5224-4048

4258

labels or identifiers, to decrease the match width of each
flow entry, such as Compact TCAM [10], Tag-in-Tag [11],
RETCAM [13], and HMPC [14]. However, each incoming
packet still needs to traverse entire TCAM flow table to
complete its forwarding with substantial energy consumption.
Afterwards, some researchers have applied wildcards to aggre-
gate similar entries within SDN flow tables for cutting down
the number of flow entries, such as HTFA [15], Q-fag [16],
and WildMinnie [19]. Nevertheless, their stringent aggregation
conditions result in low aggregation levels, along with limited
energy saving effects. Furthermore, recent researchers have
designed filters or caches to bypass energy-intensive TCAM
flow table lookup for a certain number of incoming packets,
such as DevoFlow [21], TSA-BF [8], CacheCAM [23], and
CuckooFlow [26]. However, filters can only filter out packets
launching new flows, which just account for a small fraction
of packet traffic. Meanwhile, existing caches are difficult
to achieve sufficient utilization due to the lack of excellent
hash collision resolution methods and favorable adaptability
to network traffic fluctuations.

To address the above-mentioned issues, this paper initially
takes an insight into network traffic characteristics, and the
high energy consumption of TCAM flow tables. Then, we
design a traffic-aware energy-saving cache called TECache,
which always accommodates packet flows with top activity
for optimal cache utilization. Specifically, we propose a nearly
conflict-free hash algorithm FelisCatus, to deal with the hash
collision of exact active flows to be cached. Meanwhile,
we devise an adaptive adjustment mechanism of packet
inter-arrival time threshold as flow activity criterion and its
step size, to match the number of active flows with cache
capacity. Furthermore, we derive cache utilization rates and
cache hit rates based on the assumption of Poisson process
for flow arrivals and exact-flow activity model. With the
TECache, we construct an energy-efficient SDN flow table
storage architecture, by taking advantage of different flow
table memories. Finally, we verify the performance of our
designed TECache and flow table lookup storage architec-
ture by experiments with backbone network traffic traces.
The main contributions of this paper are summarized as
follows:

o Designing a traffic-aware energy-saving cache with
optimal utilization, which finds out and strives to accom-
modate a certain number of most active packet flows in
line with its capacity, for stably maintaining high cache
hit rates even under network traffic fluctuation.

e Proposing a nearly conflict-free hash algorithm for our
designed energy-saving cache called FelisCatus, which
provides three candidate buckets in the cache for each
inserted flow by adjacent hopping, and searches for
a vacancy in the cache for each conflicting flow by
co-directional kicking, to almost perfectly resolve hash
collision.

e Devising an adaptive adjustment mechanism of flow
activity criterion, which dynamically adjusts the packet
inter-arrival time threshold of active flows along with its
step size, for adapting the number of active flows to cache
capacity.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025

o Constructing an energy-efficient SDN flow table storage
architecture by employing the above traffic-aware energy-
saving cache, and formulating its energy saving rate and
packet forwarding delay based on the assumption of
flow activity model and Poisson process for packet flow
arrivals.

The rest of this paper is organized as follows. Section II
introduces the related works. In Section III, we investigate into
high energy consumption of TCAM flow tables and network
traffic characteristics. Section IV designs traffic-aware energy-
saving cache with nearly conflict-free hash algorithm and
adaptive adjustment mechanism of flow activity criterion, and
derives the formal expression of its utilization rate and hit rate
based on packet flow assumption. In Section V, we construct a
energy-efficient SDN flow table storage architecture based on
the above cache, and provide the pseudo-code implementation
of the corresponding flow table lookup algorithm, and formu-
late its performance metrics such as energy saving rate and
packet forwarding delay. Section VI evaluates the performance
of our proposed traffic-aware energy-saving cache and flow
table storage architecture by experiments with simulative
network traffic traces. In Section VII, we summarize the paper.

II. RELATED WORK

During the evolution of SDN, some research work has
strived to reduce the matching length of flow entry by
compressing its match fields, to tackle the increasing number
of match fields in flow tables along with higher and higher
energy consumption of TCAM flow table lookups. Initially,
Kannan and Banerjee [10] designed a compact TCAM flow
entry scheme that employs flow identifier to replace 15 match
fields, for reducing the match length of TCAM flow table
lookup. Banerjee and Kannan [11] also presented an efficient
SDN flow table management method called Tag-in-Tag, which
designs short two-layer routing path tags associated with
packet flows by exploiting SDN features. Wang et al. [12]
further built a source-controlled OpenFlow packet switching
model, which utilizes source routing address called vector
address as packet forwarding label, without the requirement
of SDN flow tables. Meanwhile, Zhang et al. [13] established
a TCAM flow table compression model called RETCAM,
which designs inter-field merge, field mapping, and intra-
field compression algorithms, to shorten the length of each
flow entry for reducing the storage of TCAM flow tables.
Furthermore, Srinivasavarma et al. [14] proposed a rule com-
pression mechanism based on hierarchical encoding, which
classifies all rules into different levels and encodes them
into shorter forms, for reducing the storage space of rules.
The above schemes can effectively cut down the energy
consumption of TCAM flow table lookup, by shortening the
matching length of each flow entry. However, each incoming
packet still has to match against all flow entries in parallel
with high energy consumption.

To mitigate the substantial energy consumption issue from
parallel matching against all TCAM flow entries, numerous
scholars have proposed flow table aggregation algorithms to
aggregate similar flow entries for decreasing the number of

Authorized licensed use limited to: CHANGSHA UNIV OF SCIENCE AND TECHNOLOGY. Downloaded on October 08,2025 at 03:37:55 UTC from IEEE Xplore. Restrictions apply.

XIONG et al.: TECache: TECACHE WITH OPTIMAL UTILIZATION FOR TCAM FLOW TABLES IN SDN DATA PLANE

flow entries. Cheng et al. [15] introduced a flow rule reduction
algorithm, which organizes all rules in a binary tree and aggre-
gates non-prefix rules by an optimal routing table construction
algorithm. Subsequently, they applied secondary aggregation
by employing a modified Quine-McCluskey algorithm, for
a notable reduction in the number of flow rules within
SDN switches. Nevertheless, this algorithm needs to undergo
complex operations and slow aggregation speeds. In response,
Wu et al. [16] designed a proactive flow aggregation scheme
based on destination address and source port on demand
conversion, which aggregates multiple flow table entries with
different source addresses but same destination address into
a single entry, significantly reducing the size of flow tables
in SDN switches. Then, Saha et al. [17] proposed a QoS-
aware flow rule aggregation scheme for software-defined IoT,
which employs a path selection heuristic algorithm to find
out bottlenecked switches, and determines optimal aggregation
points and paths to minimize the total number of flow rules.
However, this scheme tends to induce congestion on certain
links along the best path. In response, Li and Hu [18] devised
an efficient flow forwarding scheme based on segment routing,
which aggregates flow table entries in accordance with the
overlapping degree of flow paths. Meanwhile, they employed
an intelligent encoding algorithm to continuously learn online
and update flow path information for optimal path aggregation,
but did not consider possible conflicts between rules. To solve
this problem, Khanmirza [19] proposed a rule aggregation
method based on pattern dominance relation, which aggregates
multiple rules at an output port by leveraging non-prefix
wildcard patterns of universal addresses, for reducing the
number of rules required to be stored in SDN switches.
However, these flow table aggregation algorithms demand
aggregated flow entries with identical action sets, which limits
the degree of aggregation along with unsatisfactory TCAM
energy saving effect.

Owing to the limited compression and aggregation of
flow tables, some researchers have strived to bypass energy-
intensive TCAM flow table lookup for incoming packets,
for better energy-saving effect. Li et al. [20] accommodated
exact flows with hash tables for fast lookup, and adopted
TCAM to hold flows with hash collision. However, it does
not apply to wildcard flows. In response, Mogul et al. [21]
further designed a flow management scheme called DevoFlow,
which accommodates TCAM flow entries in exact-flow tables
by rule cloning, and looks up exact-flow tables in priority
for less TCAM lookup. Kao et al. [8] built a TSA-BF
filter with partitioned caching and automatic scaling, which
predicts the inexistence of newly arrived flows in flow tables,
to bypass needless lookup on TCAM flow tables for their
packets. However, the filter merely takes effect on the first
packet in each flow, which only take up a small fraction of
packet traffic. Li et al. [22] presented a low-power TCAM
packet classification scheme based on decision tree, which
divides original rule set into several subsets in terms of their
small fields, recursively maps rules into decision trees without
rule replications, and applies top-down traversal algorithm
to obtain index items. Congdon et al. [23] further devised
a CAM prediction cache to map packet fingerprints into

4259

flow identifier, for most packets to skip TCAM flow table
lookup after cache hit. Nonetheless, each cache lookup still
consumes much energy due to its parallel matching. To
mitigate this drawback, Xiong et al. [26] devised an energy-
saving cache based on Cuckoo filter, which caches active
exact flows in SRAM and employs kicking operations to
find storage locations for each conflicted flow, for high cache
utilization rates and hit rates with resultant significant energy
consumption reduction. Nevertheless, the above caches are
difficult to achieve sufficient space utilization due to the lack of
perfect hash collision resolution. More seriously, they cannot
be adaptively adjusted in line with network traffic fluctuation,
to stably achieve favorable energy saving effect.

III. MOTIVATION
A. TCAM Energy Consumption in SDN Switches

In SDN data plane, a switch takes charge of fast packet
forwarding in accordance with flow rules generated by its
controller, illustrated in Fig. 1. As for each arrived packet, the
switch first caches it in the receiving queue of its ingress port,
and parses it to extract key fields in its protocol headers for
flow identifier generation. Subsequently, the flow identifier is
applied to match against SDN flow table, composed of flow
rules complying with southbound protocol specification. If the
match succeeds, the packet will be cached in the sending queue
of the egress port indicated by the matched entry to wait for
forwarding, after performing a series of operations including
ACL application, counter update and backplane switching.
Otherwise, the switch will send a flow setup request involving
the key content of the packet to its controller. After receiving
corresponding flow rule, the switch installs it into the flow
table, and forwards subsequent packets in the flow according
to it. In summary, flow table lookup is a core step of packet
forwarding in SDN switch and has a critical impact on its
performance.

