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 A B S T R A C T

Active flows refer to packet flows whose frequencies consistently exceed a certain threshold for multiple 
consecutive time windows. They occupy the majority of network traffic and have a great impact on network 
performance. Previous work on detecting active flows only recorded the persistence of flows with low accuracy 
and high memory overhead, unable to report the activity periods and real-time frequencies of active flows. 
To address these issues, we propose an accurate low-overhead method for detecting active flows called AF-
Detector, which separates the tracking and identification functions of active flows, enabling precise detecting 
and reporting of active flows. In particular, AF-Detector consists of a monitoring part that employs a compact 
hash table to track active, and an identification part that adopts a probabilistic data structure to estimate 
flow frequency and find out potentially active flows. As for the monitoring part, we design a probabilistic 
replacement strategy to accommodate new potentially active flows and clear out low-frequency flows, for 
accurately detecting active flows. Additionally, we devise an information cleanup mechanism to clear out 
flows that are no longer active, and outdated information at the end of each time window. Finally, we evaluate 
the performance of AF-Detector by theoretical analysis and experiments verification with real network traffic 
traces. Experimental results indicate that AF-Detector performs better than the state-of-the-art methods with 
the precision 99.59% and the recall rate 99.78%.
1. Introduction

In recent years, network measurement [1–3] has become a re-
search topic in the network field. Previous network measurement ef-
forts mainly focused on frequency estimation [4,5], elephant flows 
identification [6,7] and persistence estimation [8]. Nowadays, active 
flows, as key flows in network traffic, have been receiving increasing 
attention. Active flows refer to flows whose frequencies consistently 
exceed a certain threshold for multiple consecutive time windows. 
They constitute the majority of network traffic and have a considerable 
impact on network performance. Detecting active flows accurately is an 
essential task for network management and optimization of network 
performance, especially in areas such as congestion control [9], load 
balance [10–12], traffic scheduling [13], network security [14–16], and 
network capacity planning [17]. In network congestion control, real-
time detection of active flows allows network systems to quickly detect 
the flow that causes congestion and take appropriate actions, such as 
applying rate limiting or adjusting routing, to mitigate the impact on 
network performance. In Quality of Service (QoS) [18,19] assurance, 
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real-time detection of active flows in network security allows network 
administrators to prioritize critical business traffic such as video confer-
encing and VoIP calls when multiple applications concurrently request 
network resources. This ensures the appropriate allocation of network 
resources.

Most existing methods for detecting active flows are designed based 
on probabilistic data structure sketch, such as On-off Sketch [20] and 
Waving Sketch [21]. On-off Sketch estimates the persistence of flows 
by compressing increments when multiple flows are mapped to the 
same counter. Waving Sketch designs an unbiased estimation method 
to find out active flows. However, On-off Sketch and Waving Sketch 
only detect the persistence of flows, without considering the real-time 
frequency of the flow. This results in some persistent but low-frequency 
flows occupying a large amount of storage space, preventing some 
persistent and high-frequency flows from being recorded. To overcome 
this issue, FastKeeper [22] employs a sliding-window-based method 
to measure the real-time frequencies of flows and detect active flows. 
However, the highly skewed nature of network traffic results in a 
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significant number of inactive flows interfering with the detection 
of active flows, leading to low accuracy of active-flow detection. To 
address this issue, Burst Sketch [23] adopts the running track technique 
to reduce the interference of inactive flows. However, Burst Sketch 
records the ID and frequency of each flow in detail in the first stage, 
which consumes excessive memory. In summary, existing methods are 
unable to accurately detect active flows with low memory overhead.

To address these issues, we propose an accurate low-overhead 
method of detecting active flows called AF-Detector, which is composed 
of a monitoring part and an identification part. In the monitoring 
part, we only record potentially active flows. Inspired by the idea of 
exponential-weakening decay strategy [24,25], we propose a proba-
bilistic replacement strategy for the monitoring part, which allows 
new potentially active flows to replace inactive flows in a probabilistic 
way. To filter inactive flows and find out potentially active flows, we 
apply a probabilistic data structure sketch to estimate the frequencies 
of flows in the identification part, helping the monitoring part to more 
accurately track active flows. Additionally, we devise an information 
cleanup mechanism for both the monitoring and the identification parts 
to clear out flows that are no longer active and outdated information 
at the end of each time window, freeing up memory space for new 
potentially active flows and enhancing the accuracy of active-flow 
detection. By separating the functions of identification and monitoring, 
AF-Detector can effectively filter out inactive flows in the identification 
part, and prevent them from interfering with the tracking of active 
flows in the monitoring part. Therefore, the monitoring part can focus 
on recording the information of active flows, which contributes to 
accurate detection of active flows. Our main contributions are as 
follows:

• Proposing a novel method for detecting active flows called AF-
Detector, which tracks active flows by the monitoring part and 
finds out potentially active flows by the identification part, to 
achieve high accuracy and low overhead of active-flow detection.

• Designing a probabilistic replacement strategy for the monitoring 
part, which allows new potentially active flows to replace low-
frequency flows in a probabilistic way for the case of full mapped 
buckets, to enhance the accuracy of active-flow detection.

• Devising an information cleanup mechanism for the monitoring 
and identification parts, which resets their frequency counters at 
the end of each time window, and clears out flows that are no 
longer active in the monitoring part to free memory space for new 
potentially active flows.

• Proving that AF-Detector can provide the precise detection of ac-
tive flows, by performing theoretical analysis on the error bounds 
of its flow frequency estimation, false positive error rate and false 
negative error rate.

The rest of the paper is organized as follows. Section 2 introduces 
the definition of active flow and related work of active-flow detection. 
Section 3 introduces the framework, data structures, and running ex-
amples of AF-Detector, and presents two optimized versions. Section 4 
provides theoretical analysis on the error bounds of its flow frequency 
estimation, its false positive and false negative rates, and its space 
and time complexities. Section 5 describes the experimental setup and 
evaluates the performance of AF-Detector on real network traffic traces. 
Section 6 concludes the paper and discusses future work.

2. Definition of active flows and related work

2.1. Definition of active flows

Suppose there is a sequential packet traffic 𝑆 = {𝑒1, 𝑒2, 𝑒3,…}, 
divided by multiple fixed-size time windows 𝑤1, 𝑤2, 𝑤3,…. For a packet 
flow 𝑒, let its packet arrival rates in the time windows be 𝑟 , 𝑟 , 𝑟 ,…. 
1 2 3

2 
If there are multiple consecutive time windows 𝑤𝑖, 𝑤𝑖+1,… , 𝑤𝑖+𝑘 of the 
flow 𝑒, meeting the following condition:
𝑘 + 1 ⩾ 𝛽 ∧ ∀𝑟𝑗 ⩾ 𝛼, 𝑗 ∈ {𝑖,… , 𝑖 + 𝑘}

where 𝛼 indicates the frequency threshold of an active flow in a time 
window, and 𝛽 denotes the number threshold of consecutively active 
time windows of an active flow. Then the flow 𝑒 is determined as an 
active flow with the activity periods from 𝑤𝑖 to 𝑤𝑖+𝑘. Table  1 shows 
the symbols commonly used in the AF-Detector and their meanings.

2.2. Related work

Frequency estimation is a fundamental function of active-flow de-
tection. Previous frequency estimation methods are mostly designed 
based on probabilistic data structure sketch, such as Count-Min Sketch
[26] and Count Sketch [27]. Count-Min Sketch is composed of a d×w
two-dimensional array and d mutually independent hash functions. 
When a packet arrives, it maps the packet into d counters by hashing 
and increments them by 1. As for the query of a flow, the minimum 
of its mapped counters is reported as its estimated frequency. Count 
Sketch is similar to Count-Min Sketch, but it incorporates an additional 
bool function to increment or decrement the mapped counters of a 
packet. As for the query of a flow, the median of its mapped counters 
is taken as its estimated frequency.

