
Computer Networks 270 (2025) 111562

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

AF-Detector: An accurate low-overhead method for detecting active flows in

network traffic
Bing Xiong a , Yu Chang a, Yuhang Zhang a, Jin Zhang a,∗, Baokang Zhao b,∗, Keqin Li c ,∗

a School of Computer Science and Technology, Changsha University of Science and Technology, Changsha 410114, PR China
b School of Computer, National University of Defense Technology, Changsha 410073, PR China
c Department of Computer Science, State University of New York at New Paltz, New York 12561, USA

A R T I C L E I N F O

Keywords:
Network traffic measurement
Active flows
Probabilistic replacement strategy
Information cleanup mechanism

 A B S T R A C T

Active flows refer to packet flows whose frequencies consistently exceed a certain threshold for multiple
consecutive time windows. They occupy the majority of network traffic and have a great impact on network
performance. Previous work on detecting active flows only recorded the persistence of flows with low accuracy
and high memory overhead, unable to report the activity periods and real-time frequencies of active flows.
To address these issues, we propose an accurate low-overhead method for detecting active flows called AF-
Detector, which separates the tracking and identification functions of active flows, enabling precise detecting
and reporting of active flows. In particular, AF-Detector consists of a monitoring part that employs a compact
hash table to track active, and an identification part that adopts a probabilistic data structure to estimate
flow frequency and find out potentially active flows. As for the monitoring part, we design a probabilistic
replacement strategy to accommodate new potentially active flows and clear out low-frequency flows, for
accurately detecting active flows. Additionally, we devise an information cleanup mechanism to clear out
flows that are no longer active, and outdated information at the end of each time window. Finally, we evaluate
the performance of AF-Detector by theoretical analysis and experiments verification with real network traffic
traces. Experimental results indicate that AF-Detector performs better than the state-of-the-art methods with
the precision 99.59% and the recall rate 99.78%.
1. Introduction

In recent years, network measurement [1–3] has become a re-
search topic in the network field. Previous network measurement ef-
forts mainly focused on frequency estimation [4,5], elephant flows
identification [6,7] and persistence estimation [8]. Nowadays, active
flows, as key flows in network traffic, have been receiving increasing
attention. Active flows refer to flows whose frequencies consistently
exceed a certain threshold for multiple consecutive time windows.
They constitute the majority of network traffic and have a considerable
impact on network performance. Detecting active flows accurately is an
essential task for network management and optimization of network
performance, especially in areas such as congestion control [9], load
balance [10–12], traffic scheduling [13], network security [14–16], and
network capacity planning [17]. In network congestion control, real-
time detection of active flows allows network systems to quickly detect
the flow that causes congestion and take appropriate actions, such as
applying rate limiting or adjusting routing, to mitigate the impact on
network performance. In Quality of Service (QoS) [18,19] assurance,

∗ Corresponding authors.
E-mail addresses: jzhang@csust.edu.cn (J. Zhang), bkzhao@nudt.edu.cn (B. Zhao), lik@newpaltz.edu (K. Li).

real-time detection of active flows in network security allows network
administrators to prioritize critical business traffic such as video confer-
encing and VoIP calls when multiple applications concurrently request
network resources. This ensures the appropriate allocation of network
resources.

Most existing methods for detecting active flows are designed based
on probabilistic data structure sketch, such as On-off Sketch [20] and
Waving Sketch [21]. On-off Sketch estimates the persistence of flows
by compressing increments when multiple flows are mapped to the
same counter. Waving Sketch designs an unbiased estimation method
to find out active flows. However, On-off Sketch and Waving Sketch
only detect the persistence of flows, without considering the real-time
frequency of the flow. This results in some persistent but low-frequency
flows occupying a large amount of storage space, preventing some
persistent and high-frequency flows from being recorded. To overcome
this issue, FastKeeper [22] employs a sliding-window-based method
to measure the real-time frequencies of flows and detect active flows.
However, the highly skewed nature of network traffic results in a
https://doi.org/10.1016/j.comnet.2025.111562
Received 8 April 2025; Received in revised form 6 July 2025; Accepted 15 July 20
vailable online 26 July 2025
389-1286/© 2025 Published by Elsevier B.V.
25

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
https://orcid.org/0000-0002-3006-7295
https://orcid.org/0000-0001-5224-4048
mailto:jzhang@csust.edu.cn
mailto:bkzhao@nudt.edu.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.comnet.2025.111562
https://doi.org/10.1016/j.comnet.2025.111562

B. Xiong et al. Computer Networks 270 (2025) 111562
significant number of inactive flows interfering with the detection
of active flows, leading to low accuracy of active-flow detection. To
address this issue, Burst Sketch [23] adopts the running track technique
to reduce the interference of inactive flows. However, Burst Sketch
records the ID and frequency of each flow in detail in the first stage,
which consumes excessive memory. In summary, existing methods are
unable to accurately detect active flows with low memory overhead.

To address these issues, we propose an accurate low-overhead
method of detecting active flows called AF-Detector, which is composed
of a monitoring part and an identification part. In the monitoring
part, we only record potentially active flows. Inspired by the idea of
exponential-weakening decay strategy [24,25], we propose a proba-
bilistic replacement strategy for the monitoring part, which allows
new potentially active flows to replace inactive flows in a probabilistic
way. To filter inactive flows and find out potentially active flows, we
apply a probabilistic data structure sketch to estimate the frequencies
of flows in the identification part, helping the monitoring part to more
accurately track active flows. Additionally, we devise an information
cleanup mechanism for both the monitoring and the identification parts
to clear out flows that are no longer active and outdated information
at the end of each time window, freeing up memory space for new
potentially active flows and enhancing the accuracy of active-flow
detection. By separating the functions of identification and monitoring,
AF-Detector can effectively filter out inactive flows in the identification
part, and prevent them from interfering with the tracking of active
flows in the monitoring part. Therefore, the monitoring part can focus
on recording the information of active flows, which contributes to
accurate detection of active flows. Our main contributions are as
follows:

• Proposing a novel method for detecting active flows called AF-
Detector, which tracks active flows by the monitoring part and
finds out potentially active flows by the identification part, to
achieve high accuracy and low overhead of active-flow detection.

• Designing a probabilistic replacement strategy for the monitoring
part, which allows new potentially active flows to replace low-
frequency flows in a probabilistic way for the case of full mapped
buckets, to enhance the accuracy of active-flow detection.

• Devising an information cleanup mechanism for the monitoring
and identification parts, which resets their frequency counters at
the end of each time window, and clears out flows that are no
longer active in the monitoring part to free memory space for new
potentially active flows.

• Proving that AF-Detector can provide the precise detection of ac-
tive flows, by performing theoretical analysis on the error bounds
of its flow frequency estimation, false positive error rate and false
negative error rate.

The rest of the paper is organized as follows. Section 2 introduces
the definition of active flow and related work of active-flow detection.
Section 3 introduces the framework, data structures, and running ex-
amples of AF-Detector, and presents two optimized versions. Section 4
provides theoretical analysis on the error bounds of its flow frequency
estimation, its false positive and false negative rates, and its space
and time complexities. Section 5 describes the experimental setup and
evaluates the performance of AF-Detector on real network traffic traces.
Section 6 concludes the paper and discusses future work.

2. Definition of active flows and related work

2.1. Definition of active flows

Suppose there is a sequential packet traffic 𝑆 = {𝑒1, 𝑒2, 𝑒3,…},
divided by multiple fixed-size time windows 𝑤1, 𝑤2, 𝑤3,…. For a packet
flow 𝑒, let its packet arrival rates in the time windows be 𝑟 , 𝑟 , 𝑟 ,….
1 2 3

2
If there are multiple consecutive time windows 𝑤𝑖, 𝑤𝑖+1,… , 𝑤𝑖+𝑘 of the
flow 𝑒, meeting the following condition:
𝑘 + 1 ⩾ 𝛽 ∧ ∀𝑟𝑗 ⩾ 𝛼, 𝑗 ∈ {𝑖,… , 𝑖 + 𝑘}

where 𝛼 indicates the frequency threshold of an active flow in a time
window, and 𝛽 denotes the number threshold of consecutively active
time windows of an active flow. Then the flow 𝑒 is determined as an
active flow with the activity periods from 𝑤𝑖 to 𝑤𝑖+𝑘. Table 1 shows
the symbols commonly used in the AF-Detector and their meanings.

2.2. Related work

Frequency estimation is a fundamental function of active-flow de-
tection. Previous frequency estimation methods are mostly designed
based on probabilistic data structure sketch, such as Count-Min Sketch
[26] and Count Sketch [27]. Count-Min Sketch is composed of a d×w
two-dimensional array and d mutually independent hash functions.
When a packet arrives, it maps the packet into d counters by hashing
and increments them by 1. As for the query of a flow, the minimum
of its mapped counters is reported as its estimated frequency. Count
Sketch is similar to Count-Min Sketch, but it incorporates an additional
bool function to increment or decrement the mapped counters of a
packet. As for the query of a flow, the median of its mapped counters
is taken as its estimated frequency.

Pyramid Sketch [28] employed a pyramid-shaped data structure
to automatically enlarge the size of counters in accordance with the
frequency of an incoming item, enhancing the accuracy of frequency
estimation with low memory overhead. Elastic Sketch [29] divided
network traffic into elephant and mice flows, and separately stored
them into heavy and light parts. It further compressed and merged data
structures to reduce bandwidth usage while maintaining the accuracy
of frequency estimation. However, these methods can only estimate the
frequency of a flow in entire data stream, but cannot detect the real-
time status of a flow. Consequently, traditional frequency estimation
methods cannot be directly applied to detect active flows.