SDN introduces wildcards into the match fields of its flow
tables, to achieve flexible definition of packet flows with dif-
ferent granularities. Flow tables are generally stored in TCAM
(Ternary Content Addressable Memory) for fast wildcarding.
However, TCAM adopts ternary logic (represented by 0, 1,
and X, where X stands for “any” value), which requires more
transistors than traditional binary storage units. Meanwhile,
TCAM needs to activate all circuit units in storage array to
implement a parallel matching mechanism during flow table
lookup, which leads to high energy consumption during SDN
packet forwarding. More seriously, TCAM flow tables must
perform parallel matching for a large number of packets in
high-speed networks, further aggravating the problem of its
energy consumption. In summary, it is essential to reduce
TCAM energy consumption in SDN switches.

B. Network Traffic Characteristic

There is a universal phenomenon in network traffic that it
exhibits distinct features of locality and fluctuation [24], [27].
Specifically, network traffic locality refers that a small pro-
portion of flows account for a majority of packet traffic from
the space point of view, and packets within each flow tend

Authorized licensed use limited to: CHANGSHA UNIV OF SCIENCE AND TECHNOLOGY. Downloaded on October 08,2025 at 03:37:55 UTC from IEEE Xplore. Restrictions apply.

4260

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025

| Packet |

T P e Lparsing

Ingress|port Receiving queue

Parallel lookup

Flow rule

A.Lookup failure

Flow setup request

| Counter |
L update |

B.Lookup success

SDN flow table

"Backplane |
|_switching
_———— S
| AcCL |
Lapplication!

SDN switch

pi| | m

ending queue Egress[port

Fig. 1. Packet forwarding in a SDN switch.

to arrive in batches from the time point of view. Therefore,
packet flows can be categorized into active ones and idle
ones. In particular, an active flow is characterized by that
many packets intensively arrive in a short time, and can
be identified by Packet Inter-Arrival Time (PIAT), i.e., the
interval between the arrival time of its two consecutive packets.
Note that SDN incorporates wildcards into the match fields
of its flow tables, where each wildcarding flow can be
considered as an aggregation of multiple exact flows. Hence,
it is feasible to mitigate the problem of high TCAM energy
consumption, by caching active exact flows with low-power
memories like SRAM. The cache is expected to greatly reduce
TCAM energy consumption, by enabling most packets to
directly hit the cache and bypass energy-intensive TCAM flow
table lookups. However, the number of active exact flows is
easily affected by network traffic fluctuation, owing to the
combined effect of various factors, such as diverse user behav-
iors, application load variations, and unexpected cyberspace
activities.

To verify the locality and fluctuation of network traffic,
we choose network traffic traces released by the Jiangsu
Provincial Key Laboratory of Computer Network Technology.
Particularly, we select a 300-second trace around midnight
on 2016/10/17 and a 100-second trace around midnight on
2013/9/3 [25]. Fig. 2(a) illustrates the real-time proportion
of active exact flows and packets in batches, with the PIAT
threshold set as 256ms. As shown in Fig. 2(a), active flows
account for about 20% of all packet flows, while pack-
ets in batches comprise approximately 80% of all packets.
Furthermore, Fig. 2(b) exhibits the varying number of active
exact flows for different values of the PIAT threshold. Taking
the PIAT threshold 256ms as an example, the flow number
can drop to 6.1K and peak around 9.3K within 100 seconds.
In short, the number of active exact flows presents significant
fluctuation over different time periods. This poses a tough
challenge for designing active-exact-flow caches to stably
achieve favorable energy saving effect of TCAM flow tables
in SDN switches.

— The pr

““““

14 PIAT=128ms.
~ = PIAT=256ms
PIAT=512ms

ct flow(k)

The number of active exa

Time(s)

Fig. 2. Network traffic characteristics: a) Network traffic locality; b) Network
Traffic Fluctuation.

IV. TRAFFIC-AWARE ENERGY-SAVING CACHE WITH
OPTIMAL UTILIZATION

This section takes a deep insight into the locality and
volatility of network traffic, and builds a traffic-aware energy-
saving storage architecture for SDN flow tables.

A. Design Concept

1) Cache Structure: For perfect adaption to network traffic
fluctuations, this paper designs a Traffic-aware Energy-saving

Authorized licensed use limited to: CHANGSHA UNIV OF SCIENCE AND TECHNOLOGY. Downloaded on October 08,2025 at 03:37:55 UTC from IEEE Xplore. Restrictions apply.

XIONG et al.: TECache: TECACHE WITH OPTIMAL UTILIZATION FOR TCAM FLOW TABLES IN SDN DATA PLANE

|\s\ig|idx|tsp|oj?i|
COC TC T
To) o) To
o o) Toy
[0 10]
[

| Bucket[0]

0]Bucket[i-l]
0 |Bucket][/]
0 |Bucket[i+1]

0
O T e

|Bucket[length-1]

Fig. 3. The data structure of our designed TECache.

Cache (TECache) with low-power high-speed memory in
Fig. 3. The TECache accommodates most active flows all the
time for optimal cache utilization. From the perspective of
data structure, it consists of several hash buckets, each of
which contains multiple cache entry. In particular, each cache
entry records the essential information of an active exact flow,
including flow signature sig, flow entry index idx, timestamp
tsp and offset off. The flow signature sig is generated by
signature function with the identifier of the active exact flow as
input, typically 2 or 4 bytes. The flow entry index idx indicates
the TCAM flow entry which the active exact flow belongs to.
The timestamp tsp records the arrival time of most recently
arrived packet in the active exact flow. The offset off records
the storage offset of the active exact flow (0, +1, —1) from
its actual storage position to its hash mapping position.

2) Nearly Conflict-Free Hash Algorithm: Existing typical
energy-saving caches [26] generally employed Cuckoo hash-
ing to resolve hash collisions, while performing fast cache
lookup. However, the Cuckoo hashing requires extra compu-
tational overhead for each cache lookup, and is easy to fall
into potential looping status due to its kicking operation for
conflicting flows. To address this problem, we design a nearly
conflict-free hash algorithm called FelisCatus for our designed
cache with its logical structure in Fig. 4. Specifically, the cache
is logically considered as a circular array, which joints the first
hash bucket and the last one. The FelisCatus maps each active
exact flow to a hash bucket in the cache, and takes its two
adjacent buckets as candidate storage positions by adjacent
hopping. As for cache lookup, it only needs to match against
its directly mapped bucket and two adjacent buckets, which
can effectively ensure decent flow table lookup performance.

As for a newly emerged active exact flow to be inserted, we
strive to find a storable position even by repeatedly kicking out
flows in an identical direction. In particular, we accommodate
it into its directly mapped bucket or two adjacent buckets,
if there is any vacant entry. Otherwise, we kick out a flow
from either of the adjacent buckets to make room for the
inserted flow. Then, the kicked flow is inserted into its adjacent
bucket in the kicking direction away from the directly mapped
bucket, and we kick out any flow that may exist there. The
above process proceeds, until we find a vacant entry for
insertion or an inactive flow for replacement, or the number
of kicking operations reaches a predefined threshold. Setting

4261

'Bucket[i+ 1]

‘ . hash.

Fig. 4. The FelisCatus hash algorithm for our designed TECache.

a higher value for the predefined threshold provides more
opportunities to find out a vacant entry, which significantly
reduces hash collision rates and enhances cache utilization,
but also increases average flow insertion time. Consequently,
the FelisCatus hash algorithm can always find out a storable
position for any inserted flow, only if there is a vacant entry
in the cache. This resolves hash collisions almost perfectly,
which provides a solid foundation for sufficient utilization of
cache space.

3) Adaptive PIAT Adjustment Mechanism: Active flows are
generally identified by Packet Inter-Arrival Time (PIAT), i.e.,
the interval between the arrival time of its two consecutive
packets. Existing energy-saving caches [26] adopts fixed PIAT
threshold, leading to the problem that the number of active
flows greatly varies with network traffic fluctuations, along
with resultant unstable energy saving effect. To address this
problem, we propose an adaptive adjustment mechanism of
the PIAT threshold as flow activity criterion, to always cache
packet flows with highest activity in network traffic. The PIAT
threshold is initially set as a typical interval, such as 100ms
or 200ms. After that, the mechanism monitors the fitness of
the number of active flows and cache capacity, and adaptively
adjusts the PIAT threshold in the case of obvious misfit.

Fig. 5 demonstrates the working principle of the adaptive
PIAT adjustment mechanism. When the number of active flows
in network traffic obviously goes beyond cache capacity, the
cache cannot accommodate all active flows, and will randomly
hold a part of active flows with suboptimal cache hit rate. In
this case, we decrease the PIAT threshold to reduce the number
of active flows, for matching with cache capacity. By this way,
the cache will keep the most active flows in network traffic,
achieving satisfactory cache hit rate. Conversely for a sharp
drop in the number of active flows, there will appear many
vacant entries in the cache with a great waste of cache space.
At this time, we increase the PIAT threshold to augment the
number of active flows, for coming close to cache capacity
with full cache space utilization.

For convenient description of our adaptive PIAT adjustment
mechanism, we formalize the relationship of the PIAT thresh-
old at next time period with that at current one as follows.
Suppose the PIAT threshold at time ¢ as PIAT(f) and the step
size of the threshold adjustment (¢), we can express the PIAT

Authorized licensed use limited to: CHANGSHA UNIV OF SCIENCE AND TECHNOLOGY. Downloaded on October 08,2025 at 03:37:55 UTC from IEEE Xplore. Restrictions apply.