Pyramid Sketch [28] employed a pyramid-shaped data structure 
to automatically enlarge the size of counters in accordance with the 
frequency of an incoming item, enhancing the accuracy of frequency 
estimation with low memory overhead. Elastic Sketch [29] divided 
network traffic into elephant and mice flows, and separately stored 
them into heavy and light parts. It further compressed and merged data 
structures to reduce bandwidth usage while maintaining the accuracy 
of frequency estimation. However, these methods can only estimate the 
frequency of a flow in entire data stream, but cannot detect the real-
time status of a flow. Consequently, traditional frequency estimation 
methods cannot be directly applied to detect active flows.

In recent years, some researchers have proposed new methods to 
detect active flows in real time. Ada-Sketch [30] proposed a time-
adaptive method that dynamically adjusts the size of its data structures 
to measure recent active flows based on changes in the data stream. 
However, Ada-Sketch is difficult to apply in scenarios with limited 
memory, due to that it needs a large number of counters. On-off 
Sketch [20] took advantage of the characteristic that the persistence 
of a flow is increased periodically. It compressed increments to accu-
rately estimate the persistence of flows and record active flows when 
multiple flows are mapped to a same counter. Waving Sketch [21] 
applied a bloom filter [31] to filter out duplicates in its first stage, and 
designed an unbiased estimation method to keep track of active flows 
in its second stage. However, On-off Sketch and Waving Sketch do not 
consider the real-time frequencies of flows, resulting in the miss of some 
active flows. FastKeeper [22] adopted a sliding-window-based method 
to track the real-time frequencies of flows and employed bitmap-voting 
algorithm to promptly replace inactive flows. However, these methods 
cannot report active flows, and have low accuracy in detecting active 
flows due to interference from a large number of inactive flows. Burst 
Sketch [23] applied the running track technique to effectively filter 
potential burst flows, and employed Snapshotting technology to capture 
burst active flows and report these flows at the end of each time 
window. However, Burst Sketch recorded the ID and frequency of each 
flow in its first stage, resulting in the waste of memory. In summary, 
existing detection methods of active flows cannot report their activity 
periods at high accuracy with low memory overheads.

In summary, existing methods face several challenges to achieve 
accurate detection of active flows. Specifically, methods like On-off 
Sketch, and Waving Sketch emphasize flow persistence estimation but 
overlook real-time frequency. Other methods such as FastKeeper and 
Burst Sketch introduce time-window mechanisms, but either suffer 
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Table 1
Symbols commonly used in the AF-Detector.
 Symbol Meaning

 𝑆𝑤𝑖𝑛 The size of each time window, indicated by a fixed number of measured packets 
 𝐹𝑐𝑢𝑟 The frequency of a flow in the current time window  
 𝑊𝑐𝑢𝑟 The sequence number of the current time window  
 𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙 The sequence number of the initial active time window of a flow  
 𝑁𝑎𝑐𝑡𝑖𝑣𝑒 The number of consecutively active time windows of a flow  
 𝛼 The frequency threshold of an active flow in a time window  
 𝛽 The number threshold of consecutively active time windows of an active flow  
 𝑘 The number of hash functions in the identification part of AF-Detector  
 𝑝 The probability of replacement in the monitoring part of AF-Detector  
 𝑟 The replacement rate in probabilistic replacement strategy  
Fig. 1. The framework of AF-Detector.

from low accuracy due to inactive flow interference, or bring about 
high memory overhead by storing detailed flow records. In addition, 
these detection methods cannot report the activity periods of active 
flows. To address these limitations, we propose an accurate low-
overhead method of detecting active flows called AF-Detector, which 
separates the tracking and identification functions of active flows based 
on time windows, enabling precise detecting and reporting of active 
flows.

3. The design of AF-Detector

In this section, we first present the framework of AF-Detector. 
Then, we design the data structure of AF-Detector and demonstrate its 
running examples. Finally, we propose two optimization strategies for 
AF-Detector.

3.1. The framework of AF-Detector

Considering that inactive flows account for the majority of packet 
flows in network traffic, we construct the framework of AF-Detector 
in Fig.  1, whose key idea is to separate the tracking and identification 
functions of active flows. The AF-Detector consists of a monitoring part 
and an identification part. The monitoring part employs a compact hash 
table to track active flows. We propose a probabilistic replacement 
strategy for the monitoring part, to accommodate new potentially 
active flows for the case of full mapped buckets, improving the accuracy 
of active-flow detection. The identification part adopts a probabilistic 
data structure to estimate the frequencies of incoming flows and find 
out potentially active flows. At the end of each time window, we report 
active flows and clear out outdated information and flows that are no 
longer active.

As for an arrived packet within a flow 𝑓 , we first look up the 
flow 𝑓 in the monitoring part. If the flow 𝑓 has been recorded in the 
monitoring part, we update its frequency in the current time window. 
3 
Otherwise, we insert the packet into the identification part to further 
observe whether the flow 𝑓 is a potentially active flow. If its frequency 
in the current time window reaches the frequency threshold 𝛼, we 
consider the flow 𝑓 as a potentially active flow and insert it into the 
monitoring part. At the end of each time window, we report the infor-
mation of active flows, and adopt an information cleanup mechanism to 
clear out flows that are no longer active in the current time window. 
Finally, we reset all flow frequencies in the monitoring part and all 
counters in the identification part.

3.2. Monitoring part

The data structure of the monitoring part: As shown in Fig.  2, 
the monitoring part is designed in the form of a hash table with a 
hash function ℎ(⋅). It consists of 𝑀 buckets 𝐴[1], 𝐴[2], 𝐴[3],… , 𝐴[𝑀], 
each of which contains 𝑛 cells. Each cell records the information of a 
flow, including Flow ID, 𝐹𝑐𝑢𝑟, and 𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙. To save memory, the Flow 
ID only records the fingerprint of a flow identified by 5 tuples: source 
IP address, destination IP address, source port, destination port, and 
protocol type. 𝐹𝑐𝑢𝑟 indicates the frequency of a flow in the current time 
window. 𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙 indicates the sequence number of the initial active time 
window of a flow.

Initialization: In initial state, we set all fields to 0 or NULL.
Packet processing: As for an arrived packet within a flow 𝑓 , we 

first look up the flow 𝑓 in the monitoring part. If the flow 𝑓 is 
recorded in the monitoring part, we increment its frequency in the 
current time window 𝐹𝑐𝑢𝑟 by 1. Otherwise, we insert the packet into 
the identification part to further check whether the flow 𝑓 has become 
a potentially active flow.

The insertion of a potentially active flow: If the flow 𝑓 is iden-
tified as a potentially active flow, we need to look up the monitoring 
part for an empty cell in bucket 𝐴[ℎ(𝑓 )] and place the flow 𝑓 into it. 
There are two cases:

Case 1: There is an empty cell in the bucket 𝐴[ℎ(𝑓 )]. In this case, 
we insert the flow 𝑓 into the empty cell. Specifically, we set Flow ID
as 𝑓 , 𝐹𝑐𝑢𝑟 as its estimated frequency in the current time window, and 
𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙 as the sequence number of the current time window 𝑊𝑐𝑢𝑟.

Case 2: If there is no empty cell in the bucket 𝐴[ℎ(𝑓 )], we will find 
out those flows whose frequencies do not reach the threshold 𝛼. Then, 
we replace a flow with the smallest frequency among these flows by the 
flow 𝑓 in a probabilistic way. The replacement probability is designed 
as 𝑝 = 𝑒−𝑟𝑥, where 𝑥 indicates the frequency of replaced flow and 𝑟
denotes replacement rate. If the replacement is confirmed to perform, 
the information of the flow 𝑓 will replace the information of the flow 
with the smallest frequency. Otherwise, we discard the flow 𝑓 .