In recent years, some researchers have proposed new methods to
detect active flows in real time. Ada-Sketch [30] proposed a time-
adaptive method that dynamically adjusts the size of its data structures
to measure recent active flows based on changes in the data stream.
However, Ada-Sketch is difficult to apply in scenarios with limited
memory, due to that it needs a large number of counters. On-off
Sketch [20] took advantage of the characteristic that the persistence
of a flow is increased periodically. It compressed increments to accu-
rately estimate the persistence of flows and record active flows when
multiple flows are mapped to a same counter. Waving Sketch [21]
applied a bloom filter [31] to filter out duplicates in its first stage, and
designed an unbiased estimation method to keep track of active flows
in its second stage. However, On-off Sketch and Waving Sketch do not
consider the real-time frequencies of flows, resulting in the miss of some
active flows. FastKeeper [22] adopted a sliding-window-based method
to track the real-time frequencies of flows and employed bitmap-voting
algorithm to promptly replace inactive flows. However, these methods
cannot report active flows, and have low accuracy in detecting active
flows due to interference from a large number of inactive flows. Burst
Sketch [23] applied the running track technique to effectively filter
potential burst flows, and employed Snapshotting technology to capture
burst active flows and report these flows at the end of each time
window. However, Burst Sketch recorded the ID and frequency of each
flow in its first stage, resulting in the waste of memory. In summary,
existing detection methods of active flows cannot report their activity
periods at high accuracy with low memory overheads.

In summary, existing methods face several challenges to achieve
accurate detection of active flows. Specifically, methods like On-off
Sketch, and Waving Sketch emphasize flow persistence estimation but
overlook real-time frequency. Other methods such as FastKeeper and
Burst Sketch introduce time-window mechanisms, but either suffer

B. Xiong et al. Computer Networks 270 (2025) 111562
Table 1
Symbols commonly used in the AF-Detector.
 Symbol Meaning

 𝑆𝑤𝑖𝑛 The size of each time window, indicated by a fixed number of measured packets
 𝐹𝑐𝑢𝑟 The frequency of a flow in the current time window
 𝑊𝑐𝑢𝑟 The sequence number of the current time window
 𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙 The sequence number of the initial active time window of a flow
 𝑁𝑎𝑐𝑡𝑖𝑣𝑒 The number of consecutively active time windows of a flow
 𝛼 The frequency threshold of an active flow in a time window
 𝛽 The number threshold of consecutively active time windows of an active flow
 𝑘 The number of hash functions in the identification part of AF-Detector
 𝑝 The probability of replacement in the monitoring part of AF-Detector
 𝑟 The replacement rate in probabilistic replacement strategy
Fig. 1. The framework of AF-Detector.

from low accuracy due to inactive flow interference, or bring about
high memory overhead by storing detailed flow records. In addition,
these detection methods cannot report the activity periods of active
flows. To address these limitations, we propose an accurate low-
overhead method of detecting active flows called AF-Detector, which
separates the tracking and identification functions of active flows based
on time windows, enabling precise detecting and reporting of active
flows.

3. The design of AF-Detector

In this section, we first present the framework of AF-Detector.
Then, we design the data structure of AF-Detector and demonstrate its
running examples. Finally, we propose two optimization strategies for
AF-Detector.

3.1. The framework of AF-Detector

Considering that inactive flows account for the majority of packet
flows in network traffic, we construct the framework of AF-Detector
in Fig. 1, whose key idea is to separate the tracking and identification
functions of active flows. The AF-Detector consists of a monitoring part
and an identification part. The monitoring part employs a compact hash
table to track active flows. We propose a probabilistic replacement
strategy for the monitoring part, to accommodate new potentially
active flows for the case of full mapped buckets, improving the accuracy
of active-flow detection. The identification part adopts a probabilistic
data structure to estimate the frequencies of incoming flows and find
out potentially active flows. At the end of each time window, we report
active flows and clear out outdated information and flows that are no
longer active.

As for an arrived packet within a flow 𝑓 , we first look up the
flow 𝑓 in the monitoring part. If the flow 𝑓 has been recorded in the
monitoring part, we update its frequency in the current time window.
3
Otherwise, we insert the packet into the identification part to further
observe whether the flow 𝑓 is a potentially active flow. If its frequency
in the current time window reaches the frequency threshold 𝛼, we
consider the flow 𝑓 as a potentially active flow and insert it into the
monitoring part. At the end of each time window, we report the infor-
mation of active flows, and adopt an information cleanup mechanism to
clear out flows that are no longer active in the current time window.
Finally, we reset all flow frequencies in the monitoring part and all
counters in the identification part.

3.2. Monitoring part

The data structure of the monitoring part: As shown in Fig. 2,
the monitoring part is designed in the form of a hash table with a
hash function ℎ(⋅). It consists of 𝑀 buckets 𝐴[1], 𝐴[2], 𝐴[3],… , 𝐴[𝑀],
each of which contains 𝑛 cells. Each cell records the information of a
flow, including Flow ID, 𝐹𝑐𝑢𝑟, and 𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙. To save memory, the Flow
ID only records the fingerprint of a flow identified by 5 tuples: source
IP address, destination IP address, source port, destination port, and
protocol type. 𝐹𝑐𝑢𝑟 indicates the frequency of a flow in the current time
window. 𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙 indicates the sequence number of the initial active time
window of a flow.

Initialization: In initial state, we set all fields to 0 or NULL.
Packet processing: As for an arrived packet within a flow 𝑓 , we

first look up the flow 𝑓 in the monitoring part. If the flow 𝑓 is
recorded in the monitoring part, we increment its frequency in the
current time window 𝐹𝑐𝑢𝑟 by 1. Otherwise, we insert the packet into
the identification part to further check whether the flow 𝑓 has become
a potentially active flow.

The insertion of a potentially active flow: If the flow 𝑓 is iden-
tified as a potentially active flow, we need to look up the monitoring
part for an empty cell in bucket 𝐴[ℎ(𝑓)] and place the flow 𝑓 into it.
There are two cases:

Case 1: There is an empty cell in the bucket 𝐴[ℎ(𝑓)]. In this case,
we insert the flow 𝑓 into the empty cell. Specifically, we set Flow ID
as 𝑓 , 𝐹𝑐𝑢𝑟 as its estimated frequency in the current time window, and
𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙 as the sequence number of the current time window 𝑊𝑐𝑢𝑟.

Case 2: If there is no empty cell in the bucket 𝐴[ℎ(𝑓)], we will find
out those flows whose frequencies do not reach the threshold 𝛼. Then,
we replace a flow with the smallest frequency among these flows by the
flow 𝑓 in a probabilistic way. The replacement probability is designed
as 𝑝 = 𝑒−𝑟𝑥, where 𝑥 indicates the frequency of replaced flow and 𝑟
denotes replacement rate. If the replacement is confirmed to perform,
the information of the flow 𝑓 will replace the information of the flow
with the smallest frequency. Otherwise, we discard the flow 𝑓 .

The report of active flows: At the end of each time window, we
traverse each cell in the monitoring part to report current active flows.
For each non-empty cell, we check if the flow frequency 𝐹𝑐𝑢𝑟 reaches
the frequency threshold 𝛼 and the number of consecutively active time
windows 𝑁𝑎𝑐𝑡𝑖𝑣𝑒 (𝑁𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑊𝑐𝑢𝑟 − 𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 1) reaches the number
threshold of consecutively active time windows 𝛽. There are three cases
for the checking result of each non-empty cell:

Case 1: If 𝐹𝑐𝑢𝑟 < 𝛼, the flow in this cell is no longer active, and we
reset all information in this cell.

B. Xiong et al. Computer Networks 270 (2025) 111562
Fig. 2. The data structure and running example of the monitoring part.
Case 2: If 𝐹𝑐𝑢𝑟 ≥ 𝛼 and 𝑁𝑎𝑐𝑡𝑖𝑣𝑒 < 𝛽, the flow in this cell still is a
potentially active flow, and we do not report the flow. Meanwhile, we
reset flow frequency in this cell.

Case 3: If 𝐹𝑐𝑢𝑟 ≥ 𝛼 and 𝑁𝑎𝑐𝑡𝑖𝑣𝑒 ≥ 𝛽, the flow in this cell is confirmed
as an active flow, and we report the flow including its latest activity
period and frequency in current time window. Finally, we reset flow
frequency in this cell.

A running example: Fig. 2 exhibits a running example of the
monitoring part. Assume that the frequency threshold of an active flow
in a time window 𝛼 = 127, the number threshold of consecutively active
time windows of an active flow 𝛽 = 4, and the sequence number of
current time window 𝑊𝑐𝑢𝑟 = 8. The insertion of 𝑓1, 𝑓2, 𝑓3, and 𝑓4 can
be described as follows.

(1) To insert 𝑓1 which is recorded in the monitoring part, we only
need to increment its frequency by 1.

(2) To insert 𝑓2 identified as a potentially active flow, we find out an
empty cell in the bucket 𝐴[ℎ(𝑓2)] and insert (𝑓2, 127, 8) into the empty
cell.

(3) To insert 𝑓3 identified as a potentially active flow, we choose a
flow in the bucket 𝐴[ℎ(𝑓3)] with the smallest frequency and replace
it with the probability 𝑝, since there is no empty cell in the bucket
𝐴[ℎ(𝑓3)]. If the replacement is determined to execute, the cell (𝑓6, 29, 2)
will be changed into (𝑓3, 127, 8).

(4) The insertion of 𝑓4 is similar to that of 𝑓3, but the flow 𝑓4 does
not replace any flow in the bucket 𝐴[ℎ(𝑓4)] and is discarded.

At the end of the time window, we report active flows and clean
up flows that are no longer active. For the flows 𝑓1, 𝑓7, and 𝑓10, their
frequencies in the current time window do not reach the frequency
threshold 𝛼. Thus, we reset all information in the corresponding cells.
For the flows 𝑓2, 𝑓3, and 𝑓5, their frequencies in the current time win-
dow reach the frequency threshold 𝛼, but their number of consecutively
active time windows does not reach the threshold 𝛽. Accordingly, we do
not report these flows. For the flows 𝑓8 and 𝑓9, they meet the criteria of
active flows. So, we report them with their activity periods of 5 ∼ 8 and
2 ∼ 8, and frequencies of 165 and 182, respectively. After reporting, we
reset all flow frequencies in the monitoring part to 0.

