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a b s t r a c t 

OpenFlow is one of the most famous protocols for controller-to-switch communications 

in software-defined networking (SDN), commonly seen as a promising way towards fu- 

ture Internet. Understanding the performance and limitation of OpenFlow-based SDN is a 

prerequisite of its deployments. To achieve this aim, this paper proposes a novel analyti- 

cal performance model of OpenFlow networks based on queueing theory. After depicting 

a typical network scenario of OpenFlow deployments, we model the packet forwarding 

of its OpenFlow switches and the packet-in message processing of its SDN controller re- 

spectively as the queueing systems M 

X / M /1 and M / G /1. Subsequently, we build a queueing 

model of OpenFlow networks in terms of packet forwarding performance, and solve its 

closed-form expression of average packet sojourn time and the corresponding probability 

density function. Finally, the numerical analysis is carried out to evaluate our proposed 

performance model with different parameter values. Furthermore, our controller model is 

contrasted with the classical one by utilizing the popular benchmark Cbench. Experimental 

results indicate that our controller model provides a more accurate approximation of SDN 

controller performance. 

© 2016 Elsevier B.V. All rights reserved. 
1. Introduction 

As a new network paradigm, Software-defined Net- 

working (SDN) is currently seen as one of the promising 

approaches in the way towards future Internet [1–3] . It de- 

couples the network control out of forwarding devices, and 

allows for a separate controller entity that may change the 

forwarding rules in modern switches [4] . The separation of 

the control logic from the forwarding substrate greatly fa- 

cilitates the deployment and operation of new services and 
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enables SDN to react gracefully to the change of network 

demands and modifications to the substrate topology [5] . 

These pave the way for a more flexible, programmable, and 

innovative networking [6,7] . 

In SDN architecture, packet forwarding devices are ma- 

nipulated by the logically centralized controller through 

south-band interface, typically the OpenFlow protocol 

[8,9] . This architecture raises the performance bottlenecks 

of the controller and its capacity to handle all Open- 

Flow switches, especially for large and highly distributed 

networks [10] . Currently, OpenFlow-based SDN concept is 

finding its way into commercial applications [11,12] , and 

a growing number of experiments over SDN-enabled net- 

works are expected. This will create new challenges, as the 

questions of SDN performance and scalability have not yet 

been fully investigated in recent researches. 

http://dx.doi.org/10.1016/j.comnet.2016.03.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.03.005&domain=pdf
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Understanding the performance and limitation of

OpenFlow-based SDN concept is a prerequisite for its us-

age in practical applications. Specifically, an initial esti-

mate of the performance of OpenFlow networks is essen-

tial for network architects and designers. Although simu-

lation studies and experimentation are among the widely

used performance evaluation techniques, analytical mod-

eling has its own benefits. A closed-form description of a

networking architecture enables the network designers to

have a quick approximate estimate of the performance of

their design, without the need to spend considerable time

for simulation studies or expensive experimental setups. 

To the best of our knowledge, there are very few

research activities to analytically model and evaluate

OpenFlow-based SDN performance. Some researchers [13–

15] utilized network calculus as a mathematical model

to evaluate the performance bounds of controllers and

switches in the worst case. Different from them, we focus

on the average packet forwarding performance of Open-

Flow networks at its equilibrium state. More close to our

work, Zuo [19] and Yao [20] et al. model SDN controller

performance with a M 

k / M /1 queue by considering the flow

setup requests to the controller as a batch arrival process.

However, the batch arrival could not exactly characterize

the pattern of flow setup requests from multiple switches.

The closest work is the analytical model of OpenFlow-

based SDN proposed by Jarschel et al., which approximates

the data plane as an open Jackson network with the con-

troller also modeled as a M / M /1 queue [17,18] . Neverthe-

less, the assumptions of their queueing models were a bit

far away from network traffic measurements. 

For the above situations, this paper is motivated to pro-

vide an accurate performance model of OpenFlow-based

SDN with multiple OpenFlow switches. To achieve this aim,

we first give a typical network scenario of OpenFlow de-

ployments. Then, we investigate into the arrival process

and processing time of its OpenFlow switches and SDN

controller to reach their queueing models. Subsequently,

we further build a queueing model of OpenFlow networks

to characterize its packet forwarding performance, and

solve its average packet sojourn time and probability den-

sity function. Finally, we perform numerical analysis on the

queueing model in terms of different performance param-

eters, and our controller performance model is also evalu-

ated under various network scenarios by using the preva-

lent benchmark Cbench. 

With the above methodology, this paper aims to

achieve the following conclusions as the main contribu-

tions: (a) pointing out that the queueing system M 

X / M /1 is

suitable to characterize the packet switching performance

of an OpenFlow switch in our network scenario; (b) con-

cluding that the packet-in message processing performance

of SDN controller can be modeled as a M / G /1 queue; (c)

proposing a queueing model for the packet forwarding per-

formance of OpenFlow networks, and solving the closed-

form expression of its average packet sojourn time and

probability density function. 

The rest of the paper is organized as follows.

Section 2 introduces related work. In Section 3 , we

give a typical network scenario of OpenFlow deployments.