The report of active flows: At the end of each time window, we 
traverse each cell in the monitoring part to report current active flows. 
For each non-empty cell, we check if the flow frequency 𝐹𝑐𝑢𝑟 reaches 
the frequency threshold 𝛼 and the number of consecutively active time 
windows 𝑁𝑎𝑐𝑡𝑖𝑣𝑒 (𝑁𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑊𝑐𝑢𝑟 − 𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 1) reaches the number 
threshold of consecutively active time windows 𝛽. There are three cases 
for the checking result of each non-empty cell:

Case 1: If 𝐹𝑐𝑢𝑟 < 𝛼, the flow in this cell is no longer active, and we 
reset all information in this cell.
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Fig. 2. The data structure and running example of the monitoring part.
Case 2: If 𝐹𝑐𝑢𝑟 ≥ 𝛼 and 𝑁𝑎𝑐𝑡𝑖𝑣𝑒 < 𝛽, the flow in this cell still is a 
potentially active flow, and we do not report the flow. Meanwhile, we 
reset flow frequency in this cell.

Case 3: If 𝐹𝑐𝑢𝑟 ≥ 𝛼 and 𝑁𝑎𝑐𝑡𝑖𝑣𝑒 ≥ 𝛽, the flow in this cell is confirmed 
as an active flow, and we report the flow including its latest activity 
period and frequency in current time window. Finally, we reset flow 
frequency in this cell.

A running example: Fig.  2 exhibits a running example of the 
monitoring part. Assume that the frequency threshold of an active flow 
in a time window 𝛼 = 127, the number threshold of consecutively active 
time windows of an active flow 𝛽 = 4, and the sequence number of 
current time window 𝑊𝑐𝑢𝑟 = 8. The insertion of 𝑓1, 𝑓2, 𝑓3, and 𝑓4 can 
be described as follows.

(1) To insert 𝑓1 which is recorded in the monitoring part, we only 
need to increment its frequency by 1.

(2) To insert 𝑓2 identified as a potentially active flow, we find out an 
empty cell in the bucket 𝐴[ℎ(𝑓2)] and insert (𝑓2, 127, 8) into the empty 
cell.

(3) To insert 𝑓3 identified as a potentially active flow, we choose a 
flow in the bucket 𝐴[ℎ(𝑓3)] with the smallest frequency and replace 
it with the probability 𝑝, since there is no empty cell in the bucket 
𝐴[ℎ(𝑓3)]. If the replacement is determined to execute, the cell (𝑓6, 29, 2)
will be changed into (𝑓3, 127, 8).

(4) The insertion of 𝑓4 is similar to that of 𝑓3, but the flow 𝑓4 does 
not replace any flow in the bucket 𝐴[ℎ(𝑓4)] and is discarded.

At the end of the time window, we report active flows and clean 
up flows that are no longer active. For the flows 𝑓1, 𝑓7, and 𝑓10, their 
frequencies in the current time window do not reach the frequency 
threshold 𝛼. Thus, we reset all information in the corresponding cells. 
For the flows 𝑓2, 𝑓3, and 𝑓5, their frequencies in the current time win-
dow reach the frequency threshold 𝛼, but their number of consecutively 
active time windows does not reach the threshold 𝛽. Accordingly, we do 
not report these flows. For the flows 𝑓8 and 𝑓9, they meet the criteria of 
active flows. So, we report them with their activity periods of 5 ∼ 8 and 
2 ∼ 8, and frequencies of 165 and 182, respectively. After reporting, we 
reset all flow frequencies in the monitoring part to 0.

3.3. Identification part

The data structure of the identification part: As shown in Fig.  3, 
the identification part is an array 𝐵 with 𝑁 counters, associated with 𝑘
mutually independent hash functions 𝐻1(.), 𝐻2(.), 𝐻3(.)…𝐻𝑘(.). These 
counters are used to estimate the frequencies of flows. At the end of 
each time window, we reset all counters.

Initialization: In initial state, we set all counters as 0.
The insertion of a packet: As for an arrived packet within a flow 

𝑓 , it is first mapped to the 𝑘 counters 𝐵[𝐻𝑖(𝑓 )] (where 1 ≤ 𝐻𝑖(𝑓 ) ≤ 𝑁 , 
1 ≤ 𝑖 ≤ 𝑘) in the identification part by hashing. Next, we select the 
4 
minimal counter among the 𝑘 counters (min{𝐵[𝐻𝑖(𝑓 )], 1 ≤ 𝑖 ≤ 𝑘}) and 
increase it by 1. If there are multiple minimal counters, we increment 
each of them by 1. After the increment, we check if the updated counter 
reaches the frequency threshold 𝛼. There are two cases:

Case 1: min{𝐵[𝐻𝑖(𝑓 )], 1 ≤ 𝑖 ≤ 𝑘} < 𝛼. In this case, the flow 𝑓 is 
considered as an inactive flow.

Case 2: min{𝐵[𝐻𝑖(𝑓 )], 1 ≤ 𝑖 ≤ 𝑘} ≥ 𝛼. In this case, the flow 𝑓
is identified as a potentially active flow, and we insert it into the 
monitoring part to track it.

A running example: Fig.  3 illustrates a running example of the 
identification part. Assume that the frequency threshold of an active 
flow in a time window 𝛼 = 127, and the identification part has 3 hash 
functions. The insertion of a packet in 𝑓11, 𝑓12, and 𝑓13 can be described 
as follows.

(1) To insert a packet in 𝑓11, we obtain its mapped counters in 
the identification part by hashing, and increase the minimal counter
𝐵[𝐻1(𝑓11)] among them by 1. After the increment, we find that
𝐵[𝐻1(𝑓11)] goes below the frequency threshold 𝛼. Thus, the flow 𝑓11
is considered as an inactive flow.

(2) To insert a packet in 𝑓12, we increase the minimum of its mapped 
counters 𝐵[𝐻1(𝑓12)] and 𝐵[𝐻2(𝑓12)] by 1. However, both counters do 
not reach the frequency threshold 𝛼. Hence, the flow 𝑓12 is also not 
identified as a potentially active flow.

(3) To insert a packet in 𝑓13, the minimum of its mapped counters 
𝐵[𝐻2(𝑓13)] and 𝐵[𝐻3(𝑓13)] reach the frequency threshold 𝛼. Therefore, 
the flow 𝑓13 is identified as a potentially active flow and inserted into 
the monitoring part.

3.4. Optimization 1: optimized flow insertion strategy of the monitoring part

In the basic version of the monitoring part, the insertion of a flow 
will fail if its mapped bucket has no empty cell. However, there may be 
empty cells in its two adjacent buckets. This provides an opportunity for 
the flow to be accommodated in the monitoring part. To take advantage 
of such opportunity, we optimize the flow insertion strategy of the 
monitoring part, by expanding the candidate insertion range of a flow 
to its two adjacent buckets. This will greatly improve the memory 
utilization of the monitoring part along with the detection accuracy 
of active flows, at the price of slight growth in its lookup overhead. 
Specifically, there are four cases for the flow insertion of the monitoring 
part.

Case 1: To insert the flow 𝑓 , we traverse its directly mapped bucket 
𝐴[ℎ(𝑓 )] and its two adjacent ones. If the flow 𝑓 has been recorded in 
these buckets, we only need to increase its frequency by 1.

Case 2: The flow 𝑓 is not recorded in its directly mapped bucket and 
its two adjacent ones, and there is an empty cell in these buckets, we 
insert it into this cell.

Case 3: The flow 𝑓 is not recorded in its directly mapped bucket 
and its two adjacent ones, and there is no empty cell in these buckets. 
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Fig. 3. The data structure and running example of the identification part.
Fig. 4. The running example of the optimized insertion strategy for the monitoring part.
We select a flow with the smallest frequency in the bucket 𝐴[ℎ(𝑓 )] for 
probabilistic replacement.

A running example: Fig.  4 depicts a running example of the 
optimized insertion strategy for the monitoring part. Assume that the 
frequency threshold of an active flow in a time window 𝛼 = 127 and the 
sequence number of the current time window 𝑊𝑐𝑢𝑟 = 8. The insertion 
of 𝑓14, 𝑓15, and 𝑓16 can be described as follows.

(1) To insert 𝑓14, it has been recorded in its directly mapped bucket. 
Therefore, we simply increment 𝐹𝑐𝑢𝑟 (the frequency of a flow in the 
current time window) of the corresponding cell by 1.