4262

Fluctuating network traffic

The number of active flows

Cache capacity

]
|
|
|
|
|
|
|
|
|
|
|
|
|

1 1 |

Step size

+1 0 -2
\ /
Original PIAT

¥

Current PIAT

Fig. 5. Adaptive PIAT adjustment mechanism.

threshold PIAT(t+1) at the next time period 741 as:
PIAT (t +1) = PIAT (t) + 6 (1) (1)

The step size &(¢) in (1) is not suitable to set a fixed interval,
since network traffic probably undergo varying degrees of
fluctuation. If the step size is set as a small interval, the number
of active flows still exhibits obvious change in the case of
drastic network traffic fluctuation, and no longer matches the
cache capacity. Conversely, it is difficult to achieve a precise
match between the number of active flows and the cache
capacity, if the step size is set as a large interval. Therefore,
we real-timely adjust the step size, according to the fitness of
the number of active flows and cache capacity. In particular,
the step size 6(¢) in (1) is designed as:

5(t) =k <1 - Fé”))

where F(t) represents the number of active flows at time ¢, C
denotes the number of entries in the cache, and « signifies the
cardinality of step size adjustment. The value of x depends
on the fluctuation amplitude of network traffic in different
network scenarios. As for network scenarios with drastic traffic
fluctuations, we will set a higher value of « for faster growth
of the PIAT to quickly match the number of active flows
with cache capacity. Specifically, we first calculate the ratio
of the number of active flows F(t) to that of cache entries C,
and its deviation degree compared to full load condition of
the cache. Then, we obtain the step size §(¢) by multiplying
the cardinality « and the deviation degree. In summary, the
PIAT adaptive adjustment mechanism can real-timely sense
the varying number of active flows and adapt to network
traffic fluctuations, for ensuring full cache space utilization
and consistently maintaining high cache hit rate.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025

1|

0]
10)(ss
0]l

1|

Fig. 6. Cache lookup.

|)L]

.
[0 T)
()L [o)T0)
o]
I

[0)(A [-1]
| JC []

B. Cache Operations

1) Cache Lookup: Fig. 6 demonstrates a typical example
of lookups on the TECache. Upon the arrival of a packet p
within a flow f arrives at the time t, we first parse its various
protocol headers to extract its flow identifier fid, and compute
its flow signature sig. Then, we retrieve its directly mapped
bucket by hashing the flow signature sig, and match against
the bucket and its adjacent buckets by the flow signature sig.
If a cache entry is successfully matched, we directly locate
the corresponding entry in the TCAM flow table with the flow
entry index idx in the cache entry, and process the packet p by
the actions in the flow entry. Finally, we update the timestamp
tsp in the cache entry with the arrival time of the packet p.
As for failed cache matching, we return null.

2) Cache Insertion: As for an active exact flow to be
inserted, we first compute its flow signature sig with its flow
identifier fid. Then, we map the flow into the cache by our
designed hashing algorithm FelisCatus, to locate its directly
mapped bucket and two adjacent buckets. After that, we check
whether there is any vacant entry in the three buckets. Fig. 7
shows three cases of checking results and corresponding cache
insertion operations:

Case 1: If there is any vacant entry in directly mapped
bucket, we will directly record the information of the inserted
flow in the entry, including its flow signature sig, the flow
entry index idx and the timestamp of its most recently arrived
packet tsp. Particularly for a newly arrived flow f in Fig. 7,
its directly mapped bucket has a vacant entry, and we insert
f1 into the vacant entry with its offset 0.

Case 2: If there is no vacant entry in directly mapped
bucket, and one of its two adjacent buckets has at least a vacant
entry, we will record the information of the inserted flow in
the entry. As for the next inserted flow fo in Fig. 7, its directly
mapped bucket is filled up, and its upper adjacent bucket has
a vacant entry. In such case, we put fo into the vacant entry
and set its offset to +1.

Case 3: If no vacant entry exists in both directly mapped
bucket and its two adjacent buckets of the inserted flow, we
will randomly select either of the two adjacent buckets, and
kick out a flow in the selected bucket to its adjacent bucket in
the direction far from the directly mapped bucket. In particular,
we prefer to choose a flow whose offset direction is opposite
to the kick-out direction, so it can return to its directly mapped
bucket while making room for the inserted flow. The above
kick-out operation proceeds until a vacant entry is found or the

Authorized licensed use limited to: CHANGSHA UNIV OF SCIENCE AND TECHNOLOGY. Downloaded on October 08,2025 at 03:37:55 UTC from IEEE Xplore. Restrictions apply.

XIONG et al.: TECache: TECACHE WITH OPTIMAL UTILIZATION FOR TCAM FLOW TABLES IN SDN DATA PLANE

Gyimsetf To)) I) (CI9)A (s)/)
COCT T o) CIOC oA T e
C [oC [-0C ToJC [y (CTo)CsFOC o)L T=9
_ToJ Oi o) To) (T 0% 0JC_To]J
[To)CA To)(I)] (CToJ(ATo)Ca))
@0 o) Tol” o) o (To) Toirz o)™ To)
C To)C [To)t -y~ To)Ca -0 To) [+1)
CJC O T T CTJCTOC o) Tox=et)
Fig. 7. Cache insertion.
original state __ Delete fu
B To) To)CT o) To) [ToJr To)r To) T[o)il
i JoJC Jo)ra[o)f 0]:>l oJC ToJ I To):
i JoJl o) Jo)Cs - _ToJC [oJ [o](A]-1)
w2 Jo)ls [o) To) [ToJCa -0 Toj ToJi2
final state
F(C T ToJC TojC To] (C To)C To) To) Tojil
i o) To)is [o] Ol@l 0)C To)s [o) ToJ:
#(_Jo) o) To)(s Jo](_ToJ ToJ fo]f Ji+l
#2(__ToJ JC_ToJC_To) ([ToJlsk [-—ToJ ToJi2
Fig. 8. Cache deletion.

number of kick-out operations reaches a predefined threshold.
When the inserted flow f3 arrives, its three candidate buckets
are all full and there is a cached flow f; with the offset -1 in
its upper adjacent bucket in Fig. 7. At this time, it is proper
to kick out the flow f; upward to its directly mapped bucket
for accommodating the flow f3. Then, we randomly select a
flow fy in the directly mapped bucket of f; to be kicked out,
and insert f, into a vacant entry in its upper adjacent bucket.
Meanwhile, we change the offset of f, to +1.

3) Cache Deletion: When a SDN switch receives a flow
deletion message from its controller, it identifies and deletes
corresponding flow entry based on flow rule information.
Additionally, each flow entry also needs to be eliminated when
it expires. As for the deletion of a flow entry, the SDN switch
first locates and deletes all its associated exact flows in the
cache. When a cached flow is deleted, we check if there is an
offset cached flow in its adjacent bucket, directly mapped into
the bucket of the deleted flow. If there exists, we move the
offset flow back to its directly mapped bucket. Fig. 8 exhibits
a typical example of deleting a cached flow. When deleting a
flow f; in the ith bucket, we find that there is a flow f; in the
i + 1th bucket, which is kicked from the ith bucket. Then, we
move the flow f5 to the vacated cache entry of the deleted flow
fa in the ith bucket and reset its offset to 0. Afterwards, we
similarly transfer the flow fg with the offset —1 in the i 4 2th
bucket into the i+1th bucket. The above process is performed
repeatedly until there is no flow required to be moved back
to its directly mapped bucket. This enables as many cached
flows as possible to be stored in their directly mapped buckets,
facilitating their packets to quickly locate them and perform
fast forwarding.

C. Cache Performance Metrics

1) Cache Utilization Rate: Owing to hash collisions, cache
space is usually difficult to be completely utilized for accom-
modating active flows. Nevertheless, the number of cached

4263

flows has a direct impact on the energy-saving effect of the
cache. Hence, cache utilization rate, generally defined as the
proportion of the number of cache flows to cache capacity,
is a critical metrics of cache performance [29]. Suppose that
there are K active exact flows in network traffic, and N hash
buckets in the cache, each of which contains M entries. With
the assumption of the probability pr,; that an active flow is
unsuccessfully inserted into the cache, the cache utilization
rate U,.,che can be formulated as:
K (1= ppaar)

Ucache = W 3)

As for our designed TECache with the hash algorithm
FelisCatus, a flow can be successfully inserted in the cache for
Casel, Case2, and Case3 in Section IV-B2. Its cache insertion
fails only when it is full for its directly mapped buckets and
two adjacent hash buckets and the number of kicks exceeds its
threshold 7. This implies that there is no vacant entry in the
T + 3 buckets from the mapped adjacent bucket to the bucket
that was last attempted to kick into. Given that each active
flow is independent and randomly mapped to a bucket in the
cache, we can model the cache insertion of all active flows as a
Poisson process with the parameter A = K /N. Subsequently,
we can express the probability of a bucket containing i flows
as:

e AN
1!

“

As for a full bucket, there are at least M active flows mapped
into it. Then we can calculate the probability of a bucket in
full Pyl as:

b =

M-1 M—1 67)‘)\1'
Prar=1-Y pi=1-% —)
=0 =0

Suppose each bucket in the cache is independent of each
other, the probability of a failed flow insertion pf,; can be
solved by computing the probability that all 7 + 3 hash
buckets are full in (6).

M—1 _xy; T+3
_ . T+3 _ € A’ 6
Pfail = Ppyyy = 1- Z i (6)
1=0

With the cache capacity NM and the number of inserted
flows K, we can eventually calculate the cache utilization rate
Ucache as:

U B K (1= ppaar)
cache — T

N 743
f(oztt))
= @)

N NM

To estimate the cache utilization rates of our designed
TECache, its related parameters are assumed as: there are
4096 active flows in network traffic, the cache contains
1024 hash buckets each of which has 4 entries, and its kicking
number threshold is set as 10. With these parameter settings,
we can approximate the flow insertion failure probability
pfail as 0.062%, and the cache utilization rate U,.p. about

Authorized licensed use limited to: CHANGSHA UNIV OF SCIENCE AND TECHNOLOGY. Downloaded on October 08,2025 at 03:37:55 UTC from IEEE Xplore. Restrictions apply.