Section 4 characterizes the packet switching performance
of an OpenFlow switch as the queueing system M 

X / M /1

after the investigations of its packet arrival process and

packet switching procedure. In Section 5 , we model the

packet-in message processing performance of SDN con-

troller as a M / G /1 queue based on the investigation of

the message arrival process. Section 6 builds a queueing

model of the packet forwarding performance through an

OpenFlow switch, and solves its performance parame-

ters including average packet sojourn time. In Section 7 ,

we evaluate the queueing model with different perfor-

mance parameters by utilizing numerical analysis, and

our controller performance model under various net-

work scenarios with the prevalent benchmark Cbench.

Section 8 concludes the paper. 

2. Related work 

Software-Defined Networking (SDN) is an emerging

paradigm that promises to change the limitations of cur-

rent network infrastructures, by separating the network’s

control logic from the underlying routers and switches,

promoting logical centralization of network control, and in-

troducing the ability to program the network [21–23] . By

this way, SDN offers flexible, dynamic, and programmable

functionality of network systems, as well as many other

advantages such as centralized control, reduced complex-

ity, better user experience, and a dramatic decrease in net-

work systems and equipment costs [24] . However, these

advantages come with non-negligible penalty to essential

network performance such as packet processing speed and

throughput [25] , which attributes to the involvement of a

remote system called a controller in administration of all

forwarding devices. 

A controller in SDN paradigm is like an operating sys-

tem for computers, which administrates its subordinate

switching devices and provides a programmatic interface

for user-written network applications. Thus it plays a crit-

ical role in the SDN architecture and has a significant im-

pact on the entire network [26] . However, the current state

of the SDN controller market may be compared to the ex-

treme diversity of early operating systems for mainframes.

Until now, there are more than 30 different controllers,

created by different vendors/universities/research groups,

written in different languages, and using different multi-

threading techniques [32] . These differences make each

controller with its own performance characteristics and

specific controllers better suited for certain scenarios than

others. Thus, it is necessary to understand the performance

of the controllers and its impact factors, when planning a

SDN deployment. 

In [27] , Jarschel et al. first developed a flexible Open-

Flow controller benchmark Cbench to understand the

performance characteristics of different controller im-

plementations. The benchmark allows the emulation of

scenarios and topologies by creating a set of message-

generating virtual switches and configuring them in-

dependently from each other. By this way, it can be

employed to carry out the measurement experiments of

the controller performance on a per-switch basis, to reach

a fine-grained analysis of controller performance bottle-

necks. Tootoonchian et al. utilized the benchmark Cbench
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to measure several performance aspects of 4 publicly- 

available OpenFlow controllers (NOX [28] , NOX-MT, Beacon 

[29] , and Maestro [30] ), including the minimum and 

maximum controller response time, maximum throughput, 

and the throughput and latency of the controller with a 

bounded number of packets on the fly [31] . Their measure- 

ment results achieve the conclusion that a single physical 

controller is not enough to manage a sizeable network. 

In [32] , Shalimov et al. further developed a more ca- 

pable framework hcprobe. The framework can be used to 

create a set of advanced testing scenarios and provide the 

fine-tuning of measurement parameters to reach an in- 

sight into the controller scalability, reliability and secu- 

rity issues. With the framework, they provided a com- 

prehensive performance analysis of popular open-source 

SDN/OpenFlow controllers (NOX [28] , Beacon [29] , Mae- 

stro [33] ), Floodlight, POX, MuL, Ryu, which concluded that 

modern SDN/OpenFlow controllers were not ready for pro- 

duction networks. Shah et al. also evaluated the perfor- 

mance of four prominent OpenFlow controllers: NOX [28] , 

Beacon [29] , Maestro [33] and Floodlight under different 

metrics including thread scalability, switch scalability and 

message processing latency, which aimed to identify key 

performance bottlenecks and good architectural choices for 

designing OpenFlow based SDN controllers [34] . 

The concurrent operation of SDN switches with di- 

verse capacities for control message processing leads to 

highly variable latencies for flow installations and modi- 

fications. To address this issue, Bozakov and Rizk used a 

queueing model to characterize the behavior of the con- 

trol interface between the controller and a switch in terms 

of the amount of serviced messages over different time 

scales, and provided a measurement-based approach to 

derive an estimate of the corresponding service curves 

[13] . They also proposed a simple interface extension for 

controller frameworks which enables operators to config- 

ure time delay bounds for transmitted control messages. 

In [14,15] , Azodolmolky et al. presented a mathematical 

framework based on network calculus to report the per- 

formance of the scalable SDN deployments. Given the pa- 

rameters of the cumulative arriving process and the flow 

control functionality of the SDN controller, the network ar- 

chitect or designer is able to compute an upper bound es- 

timate of the delay and buffer requirements of SDN con- 

trollers. Besides, Osgouei et al. proposed an analytical per- 

formance model of virtualized SDNs using network calcu- 

lus to calculate the upper bounds of the latency of virtu- 

alized SDN controller and the service curve of each virtual 

network [16] . 