3.3. Identification part

The data structure of the identification part: As shown in Fig. 3,
the identification part is an array 𝐵 with 𝑁 counters, associated with 𝑘
mutually independent hash functions 𝐻1(.), 𝐻2(.), 𝐻3(.)…𝐻𝑘(.). These
counters are used to estimate the frequencies of flows. At the end of
each time window, we reset all counters.

Initialization: In initial state, we set all counters as 0.
The insertion of a packet: As for an arrived packet within a flow

𝑓 , it is first mapped to the 𝑘 counters 𝐵[𝐻𝑖(𝑓)] (where 1 ≤ 𝐻𝑖(𝑓) ≤ 𝑁 ,
1 ≤ 𝑖 ≤ 𝑘) in the identification part by hashing. Next, we select the
4
minimal counter among the 𝑘 counters (min{𝐵[𝐻𝑖(𝑓)], 1 ≤ 𝑖 ≤ 𝑘}) and
increase it by 1. If there are multiple minimal counters, we increment
each of them by 1. After the increment, we check if the updated counter
reaches the frequency threshold 𝛼. There are two cases:

Case 1: min{𝐵[𝐻𝑖(𝑓)], 1 ≤ 𝑖 ≤ 𝑘} < 𝛼. In this case, the flow 𝑓 is
considered as an inactive flow.

Case 2: min{𝐵[𝐻𝑖(𝑓)], 1 ≤ 𝑖 ≤ 𝑘} ≥ 𝛼. In this case, the flow 𝑓
is identified as a potentially active flow, and we insert it into the
monitoring part to track it.

A running example: Fig. 3 illustrates a running example of the
identification part. Assume that the frequency threshold of an active
flow in a time window 𝛼 = 127, and the identification part has 3 hash
functions. The insertion of a packet in 𝑓11, 𝑓12, and 𝑓13 can be described
as follows.

(1) To insert a packet in 𝑓11, we obtain its mapped counters in
the identification part by hashing, and increase the minimal counter
𝐵[𝐻1(𝑓11)] among them by 1. After the increment, we find that
𝐵[𝐻1(𝑓11)] goes below the frequency threshold 𝛼. Thus, the flow 𝑓11
is considered as an inactive flow.

(2) To insert a packet in 𝑓12, we increase the minimum of its mapped
counters 𝐵[𝐻1(𝑓12)] and 𝐵[𝐻2(𝑓12)] by 1. However, both counters do
not reach the frequency threshold 𝛼. Hence, the flow 𝑓12 is also not
identified as a potentially active flow.

(3) To insert a packet in 𝑓13, the minimum of its mapped counters
𝐵[𝐻2(𝑓13)] and 𝐵[𝐻3(𝑓13)] reach the frequency threshold 𝛼. Therefore,
the flow 𝑓13 is identified as a potentially active flow and inserted into
the monitoring part.

3.4. Optimization 1: optimized flow insertion strategy of the monitoring part

In the basic version of the monitoring part, the insertion of a flow
will fail if its mapped bucket has no empty cell. However, there may be
empty cells in its two adjacent buckets. This provides an opportunity for
the flow to be accommodated in the monitoring part. To take advantage
of such opportunity, we optimize the flow insertion strategy of the
monitoring part, by expanding the candidate insertion range of a flow
to its two adjacent buckets. This will greatly improve the memory
utilization of the monitoring part along with the detection accuracy
of active flows, at the price of slight growth in its lookup overhead.
Specifically, there are four cases for the flow insertion of the monitoring
part.

Case 1: To insert the flow 𝑓 , we traverse its directly mapped bucket
𝐴[ℎ(𝑓)] and its two adjacent ones. If the flow 𝑓 has been recorded in
these buckets, we only need to increase its frequency by 1.

Case 2: The flow 𝑓 is not recorded in its directly mapped bucket and
its two adjacent ones, and there is an empty cell in these buckets, we
insert it into this cell.

Case 3: The flow 𝑓 is not recorded in its directly mapped bucket
and its two adjacent ones, and there is no empty cell in these buckets.

B. Xiong et al. Computer Networks 270 (2025) 111562
Fig. 3. The data structure and running example of the identification part.
Fig. 4. The running example of the optimized insertion strategy for the monitoring part.
We select a flow with the smallest frequency in the bucket 𝐴[ℎ(𝑓)] for
probabilistic replacement.

A running example: Fig. 4 depicts a running example of the
optimized insertion strategy for the monitoring part. Assume that the
frequency threshold of an active flow in a time window 𝛼 = 127 and the
sequence number of the current time window 𝑊𝑐𝑢𝑟 = 8. The insertion
of 𝑓14, 𝑓15, and 𝑓16 can be described as follows.

(1) To insert 𝑓14, it has been recorded in its directly mapped bucket.
Therefore, we simply increment 𝐹𝑐𝑢𝑟 (the frequency of a flow in the
current time window) of the corresponding cell by 1.

(2) To insert 𝑓15, it is not recorded in its directly mapped bucket
or its adjacent buckets. However, there is an empty cell in one of the
adjacent buckets, so we insert (𝑓15, 127, 8) into it.

(3) To insert 𝑓16, it is not recorded in its directly mapped bucket
𝐴[ℎ(𝑓16)] or its adjacent buckets, and there is no empty cell in these
buckets. Therefore, we choose a flow in bucket 𝐴[ℎ(𝑓16)] with the
smallest frequency in the current time window and replace it with
the probability 𝑝. If the replacement is successfully performed, the
information (𝑓20, 41, 7) will be changed into (𝑓16, 127, 8).

3.5. Optimization 2: applying SIMD parallel technology in the monitoring
part

SIMD (Single Instruction Multiple Data) technology achieves data
parallelism by vectorization, which can be applied to accelerate se-
quential access operations [32]. As for each arrived packet, we need
to perform sequential lookup on its directly mapped bucket and two
adjacent ones in the monitoring part after applying the Optimization
1. Meanwhile, the lookup on each bucket needs to sequentially check
multiple cells. These two factors lead to a multiplier effect on the
lookup overheads of the monitoring part for packet traffic. Moreover,
we still need to look up the monitoring part for an empty cell during the
insertion of each potentially active flow. These result in serious problem
of poor lookup performance of the monitoring part. Fortunately, this
problem can be resolved by applying the SIMD technology to process
multiple cells of the monitoring part in parallel with a single command.
5
We briefly describe the working principle of the monitoring part
applying the SIMD technology as follows. As for an arrived packet
within a flow 𝑓 , we first map it to a bucket in the monitoring part
by hashing. Specifically, we employ the 𝙼𝚞𝚛𝚖𝚞𝚛𝙷𝚊𝚜𝚑𝟹_𝚡𝟼𝟺_𝟷𝟸𝟾 primitive
to generate a 128-bit hash value based on the flow identifier, which
is then split into three parts corresponding to the directly mapped
bucket and its two adjacent buckets. Next, we load the flow identifiers
stored in all cells of these three buckets into a 256-bit SIMD register
using the _𝚖𝚖𝟸𝟻𝟼_𝚜𝚎𝚝_𝚎𝚙𝚒𝟼𝟺𝚡 instruction. Thereafter, we match the
identifier of the flow 𝑓 with the loaded identifiers in parallel using
the _𝚖𝚖𝟸𝟻𝟼_𝚌𝚖𝚙𝚎𝚚_𝚎𝚙𝚒𝟼𝟺 instruction. If the flow 𝑓 has been recorded in
the monitoring part, we update its frequency in current time window.
Otherwise, we insert the packet into the identification part. When a
flow is identified as a potentially active one, we similarly apply the
SIMD technology to accelerate lookup on its directly mapped bucket
and two adjacent ones in the monitoring part for an empty cell. If
an empty cell is found, we place the flow into it. In summary, it
can significantly enhance the lookup performance and flow insertion
efficiency of the monitoring part by applying the SIMD technology.

4. Theoretical analysis

This section provides theoretical analysis on the performance of
AF-Detector. We first derive the error bounds of its flow frequency
estimation in Section 4.1. Then, we infer its false positive and negative
error rates in Section 4.2. Finally, we provide its space and time
complexities in Section 4.3.

4.1. The error bounds of flow frequency estimation

Theorem 1. Suppose the monitoring part consists of 𝑀 buckets, each of
which contains 𝑛 cells. The monitoring part records 𝐹 flows, where there
are 𝑆 flows whose frequencies in current time window are lower than
the frequency threshold 𝛼. There are 𝐶 potentially active flows arrived at
the monitoring part. Let 𝑓 and 𝑓 respectively be the true frequency and

B. Xiong et al. Computer Networks 270 (2025) 111562
estimated one of a flow in the monitoring part. We can infer the error bound
of flow frequency estimation in the monitoring part as

𝐸
(

|

|

|

𝑓 − 𝑓 ||
|

)

< 𝛼 ⋅ 𝑒−𝑟𝛼

𝑀 ⋅ 𝑛 ⋅ (𝑛!)3
(1)

Proof. We first analyze flow frequency estimation during the insertion
process of packets in the monitoring part:

I: As for any flow 𝑔, if it has been recorded in the monitoring part,
we directly increase its counter value by 1. In this case, the estimated
frequency of the flow 𝑔 is equal to its true frequency.

II: If the flow 𝑔 is not recorded in the monitoring part and there is
an empty cell in its directly mapped bucket, the flow 𝑔 is inserted into
this empty cell. In this case, the estimated frequency of the flow 𝑔 is
also equal to its true frequency.

III: If the flow 𝑔 is replaced by a new potentially-active flow 𝑔′, and
the estimated frequency of the flow 𝑔 is lower than its true frequency.