(2) To insert 𝑓15, it is not recorded in its directly mapped bucket 
or its adjacent buckets. However, there is an empty cell in one of the 
adjacent buckets, so we insert (𝑓15, 127, 8) into it.

(3) To insert 𝑓16, it is not recorded in its directly mapped bucket 
𝐴[ℎ(𝑓16)] or its adjacent buckets, and there is no empty cell in these 
buckets. Therefore, we choose a flow in bucket 𝐴[ℎ(𝑓16)] with the 
smallest frequency in the current time window and replace it with 
the probability 𝑝. If the replacement is successfully performed, the 
information (𝑓20, 41, 7) will be changed into (𝑓16, 127, 8).

3.5. Optimization 2: applying SIMD parallel technology in the monitoring 
part

SIMD (Single Instruction Multiple Data) technology achieves data 
parallelism by vectorization, which can be applied to accelerate se-
quential access operations [32]. As for each arrived packet, we need 
to perform sequential lookup on its directly mapped bucket and two 
adjacent ones in the monitoring part after applying the Optimization 
1. Meanwhile, the lookup on each bucket needs to sequentially check 
multiple cells. These two factors lead to a multiplier effect on the 
lookup overheads of the monitoring part for packet traffic. Moreover, 
we still need to look up the monitoring part for an empty cell during the 
insertion of each potentially active flow. These result in serious problem 
of poor lookup performance of the monitoring part. Fortunately, this 
problem can be resolved by applying the SIMD technology to process 
multiple cells of the monitoring part in parallel with a single command.
5 
We briefly describe the working principle of the monitoring part 
applying the SIMD technology as follows. As for an arrived packet 
within a flow 𝑓 , we first map it to a bucket in the monitoring part 
by hashing. Specifically, we employ the 𝙼𝚞𝚛𝚖𝚞𝚛𝙷𝚊𝚜𝚑𝟹_𝚡𝟼𝟺_𝟷𝟸𝟾 primitive 
to generate a 128-bit hash value based on the flow identifier, which 
is then split into three parts corresponding to the directly mapped 
bucket and its two adjacent buckets. Next, we load the flow identifiers 
stored in all cells of these three buckets into a 256-bit SIMD register 
using the _𝚖𝚖𝟸𝟻𝟼_𝚜𝚎𝚝_𝚎𝚙𝚒𝟼𝟺𝚡 instruction. Thereafter, we match the 
identifier of the flow 𝑓 with the loaded identifiers in parallel using 
the _𝚖𝚖𝟸𝟻𝟼_𝚌𝚖𝚙𝚎𝚚_𝚎𝚙𝚒𝟼𝟺 instruction. If the flow 𝑓 has been recorded in 
the monitoring part, we update its frequency in current time window. 
Otherwise, we insert the packet into the identification part. When a 
flow is identified as a potentially active one, we similarly apply the 
SIMD technology to accelerate lookup on its directly mapped bucket 
and two adjacent ones in the monitoring part for an empty cell. If 
an empty cell is found, we place the flow into it. In summary, it 
can significantly enhance the lookup performance and flow insertion 
efficiency of the monitoring part by applying the SIMD technology.

4. Theoretical analysis

This section provides theoretical analysis on the performance of 
AF-Detector. We first derive the error bounds of its flow frequency 
estimation in Section 4.1. Then, we infer its false positive and negative 
error rates in Section 4.2. Finally, we provide its space and time 
complexities in Section 4.3.

4.1. The error bounds of flow frequency estimation

Theorem 1.  Suppose the monitoring part consists of 𝑀 buckets, each of 
which contains 𝑛 cells. The monitoring part records 𝐹  flows, where there 
are 𝑆 flows whose frequencies in current time window are lower than 
the frequency threshold 𝛼. There are 𝐶 potentially active flows arrived at 
the monitoring part. Let 𝑓 and 𝑓 respectively be the true frequency and 
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estimated one of a flow in the monitoring part. We can infer the error bound 
of flow frequency estimation in the monitoring part as 

𝐸
(

|

|

|

𝑓 − 𝑓 ||
|

)

< 𝛼 ⋅ 𝑒−𝑟𝛼

𝑀 ⋅ 𝑛 ⋅ (𝑛!)3
(1)

Proof.  We first analyze flow frequency estimation during the insertion 
process of packets in the monitoring part:

I: As for any flow 𝑔, if it has been recorded in the monitoring part, 
we directly increase its counter value by 1. In this case, the estimated 
frequency of the flow 𝑔 is equal to its true frequency.

II: If the flow 𝑔 is not recorded in the monitoring part and there is 
an empty cell in its directly mapped bucket, the flow 𝑔 is inserted into 
this empty cell. In this case, the estimated frequency of the flow 𝑔 is 
also equal to its true frequency.

III: If the flow 𝑔 is replaced by a new potentially-active flow 𝑔′, and 
the estimated frequency of the flow 𝑔 is lower than its true frequency.

In summary, flow frequency estimation will only result in errors 
during flow replacement in the monitoring part. Flow replacement only 
occurs in the case of the following conditions: (1) Condition A: The flow 
𝑔′ is mapped to the same bucket as the flow 𝑔. (2) Condition B: There 
are no empty cell in its directly mapped bucket and its two adjacent 
buckets. (3) Condition C: The estimated frequency of the flow 𝑔 is 
lower than the frequency threshold of active flows 𝛼 and the flow 𝑔 has 
the lowest frequency among all flows in its directly mapped bucket.(4) 
Condition D: The flow 𝑔 is successfully replaced by the flow 𝑔′.

Since the above conditions are independent of each other, we can 
express the probability of flow replacement as 

𝑃 = 𝑃 (𝐴 ∩ 𝐵 ∩ 𝐶 ∩𝐷) = 𝑃 (𝐴) ⋅ 𝑃 (𝐵) ⋅ 𝑃 (𝐶) ⋅ 𝑃 (𝐷). (2)

Suppose that each flow is randomly mapped into the monitoring 
part by hashing, we can consider the insertion of each flow as an inde-
pendent random event. Consequently, we can infer that the probability 
of the condition A is 

𝑃 (𝐴) = 1
𝑀
. (3)

Suppose that each flow will be randomly inserted into any bucket, 
the number of flows recorded in each bucket approximately follows a 
Poisson distribution with parameter 𝜆 = 𝐹

𝑀 . Hence, the probability of 
the condition B as 

𝑃 (𝐵) =
(

𝑒−𝜆𝜆𝑛

𝑛!

)3
. (4)

Because there are 𝑆 flows with frequencies lower than the frequency 
threshold 𝛼, the estimated frequency of the flow 𝑔 is lower than the 
frequency threshold 𝛼 with the probability of 𝑆𝐹 . Due to the full state 
of the directly mapped bucket of the flow 𝑔, its estimated frequency is 
the smallest in this bucket with the probability of 1𝑛 . Therefore, we can 
infer the probability of the condition 𝐶 as 

𝑃 (𝐶) = 𝑆
𝐹 ⋅ 𝑛

. (5)

According to our designed probabilistic replacement strategy, the 
probability of the condition 𝐷 is 

𝑃 (𝐷) = 𝑒−𝑟𝑓 . (6)

Based on the above discussion, we can derive the probability that 
flow 𝑔 is replaced by a potentially active flow 𝑔′ in current time window 
as 

𝑃 = 𝑃 (𝐴 ∩ 𝐵 ∩ 𝐶 ∩𝐷) = 1
𝑀

(

𝑒−𝜆𝜆𝑛

𝑛!

)3
𝑆
𝐹 ⋅ 𝑛

𝑒−𝑟𝑓 . (7)

Each bucket receives 𝐶𝑀  flows. The flow 𝑔 is replaced only when 
its estimated frequency goes below the frequency threshold 𝛼. Conse-
quently, we can derive the error bound of flow frequency estimation in 
6 
the monitoring part as 

𝐸
(

|

|

|

𝑓 − 𝑓 ||
|

)

< 𝛼 ⋅
(

1 − (1 − 𝑃 )
𝐶
𝑀
)

= 𝛼 ⋅
⎛

⎜

⎜

⎝

1 −

(

1 − 1
𝑀

(

𝑒−𝜆𝜆𝑛

𝑛!