Closely related to our work, Jarschel et al. derived a ba- 

sic analytical model based on M / M /1 queues to estimate 

the packet sojourn time and probability of lost packets for 

the network scenario, where a SDN controller is responsi- 

ble for only a single OpenFlow switch in the data plane 

[17] . As a further step, they addressed the challenge of 

the case with multiple switches by approximating the data 

plane as an open Jackson network with the controller also 

modeled as a M / M /1 queue [18] . Nevertheless, their model 

was lack of the support of the measurements on the packet 

arrival process at the switch and packet-in message ar- 

rivals at the controller. Furthermore, Zuo et al. evaluated 
the queueing delay of flow setup requests in the control 

plane by introducing the multiple arrivals and single de- 

parture queue model [19] , but did not reach a precise delay 

estimate. Yao et al. also modeled the flow setup requests to 

the controller as a batch arrival process to analyze the con- 

troller performance with a M 

k / M /1 queue [20] . However, 

the batch arrival could not exactly characterize the pat- 

tern of flow setup requests from multiple switches. Thus, 

we are motivated to build a better performance model 

of OpenFlow network based on the investigations of the 

packet arrival process at the switch and packet-in message 

arrivals at the controller. 

3. OpenFlow network deployments 

As a novel network architecture, SDN enables re- 

searchers to test new ideas under realistic conditions on an 

existing network infrastructure. To be able to take action in 

the switching, OpenFlow separates the control plane from 

the data plane and connects them by an open interface, 

the OpenFlow protocol. As for OpenFlow deployments, a 

typical network scenario is depicted at Fig. 1 . 

As illustrated in Fig. 1 , the OpenFlow network can 

be distinguished into the edge and the core ones. The 

edge network consists of many independent LANs con- 

necting hosts, terminals and servers. Each LAN connects 

the core network via an access switch. The core net- 

work switches packet traffic among LANs and the Inter- 

net. To support OpenFlow, all switches in the core network 

are connected to a SDN controller directly or via other 

switches. 

When a packet from a LAN arrives at its access switch 

in the core network, the switch performs lookups in its in- 

ternal flow tables. If the lookup hits a table entry other 

than table-miss, the switch will forward the packet to the 

next one in a conventional way. Otherwise, the packet 

is supposed to belong to a new flow. In such case, the 

switch requests the controller for instructions by sending 

a packet-in message in encapsulation of the packet infor- 

mation. The controller determines the respective flow rule 

and installs it into all switches among the flow path. After 

that, all packets within the flow is correctly forwarded to 

their destination without requesting the controller. 

In OpenFlow networks, a SDN controller is usually im- 

plemented as a network operation system, and responsible 

for multiple OpenFlow switches. All new flows from a LAN 

trigger its access switch to send a sequence of packet-in 

messages to the controller. These packet-in messages from 

all switches usually form up a waiting queue in the con- 

troller. Meanwhile, each switch keeps a packet queue at 

each ingress port. In consequence, we can analytically eval- 

uate the performance of OpenFlow networks with queue- 

ing models. 

4. Queueing model of OpenFlow switches 

This section investigates into the packet arrival process 

and packet forwarding procedure at an OpenFlow switch, 

and characterize its packet forwarding performance with 

the queueing model M 

X / M /1. 
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Fig. 1. A typical OpenFlow network scenario. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Queueing model analysis 

Up to now, almost all analytical models on OpenFlow

networks suppose that packet traffic into a switch con-

forms to the Poisson distribution. However, previous stud-

ies has pointed out that packet arrivals in computer net-

works is apt to be like trains [35,36] rather than Poisson

stream [37] . The phenomenon of packet groups is a natural

artifact of the protocols and applications for data transmis-

sion [38] . Firstly, the most widespread Internet application,

i.e., web service, usually manifests as a mass of file down-

loading events in the viewpoint of networks. Secondly,

the popular peer-to-peer file sharing produces bulk data

transfer behaviors in network traffic. Lastly, the increasing

streaming media applications, such as Internet telephony

and television, generates persistent data downloading ac-

tivities [39,40] . In summary, current Internet applications

results in packet batch arrivals in packet switching net-

works. 

Fig. 2 demonstrates the forwarding procedure of a

packet in an OpenFlow switch. On receiving a packet, the

switch puts it into the packet queue of its ingress port.

As for its processing, the switch first retrieves it from the

queue, and extracts its matching fields from all protocol

headers to compute its flow key. After that, the key is used
to look up the flow tables to match an entry. If the match

fails, the switch fires off a packet-in message containing

the full packet or its buffer ID to the connected SDN con-

troller. The handling rule of the flow that the packet be-

longs to is learned in the controller, and is sent down to

the switch to be added into its flow tables. When an entry

other than table-miss is found, the packet is switched to

the port in the entry via backplane, and wait for forward-

ing in the respective egress queue. 

As for the packet forwarding procedure shown in Fig. 2 ,

the flow table lookup dominates the processing time of a

packet in an OpenFlow switch, as the backplane switch-

ing has completely broken the limitation of shared band-

width by using CrossBar fabric. Since the table lookups for

all packets are independent from each other, the packet

processing time can be supposed as a random variable

with negative exponential distribution. With the assump-

tion of sufficient packet buffer for all ingress queues in the

switch, the packet forwarding performance of an OpenFlow

switch can be modeled as a M 

X / M /1 queue. The queue

can be characterized as the following assumptions: (a)

packet batches arrive at the i th OpenFlow switch as Pois-

son stream with the rate λ(b) 
i 

; (b) the number of packets

in a batch conforms to Poisson distribution with the pa-

rameter λ(p) 
i 

; (c) the packet processing time of the switch
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Fig. 2. The packet forwarding of an OpenFlow switch. 
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conforms to negative exponential distribution with the pa- 

rameter μ(s ) 
i 

. 