In summary, flow frequency estimation will only result in errors
during flow replacement in the monitoring part. Flow replacement only
occurs in the case of the following conditions: (1) Condition A: The flow
𝑔′ is mapped to the same bucket as the flow 𝑔. (2) Condition B: There
are no empty cell in its directly mapped bucket and its two adjacent
buckets. (3) Condition C: The estimated frequency of the flow 𝑔 is
lower than the frequency threshold of active flows 𝛼 and the flow 𝑔 has
the lowest frequency among all flows in its directly mapped bucket.(4)
Condition D: The flow 𝑔 is successfully replaced by the flow 𝑔′.

Since the above conditions are independent of each other, we can
express the probability of flow replacement as

𝑃 = 𝑃 (𝐴 ∩ 𝐵 ∩ 𝐶 ∩𝐷) = 𝑃 (𝐴) ⋅ 𝑃 (𝐵) ⋅ 𝑃 (𝐶) ⋅ 𝑃 (𝐷). (2)

Suppose that each flow is randomly mapped into the monitoring
part by hashing, we can consider the insertion of each flow as an inde-
pendent random event. Consequently, we can infer that the probability
of the condition A is

𝑃 (𝐴) = 1
𝑀
. (3)

Suppose that each flow will be randomly inserted into any bucket,
the number of flows recorded in each bucket approximately follows a
Poisson distribution with parameter 𝜆 = 𝐹

𝑀 . Hence, the probability of
the condition B as

𝑃 (𝐵) =
(

𝑒−𝜆𝜆𝑛

𝑛!

)3
. (4)

Because there are 𝑆 flows with frequencies lower than the frequency
threshold 𝛼, the estimated frequency of the flow 𝑔 is lower than the
frequency threshold 𝛼 with the probability of 𝑆𝐹 . Due to the full state
of the directly mapped bucket of the flow 𝑔, its estimated frequency is
the smallest in this bucket with the probability of 1𝑛 . Therefore, we can
infer the probability of the condition 𝐶 as

𝑃 (𝐶) = 𝑆
𝐹 ⋅ 𝑛

. (5)

According to our designed probabilistic replacement strategy, the
probability of the condition 𝐷 is

𝑃 (𝐷) = 𝑒−𝑟𝑓 . (6)

Based on the above discussion, we can derive the probability that
flow 𝑔 is replaced by a potentially active flow 𝑔′ in current time window
as

𝑃 = 𝑃 (𝐴 ∩ 𝐵 ∩ 𝐶 ∩𝐷) = 1
𝑀

(

𝑒−𝜆𝜆𝑛

𝑛!

)3
𝑆
𝐹 ⋅ 𝑛

𝑒−𝑟𝑓 . (7)

Each bucket receives 𝐶𝑀 flows. The flow 𝑔 is replaced only when
its estimated frequency goes below the frequency threshold 𝛼. Conse-
quently, we can derive the error bound of flow frequency estimation in
6
the monitoring part as

𝐸
(

|

|

|

𝑓 − 𝑓 ||
|

)

< 𝛼 ⋅
(

1 − (1 − 𝑃)
𝐶
𝑀
)

= 𝛼 ⋅
⎛

⎜

⎜

⎝

1 −

(

1 − 1
𝑀

(

𝑒−𝜆𝜆𝑛

𝑛!

)3 𝑆
𝐹 ⋅ 𝑛

𝑒−𝜂𝑓
)

𝐶
𝑀 ⎞

⎟

⎟

⎠

≤ 𝛼 ⋅ 𝑒−𝑟𝛼

𝑀 ⋅ 𝑛 ⋅ (𝑛!)3

□ (8)

Theorem 2. Suppose the identification part consists of 𝑁 counters and
𝑘 independent hash functions. Let 𝑆 be a sequence of network traffic with
𝑊 packets. For a flow 𝑔 in the identification part, let 𝑓 be its estimated
frequency, and let 𝑓 be its true frequency. Given a small variable 𝛿 (𝛿 >
0), we can infer the error bound of flow frequency estimation in the
identification part as

𝑃 (𝑓 − 𝑓 > 𝛿 ⋅𝑊) ≤
(1
𝛿 ⋅𝑁

)𝑘
. (9)

Proof. As for any flow 𝑔, let 𝑋𝑗 (1 ≤ 𝑗 ≤ 𝑘) be its mapped counter in
the identification part by the 𝑗th hash function. We can formulate 𝑋𝑗
as

𝑋𝑗 = 𝑓 +
∑

𝑔𝑖≠𝑔
I(ℎ𝑗 (𝑔𝑖) = ℎ𝑗 (𝑔)) ⋅ 𝑓𝑔𝑖 . (10)

where 𝑔𝑖 refers to a flow that is different from the flow 𝑔 in the
identification part with the frequency 𝑓𝑔𝑖 ; ℎ𝑗 (⋅) represents the 𝑗th hash
function; I(⋅) is a boolean function.

Since there are a total of 𝑊 packets, other flows contain 𝑊 − 𝑓
packets. Suppose that all flows are randomly mapped into 𝑁 counters,
we can obtain the expectation of the frequency estimation error of the
flow 𝑔 caused by other flows as

𝐸[
∑

𝑔𝑖≠𝑔
I(ℎ𝑗 (𝑔𝑖) = ℎ𝑗 (𝑔)) ⋅ 𝑓𝑔𝑖] =

𝑊 − 𝑓
𝑁

. (11)

Since all hash functions are independent of each other, we can apply
the Markov inequality to derive the error bound of flow frequency
estimation at the 𝑗th mapped counter of flow 𝑔 as

𝑃

(

∑

𝑔𝑖≠𝑔
I(ℎ𝑗 (𝑔𝑖) = ℎ𝑗 (𝑔)) ⋅ 𝑓𝑔𝑖 > 𝛿 ⋅𝑊

)

≤
𝐸
[

∑

𝑔𝑖≠𝑔 I(ℎ𝑗 (𝑔𝑖) = ℎ𝑗 (𝑔)) ⋅ 𝑓𝑔𝑖
]

𝛿 ⋅𝑊

=
𝑊 − 𝑓
𝛿 ⋅𝑊 ⋅𝑁

.

(12)

Since the identification part takes the minimal mapped counter of a
flow as its estimated frequency, we can express the estimated frequency
of the flow g as

𝑓 = min
1≤𝑗≤𝑘

𝑋𝑗 . (13)

Consequently, we can derive the error bound of flow frequency
estimation in the identification part as
𝑃 (𝑓 − 𝑓 > 𝛿 ⋅𝑊)

= 𝑃 (min
1≤𝑗≤𝑘

𝑋𝑗 − 𝑓 > 𝛿 ⋅𝑊)

= 𝑃

(𝑘
⋂

𝑗=1
{𝑋𝑗 − 𝑓 > 𝛿 ⋅𝑊 }

)

=
𝑘
∏

𝑗=1
𝑃
(

𝑋𝑗 − 𝑓 > 𝛿 ⋅𝑊
)

≤
(

𝑊 − 𝑓
𝛿 ⋅𝑊 ⋅𝑁

)𝑘

<
(1)𝑘

.

□ (14)
𝛿 ⋅𝑁

B. Xiong et al. Computer Networks 270 (2025) 111562
4.2. False positive and negative error rates

Theorem 3.
Suppose there are multiple fixed-size time windows 𝑤1, 𝑤2, 𝑤3, … ,

𝑤𝛽 . There are 𝑊 packets arrived at the identification part composed of 𝑁
counters and 𝑘 independent hash functions in the time window 𝑤1. Let 𝑓
and 𝑓 respectively be the true frequency of a flow whose frequency less than
the frequency threshold 𝛼 and its estimated frequency in the identification
part. The monitoring part consists of 𝑀 buckets, each of which contains 𝑛
cells. The monitoring part records 𝐹𝑖 flows in the 𝑖th time window, where
there are 𝑆𝑖 flows whose frequencies is lower than the frequency threshold
𝛼. Then, we can infer the false positive error rate of AF-Detector as

𝑃 𝑡𝑜𝑡𝑎𝑙𝐹𝑃𝑅 ≤
(𝑊
𝑁 ⋅ 𝛼

)𝑘
. (15)

Proof. A flow is only misclassified as an active flow by AF-Detector
when it is mistakenly identified as a potentially active flow in the
identification part and its frequency exceeds the threshold 𝛼 in each
of the following 𝛽 − 1 time windows. Therefore, we can express that
the probability of a flow being misclassified as an active flow by
AF-Detector as
𝑃 𝑡𝑜𝑡𝑎𝑙𝐹𝑃𝑅 = 𝑃𝐹𝑃𝑅 ⋅ 𝑃𝑎𝑐𝑡𝑖𝑣𝑒. (16)

where 𝑃𝐹𝑃𝑅 represents the false positive error rate of the identification
part and 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 denotes the probability that the flow maintains a
frequency above the threshold 𝛼 in each of the following 𝛽 − 1 time
windows.