)3 𝑆
𝐹 ⋅ 𝑛

𝑒−𝜂𝑓
)

𝐶
𝑀 ⎞

⎟

⎟

⎠

≤ 𝛼 ⋅ 𝑒−𝑟𝛼

𝑀 ⋅ 𝑛 ⋅ (𝑛!)3

□ (8)

Theorem 2.  Suppose the identification part consists of 𝑁 counters and 
𝑘 independent hash functions. Let 𝑆 be a sequence of network traffic with 
𝑊  packets. For a flow 𝑔 in the identification part, let 𝑓 be its estimated 
frequency, and let 𝑓 be its true frequency. Given a small variable 𝛿 (𝛿 >
0), we can infer the error bound of flow frequency estimation in the 
identification part as 

𝑃 (𝑓 − 𝑓 > 𝛿 ⋅𝑊 ) ≤
( 1
𝛿 ⋅𝑁

)𝑘
. (9)

Proof.  As for any flow 𝑔, let 𝑋𝑗 (1 ≤ 𝑗 ≤ 𝑘) be its mapped counter in 
the identification part by the 𝑗th hash function. We can formulate 𝑋𝑗
as 

𝑋𝑗 = 𝑓 +
∑

𝑔𝑖≠𝑔
I(ℎ𝑗 (𝑔𝑖) = ℎ𝑗 (𝑔)) ⋅ 𝑓𝑔𝑖 . (10)

where 𝑔𝑖 refers to a flow that is different from the flow 𝑔 in the 
identification part with the frequency 𝑓𝑔𝑖 ; ℎ𝑗 (⋅) represents the 𝑗th hash 
function; I(⋅) is a boolean function.

Since there are a total of 𝑊  packets, other flows contain 𝑊 − 𝑓
packets. Suppose that all flows are randomly mapped into 𝑁 counters, 
we can obtain the expectation of the frequency estimation error of the 
flow 𝑔 caused by other flows as 

𝐸[
∑

𝑔𝑖≠𝑔
I(ℎ𝑗 (𝑔𝑖) = ℎ𝑗 (𝑔)) ⋅ 𝑓𝑔𝑖 ] =

𝑊 − 𝑓
𝑁

. (11)

Since all hash functions are independent of each other, we can apply 
the Markov inequality to derive the error bound of flow frequency 
estimation at the 𝑗th mapped counter of flow 𝑔 as 

𝑃

(

∑

𝑔𝑖≠𝑔
I(ℎ𝑗 (𝑔𝑖) = ℎ𝑗 (𝑔)) ⋅ 𝑓𝑔𝑖 > 𝛿 ⋅𝑊

)

≤
𝐸
[

∑

𝑔𝑖≠𝑔 I(ℎ𝑗 (𝑔𝑖) = ℎ𝑗 (𝑔)) ⋅ 𝑓𝑔𝑖
]

𝛿 ⋅𝑊

=
𝑊 − 𝑓
𝛿 ⋅𝑊 ⋅𝑁

.

(12)

Since the identification part takes the minimal mapped counter of a 
flow as its estimated frequency, we can express the estimated frequency 
of the flow g as 

𝑓 = min
1≤𝑗≤𝑘

𝑋𝑗 . (13)

Consequently, we can derive the error bound of flow frequency 
estimation in the identification part as 
𝑃 (𝑓 − 𝑓 > 𝛿 ⋅𝑊 )

= 𝑃 ( min
1≤𝑗≤𝑘

𝑋𝑗 − 𝑓 > 𝛿 ⋅𝑊 )

= 𝑃

( 𝑘
⋂

𝑗=1
{𝑋𝑗 − 𝑓 > 𝛿 ⋅𝑊 }

)

=
𝑘
∏

𝑗=1
𝑃
(

𝑋𝑗 − 𝑓 > 𝛿 ⋅𝑊
)

≤
(

𝑊 − 𝑓
𝛿 ⋅𝑊 ⋅𝑁

)𝑘

<
( 1 )𝑘

.

□ (14)
𝛿 ⋅𝑁
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4.2. False positive and negative error rates

Theorem 3. 
Suppose there are multiple fixed-size time windows 𝑤1, 𝑤2, 𝑤3, … , 

𝑤𝛽 . There are 𝑊  packets arrived at the identification part composed of 𝑁
counters and 𝑘 independent hash functions in the time window 𝑤1. Let 𝑓
and 𝑓 respectively be the true frequency of a flow whose frequency less than 
the frequency threshold 𝛼 and its estimated frequency in the identification 
part. The monitoring part consists of 𝑀 buckets, each of which contains 𝑛
cells. The monitoring part records 𝐹𝑖 flows in the 𝑖th time window, where 
there are 𝑆𝑖 flows whose frequencies is lower than the frequency threshold 
𝛼. Then, we can infer the false positive error rate of AF-Detector as

𝑃 𝑡𝑜𝑡𝑎𝑙𝐹𝑃𝑅 ≤
( 𝑊
𝑁 ⋅ 𝛼

)𝑘
. (15)

Proof.  A flow is only misclassified as an active flow by AF-Detector 
when it is mistakenly identified as a potentially active flow in the 
identification part and its frequency exceeds the threshold 𝛼 in each 
of the following 𝛽 − 1 time windows. Therefore, we can express that 
the probability of a flow being misclassified as an active flow by 
AF-Detector as 
𝑃 𝑡𝑜𝑡𝑎𝑙𝐹𝑃𝑅 = 𝑃𝐹𝑃𝑅 ⋅ 𝑃𝑎𝑐𝑡𝑖𝑣𝑒. (16)

where 𝑃𝐹𝑃𝑅 represents the false positive error rate of the identification 
part and 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 denotes the probability that the flow maintains a 
frequency above the threshold 𝛼 in each of the following 𝛽 − 1 time 
windows.

As for any flow 𝑔, the occurrence of a false positive error in the 
identification part implies that its estimated frequency exceeds the 
threshold 𝛼, while its true frequency is lower than 𝛼. Therefore, we 
can obtain the false positive error rate as 
𝑃𝐹𝑃𝑅 = 𝑃 (𝑓 ≥ 𝛼 ∩ 𝑓 < 𝛼). (17)

According to the law of total probability, the false positive error rate 
can be expressed through the following decomposition 
𝑃𝐹𝑃𝑅 = 𝑃 (𝑓 ≥ 𝛼) − 𝑃 (𝑓 ≥ 𝛼 ∩ 𝑓 ≥ 𝛼). (18)

Let 𝑋𝑗 (1 ≤ 𝑗 ≤ 𝑘) be the mapped counter in the identification part 
by the 𝑗th hash function for flow 𝑔. Due to 𝑓 < 𝛼, we have 
𝑃 (𝑓 ≥ 𝛼 ∩ 𝑓 ≥ 𝛼) = 0. (19)

𝑃𝐹𝑃𝑅 = 𝑃 (𝑓 ≥ 𝛼) = 𝑃

( 𝑘
⋂

𝑗=1
{𝑋𝑗 ≥ 𝛼}

)

=
𝑘
∏

𝑗=1
𝑃
(

𝑋𝑗 ≥ 𝛼
)

. (20)

Suppose that all flows are randomly mapped into 𝑁 counters, we 
can conclude the expectation of each counter in the identification part 
as 
𝐸[𝑋𝑗 ] =

𝑊
𝑁
. (21)

Further, we can use Markov’s inequality to infer that the probability 
of 𝑋𝑗 ≥ 𝛼 (1 ≤ 𝑗 ≤ 𝑘) as 

𝑃
(

𝑋𝑗 ≥ 𝛼
)

≤
𝐸
[

𝑋𝑗
]

𝛼
= 𝑊
𝑁 ⋅ 𝛼

. (22)

Consequently, we can deduce the false positive error rate in the 
identification part as 

𝑃𝐹𝑃𝑅 = 𝑃 (𝑓 ≥ 𝛼) ≤
( 𝑊
𝑁 ⋅ 𝛼

)𝑘
. (23)