4.2. Queueing model solution 

Suppose there is a batch with m packets arriving at the 

i th (1 ≤ i ≤ k ) OpenFlow switch, where n packets are wait- 

ing in its ingress queue for processing. Then, the l th arriv- 

ing packet has to wait until the n waiting ones and the 

front (l − 1) ones have been processed. Its sojourn time in 

the switch can be expressed as the total processing time 

of (n + l) packets in (1) . Then, we can further compute the 

average sojourn time of the packet batch is in (2) and that 

of a packet in the switch in (3) . 

 

(s ) 
i 

(n, m, l) = 

n + l 

μ(s ) 
i 

, 1 ≤l ≤m. (1) 

 

(s ) 
i 

(n, m ) = 

1 

m 

m ∑ 

l=1 

W 

(s ) 
i 

(n, m, l) = 

n 

μ(s ) 
i 

+ 

m + 1 

2 μ(s ) 
i 

. (2) 

 

(s ) 
i 

= 

∞ ∑ 

n =0 

∞ ∑ 

m =0 

W 

(s ) 
i 

(n, m ) p m 

p n 

= 

1 

μ(s ) 
i 

∞ ∑ 

n =0 

np n + 

1 

2 μ(s ) 
i 

( ∞ ∑ 

m =0 

mp m 

+ 1 

)
. (3) 

According to the above assumptions, the number of pack- 

ets in a batch m conforms to Poisson distribution with the 

parameter λ(p) 
i 

. Thus there exist (4) . Besides, we can get 

the relationship between average queue length and aver- 

age sojourn time in (5) . Substituting (4) and (5) into (3) , 

we can solve the average sojourn time of a packet in the 

switch in (6) . Finally, we can also get the average queue 

length of the switch in (7) by putting (6) into (5) . 

∞ ∑ 

m =1 

mp m 

= λ(p) 
i 

. (4) 

L (s ) 
i 

= 

∞ ∑ 

n =0 

np n = λ(b) 
i 

λ(p) 
i 

W 

(s ) 
i 

. (5) 

 

(s ) 
i 

= 

λ(p) 
i 

+ 1 

2(μ(s ) 
i 

− λ(b) 
i 

λ(p) 
i 

) 
. (6) 

L (s ) 
i 

= 

λ(b) 
i 

λ(p) 
i 

(λ(p) 
i 

+ 1) 
(s ) (b) (p) 

. (7) 

2(μ

i 
− λ

i 
λ

i 
) 
5. Queueing model of SDN controllers 

This section investigates into the arrival process and 

serving process of packet-in messages in a SDN controller, 

and characterize SDN controller performance with the 

queueing model M / G /1. 

5.1. Packet-in message arrivals 

An OpenFlow switch sends a packet-in message as flow 

setup request to its SDN controller on the arrival of a new 

flow. This implies that packet-in message stream from a 

switch to its controller has a one-to-one correspondence 

with flow arrival process. Network traffic measurements 

have indicated that flow arrival process in packet switch- 

ing networks conforms to Poisson distribution [41,42] . In 

OpenFlow network deployments, a controller is usually re- 

sponsible for multiple switches, and receives a stream of 

packet-in messages from each of them. Then, we can con- 

clude that all packet-in messages at the controller from its 

switches constitute a Poisson stream in terms of the fol- 

lowing theorem. 

Theorem 5.1. As for a SDN controller in charge of k Open- 

Flow switches in reactive mode, if flow arrival process at the 

ith (i = 0 , 1 , 2 , . . . , k ) switch is a Poisson stream with the pa-

rameter λ( f ) 
i 

independent of those at other switches, then all 

packet-in messages from the k switches to the controller con- 

form to Poisson distribution with the parameter λ( c ) in (8) . 

λ(c) = 

k ∑ 

i =1 

λ( f ) 
i 

. (8) 

Proof 5.1. Let F i, j ( t ) and M i, j ( t ) ( i = 0 , 1 , 2 , . . . , k, j =
0 , 1 , 2 , . . . , t ≥ 0 ) respectively be the j th flow coming into

the i th switch at the time t and the j th packet-in message

arriving at the controller from the i th switch at the time 

t . On receiving a new flow F i, j ( t ), the switch looks up the

flow tables in failure and sends a packet-in message to the 

controller. The controller receives the message at the time 

(t + �t) . 

The time difference �t consists of failed lookup time 

of the flow tables, the transmission time of the packet-in 

message from the switch to the controller, and other negli- 

gible time such as forwarding time on switching backplane 

and scheduling time among output links in the switch. 

The failed lookup time chiefly depends on flow table size, 

which comes to be steady soon in network operations. The 

transmission time lies on the distance between the switch 
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and the controller, which is fixed in a given network. In

summary, �t tends to be constant for all packet-in mes-

sages from a certain switch to its controller. 

Consequently, it can be referred that the packet-in mes-

sage stream { M i, j (t) , j = 1 , 2 , 3 , . . . } from the i th switch

to the controller is equivalent to the flow arrival pro-

cess { F i, j (t) , j = 1 , 2 , 3 , . . . } at the switch in the sense of

stochastic process. Owing to the assumption that the pro-

cess { F i, j ( t )} at the i th switch conforms to Poisson dis-

tribution with the parameter λ( f ) 
i 

and those at all the k

switches are independent of each other, we can further

conclude that packet-in message stream { M i, j ( t )} from the

i th switch conforms to Poisson distribution with the same

parameter in (9) and those from all the switches are inde-

pendent of each other. 