As for any flow 𝑔, the occurrence of a false positive error in the
identification part implies that its estimated frequency exceeds the
threshold 𝛼, while its true frequency is lower than 𝛼. Therefore, we
can obtain the false positive error rate as
𝑃𝐹𝑃𝑅 = 𝑃 (𝑓 ≥ 𝛼 ∩ 𝑓 < 𝛼). (17)

According to the law of total probability, the false positive error rate
can be expressed through the following decomposition
𝑃𝐹𝑃𝑅 = 𝑃 (𝑓 ≥ 𝛼) − 𝑃 (𝑓 ≥ 𝛼 ∩ 𝑓 ≥ 𝛼). (18)

Let 𝑋𝑗 (1 ≤ 𝑗 ≤ 𝑘) be the mapped counter in the identification part
by the 𝑗th hash function for flow 𝑔. Due to 𝑓 < 𝛼, we have
𝑃 (𝑓 ≥ 𝛼 ∩ 𝑓 ≥ 𝛼) = 0. (19)

𝑃𝐹𝑃𝑅 = 𝑃 (𝑓 ≥ 𝛼) = 𝑃

(𝑘
⋂

𝑗=1
{𝑋𝑗 ≥ 𝛼}

)

=
𝑘
∏

𝑗=1
𝑃
(

𝑋𝑗 ≥ 𝛼
)

. (20)

Suppose that all flows are randomly mapped into 𝑁 counters, we
can conclude the expectation of each counter in the identification part
as
𝐸[𝑋𝑗] =

𝑊
𝑁
. (21)

Further, we can use Markov’s inequality to infer that the probability
of 𝑋𝑗 ≥ 𝛼 (1 ≤ 𝑗 ≤ 𝑘) as

𝑃
(

𝑋𝑗 ≥ 𝛼
)

≤
𝐸
[

𝑋𝑗
]

𝛼
= 𝑊
𝑁 ⋅ 𝛼

. (22)

Consequently, we can deduce the false positive error rate in the
identification part as

𝑃𝐹𝑃𝑅 = 𝑃 (𝑓 ≥ 𝛼) ≤
(𝑊
𝑁 ⋅ 𝛼

)𝑘
. (23)

Since the monitoring part records 𝐹𝑖 flows in the 𝑖th time window,
where there are 𝑆𝑖 flows whose frequencies is lower than the frequency
threshold 𝛼, we can derive the probability that the flow maintains a
frequency above the threshold 𝛼 for a consecutive sequence of 𝛽 time
windows as

𝑃𝑎𝑐𝑡𝑖𝑣𝑒 =
(

𝐹𝑖 − 𝑆𝑖
)𝛽−1

. (24)

𝐹𝑖

7
Consequently, we can deduce the false positive error rate of AF-
Detector as

𝐹𝑃𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑃𝐹𝑃𝑅 ⋅
(

𝐹𝑖 − 𝑆𝑖
𝐹𝑖

)𝛽−1
≤ 𝑃𝐹𝑃𝑅 ≤

(𝑊
𝑁 ⋅ 𝛼

)𝑘
. □ (25)

Theorem 4. With the same assumption as Theorem 3, we can infer the
false negative error rate of AF-Detector as

𝑃 𝑡𝑜𝑡𝑎𝑙𝐹𝑁𝑅 < 1 −
(

1 − 𝑒−𝑟𝛼

𝑀 ⋅ 𝑛 ⋅ (𝑛!)3

)𝛽
. (26)

Proof. An active flow will not be detected by AF-Detector only
when it is replaced by other potentially active flows. Specifically, the
monitoring part will miss an active flow if it is replaced in any of the
consecutive 𝛽 time windows.

Suppose that each flow will be randomly inserted into any bucket,
each bucket receives 𝐶𝑖∕𝑀 flows. With the flow replacement probabil-
ity in (7), we can derive the probability that the flow is stored in the
monitoring part for a consecutive sequence of 𝛽 time windows as

𝑃 𝑡𝑜𝑡𝑎𝑙𝐹𝑁𝑅 = 1 −
𝛽
∏

𝑖=1

⎛

⎜

⎜

⎝

1 − 1
𝑀

(

𝑒−𝜆𝑖𝜆𝑛𝑖
𝑛!

)3
𝑆𝑖
𝐹𝑖 ⋅ 𝑛

𝑒−𝑟𝑓𝑖
⎞

⎟

⎟

⎠

𝐂𝑖
𝑀

< 1 −
(

1 − 𝑒−𝑟𝛼

𝑀 ⋅ 𝑛 ⋅ (𝑛!)3

)𝛽
.

□ (27)

To demonstrate the expected values of the theoretical frequency
estimation error, false positive rate, and false negative rate, we evaluate
the corresponding formulas under representative parameter settings.
These values are representative of real-world configurations: 𝑁 = 4096,
𝑛 = 4, 𝑀 = 2048, 𝛼 = 127, 𝛽 = 4, 𝑟 = 0.01, 𝑘 = 3, 𝛿 = 0.001, 𝑊 = 5×105.
By substituting these values into the respective formulas, we obtain the
following results:

• The error bound of flow frequency estimation in the monitoring
part is less than approximately 3.15 × 10−7;

• The error bound of flow frequency estimation in the identification
part is less than approximately 1.4 × 10−2;

• The total false positive error rate of AF-Detector is less than
approximately 7.1 × 10−3;

• The false negative error rate of AF-Detector is less than approxi-
mately 9.92 × 10−9.

4.3. Space and time complexities

Space complexity: AF-Detector consists of a monitoring part and
an identification part. The monitoring part contains 𝑀 ⋅ 𝑛 cells, where
𝑀 is the number of its buckets and 𝑛 is the number of cells for its
each bucket. Meanwhile, the identification part contains 𝑁 counters.
Suppose the size of each cell in the monitoring part and each counter in
the identification part respectively as 𝑆1 and 𝑆2, we can get the memory
size of AF-Detector as 𝑀 ⋅ 𝑛 ⋅ 𝑆1 +𝑁 ⋅ 𝑆2. In our AF-Detector, each cell
in the monitoring part consists of three fields: Flow ID, 𝐹𝑐𝑢𝑟, and 𝑊𝑓𝑖𝑟𝑠𝑡.
Flow ID is usually manifested as a flow fingerprint typically with 32
bits. For 𝐹𝑐𝑢𝑟, 12 bits are adequate to record the frequency of a flow
in a time window with 100 K packets. 𝑊𝑓𝑖𝑟𝑠𝑡 can be configured with
8 bits to record the sequence number of the current time window. In
summary, 𝑆1 is 52 bits. 𝑆2 is suitable to be set as 7 bits, due to the
frequency threshold of active flows 𝛼 = 127. According to the state-
of-the-art method [23], 𝑁 , 𝑀 , and 𝑛 are typically set to 2048, 2048,
and 4, respectively. Consequently, we can calculate the memory size
of AF-Detector approximately as 53 KB. In conclusion, AF-Detector is a
lightweight method with low space complexity.

Time Complexity: For an arrived packet within a flow 𝑓 , we first
look up the flow 𝑓 in its directly mapped bucket and two adjacent
ones in the monitoring part by hashing. This lookup process involves 3𝑛

B. Xiong et al. Computer Networks 270 (2025) 111562
cells, where 𝑛 is the number of cells in each bucket of the monitoring
part. If the flow 𝑓 has been recorded in the monitoring part, we only
need to update its frequency in the current time window. This case is
executed with the time complexity 𝑂(3𝑛). Otherwise, we need to map
the flow into the identification part with its 𝑘 hash functions and update
the minimum of 𝑘 mapped counters. If the updated counter does not
reach the frequency threshold 𝛼, the flow is not yet a potentially active
flow, and packet processing ends. This case performs with the time
complexity 𝑂(3𝑛 + 𝑘). If the flow is identified as potentially active, we
insert the flow 𝑓 into the monitoring part, which requires checking
3𝑛 cells. Hence, the execution of this case needs to take the time
complexity 𝑂(6𝑛 + 𝑘). In summary, AF-Detector processes each packet
with the time complexity 𝑂(6𝑛+𝑘) in the worst case. Since 𝑛 and 𝑘 are
generally configured as very small values, AF-Detector is a lightweight
method with very low time complexity.

5. Experiments

In this section, we first introduce experimental setup. Subsequently,
we optimize the parameter settings of AF-Detector. Finally, we eval-
uate the performance of AF-Detector and compare it with prevalent
active-flow detection methods.

5.1. Experimental setup

(1) Dataset
MAWI Dataset: The MAWI dataset [33] was collected from daily

traces at the transit link of WIDE to the upstream ISP. We select 20M
packets, which contains 6692 active flows for the time window size set
as 100 K.

Campus Dataset: The campus dataset [34] consist of campus net-
work traffic collected over 10 days in 2016. We select 20M packets,
which contains 5899 active flows for the time window size set as 100 K.

(2) Implementation We implement the state-of-the-art methods
including AF-Detector, Steady Sketch [1], MV Sketch [7], Waving
Sketch [21], Burst Sketch [23], and Elastic Sketch [29], whose param-
eters are configured as follows.

Steady Sketch: We set the ratio of the memory usage of its Steady-
Filter to its total memory size as 0.2. Meanwhile, its RollingSketch
contains two arrays, where the number of slots is determined by given
memory size.

MV Sketch: We set the number of its rows to 4, where the number
of its columns is adjusted in accordance with the size of its provided
memory.

Waving Sketch: We set the number of cells in its each bucket to
16, where the number of its buckets is determined by the size of its
allocated memory.

Burst Sketch: We set the number of hash functions to 1 and the
ratio of the memory usage of its Stage 1 to its total memory size as 0.5.
Meanwhile, each bucket in its Stage 2 contains 4 cells.

Elastic Sketch: Its light part consists of an array of counters, while
each bucket in its heavy part stores 7 flows and a negative vote counter.
Additionally for the heavy part, we set its replacement threshold to 8,
where the number of its storage buckets is determined by configured
memory size.

AF-Detector: We set the number of counters in its identification
part to 3072 and 4 cells for each bucket in its monitoring part, where
the number of its buckets is determined by given memory size. AF-
Detector.Opt is the version of AF-Detector that adopts optimization 1
and optimization 2. AF-Detector.Cbf is the version of AF-Detector that
adopts a Counting Bloom Filter in its identification part. We set the
frequency threshold of an active flow in a time window as 127, the
number threshold of consecutively active time windows of an active
flow as 4, and the time window size as 100 K. Subsequently, we run
the program on a server with dual 6-core CPUs (24 threads, Intel Xeon
8
Fig. 5. Effects of 𝛼.

Silver 4214R @2.4 GHz) and 32 GB DRAM memory, to evaluate their
detection performance of active flows.
(3) Metrics

Precision Rate (PR): The ratio of the number of correctly reported
active flows to the total number of reported active flows.

Recall Rate (RR): The ratio of the number of correctly reported
active flows to the true number of active flows.

F1 score: 2⋅𝑅𝑅⋅𝑃𝑅
𝑅𝑅+𝑃𝑅 . The F1 score is the harmonic average of the

recall rate and precision, used to measure the accuracy of a method
in monitoring active flows.