Since the monitoring part records 𝐹𝑖 flows in the 𝑖th time window, 
where there are 𝑆𝑖 flows whose frequencies is lower than the frequency 
threshold 𝛼, we can derive the probability that the flow maintains a 
frequency above the threshold 𝛼 for a consecutive sequence of 𝛽 time 
windows as 

𝑃𝑎𝑐𝑡𝑖𝑣𝑒 =
(

𝐹𝑖 − 𝑆𝑖
)𝛽−1

. (24)

𝐹𝑖
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Consequently, we can deduce the false positive error rate of AF-
Detector as 

𝐹𝑃𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑃𝐹𝑃𝑅 ⋅
(

𝐹𝑖 − 𝑆𝑖
𝐹𝑖

)𝛽−1
≤ 𝑃𝐹𝑃𝑅 ≤

( 𝑊
𝑁 ⋅ 𝛼

)𝑘
. □ (25)

Theorem 4.  With the same assumption as Theorem  3, we can infer the 
false negative error rate of AF-Detector as 

𝑃 𝑡𝑜𝑡𝑎𝑙𝐹𝑁𝑅 < 1 −
(

1 − 𝑒−𝑟𝛼

𝑀 ⋅ 𝑛 ⋅ (𝑛!)3

)𝛽
. (26)

Proof.  An active flow will not be detected by AF-Detector only 
when it is replaced by other potentially active flows. Specifically, the 
monitoring part will miss an active flow if it is replaced in any of the 
consecutive 𝛽 time windows.

Suppose that each flow will be randomly inserted into any bucket, 
each bucket receives 𝐶𝑖∕𝑀 flows. With the flow replacement probabil-
ity in (7), we can derive the probability that the flow is stored in the 
monitoring part for a consecutive sequence of 𝛽 time windows as

𝑃 𝑡𝑜𝑡𝑎𝑙𝐹𝑁𝑅 = 1 −
𝛽
∏

𝑖=1

⎛

⎜

⎜

⎝

1 − 1
𝑀

(

𝑒−𝜆𝑖𝜆𝑛𝑖
𝑛!

)3
𝑆𝑖
𝐹𝑖 ⋅ 𝑛

𝑒−𝑟𝑓𝑖
⎞

⎟

⎟

⎠

𝐂𝑖
𝑀

< 1 −
(

1 − 𝑒−𝑟𝛼

𝑀 ⋅ 𝑛 ⋅ (𝑛!)3

)𝛽
.

□ (27)

To demonstrate the expected values of the theoretical frequency 
estimation error, false positive rate, and false negative rate, we evaluate 
the corresponding formulas under representative parameter settings. 
These values are representative of real-world configurations: 𝑁 = 4096, 
𝑛 = 4, 𝑀 = 2048, 𝛼 = 127, 𝛽 = 4, 𝑟 = 0.01, 𝑘 = 3, 𝛿 = 0.001, 𝑊 = 5×105. 
By substituting these values into the respective formulas, we obtain the 
following results:

• The error bound of flow frequency estimation in the monitoring 
part is less than approximately 3.15 × 10−7;

• The error bound of flow frequency estimation in the identification 
part is less than approximately 1.4 × 10−2;

• The total false positive error rate of AF-Detector is less than 
approximately 7.1 × 10−3;

• The false negative error rate of AF-Detector is less than approxi-
mately 9.92 × 10−9.

4.3. Space and time complexities

Space complexity: AF-Detector consists of a monitoring part and 
an identification part. The monitoring part contains 𝑀 ⋅ 𝑛 cells, where 
𝑀 is the number of its buckets and 𝑛 is the number of cells for its 
each bucket. Meanwhile, the identification part contains 𝑁 counters. 
Suppose the size of each cell in the monitoring part and each counter in 
the identification part respectively as 𝑆1 and 𝑆2, we can get the memory 
size of AF-Detector as 𝑀 ⋅ 𝑛 ⋅ 𝑆1 +𝑁 ⋅ 𝑆2. In our AF-Detector, each cell 
in the monitoring part consists of three fields: Flow ID, 𝐹𝑐𝑢𝑟, and 𝑊𝑓𝑖𝑟𝑠𝑡.
Flow ID is usually manifested as a flow fingerprint typically with 32 
bits. For 𝐹𝑐𝑢𝑟, 12 bits are adequate to record the frequency of a flow 
in a time window with 100 K packets. 𝑊𝑓𝑖𝑟𝑠𝑡 can be configured with 
8 bits to record the sequence number of the current time window. In 
summary, 𝑆1 is 52 bits. 𝑆2 is suitable to be set as 7 bits, due to the 
frequency threshold of active flows 𝛼 = 127. According to the state-
of-the-art method [23], 𝑁 , 𝑀 , and 𝑛 are typically set to 2048, 2048, 
and 4, respectively. Consequently, we can calculate the memory size 
of AF-Detector approximately as 53 KB. In conclusion, AF-Detector is a 
lightweight method with low space complexity.

Time Complexity: For an arrived packet within a flow 𝑓 , we first 
look up the flow 𝑓 in its directly mapped bucket and two adjacent 
ones in the monitoring part by hashing. This lookup process involves 3𝑛
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cells, where 𝑛 is the number of cells in each bucket of the monitoring 
part. If the flow 𝑓 has been recorded in the monitoring part, we only 
need to update its frequency in the current time window. This case is 
executed with the time complexity 𝑂(3𝑛). Otherwise, we need to map 
the flow into the identification part with its 𝑘 hash functions and update 
the minimum of 𝑘 mapped counters. If the updated counter does not 
reach the frequency threshold 𝛼, the flow is not yet a potentially active 
flow, and packet processing ends. This case performs with the time 
complexity 𝑂(3𝑛 + 𝑘). If the flow is identified as potentially active, we 
insert the flow 𝑓 into the monitoring part, which requires checking 
3𝑛 cells. Hence, the execution of this case needs to take the time 
complexity 𝑂(6𝑛 + 𝑘). In summary, AF-Detector processes each packet 
with the time complexity 𝑂(6𝑛+𝑘) in the worst case. Since 𝑛 and 𝑘 are 
generally configured as very small values, AF-Detector is a lightweight 
method with very low time complexity.

5. Experiments

In this section, we first introduce experimental setup. Subsequently, 
we optimize the parameter settings of AF-Detector. Finally, we eval-
uate the performance of AF-Detector and compare it with prevalent 
active-flow detection methods.

5.1. Experimental setup

(1) Dataset
MAWI Dataset: The MAWI dataset [33] was collected from daily 

traces at the transit link of WIDE to the upstream ISP. We select 20M 
packets, which contains 6692 active flows for the time window size set 
as 100 K.

Campus Dataset: The campus dataset [34] consist of campus net-
work traffic collected over 10 days in 2016. We select 20M packets, 
which contains 5899 active flows for the time window size set as 100 K.

(2) Implementation We implement the state-of-the-art methods 
including AF-Detector, Steady Sketch [1], MV Sketch [7], Waving 
Sketch [21], Burst Sketch [23], and Elastic Sketch [29], whose param-
eters are configured as follows.

Steady Sketch: We set the ratio of the memory usage of its Steady-
Filter to its total memory size as 0.2. Meanwhile, its RollingSketch 
contains two arrays, where the number of slots is determined by given 
memory size.

MV Sketch: We set the number of its rows to 4, where the number 
of its columns is adjusted in accordance with the size of its provided 
memory.

Waving Sketch: We set the number of cells in its each bucket to 
16, where the number of its buckets is determined by the size of its 
allocated memory.

Burst Sketch: We set the number of hash functions to 1 and the 
ratio of the memory usage of its Stage 1 to its total memory size as 0.5. 
Meanwhile, each bucket in its Stage 2 contains 4 cells.

Elastic Sketch: Its light part consists of an array of counters, while 
each bucket in its heavy part stores 7 flows and a negative vote counter. 
Additionally for the heavy part, we set its replacement threshold to 8, 
where the number of its storage buckets is determined by configured 
memory size.