{ M i, j (t) } ↔ { F i, j (t) } ∼P 
(
λ( f ) 

i 

)
. (9)

With the above hypothesis, we can achieve the follow-

ing conclusion that the synthetic packet-in messages at the

controller from all the k switches 
∑ k 

i =1 M i, j (t) confirms to

Poisson distribution with the parameter λ(c) = 

∑ k 
i =1 λ

( f ) 
i 

in

(8) in terms of the composition theorem of Poisson stream.

Thus, the above theorem is proved. {
k ∑ 

i =1 

M i, j (t) 

}
∼P 

( k ∑ 

i =1 

λ( f ) 
i 

)
. (10)

�

5.2. Packet-in message processing 

On the arrival of a packet-in message, the controller de-

termines the rule of handing the respective flow and sends

back the flow rule as a response to the packet-in message.

Fig. 3 illustrates the packet-in message processing of a SDN

controller. As shown in Fig. 3 , the controller first caches

all arrived packet-in messages from its substrate OpenFlow

switches in a queue in order of their arrival time. The pro-

cessing unit of the controller reads in a packet-in mes-

sage from the queue after completing the handling of the

last message. Then, the packet-in message is processed by

looking up the forwarding tables commonly called the for-

warding information base (FIB). The FIB is generated from

the routing information base (RIB) at its consistent and sta-

ble state. The RIB contains information about the network

topology built by path computation and topology discovery

through the running of routing protocols or manual pro-

gramming. Finally, the controller encapsulates the found

forwarding rule in a packet-out or flow-mod message to

the respective switch. 

As seen from the above packet-in message processing of

a SDN controller, the processing time of a packet-in mes-

sage is chiefly derived from the FIB lookups. The FIB is gen-

erally stored with trie trees and its lookups are performed

with longest prefix matching. So the comparison times of

the FIB lookup are reckoned to distribute normally, and we

can assume that the FIB lookup time conforms to normal

distribution [43] with the position parameter 1/ μ( c ) and

the scale parameter σ ( c ) . The parameter μ( c ) represents the

expectation of the processing rate of packet-in messages in

the controller, and the parameter σ ( c ) denotes the standard
deviation expectation of actual processing time to the ex-

pected one of packet-in messages in the controller. 

5.3. Queueing model description 

With the above queueing analysis, we can character-

ize the packet-in message processing of a SDN controller

with the M / G /1 queueing model: (a) the arrival process

of packet-in messages at the controller conforms to Pois-

son distribution with the parameter λ( c ) ; (b) the processing

time of packet-in messages in the controller conforms to

normal distribution with the position parameter 1/ μ( c ) and

the scale parameter σ ( c ) ; (c) there is a processing unit in

the controller to handle packet-in messages with the first-

come-first-serving principle, and the arrivals and process-

ing of packet-in messages are independent of each other. 

Suppose that N ( t ) stands for the length of the packet-

in message queue in the controller at time t . As for any

time t , if there is a packet-in message being processed, the

distribution of the rest processing time from the time t is

no longer of memoryless property, and the queue length

process { N ( t ), t ≥ 0} is no longer of Markov property. Sup-

pose X n as the number of packet-in messages in the con-

troller at the time that the processing of the n th message

is finished, it can be proved that { X n , n ≥ 1} is a Markov

chain, particularly called the imbedded Markov chain of

the queue length process { N ( t ), t ≥ 0}. 

Suppose that T n represents the required processing time

of the ( n + 1)th message from the time that the n th mes-

sage leaves, we can express its probability density function

in (11) in terms of its normal distribution assumption in

the above queueing model. 

g(x ) = 

1 √ 

2 πσ(c) 

e 
− (x −1 /μ(c) ) 

2 

2 σ(c) 
2 

. (11)

Suppose Y n as the number of the newly arrived packet-

in messages during the processing of the ( n + 1)th one, its

probability can be derived in (12) with its Poisson distri-

bution assumption in the above queueing model. 

P (Y n = j) = 

∫ ∞ 

0 

P (Y n = j| T n = x ) g(x ) dx 

= 

∫ ∞ 

0 

( λ(c) x ) 
j 

j! 
e −λ(c) x g(x ) dx, j = 0 , 1 , 2 , · · · (12)

Suppose a j = P (Y n = j) > 0 , it can be proved that { X n ,

n ≥ 1} makes up a Markov chain, whose one-step trans-

fer matrix and state transfer diagram are illustrated in

(13) and Fig. 4 , respectively. 

P = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

a 0 a 1 a 2 · · ·
a 0 a 1 a 2 · · ·
0 a 0 a 1 · · ·
0 0 a 0 · · ·
. . . 

. . . 
. . . 

. . . 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

(13)

5.4. Performance parameter solution 

Suppose the controller has the traffic intensity of

packet-in messages ρ(c) = λ(c) /μ(c) , it can be verified that

the Markov chain { X n , n ≥ 1} is ergodic if ρ( c ) < 1. So there
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Fig. 3. The packet-in message processing of a SDN controller. 

Fig. 4. The state transfer diagram of the Markov chain. 