4264

99.94%. These indicate that our designed hash algorithm can
almost perfectly resolve hash collisions, and our designed
cache nearly accommodate all active flows when their number
is equivalent to cache capacity. In summary, our designed
TECache can achieve sufficient cache space utilization.

2) Cache Utilization Rate: Cache hit rate is a crucial
metrics for evaluating cache performance. Since our designed
TECache holds active flows, it is necessary to define the
activity degree of a flow at certain time, generally as the
probability that the next arrived packet belongs to the flow.
Suppose that the activity degrees of all packet flows vary in
equal proportion after being sorted [28]. Then, the cache hit
rate can be simplified as the sum of the activity degrees of top
ks flows, where ks is the number of flows physically stored
in the cache. Therefore, we can compute the cache hit rate of
our designed TECache as follows:

Assume that there are L flows in network traffic, and
their activity degrees follow a geometric progression with a
common ratio g (0 < g < 1). After sorting all packet flows
in descending order of their activity degrees, we can give the
activity degree of the most active flow a; by the properties of
geometric sequences as:

_1=q
=140

Subsequently, we can derive the activity degree of the ith
flow a; (1<i<1L)as:

®)

ai

l—gq

1_ " q

Note that our designed TECache almost perfectly resolves
hash collisions by the hash algorithm FelisCatus, and adapts
the number of active flows with cache capacity by the adaptive
PIAT adjustment mechanism. Consequently, it can be inferred
that our designed TECache will accommodate the most active
flows with their number Ks equivalent to the cache capacity
NM. Finally, we can deduce the cache hit rate CHR7Ecuche
by summing the activity degrees of these flows in (10).

71—
a; = ai1q

1— gk _1_qNM

= 10
l—qL 1—qL (10)

Ks
CHRECache = Z a; =
i=1

According to (10), we can estimate the cache hit rate
CHR1ECqche In Table I, for different number of all packet
flows in network traffic L, common ratio of flow activity degree
q and cache capacity NM.

As seen from Table I, the cache hit rate is chiefly deter-
mined by the common ratio g and the cache capacity NM,
while almost independent on the number of all packet flows
L. Particularly for fixed number of packet flows L and cache
capacity NM, the cache hit rate rapidly increases along with the
decreasing common ratio ¢g. This is because the common ratio
q reflects the skewness of packet traffic distributed over flows.
As for smaller common ratio g, packet traffic distribution will
be more skewed towards most active flows kept in the cache.
Thus, the cache will get higher hit rate. Meanwhile, the cache
hit rate will naturally rise up with the increasing cache capacity
NM, since the cache will store more active flows. On the
contrary, the number of packet flows L almost has no effect on

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025

TABLE I
THE ESTIMATED CACHE HIT RATES OF OUR DESIGNED TECACHE

L q NM CHRTECache
100k 0.9997 3.5k 65.01%
100k 0.9997 4k 69.89%
100k 0.9996 4k 79.82%
100k 0.9996 4.5k 83.48%
200k 0.9996 4k 79.82%
200k 0.9996 4.5k 83.48%
200k 0.9995 4.5k 89.47%
200k 0.9995 S5k 91.80%
400k 09995 4.5k 89.47%
400k 0.9995 Sk 91.80%
400k 0.9994 S5k 95.03%
400k 0.9994 5.5k 96.32%

the cache hit rate, since the cache already contains the most
active flows, and more inactive flows will not affect the cache
hit rate.

V. ENERGY-EFFICIENT SDN FLOW TABLE STORAGE
ARCHITECTURE

A. Architecture Design

By exploiting the characteristics of different storage media,
we propose an energy-efficient flow table storage architec-
ture for SDN switches in Fig. 9, based on our designed
traffic-aware energy-saving cache. This architecture primarily
consists of the TECache in SRAM, match sub-table in TCAM,
and content sub-table in DRAM. The match sub-table and
content sub-table are built by accommodating match fields and
content fields in a SDN flow table respectively with TCAM
and DRAM. The separation of content fields from the flow
table enables TCAM with fixed capacity to accommodate
more packet flows. This will effectively mitigate the problem
of limited TCAM capacity in SDN switches, especially for
specific network scenarios with large-scale flow tables. The
TECache adopts SRAM to hold active exact flow contained in
the flow table, for fast lookup and low energy consumption.

As for an arrived packet, the SDN switch first computes
its flow identifier with its key fields, and matches against the
TECache. If the match succeeds, we can directly locate the
corresponding content sub-entry mapped from the matched
cache entry. Then, the packet can be rapidly forwarded in
conformity to the action set in the content sub-entry, without
TCAM flow table lookup. Otherwise, the switch continues to
look up the match sub-table in TCAM. If the lookup succeeds
to find out a match sub-entry, we similarly perform packet
forwarding in line with the content sub-entry corresponding to
the match sub-entry. By this way, a majority of packets within
active flows will directly hit the TECache in SRAM with
low energy consumption. Only a minority of packets within
inactive flows require additional lookup on the match sub-table
in TCAM. In summary, the above architecture can significantly
reduce the lookup energy consumption of the SDN flow
table. Meanwhile, the TECache employs our designed hash
algorithm FelisCatus to achieve fast lookup, which ensures
favorable lookup performance of the flow table.

In this architecture, the size of SRAM plays a crucial role in
both energy efficiency and performance. A larger SRAM can

Authorized licensed use limited to: CHANGSHA UNIV OF SCIENCE AND TECHNOLOGY. Downloaded on October 08,2025 at 03:37:55 UTC from IEEE Xplore. Restrictions apply.

XIONG et al.: TECache: TECACHE WITH OPTIMAL UTILIZATION FOR TCAM FLOW TABLES IN SDN DATA PLANE 4265
TECache (SRAM) SDN switch
cache | | |
. lookup
»lnH
execute
flow identifier action set
packet traffic
failed I I I successful
lookup lookup
ﬁactive exact flow
match fields | mask |----------- P{ action set |timestamp
match fields | mask -----------p action set |timestamp
mapping >
match fields | mask |----------- P{ action set |timestamp
match fields | mask f----------- P action set [timestamp
match sub-table (TCAM) content sub-table (DRAM)

flow setup request‘

rﬂow rule installation

SDN controller |

Fig. 9. Energy-efficient SDN flow table storage architecture.

store more active flows, which improves the cache hit rate and
reduces TCAM accessing frequency, leading to lower energy
consumption. However, both its static power consumption and
leakage power rise with the increase of its capacity. This is
because larger memory arrays require more circuits to drive
access signals (e.g., row and column lines), and the larger
SRAM contains more memory cells, which must maintain their
state even when not accessed, resulting in higher static power
consumption. As for our SRAM cache, it will get less the
energy-saving benefits from persistently increasing the cache
size. This is because the architecture has already cached most
of the active flows, and newly added capacity is primarily
used to store less active flows, following the principle of
diminishing marginal returns. By optimally setting the size
of SRAM cache, we are able to achieve satisfactory energy
savings while maintaining favourable lookup performance.

B. Flow Table Operations

1) Packet Forwarding Algorithm: Algorithm 1 provides the
pseudo-code implementation of packet forwarding algorithm
based on energy-efficient flow table lookup. Upon receiving a
packet p, a SDN switch first parses its headers at each protocol
layer, to extract key fields (e.g., source/destination IP address,
source/destination port and protocol type, etc.). Then, we
calculate its flow identifier fid with these key fields, to generate
its flow signature sig for looking up the TECache (lines 1-2).
If the cache lookup succeeds, we locate the corresponding
TCAM match entry fe by the flow entry index idx in the
matched cache entry ce, and verify whether the packet matches
with fe. Then, we retrieve the corresponding DRAM content
entry de and forward the packet in accordance with its action
set (lines 3-7). Finally, we update the DRAM content entry de,
including counters and the arrival time of most recently arrived

packet. At the same time, we also update the timestamp tsp
in the matched cache entry ce (line 8-9).

If the cache lookup fails, we continue to look up the TCAM
match sub-table (line 12). If the TCAM lookup successfully
returns a flow entry index, we read its corresponding DRAM
content entry de, and perform packet forwarding in accordance
with its action set (lines 13-15). Then, we examine the data
transmission state of the flow which the received packet
belongs to. Particularly, we judge whether the received packet
belongs to the identical flow as the latest packet of the matched
flow entry, and the arrival interval time between these two
packets exceeds the preset PIAT threshold. If the flow comes
into the active state, we insert it into the cache (lines 16-18).
Finally, we update the DRAM content entry de including the
flow identifier and the arrival time of its latest packet (line 19).
If the TCAM lookup fails, it means that the received packet p
belongs to a new flow. In such case, we encapsulate the packet
p into a Packet-in message, and send it to the SDN controller
for instructions (lines 23-24).

C. Algorithm Performance

1) Energy Saving Rate: To quantify the energy saving
effect of a SDN flow table storage architecture, we define its
energy saving rate as the declined percentage of its average
energy consumption per packet compared to pure TCAM
flow table without any optimization. Let E7rc4ps and Egpr
respectively be average energy consumption per packet of
pure TCAM flow table and an energy-efficient flow table
storage architecture, the energy saving rate can be expressed
as ESR = 1 — Epcapy/Egpr. Assuming that the TCAM
flow table contains lpc4s entries, each of which occupies
drca bytes. Let wroa s be average energy consumption of
per-byte TCAM lookup, we can represent the average lookup

Authorized licensed use limited to: CHANGSHA UNIV OF SCIENCE AND TECHNOLOGY. Downloaded on October 08,2025 at 03:37:55 UTC from IEEE Xplore. Restrictions apply.