AF-Detector: We set the number of counters in its identification 
part to 3072 and 4 cells for each bucket in its monitoring part, where 
the number of its buckets is determined by given memory size. AF-
Detector.Opt is the version of AF-Detector that adopts optimization 1 
and optimization 2. AF-Detector.Cbf is the version of AF-Detector that 
adopts a Counting Bloom Filter in its identification part. We set the 
frequency threshold of an active flow in a time window as 127, the 
number threshold of consecutively active time windows of an active 
flow as 4, and the time window size as 100 K. Subsequently, we run 
the program on a server with dual 6-core CPUs (24 threads, Intel Xeon 
8 
Fig. 5. Effects of 𝛼.

Silver 4214R @2.4 GHz) and 32 GB DRAM memory, to evaluate their 
detection performance of active flows.
(3) Metrics

Precision Rate (PR): The ratio of the number of correctly reported 
active flows to the total number of reported active flows.

Recall Rate (RR): The ratio of the number of correctly reported 
active flows to the true number of active flows.

F1 score: 2⋅𝑅𝑅⋅𝑃𝑅
𝑅𝑅+𝑃𝑅 . The F1 score is the harmonic average of the 

recall rate and precision, used to measure the accuracy of a method 
in monitoring active flows.

ARE (Average Relative Error): 1
∣𝜓 ∣

∑

𝑛𝑖∈𝜓

|

|

|

𝑓𝑖−𝑓𝑖
|

|

|

𝑓𝑖
, 𝜓 is the total number 

of active flows reported by AF-Detector, 𝑓𝑖 is the true frequency of the 
𝑖th flow, and 𝑓𝑖 is the estimated frequency of the 𝑖 th flow.

Throughput: 𝑁𝑇 , where 𝑁 is the total number of packets, and 𝑇  is 
the total measurement time. Throughput represents million insertions 
per second (MIPS).

5.2. Parameter settings

We conduct a comprehensive evaluation of the key parameters of 
AF-Detector, including the frequency threshold of an active flow in 
a time window 𝛼, the number threshold of consecutively active time 
windows of an active flow 𝛽, the number of hash functions in the 
identification part 𝑘, the replacement rate 𝑟, and the time window 
size 𝑆𝑤𝑖𝑛. In the experiments, we allocate 100 KB of memory. We 
conduct experiments on the MAWI dataset and evaluate the effects of 
parameters on performance of AF-Detector in terms of RR, PR, F1 score, 
and ARE.

Effects of 𝛼: Fig.  5 exhibits the performance metrics of AF-Detector 
by varying the value of 𝛼 from 31 to 255, while keeping other pa-
rameters constant. As shown in Fig.  5, it is suitable to configure the 
frequency threshold 𝛼 as 127. As the frequency threshold 𝛼 increases, 
the PR, RR, and F1 score improve continuously and gradually stabilize 
after 𝛼 = 127. Meanwhile, the ARE decreases continuously. This is 
because as 𝛼 increases, fewer flows meet the criteria for active flows. 
AF-Detector is able to track almost all active flows when 𝛼 = 127. 
Therefore, we default the frequency threshold 𝛼 to 127.

Effects of 𝛽: Fig.  6 displays the performance metrics of AF-Detector 
by varying the value of 𝛽 from 2 to 6, while keeping other parameters 
constant. As shown in Fig.  6, it is suitable to configure the number 
threshold of consecutively active time windows 𝛽 as 4. With the in-
creasing number threshold of consecutively active time windows 𝛽, 
the PR, RR, and F1 score continuously improve and gradually stabilize 
after 𝛽 = 4. Meanwhile, the ARE continuously decreases and gradually 
stabilizes after 𝛽 = 4. It is not advisable to set a high threshold for 
the number of consecutively active time windows, since our goal is 
to detect flows that may affect network performance. Therefore, we 



B. Xiong et al. Computer Networks 270 (2025) 111562 
Fig. 6. Effects of 𝛽.

Fig. 7. Effects of k.

default the number threshold of consecutively active time windows 𝛽
to 4.

Effects of 𝑘: Fig.  7 shows the performance metrics of AF-Detector 
by varying the value of 𝑘 from 1 to 5, while keeping other parameters 
constant. As shown in Fig.  7, it is suitable to configure the number 
of hash functions in the identification part 𝑘 as 3. With the increasing 
number of hash functions in the identification part, the PR, RR, and F1 
score initially improve quickly and the improvement slows down after 
𝑘 = 3. Meanwhile, the ARE continuously decreases. Considering that 
more hash functions will increase packet processing time, we default 
the number of hash functions in the identification part to 3.

Effects of 𝑟: Fig.  8 depicts the performance metrics of AF-Detector 
by varying the value of 𝑟 from 0.006 to 0.014, while keeping other 
parameters constant. As seen from Fig.  8, it is suitable to configure 
the replacement rate 𝑟 as 0.01. With the increase of the replacement 
rate 𝑟, the PR, RR, and F1 score continuously improve at the beginning 
and gradually decrease after 𝑟 = 0.01. Meanwhile, the ARE initially 
decreases and then gradually increases after 𝑟 = 0.01. This is due to that 
a low replacement rate will lead potentially active flows to be easily 
replaced, while a high replacement rate can make it difficult to replace 
low-frequency flows. Therefore, we default the replacement rate 𝑟 to 
0.01.

Effects of 𝑆𝑤𝑖𝑛: Fig.  9 illustrates the performance metrics of AF-
Detector by varying the value of Swin from 50 K to 150 K, while 
keeping other parameters constant. The experimental results in Fig. 
9 demonstrate the optimal value of the time window size Swin as 
100 K. As the time window size Swin increases, the PR, RR, and F1 
score slightly decrease at the initial stage, but the decrease accelerates 
after Swin = 100 K, while the ARE continuously improves. As for a 
small size of time window, there will be fewer packets within a time 
window, which increases the difficulty for a flow to reach the frequency 
threshold of active flows. This results in fewer active flows which 
can be almost tracked by AF-Detector with higher detection accuracy. 
9 
Fig. 8. Effects of r.

Fig. 9. Effects of 𝑆𝑤𝑖𝑛.

However, it will overlook some important flows which cannot meet 
the criteria of active flows. As for a big size of time window, there 
will be more packets within a time window, and more flows with their 
frequencies meeting the criteria of active flows. This results in a higher 
hash collision rate of the monitoring part, and the omission of some 
active flows, reducing detection accuracy. Meanwhile, a big size of time 
window also means a longer update cycle of AF-Detector, weakening 
the real-time nature of active-flow detection. In summary, we default 
the time window size Swin as 100 K.