 

exist the stationary distribution { p j , j ≥ 0}, which satisfies 

the following equation also expressed as (p 0 , p 1 , p 2 , . . . ) = 

(p 0 , p 1 , p 2 , . . . ) P . 

p j = 

∞ ∑ 

i =0 

p i p i j , j ≥ 0 . (14) 

Then, p j is resolved with generating functions. Let P ( x ) and 

A ( x ) be the generating functions of X n and Y n respectively 

in (15) and (16) . 

P (x ) = 

∞ ∑ 

j=0 

p j x 
j . (15) 

A (x ) = 

∞ ∑ 

j=0 

a j x 
j . (16) 

With P (1) = 1 , A (1) = 1 and A 

′ (1) = E(Y n ) = ρ(c) , we can

derive the following generating function P ( x ). 

P (x ) = 

(1 − ρ(c) )(1 − x ) A (x ) 

A ( x ) − x 
. (17) 

Besides, we can get the result A 

′′ (1) = ρ(c) 
2 + λ(c) 

2 σ(c) 
2 

by expressing the variance of Y n with A ( x ) as D (Y n ) = 

A 

′′ (1) + A 

′ (1) − [ A 

′ (1)] 2 , and directly computing the vari- 

ance of Y n as D (Y n ) = ρ(c) + λ(c) 
2 σ(c) 

2 with E(Y n ) = ρ(c) 

and E(Y 2 n ) = ρ(c) + ρ(c) 
2 + λ(c) 

2 σ(c) . 
Then, we can derive the average queue length of 

packet-in messages in the controller in (18) from the gen- 

erating function P ( x ) by L’Hospital’s rule. Subsequently, we 

can further get the average sojourn time of packet-in mes- 

sages in the controller in (19) in terms of Little formula. 

L (c) = E(X n ) = P ′ (1) = ρ(c) + 

ρ(c) 
2 + λ(c) 

2 σ(c) 
2 

2(1 − ρ(c) ) 
. (18) 

W 

(c) = 

L (c) 

λ(c) 

= 

1 

μ(c) 

+ 

ρ(c) 
2 + λ(c) 

2 σ(c) 
2 

2 λ(c) (1 − ρ(c) ) 
. (19) 

6. Queueing model of OpenFlow networks 

In OpenFlow networks, a switch maintains a queue for 

all arrived packets through each ingress port, and for- 

wards them in term of its internal flow tables. If there 

is no entry in the tables matching the packet initiating 

a new flow, the switch will send a flow setup request 

to its SDN controller and receive the respective flow rule 

from the controller to guide the forwarding of packets 

within the flow. Meanwhile, the controller keeps a queue 

for all flow setup requests, i.e., packet-in messages, from 

its subordinate switches. With the above queueing analy- 

sis of OpenFlow switches and SDN controllers respectively 
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Fig. 5. The queueing model of packet forwarding in OpenFlow networks. 
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in Sections 4 and 5 , we can model packet forwarding per-

formance in OpenFlow networks as a queueing system in

Fig. 5 . 

As illustrated in Fig. 5 , the i th OpenFlow switch with

the forwarding rate μ(s ) 
i 

receives packets in batch with the

rate λ(b) 
i 

λ(p) 
i 

. Suppose an arrived packet in the i th switch

belongs to a new flow with the probability q i , the switch

sends packet-in messages with the rate λ( f ) 
i 

in (20) to its

SDN controller. The controller with the processing rate μ( c )

receives packet-in messages with the rate λ( c ) in (8) from

k OpenFlow switches. The responses of packet-in messages

are sent back to continue the forwarding of the corre-

sponding packets and update the flow tables in the respec-

tive switch. 

λ( f ) 
i 

= q i λ
(b) 
i 

λ(p) 
i 

. (20)

Let W i be the forwarding time of a packet through the

i th OpenFlow switch, then we can compute it in (21) by

dividing the packet into two cases: directly forwarding and

forwarding with the involvement of the controller. The

packet forwarding time of the latter case chiefly consists

of two parts, the sojourn time of the packet in the switch

 

(s ) 
i 

, and the sojourn time of the respective packet-in

message in the controller W 

( c ) . 

 i = 

{
W 

(s ) 
i 

with the probability 1 − q i , 

W 

(s ) 
i 

+ W 

(c) with the probability q i . 
(21)

As in (21) , the expectations of W 

(s ) 
i 

and W 

( c ) have been

inferred respectively in (6) and (19) . With the above re-

sults, we can calculate the average packet forwarding time

through an OpenFlow switch in (22) . Finally, we resolve

the probability density function (PDF) of the packet for-

warding time W i ( t ) in (23) shown in the Theorem 6.1 , and

further compute the cumulative distribution function (CDF)

of that in (31) . 
 i = E[ W i ] = (1 − q i ) E[ W 

(s ) 
i 

] + q i (E[ W 

(s ) 
i 

] + E[ W 

(c) ]) 

= W 

(s ) 
i 

+ q i W 

(c) 

= 

λ(p) 
i 

+ 1 

2(μ(s ) 
i 

− λ(b) 
i 

λ(p) 
i 

) 
+ q i 

(
1 

μ(c) 

+ 

ρ(c) 
2 + λ(c) 

2 σ(c) 
2 

2 λ(c) (1 − ρ(c) ) 

)
. 