4266

Algorithm 1 Bool PacketForward(Packet p)

1: key < ParsePacket(p)

sig < Hash(key)

ce.idz + CacheLookup(sig)

if ce.idx # NULL then
te < ReadTcamEntry(ce.idz)
de < ReadDramEntry/(ce.idz)
ExecuteActions(de.actions)
UpdateFlow(de)
ce.tsp < Normalize(p.time)

10: return true

end if

12: indezx < QueryTcam(key)

13: if index is valid then

14: de + ReadDramEntry(indez)

15: ExecuteActions(de.actions)

16: if fid = de.fid && p.time — de.time < PIAT_THR

R A A R o

—
—_

then
17: f < NewFlow(fid, idx, p.tsp)
18: Cachelnsert(f)
19: UpdateFlow(de)
20: return true
21: end if
22: end if

23: msg < CreatePacketInMessage(p)
24: SendMessageToController(msg)
25: return false

energy consumption of pure TCAM flow table per packet as:

Ercam = lrcamdrcamwream (11

As for an energy-efficient flow table storage architecture
based on caching, its energy saving effect mainly depends
on its cache hit rate. Suppose its cache hit rate p and the
average energy consumption of its cache lookup E.,.pe, We
can signify its average energy consumption per packet as
Egpr = Ecgene + (1 — p) Epoaps- Consequently, its energy
saving rate can be derived as:

Ecache

E
ESRppp =1— — LT)
Ercam

(12)
Ercam

As for our proposed energy-efficient flow table storage
architecture EFT-TECache, the application-specific integrated
circuit (ASIC) in an SDN switch performs a hash computation,
for each packet to determine its position in the TECache cache.
Assuming that each hash bucket of the TECache contains
lTECache entries, each packet needs to match with 3lrpcouche
entries for its cache lookup. Let the flow signature in each
cache entry take up dpg bytes, with wgras denoting the
energy consumption per byte for an SRAM lookup, and
E 4510 representing the energy consumption for a single hash
computation performed by the ASIC. Then, we can obtain the
average energy consumption of the TECache per packet as

ErECache = 3lTECache AFSWsRAM + Easic- Let prEcache
be the hit rate of the TECache, we can infer the energy

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025

saving rate of our proposed architecture EFT-TECache in (13)
from (12).

ESRERT—TECache
3lTECache IPswsrAM + Easic
lrcamdreamwrcam

= PTECache — 13)

As for the energy-efficient flow table storage architecture
based on Cuckoo cache EFT-Cuckoo [26], each packet needs
to match with 2{y,c100 entries in the Cuckoo cache, with the
assumption of [y,cr00 €ntry in its each hash bucket. With the
average accessing energy consumption of the Cuckoo cache
in SRAM per byte wgraarand the width of flow signature
drg, we can formulate the energy consumption of the Cuckoo
cache as Ecyckoo = 3louckoo dFSWSRAM - Let Pouckoo be
the hit rate of the Cuckoo cache, we can derive the energy
saving rate of the EFT-Cuckoo architecture in (14) from (12),
where rgp signifies the ratio of the average accessing energy
consumption of SRAM memory wgr4ps to that of TCAM

memory wWrcocAM -

ESREFT— Cuckoo
2lcuckoo drswsram + 2E 4510
lrcaMAdTcAMWYTCAM

= PCuckoo — (14)

As for the energy-efficient flow table storage architecture
based on elastic energy-saving cache EFT-EEC [28], the ASIC
needs to perform one hash computation in each segment of the
EEC cache, for each packet to determine its position. Suppose
that the EEC cache consists of kgpc segments, each packet
needs to perform kppc times hash computation and match
against kppc entries for its cache lookup. With the average
accessing energy consumption of the EEC cache in SRAM
per byte wgray and the width of flow signature dpg, the
energy consumption for a single hash computation performed
by the ASIC E 4570, we can gain the energy consumption of
the EEC cache as Egpc = kppcdrswsrAaM + kEEc Easic-
Let pggc be the hit rate of the EEC cache, we can deduce
the energy saving rate of the EFT-EEC architecture in (15)
from (12).

ESRprT—EEC
kercdrswsram + kEpc Easic
lrcamdreamwream

= PEEC — (15)

Taking the P4 Language Specification v1.0.2 as an
example, the matching field of each flow entry occupies
d7rcap=13bytes in the IP routing scenario. Based on exten-
sive investigations and actual measurements on the energy
consumption of various memory technologies [23], [31], [32],
wsrAM and wpoa p can be respectively set to 0.05 puJ /byte,
2.0 uJ/byte, and ASIC hash computation is set to
0.12 mJ/operation. In addition, the matching field of the
flow table entry is compressed into a shorter flow signature
by a hashing algorithm, which is usually configured with
length dpg=4bytes. Furthermore, the Cuckoo cache adopts
the same hash bucket size as TECache, whereas the EEC cache
is configured with a number of segments that is twice the hash
bucket size of TECache. With these parameter configurations,
we can estimate the energy saving rates of the above three

Authorized licensed use limited to: CHANGSHA UNIV OF SCIENCE AND TECHNOLOGY. Downloaded on October 08,2025 at 03:37:55 UTC from IEEE Xplore. Restrictions apply.

XIONG et al.: TECache: TECACHE WITH OPTIMAL UTILIZATION FOR TCAM FLOW TABLES IN SDN DATA PLANE

4267

TABLE II
THE ENERGY SAVING RATES OF THREE ENERGY-EFFICIENT FLOW TABLE STORAGE ARCHITECTURES

lrcam lrEcache lcuckoo kgEC PTECache PEEC PCuckoo ESRprT-TECache ESREFT-EEC ESREFT—Cuckoo
6K 2 2 4 0.80 0.75 0.70 79.921% 74.691% 69.844%
6K 2 2 4 0.85 0.80 0.75 84.921% 79.691% 74.844%
6K 2 2 4 0.90 0.85 0.80 89.921% 84.691% 79.844%
6K 4 4 8 0.80 0.75 0.70 79.918% 74.381% 69.843%
6K 4 4 8 0.85 0.80 0.75 84.921% 79.381% 74.843%
6K 4 4 8 0.90 0.85 0.80 89.921% 84.382% 79.843%
8K 2 2 4 0.80 0.75 0.70 79.940% 74.768% 69.883%
8K 2 2 4 0.85 0.80 0.75 84.940% 79.768 % 74.883%
8K 2 2 4 0.90 0.85 0.80 89.940% 84.768% 79.883%
8K 4 4 8 0.80 0.75 0.70 79.938% 74.535% 69.882%
8K 4 4 8 0.85 0.80 0.75 84.938% 79.535% 74.882%
8K 4 4 8 0.90 0.85 0.80 89.938% 84.535% 79.882%

energy-efficient flow table storage architectures in Table II, by
setting different typical values for other parameters.

As shown in Table II, our proposed EFT-TECache archi-
tecture achieves higher energy saving rates than the other
two flow table storage architectures. This is because the
EFT-TECache architecture can achieve higher cache hit rate
compared to the other ones, since it always sufficiently exploits
cache space to accommodate the most active flows in network
traffic, and it only needs to perform hashing once for each
lookup. Meanwhile, we can see from Table II that the energy
saving rate of the flow table storage architecture primarily
depends on the cache hit rate and is almost regardless of
other factors. This is chiefly attributed to the fact that a
majority of packets will directly hit the cache with low energy
consumption, and only a minority of packets need to look up
the TCAM flow table with high energy consumption.

2) Packet Forwarding Delay: Packet forwarding delay is
a critical performance metric for evaluating SDN flow table
storage architecture. As for our proposed EFT-TECache
architecture, it first looks up our designed traffic-aware energy-
saving cache for each arrived packet. The cache lookup first
performs one hashing by ASIC with the time overhead t4g7¢-
Then, it will take the search length (I7gceche + 1)/2, if we
successfully find out a flow in its directly mapped bucket with
lTECache €ntries. Otherwise, we need to look up the directly
mapped bucket with the search length l7rcuche, and continue
to look up its two adjacent buckets in parallel. Suppose that
there is equal probability to find out a matched flow in its
directly mapped bucket and two adjacent buckets, we can
compute the packet forwarding delay of successful cache
lookup in (16), with each accessing time of SRAM tgp -

1
tasic + §(lTE0ache + 1)tsram

1
SFDTECache = 3

1
+3 [(tASIC + ITECache tSRAM)

1
+ §(lTECache +1)tsram

1
=tasic + (lTECache + 2) tsram (16)

As for failed cache lookup, we can obtain its forwarding
delay FFDrpcache = tASIC + 2lTECache tSRAM s it needs
to perform hashing and traverse its directly mapped bucket
and two adjacent buckets. Then, it needs to further look up the

TCAM flow table with the time overhead ¢7c437. In short, we
can represent the packet forwarding delay of the EFT-TECache
architecture PFDgrr_ TEC.che 10 (17) with the cache hit rate

PTECache-

PEDgpT_TECache = PTECache SFDTECache

+(1 = prEcache(FFDTECAche + tTCAM)
1

| -
2ZTECache
+(1 = prECache) tTCcAM

> ITECachetSRAM
(17)

= tasic + (2 — PTECache

As for the energy-efficient flow table architecture based
on Cuckoo cache EFT-Cuckoo [26], the successful lookup
of a packet within its directly mapped bucket in the cache
is similar to that of the TECache with the forwarding delay
tasict (lcuckoo + 1)tsran /2. Otherwise, we need to look
up the directly mapped bucket with the forwarding delay
lowekootsraM, and perform hashing with the time cost to
look up its other bucket with the forwarding delay 4570 +
(lowekoo +1)tsran /2- Then, we can compute the forwarding
delay of successful Cuckoo cache lookup in (18).