ARE (Average Relative Error): 1
∣𝜓 ∣

∑

𝑛𝑖∈𝜓

|

|

|

𝑓𝑖−𝑓𝑖
|

|

|

𝑓𝑖
, 𝜓 is the total number

of active flows reported by AF-Detector, 𝑓𝑖 is the true frequency of the
𝑖th flow, and 𝑓𝑖 is the estimated frequency of the 𝑖 th flow.

Throughput: 𝑁𝑇 , where 𝑁 is the total number of packets, and 𝑇 is
the total measurement time. Throughput represents million insertions
per second (MIPS).

5.2. Parameter settings

We conduct a comprehensive evaluation of the key parameters of
AF-Detector, including the frequency threshold of an active flow in
a time window 𝛼, the number threshold of consecutively active time
windows of an active flow 𝛽, the number of hash functions in the
identification part 𝑘, the replacement rate 𝑟, and the time window
size 𝑆𝑤𝑖𝑛. In the experiments, we allocate 100 KB of memory. We
conduct experiments on the MAWI dataset and evaluate the effects of
parameters on performance of AF-Detector in terms of RR, PR, F1 score,
and ARE.

Effects of 𝛼: Fig. 5 exhibits the performance metrics of AF-Detector
by varying the value of 𝛼 from 31 to 255, while keeping other pa-
rameters constant. As shown in Fig. 5, it is suitable to configure the
frequency threshold 𝛼 as 127. As the frequency threshold 𝛼 increases,
the PR, RR, and F1 score improve continuously and gradually stabilize
after 𝛼 = 127. Meanwhile, the ARE decreases continuously. This is
because as 𝛼 increases, fewer flows meet the criteria for active flows.
AF-Detector is able to track almost all active flows when 𝛼 = 127.
Therefore, we default the frequency threshold 𝛼 to 127.

Effects of 𝛽: Fig. 6 displays the performance metrics of AF-Detector
by varying the value of 𝛽 from 2 to 6, while keeping other parameters
constant. As shown in Fig. 6, it is suitable to configure the number
threshold of consecutively active time windows 𝛽 as 4. With the in-
creasing number threshold of consecutively active time windows 𝛽,
the PR, RR, and F1 score continuously improve and gradually stabilize
after 𝛽 = 4. Meanwhile, the ARE continuously decreases and gradually
stabilizes after 𝛽 = 4. It is not advisable to set a high threshold for
the number of consecutively active time windows, since our goal is
to detect flows that may affect network performance. Therefore, we

B. Xiong et al. Computer Networks 270 (2025) 111562
Fig. 6. Effects of 𝛽.

Fig. 7. Effects of k.

default the number threshold of consecutively active time windows 𝛽
to 4.

Effects of 𝑘: Fig. 7 shows the performance metrics of AF-Detector
by varying the value of 𝑘 from 1 to 5, while keeping other parameters
constant. As shown in Fig. 7, it is suitable to configure the number
of hash functions in the identification part 𝑘 as 3. With the increasing
number of hash functions in the identification part, the PR, RR, and F1
score initially improve quickly and the improvement slows down after
𝑘 = 3. Meanwhile, the ARE continuously decreases. Considering that
more hash functions will increase packet processing time, we default
the number of hash functions in the identification part to 3.

Effects of 𝑟: Fig. 8 depicts the performance metrics of AF-Detector
by varying the value of 𝑟 from 0.006 to 0.014, while keeping other
parameters constant. As seen from Fig. 8, it is suitable to configure
the replacement rate 𝑟 as 0.01. With the increase of the replacement
rate 𝑟, the PR, RR, and F1 score continuously improve at the beginning
and gradually decrease after 𝑟 = 0.01. Meanwhile, the ARE initially
decreases and then gradually increases after 𝑟 = 0.01. This is due to that
a low replacement rate will lead potentially active flows to be easily
replaced, while a high replacement rate can make it difficult to replace
low-frequency flows. Therefore, we default the replacement rate 𝑟 to
0.01.

Effects of 𝑆𝑤𝑖𝑛: Fig. 9 illustrates the performance metrics of AF-
Detector by varying the value of Swin from 50 K to 150 K, while
keeping other parameters constant. The experimental results in Fig.
9 demonstrate the optimal value of the time window size Swin as
100 K. As the time window size Swin increases, the PR, RR, and F1
score slightly decrease at the initial stage, but the decrease accelerates
after Swin = 100 K, while the ARE continuously improves. As for a
small size of time window, there will be fewer packets within a time
window, which increases the difficulty for a flow to reach the frequency
threshold of active flows. This results in fewer active flows which
can be almost tracked by AF-Detector with higher detection accuracy.
9
Fig. 8. Effects of r.

Fig. 9. Effects of 𝑆𝑤𝑖𝑛.

However, it will overlook some important flows which cannot meet
the criteria of active flows. As for a big size of time window, there
will be more packets within a time window, and more flows with their
frequencies meeting the criteria of active flows. This results in a higher
hash collision rate of the monitoring part, and the omission of some
active flows, reducing detection accuracy. Meanwhile, a big size of time
window also means a longer update cycle of AF-Detector, weakening
the real-time nature of active-flow detection. In summary, we default
the time window size Swin as 100 K.

5.3. Precision, recall and F1 score

Precision vs. Memory Size: Fig. 10 shows the precision of preva-
lent active-flow detection methods under different memory sizes. As
depicted in Fig. 10, the precision of AF-Detector.Opt is always higher
than that of other methods under the same memory size. Moreover, AF-
Detector.Opt demonstrates superior precision in detecting active flows,
even under low memory sizes. As seen from Fig. 10(a), AF-Detector.Opt
and AF-Detector respectively achieve precision of 98.64% and 97.06%,
surpassing that of Steady Sketch (89.29%), Burst Sketch (95.75%),
Waving Sketch (85.63%), MV Sketch (79.17%), AF-Detector.Cbf
(83.53%), and Elastic Sketch (82.73%) when the memory size is set to
60 KB. With the increasing memory size, the precision of all methods
continuously improves. When the memory size is set to 100 KB,
AF-Detector.Opt and AF-Detector respectively achieve precision of
99.59% and 98.79%, outperforming Steady Sketch (95.73%), Burst
Sketch (98.21%), Waving Sketch (98.26%), MV Sketch (94.13%), AF-
Detector.Cbf (86.45%), and Elastic Sketch (93.24%). In summary, both
AF-Detector.Opt and AF-Detector achieve high accuracy in active-flow
detection due to their separation of the tracking and identification
functions of active flows, which reduces interference from inactive
flows. Additionally, AF-Detector.Opt adopts a better insertion strategy,
further enhancing its performance.

B. Xiong et al. Computer Networks 270 (2025) 111562
Fig. 10. Precision vs. memory size. .
Fig. 11. Recall vs. memory size.
Recall vs. Memory Size: Fig. 11 shows the recall of prevalent
active-flow detection methods under different memory sizes. As shown
in Fig. 11, the recall rate of AF-Detector.Opt is higher than that of
other methods under the same memory size. As seen from Fig. 11(a),
AF-Detector.Opt and AF-Detector respectively achieve recall rates of
98.89% and 97.31%, surpassing that of Steady Sketch (92.00%), Burst
Sketch (96.89%), Waving Sketch (93.14%), MV Sketch (82.12%), AF-
Detector.Cbf (73.64%), and Elastic Sketch (85.57%) when the memory
size is set to 60 KB. With the increasing memory size, the recall rates
of all methods continuously improve. When the memory size is set to
100 KB, AF-Detector.Opt and AF-Detector respectively achieve recall
rates of 99.78% and 99.01%, outperforming Steady Sketch (96.69%),
Burst Sketch (97.59%), Waving Sketch (98.95%), MV Sketch (90.93%),
AF-Detector.Cbf (82.26%), and Elastic Sketch (93.05%). In summary,
both AF-Detector.Opt and AF-Detector consistently achieve high recall
rates. This is due to their adoption of a probabilistic replacement
strategy, which helps prevent the incorrect discarding of potentially
active flows in the case of full buckets. Additionally, they employ
an information cleanup mechanism to remove outdated or inactive
flows at the end of each time window, allowing them to accurately
detect active flows even under limited resource conditions. Moreover,
AF-Detector.Opt adopts an optimized insertion strategy, providing a
further boost to its performance.

F1 Score vs. Memory Size: Fig. 12 shows the F1 score of prevalent
active-flow detection methods under different memory sizes. As shown
in Fig. 12, AF-Detector.Opt consistently demonstrates superior F1 score
compared to other methods under the same memory size. As seen
10
from Fig. 12(a), AF-Detector.Opt and AF-Detector respectively achieve
F1 scores of 0.9878 and 0.9718, surpassing that of Steady Sketch
(0.9062), Burst Sketch (0.9632), Waving Sketch (0.8922), MV Sketch
(0.8062), AF-Detector.Cbf (0.7876), and Elastic Sketch (0.8412) when
the memory size is set to 60 KB. With the increasing memory size, the
F1 score of all methods continuously improves. When the memory size
is set to 100 KB, AF-Detector.Opt and AF-Detector respectively achieve
F1 scores of 0.9969 and 0.9890, surpassing Steady Sketch (0.9621),
Burst Sketch (0.9790), Waving Sketch (0.9860), MV Sketch (0.9251),
AF-Detector.Cbf (0.8430), and Elastic Sketch (0.9315). In summary,
both AF-Detector.Opt and AF-Detector consistently maintain higher F1
scores than other methods.