(22)

Theorem 6.1. Let W i in (21) be the forwarding time of

a packet through the ith ( i = 1 , 2 , . . . , k ) OpenFlow switch

where W 

(s ) 
i 

and W 

( c ) respectively represent the packet so-

journ time in the ith switch and the controller, suppose a i =
1 / W 

(s ) 
i 

and a c = 1 / W 

(c) , then the probability density func-

tion of the packet forwarding time W i can be derived as

(23) . 

 i (t) = (1 − q i ) a i e 
−a i t + 

q i a i √ 

2 π
e 

(a 2 
i 
σ(c) 

2 

2 + a i a c 
−a i t) 

×
[
�

(
t − 1 /a c − a i σ(c) 

2 

σ(c) 

)
−�

(−1 /a c − a i σ(c) 
2 

σ(c) 

)]
. (23)

Proof 6.1. According to the assumptions, a i and a c respec-

tively denote the average processing rates of the i th switch

and the controller. So, we can get the probability density

functions of the packet sojourn time in the switch and the

controller respectively in (24) and (25) . 

f i (t) = a i e 
−a i t . (24)

g(t) = 

1 √ 

2 πσ(c) 

e 
− (t−1 / a c ) 

2 

2 σ(c) 
2 

. (25)

Then, we can derive the following expression from (21) by

using Laplace transformation. 

 i (s ) = E 
[
e −sW i 

]
= (1 − q i ) 

a i 
a i + s 

+ q i 

[ 
a i 

a i + s 
× 1 √ 

2 π
e 

(
σ(c) 

2 s 2 

2 − s 
a c 

)
�

( 1 

a c σ(c) 

− σ(c) s 
)] 

.

(26)

Let �( s ) in (27) be the tail of (26) . Since there are

(28) and (29) , we resolve the inverse Laplace transforma-

tion of �( s ) in (30) according to the convolution theorem.

�(s ) = 

a i 
a i + s 

× 1 √ 

2 π
e 

(
σ(c) 

2 s 2 

2 − s 
a c 

)
�

( 1 

a c σ(c) 

− σ(c) s 
)

(27)

L −1 
(

a i 
a i + s 

)
= a i e 

−a i t . (28)

L −1 
[ 

1 √ 

2 π
e 

(
σ(c) 

2 s 2 

2 − s 
a c 

)
�

( 1 

a c σ(c) 

− σ(c) s 
)] 

) 

= 

1 √ 

2 πσ(c) 

e 
− (t−1 / a c ) 

2 

2 σ(c) 
2 

. (29)
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L −1 (�(s )) = 

(
a i e 

−a i t 
)

∗
[ 

1 √ 

2 πσ(c) 

e 
− (t−1 / a c ) 

2 

2 σ(c) 
2 

] 
= 

∫ t 

0 

a i e 
−a i (t−τ ) 1 √ 

2 πσ(c) 

e 
− (τ−1 / a c ) 

2 

2 σ(c) 
2 

dτ

= 

a i √ 

2 π
e 

(a 2 
i 
σ(c) 

2 

2 + a i a c 
−a i t) [ 

�
( t − 1 /a c − a i σ(c) 

2 

σ(c) 

)
−�

(−1 /a c − a i σ(c) 
2 

σ(c) 

)] 
(30) 

Until now, we can derive the inverse Laplace transfor- 

mation of W i ( s ) in (26) as (23) with (28) and (30) . Thus, 

the above theorem is proved. 

˜ 

 i (t) = P (W i > t) = 

∫ + ∞ 

t 

W i (t ) dt . (31) 

�

7. Performance evaluation 

This section evaluates our proposed queueing model of 

OpenFlow networks with different performance parame- 

ters by using numerical analysis, and our controller per- 

formance model under various network scenarios by using 

the prevalent benchmark Cbench. 

7.1. Numerical analysis 

Suppose there are 128 OpenFlow switches connected 

to a SDN controller with the processing rate of packet- 

in messages μc = 16 K, and each switch with the packet 

forwarding rate μ(s ) 
i 

= 32 k receives packet traffic with the 
batch rate λ(b) 
i 

= 256 and the average number of packets 

per batch λ(p) 
i 

= 8 . According to network traffic measure- 

ments, a packet at the switch belongs to a new flow with 

the average probability q i = 2 −5 . Then, we can calculate the 

arrival rate of packet-in messages at the controller from 

each switch as λ( f ) 
i 

= 64 . The above values of model pa- 

rameters are taken as the benchmark of the following nu- 

merical analysis. 

With the processing rate of the controller and the prob- 

ability of a packet belonging to a new flow respectively 

set as μc = 16 K and q i = 2 −5 , we can calculate the cu-

mulative distribution function of packet sojourn time in 

Fig. 6 . As shown in Fig. 6 , the higher the processing rate

of the controller is, the faster the cumulative probability 

comes close to 1. In particular, the cumulative probability 

increases sharply before 0.7 and grows up slowly when the 

packet sojourn time goes beyond 1. 

Fixing the packet forwarding rate of each switch and 

the average probability of a packet belonging to a new flow 

respectively as μ(s ) 
i 

= 32 k and q i = 2 −5 , we can get the

packet sojourn time with the increasing batch arrival rate 

λ(b) 
i 

for different message processing rate of the controller 

μc in Fig. 7 . As seen from Fig. 7 , the packet sojourn time

slowly rises up before the batch arrival rate reaches 300 

per second, and sharply increases after the rate exceeds 

400 per second. Furthermore, we can also see that the 

higher the processing rate of the controller is, the greater 

the number of packet batches can go through the network 

with identical sojourn time. 