SFDcuckoo =

1 1
5 |tasic + §(lcuckoo + Dtsram

1
+ 5 [(tAS[C + lcuckootSRAM)

1

+ 5 (lcuckoo + 1) tSRAM

1
)tSRAM (18)

3
= itASIC + (lcuckoo + 2

As for failed cache lookup, we can obtain its forwarding
delay FFDcyckoo = 2tasic + 2louckootsSrAM @s it needs to
perform hashing twice and traverse its two candidate buckets.
Then, it needs to further look up the TCAM flow table
with the time cost t7caps. In conclusion, we can calculate
the packet forwarding delay of the EFT-Cuckoo architecture
PEDgpr_ cuckoo 10 (19) with the cache hit rate poyckoo-

PFDEFT— Cuckoo

1
(2 — PCuckoo T 2PCuck00> lC’uckoo tSRAM

1
+ (2 — 2pCuckoo> tasic + (1 = Pouckoo)tTCAM
(19)

Authorized licensed use limited to: CHANGSHA UNIV OF SCIENCE AND TECHNOLOGY. Downloaded on October 08,2025 at 03:37:55 UTC from IEEE Xplore. Restrictions apply.

4268

As for the energy-efficient flow table architecture based on
elastic energy-saving cache EFT-EEC [28], it first looks up
the EEC cache for each arrived packet. Assume that the EEC
cache contains kg segments, we can obtain the forwarding
delay of successful and failed cache lookup respectively as
SFDppc = (1+kgpc)(tasic+tsram)/2 and FFDgpo =
kepc(tasic + tspam), since it needs to performed hashing
and matching for each cache segment. In conclusion, we
can express the packet forwarding delay of the EFT-EEC
architecture PFDpp7_gpc in (20) with the cache hit rate

PEEC-

PFDgpr_grc = (1 — pEEC)tTCAM

peec(1 — kggc)

k
EEC + 2

(tasic + tspam) (20)

According to extensive memory research [32], [33], [34],
the accessing time of SRAM, TCAM and ASIC is typically
set to 2, 12.5 and 3 nanoseconds, respectively. By setting
different typical values for other parameters, we can estimate
the packet forwarding delay of the three energy-efficient flow
table storage architectures in Table III.

As shown in Table III, our proposed EFT-TECache archi-
tecture achieves less packet forwarding than the other ones.
In particular, our proposed EFT-TECache architecture perform
flow table lookup with the packet forwarding delay below
10us, for the case that each hash bucket only contains 1 entry.
This is due to the fact that the EFT-TECache architecture only
needs to perform hashing once for each lookup. In contrast, the
EFT-Cuckoo architecture needs to perform one more hashing
to locate two candidate buckets. Additionally, the EFT-EEC
architecture needs to perform hashing once for each segment.

VI. EXPERIMENTS
A. Experimental Methodology

In our experiments, we construct a dedicated platform with
SDN controller and switch to evaluate the performance of
TECache in different network environments. The experimental
platform is mainly composed of SDN controller ONOS (Open
Network Operating System), SDN switch Pica8 P-3297, traffic
trace generator Spirent TestCenter and monitoring device. It
aims to simulate a variety of typical network traffic scenarios
such as edge networks and Internet of things. Pica8 P-3297 is a
prevalent SDN switch supporting OpenFlow 1.3 protocol with
high performance forwarding capability and flexible flow table
configuration function. The ONOS controller is connected
to a Pica8 P-3297 SDN switch via 10 Gigabit Ethernet.
Spirent TestCenter generates different types of network traffic,
simulates two network scenarios of edge network and IoT,
and injects them into SDN switches to test the performance
of switches in these two scenarios. At the same time, the
monitoring device is connected to the exit port of the switch
for real-time monitoring of traffic behavior. Fig. 10 exhibits
the topological map of the experimental platform.

In our experiments, we first implement and deploy various
energy-efficient flow table storage architecture in the SDN
switch, including our proposed EFT-TECache architecture. As
for our designed FelisCatus hash algorithm, we optimize it for

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025

ONOS

ONOS Controller

Edge Network
Lilll

Spirent TestCenter
TTTTT

TIoT Network

DATA -~

-

—
Monitoring Tools

A
s

HE

TTITT

Pica8 P-3297 Switch

Fig. 10. The Topology of our experimental platform.

both performance and code size by inlining critical functions,
employing efficient bit-level operations, and using compact
data structures. We also update the firmware to PicOS 2.9.3
and apply a custom patch to enable hardware-accelerated hash
operations, ensuring robust SDN mode operation. Then, we
generate traffic traces for two types of network scenarios by
Spirent TestCenter. As for edge network trace, we simulate the
communication between edge computing devices characterized
by moderate traffic density, where most inter-packet intervals
range from 250ms to 500ms with substantial fluctuations.
As for IoT network trace, we emulate data transmissions
from low-power sensors with low traffic density, where the
majority of packets have expanded inter-packet intervals (PIT
>500ms) with pronounced periodic pattern. The generated
traffic traces are directly injected into the Pica8 P-3297
SDN switch via Spirent TestCenter. Lastly, we record the
classification performance of each packet, and periodically
calculate performance metrics such as cache hit rate and
energy saving rate for each energy-efficient SDN flow table
storage architecture.

To ensure the reliability of our statistical experimental
results, each configuration was rigorously evaluated through
10 independent experiments under identical initial conditions.
Performance metrics were periodically calculated over a stan-
dardized 1-second interval. These results are presented as
mean values with superimposed error bars denoting the 95%
confidence intervals derived from Student’s t-distribution, pro-
viding a transparent visualization of measurement dispersion
and enhancing the reproducibility claims of our methodology.

B. Energy-Saving Cache Performance

1) Cache Utilization Rate: We compare the cache utiliza-
tion rate of our designed TECache with those of the Cuckoo
cache [26] and the EEC cache [28], by simulating traffic
traces generated from various network scenarios. As for edge
network trace, we set the capacity of the TECache, the Cuckoo
cache and EEC cache as 3.5K entries. The Cuckoo cache is
configured with 2 hash functions, the number threshold of
kicking operations 5, the hash table length 512, and 7 entries
in each hash bucket. The EEC cache for the edge network
trace is configured with a maximum of 7 segments, each of
which has 512 entries. As for IoT network trace, we set the
capacity of the TECache, the Cuckoo cache and EEC cache
as 4K entries. The Cuckoo cache is configured with 2 hash

Authorized licensed use limited to: CHANGSHA UNIV OF SCIENCE AND TECHNOLOGY. Downloaded on October 08,2025 at 03:37:55 UTC from IEEE Xplore. Restrictions apply.

XIONG et al.: TECache: TECACHE WITH OPTIMAL UTILIZATION FOR TCAM FLOW TABLES IN SDN DATA PLANE

4269

TABLE III
THE ESTIMATION OF PACKET FORWARDING DELAY FOR ENERGY-EFFICIENT FLOW TABLE STORAGE ARCHITECTURES

lrEcache lcuckoo keec PTECache PCuckoo PEEC PFDgrr-TECachePFDEFT—Cuckoo PFDEFT_EEC
1 1 2 0.72 0.66 0.69 9.96us 12.94us 12.15us
1 1 2 0.74 0.68 0.71 10.14us 13.03us 12.25us
1 1 2 0.76 0.70 0.73 10.22us 13.13us 12.35us
2 2 4 0.78 0.72 0.75 10.42us 13.42us 12.55us
2 2 4 0.80 0.74 0.77 10.5us 13.52us 12.65us
2 2 4 0.82 0.76 0.79 10.58us 13.62us 12.75us
4 4 8 0.84 0.78 0.81 10.78us 13.83us 12.95us
4 4 8 0.86 0.80 0.83 10.86us 13.93us 13.05us
4 4 8 0.88 0.82 0.85 10.94us 14.03us 13.15us
100 90
$ TECache
EEC cache
® 85 X cuckoo cache
g
80
2 80 2
; 215
DAy AT S 2"]
2 3
?«; 65
50 § TECache 60
EEC cache
I Cuckoo cache
40 55
20 40 60 80 100 20 40 60 80 100
Time (s) Time (s)
(a) (a)
100
85
$ TECache
EEC cache
% 80 T Cuckoo cache
g
2 8 75
it g
g 70 ERC
z wMW’MW ; -
g% E
5 60
50 ¥ TBCache
EEC cache
I Cuckoo cache L
40
20 40 60 80 100 120
Time (s) 20 40 60 80 100 120
Time (s)
(b) (b)
Fig. 11. The Utilization rates of different energy-saving caches.: a)Edge
ne%work trace; b)IoT network trace. 24 J JEdg Fig. 12. The Hit rates of different energy-saving caches.: a)Edge network

functions, the number threshold of kicking operations 4, the
hash table length 1024, and 4 entries in each hash bucket.
The EEC cache for the IoT network trace is configured with
a maximum of 8 segments, each of which has 512 entries.
With these parameter configurations, we respectively operate
the three energy-saving caches on the two traces in the SDN
switch, and obtain their cache utilization rates in Fig. 11.

As seen from Fig. 11, the TECache achieves much higher
cache utilization rates than the EEC cache and Cuckoo cache,
regardless of network traffic traces. Particularly, our designed
TECache obtains extremely high cache utilization rates close
to 100%. This is because the TECache almost perfectly solves
hash collisions by adjacent hopping and co-directional kicking.

trace; b)IoT network trace.

Meanwhile, the TECache matches the number of active flows
with its capacity, by dynamically adjusting the packet inter-
arrival time threshold. In contrast, the Cuckoo cache is difficult
to achieve favorable cache utilization rate, since there are
growing possibilities to fall into cyclic kicking state with the
increasing number of kicking operations. Additionally, the
EEC cache achieves relatively low cache utilization rates, due
to its original hashing without any optimization of its hash
collisions.

2) Cache Hit Rate: With the same parameter settings as
above, we respectively perform the three energy-saving caches
on our simulated network traffic traces. Each experiment was

Authorized licensed use limited to: CHANGSHA UNIV OF SCIENCE AND TECHNOLOGY. Downloaded on October 08,2025 at 03:37:55 UTC from IEEE Xplore. Restrictions apply.