5.4. ARE

ARE vs. Memory Size: Fig. 13 shows the ARE of prevalent active-
flow detection methods under different memory sizes. As shown in Fig.
13, it is evident that AF-Detector.Opt consistently maintains lower ARE
than other methods under the same memory size. As seen from Fig.
13(a), AF-Detector.Opt and AF-Detector respectively achieve
log10 ARE of −1.01 and −0.93, lower than that of Steady Sketch
(−0.81), Burst Sketch (−0.90), Waving Sketch (−0.91), MV Sketch
(−0.30), AF-Detector.Cbf (−0.01), and Elastic Sketch (0.34) when the
memory size is set to 60 KB. With the increasing memory size, the
ARE of all methods continuously decreases. When the memory size is
set to 100 KB, AF-Detector.Opt and AF-Detector respectively achieve
log ARE of −1.13 and −1.04, outperforming Steady Sketch (−0.98),
10

B. Xiong et al. Computer Networks 270 (2025) 111562
Fig. 12. F1 score vs. memory size.
Fig. 13. ARE vs. memory size..
Burst Sketch (−0.96), Waving Sketch (−0.95), MV Sketch (−0.30), AF-
Detector.Cbf (−0.16), and Elastic Sketch (−0.03). In summary, both
AF-Detector.Opt and AF-Detector always achieve lower ARE compared
to other methods. This is due to their prompt removal of inactive flows
and periodic reporting of active flows, which improve the memory uti-
lization efficiency of the monitoring part and reduce the hash conflicts
between active flows.

5.5. Throughput

Throughput: Fig. 14 illustrates the throughput of prevalent active-
flow detection methods on different datasets. As shown in Fig. 14,
AF-Detector.Opt consistently maintains the highest throughput, no
matter which dataset. For the MAWI dataset, the throughput of AF-
Detector.Opt reaches 30.32 Mips, approximately 3.39, 1.15, 6.77, 1.72,
1.10, and 1.52 times that of Steady Sketch, Burst Sketch, Waving
Sketch, MV Sketch, AF-Detector.Cbf, and Elastic Sketch, respectively.
For the Campus dataset, the throughput of AF-Detector.Opt reaches
30.99 Mips, approximately 3.23, 1.21, 6.78, 1.82, 1.08, and 1.53
times that of Steady Sketch, Burst Sketch, Waving Sketch, MV Sketch,
AF-Detector.Cbf, and Elastic Sketch, respectively. Compared to AF-
Detector, AF-Detector.Opt increases throughput by 28.52% in average.
This is due to that AF-Detector.Opt applies SIMD technology to enhance
the lookup performance of the monitoring part and its flow insertion
efficiency. In conclusion, AF-Detector.Opt can real-timely detect active
flows in high-speed network environments.

6. Conclusion and discussion

Real-time detection of active flows plays a crucial role in network
measurement. To address the issues with existing methods, we propose
AF-Detector to detect active flows with high precision and low memory
11
Fig. 14. The throughput of different active-flow detection methods.

overhead. AF-Detector separates the tracking and identification func-
tions of active flows, to precisely find out active flows and report their
activity periods. Specifically, we estimate the frequencies of incoming
flows and find out potentially active flows in the identification part.
Subsequently, we track active flows in the monitoring part with a
compact hash table. Meanwhile, we design a probabilistic replace-
ment strategy to accommodate new potentially active flows for the
case of full mapped buckets, and an information cleanup mechanism
to promptly remove flows that are no longer active and outdated
information, improving the accuracy of active-flow detection.

The experimental results show that AF-Detector achieves up to
99.59% precision and 99.78% recall rate for detecting active flows.

B. Xiong et al. Computer Networks 270 (2025) 111562
Even when the memory size is set to 60 KB, the precision and recall
rate can achieve up to 98.64% and 98.89%, respectively. At the same
time, the average relative error of AF-Detector is lower than that of the
state-of-the-art methods. These results demonstrate that AF-Detector
can ensure high precision, high recall rates, and low error even under
low memory constraints, showing significant advantages over state-of-
the-art methods. Moreover, AF-Detector achieves higher throughput of
30.99 Mips compared to the state-of-the-art methods. This indicates
that AF-Detector is capable of real-time detection of active flows in
high-speed network environments.

In our future work, we will further optimize the AF-Detector to
enhance its robustness for detecting active flows in larger-scale and
more complex network environments. For this end, we will apply
our proposed techniques published in the paper [35] to enhance the
performance of AF-Detector under highly bursty traffic conditions.
Specifically, we will employ a stretchable identification part based on
cyclic sketch chain, which dynamically adjusts the number of sketches
in terms of real-time packet arrival rates, to ensure accurate filtering of
inactive flows during network traffic fluctuations. Meanwhile, we will
adopt a scalable monitoring part based on dynamic segmented hashing,
which adaptively adjusts segments based on the number of potentially
active flows, to fully record all active flows while maintaining high
memory space utilization. Eventually, we plan to deploy AF-Detector in
various network management systems to assist network administrators
in improving network performance.

CRediT authorship contribution statement

Bing Xiong: Writing – review & editing, Methodology, Funding ac-
quisition. Yu Chang: Writing – original draft, Validation, Data curation.
Yuhang Zhang: Visualization, Software. Jin Zhang: Project admin-
istration, Investigation. Baokang Zhao: Funding acquisition, Formal
analysis. Keqin Li: Supervision, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Baokang Zhao reports financial support was provided by National
Natural Science Foundation of China. Bing Xiong reports financial
support was provided by Hunan Provincial Natural Science Foundation
of China. Bing Xiong reports financial support was provided by Scien-
tific Research Foundation of Hunan Provincial Education Department.
Bing Xiong has patent pending to Changsha University of Science and
Technology. If there are other authors, they declare that they have
no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported in part by National Natural Science Foun-
dation of China (U22B2005, 61972412), Hunan Provincial Natural
Science Foundation of China (2023JJ30053), Scientific Research Fund
of Hunan Provincial Education Department (22A0232).

Data availability

The authors do not have permission to share data.
12
References

[1] Xiaodong Li, Zhuochen Fan, Haoyu Li, et al., SteadySketch: Finding steady flows
in data streams, in: 31st IEEE/ACM International Symposium on Quality of
Service, IWQoS, Orlando, USA, 2023, pp. 1–9.

[2] Hao Zheng, Chen Tian, Tong Yang, et al., Flymon: enabling on-the-fly task
reconfiguration for network measurement, in: ACM Special Interest Group on
Data Communication, SIGCOMM, Amsterdam, Netherlands, 2022, pp. 486–502.

[3] Peiqing Chen, Yuhan Wu, Tong Yang, et al., Precise error estimation for sketch-
based flow measurement, in: 21st ACM Internet Measurement Conference, IMC,
Online, 2021, pp. 113–121.

[4] Yuchen Xu, Wenfei Wu, Bohan Zhao, et al., MimoSketch: A framework to mine
item frequency on multiple nodes with sketches, in: 29th ACM Special Interest
Group on Knowledge Discovery and Data Mining, SIGKDD, Long Beach, USA,
2023, pp. 2838–2849.

[5] Lingtong Liu, Yulong Shen, Yibo Yan, et al., SF-sketch: A two-stage sketch for
data streams, IEEE Trans. Parallel Distrib. Syst. 31 (10) (2020) 2263–2276.

[6] Ran Ben Basat, Gil Einziger, Roy Friedman, et al., Optimal elephant flow de-
tection, in: IEEE Conference on Computer Communications, INFOCOM, Atlanta,
USA, 2017, pp. 1–9.

[7] Lu Tang, Qun Huang, Patrick P.C. Lee, Mv-sketch: A fast and compact invertible
sketch for heavy flow detection in network data streams, in: IEEE Conference
on Computer Communications, INFOCOM, Paris, France, 2019, pp. 2026–2034.

[8] Qingjun Xiao, Yifei Li, Yeke Wu, Finding recently persistent flows in high-speed
packet streams based on cuckoo filter, Comput. Netw. 237 (110097) (2023)
1–16.

[9] Jiahua Zhu, Xianliang Jiang, Yan Yu, et al., An efficient priority-driven conges-
tion control algorithm for data center networks, China Commun. 17 (6) (2020)
37–50.

[10] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, et al., Maglev: A fast and reliable
software network load balancer, in: Symposium on Network System Design and
Implementation, NSDI, Santa Clara, USA, 2016, pp. 523–535.

[11] Xin Jin, Xiaozhou Li, Haoyu Zhang, et al., Netcache: Balancing key-value
stores with fast in-network caching, in: 26th Symposium on Operating Systems
Principles, SOSP, Shanghai, China, 2017, pp. 121–136.

[12] Lei Ying, Rayadurgam Srikant, Xiaohan Kang, The power of slightly more than
one sample in randomized load balancing, Math. Oper. Res. 42 (3) (2017)
692–722.

[13] Wei Bai, Li Chen, Kai Chen, et al., Information-agnostic flow scheduling
for commodity data centers, in: Symposium on Network System Design and
Implementation, NSDI, Oakland, USA, 2015, pp. 455–468.

[14] Abdul Samad Bin Shibghatullah, Mitigating developed persistent threats (APTs)
through machine learning-based intrusion detection systems: a comprehensive
analysis, SHIFRA 2023, 17–25.

[15] L. Hussain, Fortifying AI against cyber threats advancing resilient systems to
combat adversarial attacks, EDRAAK 2024, 26–31.

[16] S. Zhang, R. Shi, J. Zhao, A visualization system for multiple heterogeneous
network security data and fusion analysis, KSII Trans. Internet Inf. Syst. (TIIS)
10 (6) (2016) 2801–2816.

[17] Anja Feldmann, Albert Greenberg, Carsten Lund, et al., Deriving traffic demands
for operational IP networks: Methodology and experience, IEEE/ACM Trans.
Netw. 9 (3) (2001) 265–279.

[18] W. Dou, X. Xu, S. Meng, et al., An energy-aware virtual machine scheduling
method for service QoS enhancement in clouds over big data, Concurr. Comput.:
Pr. Exp. 29 (14) (2017) e3909.

[19] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, et al., Pro-
grammable packet scheduling at line rate, in: ACM Special Interest Group on
Data Communication, SIGCOMM, Florianopolis,Brazil, 2016, pp. 44–57.