5.3. Precision, recall and F1 score

Precision vs. Memory Size: Fig.  10 shows the precision of preva-
lent active-flow detection methods under different memory sizes. As 
depicted in Fig.  10, the precision of AF-Detector.Opt is always higher 
than that of other methods under the same memory size. Moreover, AF-
Detector.Opt demonstrates superior precision in detecting active flows, 
even under low memory sizes. As seen from Fig.  10(a), AF-Detector.Opt 
and AF-Detector respectively achieve precision of 98.64% and 97.06%, 
surpassing that of Steady Sketch (89.29%), Burst Sketch (95.75%), 
Waving Sketch (85.63%), MV Sketch (79.17%), AF-Detector.Cbf
(83.53%), and Elastic Sketch (82.73%) when the memory size is set to 
60 KB. With the increasing memory size, the precision of all methods 
continuously improves. When the memory size is set to 100 KB, 
AF-Detector.Opt and AF-Detector respectively achieve precision of 
99.59% and 98.79%, outperforming Steady Sketch (95.73%), Burst 
Sketch (98.21%), Waving Sketch (98.26%), MV Sketch (94.13%), AF-
Detector.Cbf (86.45%), and Elastic Sketch (93.24%). In summary, both 
AF-Detector.Opt and AF-Detector achieve high accuracy in active-flow 
detection due to their separation of the tracking and identification 
functions of active flows, which reduces interference from inactive 
flows. Additionally, AF-Detector.Opt adopts a better insertion strategy, 
further enhancing its performance.
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Fig. 10. Precision vs. memory size. .
Fig. 11. Recall vs. memory size. 
Recall vs. Memory Size: Fig.  11 shows the recall of prevalent 
active-flow detection methods under different memory sizes. As shown 
in Fig.  11, the recall rate of AF-Detector.Opt is higher than that of 
other methods under the same memory size. As seen from Fig.  11(a), 
AF-Detector.Opt and AF-Detector respectively achieve recall rates of 
98.89% and 97.31%, surpassing that of Steady Sketch (92.00%), Burst 
Sketch (96.89%), Waving Sketch (93.14%), MV Sketch (82.12%), AF-
Detector.Cbf (73.64%), and Elastic Sketch (85.57%) when the memory 
size is set to 60 KB. With the increasing memory size, the recall rates 
of all methods continuously improve. When the memory size is set to 
100 KB, AF-Detector.Opt and AF-Detector respectively achieve recall 
rates of 99.78% and 99.01%, outperforming Steady Sketch (96.69%), 
Burst Sketch (97.59%), Waving Sketch (98.95%), MV Sketch (90.93%), 
AF-Detector.Cbf (82.26%), and Elastic Sketch (93.05%). In summary, 
both AF-Detector.Opt and AF-Detector consistently achieve high recall 
rates. This is due to their adoption of a probabilistic replacement 
strategy, which helps prevent the incorrect discarding of potentially 
active flows in the case of full buckets. Additionally, they employ 
an information cleanup mechanism to remove outdated or inactive 
flows at the end of each time window, allowing them to accurately 
detect active flows even under limited resource conditions. Moreover, 
AF-Detector.Opt adopts an optimized insertion strategy, providing a 
further boost to its performance.

F1 Score vs. Memory Size: Fig.  12 shows the F1 score of prevalent 
active-flow detection methods under different memory sizes. As shown 
in Fig.  12, AF-Detector.Opt consistently demonstrates superior F1 score 
compared to other methods under the same memory size. As seen 
10 
from Fig.  12(a), AF-Detector.Opt and AF-Detector respectively achieve 
F1 scores of 0.9878 and 0.9718, surpassing that of Steady Sketch 
(0.9062), Burst Sketch (0.9632), Waving Sketch (0.8922), MV Sketch 
(0.8062), AF-Detector.Cbf (0.7876), and Elastic Sketch (0.8412) when 
the memory size is set to 60 KB. With the increasing memory size, the 
F1 score of all methods continuously improves. When the memory size 
is set to 100 KB, AF-Detector.Opt and AF-Detector respectively achieve 
F1 scores of 0.9969 and 0.9890, surpassing Steady Sketch (0.9621), 
Burst Sketch (0.9790), Waving Sketch (0.9860), MV Sketch (0.9251), 
AF-Detector.Cbf (0.8430), and Elastic Sketch (0.9315). In summary, 
both AF-Detector.Opt and AF-Detector consistently maintain higher F1 
scores than other methods.

5.4. ARE

ARE vs. Memory Size: Fig.  13 shows the ARE of prevalent active-
flow detection methods under different memory sizes. As shown in Fig. 
13, it is evident that AF-Detector.Opt consistently maintains lower ARE 
than other methods under the same memory size. As seen from Fig. 
13(a), AF-Detector.Opt and AF-Detector respectively achieve
log10 ARE of −1.01 and −0.93, lower than that of Steady Sketch 
(−0.81), Burst Sketch (−0.90), Waving Sketch (−0.91), MV Sketch 
(−0.30), AF-Detector.Cbf (−0.01), and Elastic Sketch (0.34) when the 
memory size is set to 60 KB. With the increasing memory size, the 
ARE of all methods continuously decreases. When the memory size is 
set to 100 KB, AF-Detector.Opt and AF-Detector respectively achieve 
log ARE of −1.13 and −1.04, outperforming Steady Sketch (−0.98), 
10
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Fig. 12. F1 score vs. memory size.
Fig. 13. ARE vs. memory size..
Burst Sketch (−0.96), Waving Sketch (−0.95), MV Sketch (−0.30), AF-
Detector.Cbf (−0.16), and Elastic Sketch (−0.03). In summary, both 
AF-Detector.Opt and AF-Detector always achieve lower ARE compared 
to other methods. This is due to their prompt removal of inactive flows 
and periodic reporting of active flows, which improve the memory uti-
lization efficiency of the monitoring part and reduce the hash conflicts 
between active flows.

5.5. Throughput

Throughput: Fig.  14 illustrates the throughput of prevalent active-
flow detection methods on different datasets. As shown in Fig.  14, 
AF-Detector.Opt consistently maintains the highest throughput, no 
matter which dataset. For the MAWI dataset, the throughput of AF-
Detector.Opt reaches 30.32 Mips, approximately 3.39, 1.15, 6.77, 1.72, 
1.10, and 1.52 times that of Steady Sketch, Burst Sketch, Waving 
Sketch, MV Sketch, AF-Detector.Cbf, and Elastic Sketch, respectively. 
For the Campus dataset, the throughput of AF-Detector.Opt reaches 
30.99 Mips, approximately 3.23, 1.21, 6.78, 1.82, 1.08, and 1.53 
times that of Steady Sketch, Burst Sketch, Waving Sketch, MV Sketch, 
AF-Detector.Cbf, and Elastic Sketch, respectively. Compared to AF-
Detector, AF-Detector.Opt increases throughput by 28.52% in average. 
This is due to that AF-Detector.Opt applies SIMD technology to enhance 
the lookup performance of the monitoring part and its flow insertion 
efficiency. In conclusion, AF-Detector.Opt can real-timely detect active 
flows in high-speed network environments.

6. Conclusion and discussion

Real-time detection of active flows plays a crucial role in network 
measurement. To address the issues with existing methods, we propose 
AF-Detector to detect active flows with high precision and low memory 
11 
Fig. 14. The throughput of different active-flow detection methods.

overhead. AF-Detector separates the tracking and identification func-
tions of active flows, to precisely find out active flows and report their 
activity periods. Specifically, we estimate the frequencies of incoming 
flows and find out potentially active flows in the identification part. 
Subsequently, we track active flows in the monitoring part with a 
compact hash table. Meanwhile, we design a probabilistic replace-
ment strategy to accommodate new potentially active flows for the 
case of full mapped buckets, and an information cleanup mechanism 
to promptly remove flows that are no longer active and outdated 
information, improving the accuracy of active-flow detection.

The experimental results show that AF-Detector achieves up to 
99.59% precision and 99.78% recall rate for detecting active flows. 
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Even when the memory size is set to 60 KB, the precision and recall 
rate can achieve up to 98.64% and 98.89%, respectively. At the same 
time, the average relative error of AF-Detector is lower than that of the 
state-of-the-art methods. These results demonstrate that AF-Detector 
can ensure high precision, high recall rates, and low error even under 
low memory constraints, showing significant advantages over state-of-
the-art methods. Moreover, AF-Detector achieves higher throughput of 
30.99 Mips compared to the state-of-the-art methods. This indicates 
that AF-Detector is capable of real-time detection of active flows in 
high-speed network environments.

In our future work, we will further optimize the AF-Detector to 
enhance its robustness for detecting active flows in larger-scale and 
more complex network environments. For this end, we will apply 
our proposed techniques published in the paper [35] to enhance the 
performance of AF-Detector under highly bursty traffic conditions. 
Specifically, we will employ a stretchable identification part based on 
cyclic sketch chain, which dynamically adjusts the number of sketches 
in terms of real-time packet arrival rates, to ensure accurate filtering of 
inactive flows during network traffic fluctuations. Meanwhile, we will 
adopt a scalable monitoring part based on dynamic segmented hashing, 
which adaptively adjusts segments based on the number of potentially 
active flows, to fully record all active flows while maintaining high 
memory space utilization. Eventually, we plan to deploy AF-Detector in 
various network management systems to assist network administrators 
in improving network performance.
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