4270

60

Energy saving rate (%)
> @
g

EFT-EE
T EFT-Cuckoo

20

20 10 60 80 100 120
Time (s)

(a)

R e

70

60

5 WW

301 %

Energy saving rate (%)

EFT-TECache
EFT-EEC
X EFT-Cuckoo

20

20 40 60 80 100
Time (s)

(b)

Fig. 13. The Energy saving rate of different flow table storage architectures.:
a)Edge network trace; b)IoT network trace.

repeated for ten times to compute 95% confidence intervals,
and record their cache hit rates in Fig. 12. As shown in Fig. 12,
our designed TECache achieves higher and more stable hit
rates than the EEC cache and the Cuckoo cache, regardless
of network traffic traces. As for the edge network trace,
the TECache obtains average cache hit rate 78.49%+1.31%,
while 72.51%=+1.10% for the EEC cache and 69.15%+1.43%
for the Cuckoo cache. As for the IoT network trace, the
TECache gets average cache hit rate 73.89%41.14%, while
70.98%=+1.03% for the EEC cache and 57.81%=+1.25% for
the Cuckoo cache.This is chiefly attributed to the fact that
the TECache adequately exploits cache space to accommodate
most active flows in network traffic. In contrast, the EEC cache
holds relatively poor cache utilization and the Cuckoo cache
cannot adapt to the fluctuating number of active flows, leading
to their relatively low cache hit rates.

C. Flow Table Storage Architecture Performance

1) Energy Saving Rate: With the above parameter configu-
rations for the three energy-saving caches and the capacity of
the TCAM flow table set as 8K, we respectively perform the
energy-efficient flow table lookup of the three storage archi-
tectures EFT-TECache, EFT-EEC [28] and EFT-Cuckoo [26].

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025

EFT-TECache 0.7902 0.7903 0.7903 0.7903)

0.775 14

0.750 4

0.725 4

0.700

0.675

The energy saving rates of EFT-TECache

0.650

0.625

N N A NE S g & A NE -
IR R TS TS R

Hash Table Size(SRAM Size)

(@)

—e— EFT-TECache
0.70 A

0.65

0.60 -

0.55

0.50 -

The energy saving rates of EFT-TECache

& - - * - * s W * *
TSR N S - S S R

Hash Table Size(SRAM Size)

(b)

Fig. 14. The Energy saving rates of EFT-TECache with different size of the
hash table(SRAM cache).: a)Edge network trace; b)IoT network trace.

We repeat each experiment for ten times and obtain their
energy saving rates with 95% confidence intervals in Fig. 13.
As for the edge network trace, the EFT-TECache archi-
tecture obtains average energy saving rate 79.02%=+1.37%,
while 71.99%+1.23% for the EFT-EEC architecture and
51.01%=+1.43% for the EFT-Cuckoo architecture. As for the
IoT network trace, the EFT-TECache architecture gets average
energy saving rate 71.32%=41.18%, while 62.40%=+1.13%
for the EFT-EEC architecture and 39.68%=+1.34% for the
EFT-Cuckoo architecture.This is primarily due to high cache
hit rates of our designed TECache and the fact that each
packet hitting the cache only needs to match against three
candidate buckets at most. In contrast, the EFT-EEC archi-
tecture obtains lower cache hit rates, and each cache lookup
requires parallel matching in all cache segments. As for the
EFT-Cuckoo architecture, its cache hit rates are significantly
lower than those of the TECache, resulting in its poor
energy-saving effect.

As for our proposed EFT-TECache, we further evaluate
the impact of hash table size on its energy saving rates with
our simulated network traffic traces in Fig. 14. As shown in
Fig. 14, the energy saving rates increase with the growth of the
hash table size on the whole. Specifically, the energy saving
rate sharply improves for both network traffic traces when the
hash table size increases from 0.5k to 2.5k. This reflects the

Authorized licensed use limited to: CHANGSHA UNIV OF SCIENCE AND TECHNOLOGY. Downloaded on October 08,2025 at 03:37:55 UTC from IEEE Xplore. Restrictions apply.

XIONG et al.: TECache: TECACHE WITH OPTIMAL UTILIZATION FOR TCAM FLOW TABLES IN SDN DATA PLANE

$ EFT-TECache
EFT-EEC
20 % EFT-Cuckoo

rding delay (us)

16
5 %MW/X\WQ\«MN
12
" WWWWW

20 10 60 80 100
Time (s)

(a)

)
S
o

1
=

g
A

$ EFT-TECache
EFT-EEC
20 % EFT-Cuckoo

i %WVMW
16
13
12

Packet forwarding delay (us)

20 40 60 80 100
Time (s)

(b)

Fig. 15. The Packet forwarding delay of different energy-efficient flow table
storage architectures.: a)Edge network trace; b)IoT network trace.

]
S

critical role of caching active flows in energy saving effect.
However, the improvement diminishes and tends to be stable
for the hash table size beyond 3.5k, which indicates that further
hash table expansion brings about limited benefit. This is due
to the fact that more hash table only holds less active flows,
which produces a slight increase in the energy saving rate.
Therefore, it is essential to select an appropriate hash table
size for specific SDN deployment scenarios.

2) Packet Forwarding Delay: With the same parameter
settings as above, we respectively execute the energy-efficient
flow table lookup of the three storage architectures. We
repeat each experiment for ten times and obtain their packet
forwarding delay with 95% confidence intervals in Fig. 15.
As seen from Fig. 15, our proposed EFT-TEC architecture
obtains much shorter packet forwarding delay than the other
ones. As for the edge network, the EFT-TECache architec-
ture obtains packet forwarding delay 10.8740.23us, while
16.394+0.25us for the EFT-EEC architecture and 14.74 =+
0.25us for the EFT-Cuckoo architecture. As for the IoT
network trace, the EFT-TECache architecture gets packet
forwarding delay 12.31£0.20us, while 18.30+£0.23us for the
EFT-EEC architecture and 16.671+0.21us for the EFT-Cuckoo
architecture. This is attributed to relatively high hit rates of our
designed TECache, which implies that most packets directly

4271

hit the cache without further lookup on the TCAM flow
table. Meanwhile, our proposed EFT-TECache architecture
only needs to perform hashing once for each cache lookup. In
striking contrast, the EFT-Cuckoo architecture has to operate
one more hashing to locate two candidate buckets in its energy-
saving cache, and the EFT-EEC architecture is requested to
execute hashing once for each cache segment.

VII. CONCLUSION

To mitigate unfavorable energy-saving effect of existing
energy-efficient flow table storage architecture especially
under network traffic fluctuation, we design traffic-aware
energy-saving cache with optimal utilization, and propose
an energy-efficient flow table storage architecture for SDN
switches. In the architecture, we first design an energy-saving
cache with low-power memory to store active flows, enabling
most packets to bypass energy-intensive TCAM flow table
lookup. Then, we devise a nearly conflict-free hash algorithm
FelisCatus for the energy-saving cache, which provides three
candidate buckets for each inserted flow by adjacent hopping,
and looks for a vacancy in the cache for each conflicting flow
by co-directional kicking. Meanwhile, we propose an adap-
tive adjustment mechanism of flow activity criterion, which
dynamically adjusts the packet inter-arrival time threshold of
active flows along with its step size, for adapting the number
of active flows to cache capacity.

In our experiments, we evaluate the performance of
our designed traffic-aware energy-saving cache and energy-
efficient flow table storage architecture, by network traffic
traces with significant fluctuations. Experimental results indi-
cate that: (a) Our designed cache achieves high hit rates
up to around 75%, with the increase of 5.97% and 9.34%
respectively compared to those of the EEC one and the
Cuckoo one; (b) Our proposed energy-efficient flow table
storage architecture obtains high energy saving rates close to
74%, with the increase of 7.02% and 28% respectively in
comparison to those of the EFT-EEC one and the EFT-Cuckoo
one; (c) Our proposed flow table storage architecture always
has less packet forwarding delay around 1lus. In conclusion,
our proposed flow table storage architecture achieves favorable
and stable energy-saving effects while implementing fast flow
table lookup, even for fluctuating network traffic.

REFERENCES

[1] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S.
Azodolmolky, and S. Uhlig, “Software-defined networking: A compre-
hensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14-76, Jan. 2015.

[2] S. Date et al.,, “SDN-accelerated HPC infrastructure for scientific
research,” Int. J. Inf. Technol., vol. 22, no. 1, p. 30, 2016.

[3] T. Koponen et al., “Network virtualization in multi-tenant datacenters,”
in Proc. 11th USENIX Symp. Netw. Syst. Design Implement. (NSDI),
2014, pp. 203-216.

[4] D. Firestone, “VFP: A virtual switch platform for host SDN in the public
cloud,” in Proc. 14th USENIX Symp. Netw. Syst. Design Implement.
(NSDI), 2017, pp. 315-328.

[5] X.-N. Nguyen, D. Saucez, C. Barakat, and T. Turletti, “Rules placement
problem in OpenFlow networks: A survey,” IEEE Commun. Surveys
Tuts., vol. 18, no. 2, pp. 1273-1286, 2nd Quart., 2016.

[6] S. Y. Qiao and C. C. Hu, “A mechanism of taming the flow table
overflow in OpenFlow switch,” Chin. J. Comput., vol. 41, no. 9,
pp- 2003-2015, 2018.

Authorized licensed use limited to: CHANGSHA UNIV OF SCIENCE AND TECHNOLOGY. Downloaded on October 08,2025 at 03:37:55 UTC from IEEE Xplore. Restrictions apply.

4272

[7]

[8]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Authorized licensed use limited to: CHANGSHA UNIV OF SCIENCE AND TECHNOLOGY. Downloaded on October 08,2025 at 03:37:55 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025

H. Lim, K. Lim, N. Lee, and K.-H. Park, “On adding bloom filters
to longest prefix matching algorithms,” IEEE Trans. Comput., vol. 63,
no. 2, pp. 411-423, Feb. 2014.