[20] Yinda Zhang, Jinyang Li, Yutian Lei, et al., On-off sketch: A fast and accurate
sketch on persistence, Proc. VLDB Endow. 14 (2) (2020) 128–140.

[21] Jizhou Li, Zikun Li, Yifei Xu, et al., Wavingsketch: An unbiased and generic
sketch for finding top-k items in data streams, in: 26th ACM Special Interest
Group on Knowledge Discovery and Data Mining, SIGKDD, Long Beach, USA,
2020, pp. 1574–1584.

[22] Yanshu Wang, Dan Li, Jianping Wu, FastKeeper: A fast algorithm for identi-
fying top-k real-time large flows, in: IEEE Global Communications Conference,
GLOBECOM, Madrid, Spain, 2021, pp. 01–07.

[23] Zheng Zhong, Shen Yan, Zikun Li, et al., Burstsketch: Finding bursts in data
streams, in: ACM Special Interest Group on Management of Data, SIGMOD,
Online, 2021, pp. 2375–2383.

[24] Tong Yang, Haowei Zhang, Jinyang Li, et al., HeavyKeeper: an accurate algo-
rithm for finding top-𝑘 elephant flows, IEEE/ACM Trans. Netw. 27 (5) (2019)
1845–1858.

[25] Tong Yang, Junzhi Gong, Haowei Zhang, et al., Heavyguardian: Separate and
guard hot items in data streams, in: 24th ACM Special Interest Group on
Knowledge Discovery and Data Mining, SIGKDD, London, United Kingdom, 2018,
pp. 2584–2593.

http://refhub.elsevier.com/S1389-1286(25)00529-8/sb1
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb1
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb1
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb1
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb1
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb2
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb2
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb2
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb2
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb2
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb3
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb3
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb3
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb3
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb3
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb4
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb4
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb4
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb4
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb4
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb4
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb4
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb5
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb5
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb5
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb6
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb6
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb6
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb6
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb6
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb7
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb7
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb7
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb7
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb7
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb8
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb8
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb8
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb8
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb8
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb9
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb9
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb9
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb9
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb9
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb10
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb10
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb10
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb10
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb10
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb11
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb11
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb11
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb11
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb11
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb12
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb12
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb12
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb12
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb12
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb13
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb13
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb13
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb13
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb13
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb14
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb14
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb14
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb14
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb14
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb15
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb15
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb15
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb16
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb16
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb16
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb16
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb16
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb17
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb17
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb17
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb17
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb17
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb18
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb18
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb18
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb18
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb18
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb19
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb19
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb19
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb19
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb19
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb20
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb20
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb20
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb21
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb21
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb21
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb21
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb21
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb21
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb21
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb22
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb22
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb22
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb22
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb22
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb23
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb23
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb23
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb23
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb23
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb24
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb24
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb24
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb24
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb24
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb25
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb25
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb25
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb25
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb25
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb25
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb25

B. Xiong et al. Computer Networks 270 (2025) 111562
[26] Graham Cormode, Shan Muthukrishnan, An improved data stream summary: the
count-min sketch and its applications, J. Algorithms 55 (1) (2005) 58–75.

[27] Moses Charikar, Kevin Chen, Martin Farach-Colton, Finding frequent items
in data streams, in: International Colloquium on Automata, Languages, and
Programming, ICALP, Malaga, Spain, 2002, pp. 693–703.

[28] Tong Yang, Yang Zhou, Hao Jin, et al., Pyramid sketch: A sketch framework for
frequency estimation of data streams, VLDB Endow. 10 (11) (2017) 1442–1453.

[29] Tong Yang, Jie Jiang, Peng Liu, et al., Elastic sketch: Adaptive and fast network-
wide measurements, in: ACM Special Interest Group on Data Communication,
Budapest, Hungary, 2018, pp. 561–575.

[30] Anshumali Shrivastava, Arnd Christian Konig, Mikhail Bilenko, Time adaptive
sketches (ada-sketches) for summarizing data streams, in: ACM Special Interest
Group on Management of Data, SIGMOD, Florianópolis, Brazil, 2016, pp.
1417–1432.

[31] Burton H. Bloom, Space/time trade-offs in hash coding with allowable errors,
Commun. ACM 13 (7) (1970) 422–426.

[32] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, et al., SIMD-scan: ultra fast
in-memory table scan using on-chip vector processing units, VLDB Endow. 2 (1)
(2009) 385–394.

[33] MAWILab, Mawi working group traffic archive, http://mawi.wide.ad.jp/mawi/.
[34] Manmeet Singh, Maninder Singh, Sanmeet Kaur, 10 days DNS network traffic

from April-May, 2016, Mendeley Data 2 (2019).
[35] Bing Xiong, Yong Qing Liu, Zhuo Qun Xia, et al., RobustSketch: Elastic method

for elephant flow identification supporting network traffic jitters, J. Softw. 36
(2) (2025) 660–679.

Bing Xiong received the Ph.D. degree in Computer Science
by master-doctorate program from Huazhong University of
Science and Technology (HUST), China, in 2009, and the
B.S. degree from Hubei Normal University, China, in 2004.
He has been working in Changsha University of Science
and Technology (CSUST), China, since 2010. He worked
as a visiting scholar in the Department of Computer and
Information Science, Temple University, USA, from 2018 to
2019. He is currently an associate professor in the School
of Computer Science and Technology, CSUST, China. His
main research interests include future network architecture,
network traffic measurements, and artificial intelligence
applications.

Yu Chang received the B.S. degree in Software Engineering
from North China University of Water Resources and Elec-
tric Power, China, in 2023. He is currently pursuing the
M.S. degree in the School of Computer Science and Tech-
nology, Changsha University of Science and Technology,
China. His main research interests include network traffic
measurements and software-defined networking.

Yuhang Zhang is currently an undergraduate majoring in
computer science, and pursuing the B.S. degree in the
School of Computer Science and Technology, Changsha
University of Science and Technology, China. His main
research interests include network traffic measurements and
artificial intelligence applications.
13
Jin Zhang received the B.S. degree in communication
engineering and the M.S. degree in computer application
from Hunan University, Changsha, China, in 2002 and
2004, respectively, and the Ph.D. degree in biomedical
engineering from Zhejiang University, Hangzhou, China, in
2007. He has been a Professor with Changsha University of
Science and Technology since 2021. From 2008 to 2009, he
worked as an Associate Professor with the Hunan University,
Changsha, China. From 2009 to 2011, he worked as a
Postdoctoral Fellow with the Beijing Normal University,
Beijing, China. From 2012 to 2013, he worked as a Post-
doctoral Fellow with the University of Chicago, Chicago,
IL, USA. From 2014 to 2021, he has been a Professor with
Hunan Normal University, Changsha, China. His research
interests include computer network, software engineering,
and artificial intelligence.

Baokang Zhao received the B.S., M.S., and Ph.D. degrees
from National University of Defense Technology, all in
computer science. He is currently an Associate Professor
in the School of Computer Science, NUDT. His research
interests include system design, protocols, algorithms, and
security issues in computer networks.

Keqin Li received a B.S. degree in computer science from
Tsinghua University in 1985 and a Ph.D. degree in computer
science from the University of Houston in 1990. He is a
SUNY Distinguished Professor at the State University of
New York and a National Distinguished Professor at Hunan
University (China). He has authored or co-authored more
than 1130 journal articles, book chapters, and refereed
conference papers. He holds nearly 80 patents announced
or authorized by the Chinese National Intellectual Property
Administration. Since 2020, he has been among the world’s
top few most influential scientists in parallel and distributed
computing regarding single-year impact (ranked #2) and
career-long impact (ranked #4) based on a composite in-
dicator of the Scopus citation database. He is listed in
Scilit Top Cited Scholars (2023–2024) and is among the
top 0.02% out of over 20 million scholars worldwide
based on top-cited publications. He is listed in ScholarGPS
Highly Ranked Scholars (2022–2024) and is among the top
0.002 scholars worldwide based on a composite score of
three ranking metrics for research productivity, impact, and
quality in the recent five years. He received the IEEE TCCLD
Research Impact Award from the IEEE CS Technical Com-
mittee on Cloud Computing in 2022 and the IEEE TCSVC
Research Innovation Award from the IEEE CS Technical
Community on Services Computing in 2023. He won the
IEEE Region 1 Technological Innovation Award (Academic)
in 2023. He was a recipient of the 2022–2023 International
Science and Technology Cooperation Award and the 2023
Xiaoxiang Friendship Award of Hunan Province, China. He
is a Member of the SUNY Distinguished Academy. He is
an AAAS Fellow, an IEEE Fellow, an AAIA Fellow, an ACIS
Fellow, and an AIIA Fellow. He is a Member of the European
Academy of Sciences and Arts. He is a Member of Academia
Europaea (Academician of the Academy of Europe).

http://refhub.elsevier.com/S1389-1286(25)00529-8/sb26
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb26
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb26
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb27
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb27
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb27
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb27
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb27
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb28
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb28
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb28
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb29
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb29
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb29
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb29
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb29
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb30
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb30
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb30
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb30
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb30
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb30
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb30
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb31
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb31
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb31
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb32
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb32
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb32
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb32
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb32
http://mawi.wide.ad.jp/mawi/
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb34
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb34
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb34
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb35
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb35
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb35
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb35
http://refhub.elsevier.com/S1389-1286(25)00529-8/sb35

	AF-Detector: An accurate low-overhead method for detecting active flows in network traffic
	Introduction
	Definition of Active Flows and Related Work
	Definition of active flows
	Related work

	The Design of AF-Detector
	The framework of AF-Detector
	Monitoring part
	Identification part
	Optimization 1: optimized flow insertion strategy of the monitoring part
	Optimization 2: applying SIMD parallel technology in the monitoring part

	Theoretical Analysis
	The error bounds of flow frequency estimation
	False positive and negative error rates
	Space and time complexities

	Experiments
	Experimental setup
	Parameter settings
	Precision, recall and F1 score
	ARE
	Throughput

	Conclusion and discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