S.-C. Kao, D.-Y. Lee, T.-S. Chen, and A.-Y. Wu, “Dynamically updatable
ternary segmented aging bloom filter for OpenFlow-compliant low-
power packet processing,” IEEE/ACM Trans. Netw., vol. 26, no. 2,
pp. 1004-1017, Apr. 2018.

Y. Han, S.-S. Seo, J. Li, J. Hyun, J.-H. Yoo, and J. W.-K. Hong,
“Software defined networking-based traffic engineering for data center
networks,” in Proc. 16th Asia—Pacific Netw. Oper. Manag. Symp., 2014,
pp. 1-6.

K. Kannan and S. Banerjee, “Compact TCAM: Flow entry compaction
in TCAM for power aware SDN,” in Proc. Int. Conf. Distrib. Comput.
Netw. (ICDCN), 2013, pp. 439-444.

S. Banerjee and K. Kannan, “Tag-In-Tag: Efficient flow table manage-
ment in SDN switches,” in Proc. 10th IEEE Int. Conf. Netw. Service
Manag. (CNSM), Rio de Janeiro, Brazil, 2014, pp. 109-117.

Z. Wang, M. Liao, and X. Ji, “Source-controlled OpenFlow data plane,”
J. Commun., vol. 2015, no. 3, pp. 181-187, 2015.

C. Zhang, P. Sun, G. Hu, and L. Zhu, “RETCAM: An efficient TCAM
compression model for flow table of OpenFlow,” J. Commun. Netw.,
vol. 22, no. 6, pp. 484-492, Dec. 2020.

V. S. M. Srinivasavarma, S. R. Pydi, and S. N. Mahammad, “Hardware-
based multi-match packet classification in NIDS: An overview and
novel extensions for improving the energy efficiency of TCAM-based
classifiers,” J. Supercomput., vol. 78, no. 11, pp. 13086-13121, 2022.
M.-H. Cheng, W.-S. Hwang, Y.-J. Wu, C.-H. Lin, and J.-S. Syu, “An
effective flow-rule-reducing algorithm for flow tables in software-defined
networks,” in Proc. Int. Comput. Symp. (ICS), Tainan, China, 2020,
pp. 25-30.

R. Wu, W. K. Jia, and X. Wang, “Header-translation based flow
aggregation for scattered address allocating SDNs,” in Proc. IEEE Conf.
Dependable Secure Comput. (DSC), Fukushima, Japan, 2021, pp. 1-8.
N. Saha, S. Misra, and S. Bera, “Q-Flag: QoS-aware flow-rule aggrega-
tion in software-defined IoT networks,” IEEE Internet Things J., vol. 9,
no. 7, pp. 4899-4906, Apr. 2022.

Z.Li and Y. Hu, “PASR: An efficient flow forwarding scheme based on
segment routing in software-defined networking,” IEEE Access, vol. 8,
pp. 10907-10914, 2020.

H. Khanmirza, “WildMinnie: compression of software-defined
networking (SDN) rules with wildcard patterns,” PeerJ Comput. Sci.,
vol. 8, no. 809, pp. 1-30, 2022.

C. Q. Li, Y. Q. Dong, and X. G. Wu, “OpenFlow table lookup scheme
integrating multiple-cell hash table with TCAM,” J. Commun., vol. 37,
no. 10, pp. 128-140, 2016.

J. C. Mogul et al., “DevoFlow: Cost-effective flow management for
high performance enterprise networks,” in Proc. 9th ACM SIGCOMM
Workshop Hot Topics Netw. (HotNets), New York, NY, USA, 2010,
pp. 1-6.

W. J. Li et al., “Decision tree based pre-classifier for energy-efficient
TCAM based packet classification,” Appl. Res. Comput., vol. 38, no. 1,
pp. 237-241, 2021.

P. T. Congdon, P. Mohapatra, M. Farrens, and V. Akella,
“Simultaneously reducing latency and power consumption in OpenFlow
switches,” IEEE/ACM Trans. Netw., vol. 22, no. 3, pp. 1007-1020, Jun.
2014.

B. G. Assefa and O. Ozkasap, “A survey of energy efficiency in SDN:
Software-based methods and optimization models,” J. Netw. Comput.
Appl., vol. 137, pp. 127-143, Jul. 2019.
“Network traffic traces,” 2024.
http://iptas.edu.cn/src/system.php

B. Xiong, Z. Hu, Y. Luo, and J. Wang, “CuckooFlow: Achieving
fast packet classification for virtual openflow switching by exploiting
network traffic locality,” in Proc. IEEE Int. Conf. Parallel Distrib.
Process. Appl. Big Data Cloud Comput. Sustain. Comput. Commun.
Social Comput. Netw. (ISPA/BDCloud/SocialCom/SustainCom), 2019,
pp. 1123-1130.

J.-F. Wang, X. He, S.-Z. Si, H. Zhao, C. Zheng, and H. Yu, “Using
complex network theory for temporal locality in network traffic flows,”
Physica A Stat. Mechan. Appl., vol. 524, pp. 722-736, Jun. 2019.

B. Xiong et al., “Elastically accelerating lookup on virtual SDN flow
tables for software-defined cloud gateways,” Comput. Netw., vol. 238,
Jan. 2024, Art. no. 110092.

J. Tao, M. Kunze, and W. Karl, “Evaluating the cache architecture of
multicore processors,” in Proc. 16th Euromicro Conf. Parallel, Distrib.
Netw.-Based Process. (PDP), 2008, pp. 12-19.

[Online]. Available:

[30]

(31]

[32]

(33]

[34]

B. Xiong, R. Wu, J. Zhao, and J. Wang, “Efficient differentiated storage
architecture for large-scale flow tables in software-defined wide-area
networks,” IEEE Access, vol. 7, pp. 141193-141208, 2019.

R. Panigrahy and S. Sharma, “Reducing TCAM power consump-
tion and increasing throughput,” in Proc. 10th Symp. High Perform.
Interconnects, 2002, pp. 107-112.

J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach. Amsterdam, The Netherlands: Elsevier, 2011.
O. Panait, L. Dumitriu, and I. Susnea, “Hardware and software architec-
ture for accelerating hash functions based on SoC,” in Proc. 22nd Int.
Conf. Control Syst. Comput. Sci. (CSCS), Bucharest, Romania, 2019,
pp- 136-139.

H. Song, J. Turner, and J. Lockwood, “Shape shifting tries for faster IP
route lookup,” in Proc. 13th IEEE Int. Conf. Netw. Protocols (ICNP),
Boston, MA, USA, 2005, p. 10.

Bing Xiong received the Ph.D. degree in com-
puter science by master-doctorate program from the
Huazhong University of Science and Technology,
China, in 2009, and the B.S. degree from Hubei
Normal University, China, in 2004. He has been
working with the Changsha University of Science
and Technology, China, since 2010, where he is
currently an Associate Professor with the School of
Computer Science and Technology. He worked as a
Visiting Scholar with the Department of Computer
and Information Science, Temple University, USA,

from 2018 to 2019. His main research interests include future network archi-
tecture, network traffic measurements, and artificial intelligence applications.

Guanglong Hu received the B.S. degree in network
engineering from the Hunan Institute of Technology,
China, in 2022. He is currently pursuing the M.S.
degree with the School of Computer Science and
Technology, Changsha University of Science and
Technology, China. His main research interests
include software-defined networking, packet
classification, and green communications.

Songyu Liu received the degree from the School
of Computer Science and Technology, Changsha
University of Science and Technology, China, in
2021. His research interests focus on software-
defined networking, packet classification, and green
communications.

Jinyuan Zhao received the Ph.D. degree in com-
puter science from Central South University, China,
in 2020, and the M.S. degree from Huazhong
Normal University, China, in 2007. She worked
with the School of Computer and Communication,
Hunan Institute of Engineering, China, from 2007 to
2020. She is currently an Associate Professor with
the School of Information Science and Engineering,
Changsha Normal University, China. Her main
research interests include furture network archi-
tecture, software-defined networking, and network

A

traffic measurements.

Jin Zhang received the B.S. degree in communica-
tion engineering and the M.S. degree in computer
application from Hunan University, Changsha,
China, in 2002 and 2004, respectively, and the Ph.D.
degree in biomedical engineering from Zhejiang
University, Hangzhou, China, in 2007. He has been
a Professor with the Changsha University of Science
and Technology since 2021.

Baokang Zhao received the B.S., M.S., and Ph.D.
degrees in computer science from the National
University of Defense Technology, where he is
currently an Associate Professor with the School
of Computer Science. His research interests include
system design, protocols, algorithms, and security
issues in computer networks.

XIONG et al.: TECache: TECACHE WITH OPTIMAL UTILIZATION FOR TCAM FLOW TABLES IN SDN DATA PLANE 4273

Keqin Li (Fellow, IEEE) is a SUNY Distinguished
Professor of computer science with the State
University of New York at New Paltz. He is also
a National Distinguished Professor with Hunan
University, China. He is among the world’s top
5 most influential scientists in parallel and dis-
tributed computing in terms of both single-year
impact and career-long impact based on a com-
posite indicator of Scopus citation database. His
current research interests include cloud comput-
ing, fog computing and mobile edge computing,
energy-efficient computing and communication, embedded systems and cyber-
physical systems, heterogeneous computing systems, big data computing,
high-performance computing, CPU-GPU hybrid and cooperative computing,
computer architectures and systems, computer networking, machine learning,
intelligent, and soft computing. He is also a Member of Academia Europaea
(Academician of the Academy of Europe). He is an AAAS Fellow, and an
AAIA Fellow.

Authorized licensed use limited to: CHANGSHA UNIV OF SCIENCE AND TECHNOLOGY. Downloaded on October 08,2025 at 03:37:55 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