With the packet forwarding rate of each switch and the 

processing rate of the controller respectively configured as 

μ(s ) 
i 

= 32 k and μc = 16 K, we can reach the relationship of 

network throughput and packet sojourn time for different 

probability of a packet belonging to a new flow q i in Fig. 8 .

As shown in Fig. 8 , the network throughput rises up to 
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be constant along with the increasing packet sojourn time,

and greatly relies on the probability of a packet belonging

to a new flow. 

Keeping the packet forwarding rate of each switch and

the packet probability respectively to stay at μ(s ) 
i 

= 32 k

and q i = 2 −5 , we can compute the packet sojourn time

with the increasing number of switches for different mes-

sage processing rate of the controller μc in Fig. 9 . As seen

from Fig. 9 , the packet sojourn time slowly rises up at the

time of the number of switches below 150, and sharply
increases after the number go beyond 200. Moreover, we

can also see that the higher the processing rate of the con-

troller is, the larger the number of switches can be accom-

modated in the network with identical sojourn time. 

7.2. Controller performance 

We evaluate the controller performance with the pub-

licly available benchmark Cbench [27] , which can simulate

a variety of network scenarios with different number of
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Fig. 10. The fundamental framework of the Cbench.  

 

OpenFlow switches and PC hosts. Fig. 10 illustrates the fun- 

damental framework of the Cbench. Under this framework, 

the measurements of SDN controller performance are per- 

formed with the following steps: (a) simulating a network 

topology by setting the amount of OpenFlow switches and 

hosts per switch; (b) generating a sequence of packet-in 

messages from each switch to the controller, and captur- 

ing their responses, i.e., packet-out messages or flow-mod 

messages; (c) recording the statistical information such as 

the amount of responses, and calculating the performance 

parameters of the controller such as the average sojourn 

time of packet-in messages. 

The Cbench has two operation modes, i.e., throughput 

mode and latency mode. In the throughput mode, each 

switch continuously sends a stream of packet-in messages 
to the controller. The controller cannot process all the mes- 

sages in real time, and results in its full-load state. Thus, 

this mode can be utilized to measure the processing rate of 

a SDN controller μ( c ) for each network scenario, by count- 

ing the number of response messages within a pre-set 

time interval. Different from the throughput mode, each 

switch would not send a packet-in message to the con- 

troller until it receives a response to the last message it 

sends in the latency mode. This implies that there are a 

largely fixed number of packet-in messages waiting to be 

processed or being processed in the controller. Hence, we 

can utilize this mode to measure the sojourn time of a 

packet-in message and estimate the arrival rate of packet- 

in messages λ( c ) in the same way as the previous mode. 

As for a given network scenario, we run the Cbench 

in the throughput mode with n times to get a sequence 

of measurement results about the processing rate of the 

controller μ(c) i (i = 0 , 1 , 2 , . . . , n ) . Each result is calculated

by dividing the number of response messages by the set- 

ting time interval. Then, we can estimate the processing 

rate of the controller μ( c ) and its standard deviation σ re- 

spectively in (32) and (33) in terms of parameter estima- 

tion in mathematical statistics. After that, the operation of 

the Cbench turns to the latency mode to measure the so- 

journ time of a packet-in message for multiple times. Each 

measured time is computed by dividing the counting time 

by the amount of received response messages. Meanwhile, 

the mean of their reciprocals is taken as the estimation of 

the arrival rate of packet-in messages λ( c ) . With these pa- 

rameters, we can calculate the estimated sojourn time of 

a packet-in message for our proposed performance model 

M / G /1 and the simple one M / M /1 according to (19) and

(34) respectively. Finally, we evaluate our proposed model 

by verifying whether its estimated sojourn time are more 

closer to all measured sojourn time of packet-in messages 
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Table 1 

The performance parameters of both controller models. 

Performance parameters The number of switches 

8 16 24 32 40 48 56 64 

Arrival rate λ( c ) 8 .02 7 .86 7 .36 6 .82 6 .68 6 .42 6 .27 6 .17 

Processing rate μ( c ) 16 .8 16 .0 15 .0 14 .1 13 .7 13 .3 13 .1 12 .8 

Standard deviation σ ( c ) 0 .062 0 .065 0 .069 0 .074 0 .076 0 .079 0 .081 0 .082 

Estimated delay of the M / G /1 model 0 .116 0 .125 0 .133 0 .140 0 .145 0 .149 0 .151 0 .154 

Estimated delay of the M / M /1 model 0 .114 0 .123 0 .131 0 .137 0 .142 0 .145 0 .146 0 .151 
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Fig. 11. The measured and estimated delays of both controller models. 
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than the simple one under various network scenarios. 

μ(c) = 

1 

n 

n ∑ 

i =1 

μ(c) i . (32)

σ(c) = 

√ 

1 

n 

n ∑ 

i =1 

(μ(c) i − μ(c) ) 2 . (33)

 = 

1 

μ(c) − λ(c) 

. (34)

With the Cbench, we compare our proposed controller

model with the simple one [17] in terms of the sojourn

time of packet-in messages in the well-known controller

Floodlight under various network scenarios. First of all,

8 network topologies are simulated with the number of

switches increasing progressively from 8 to 64 and that of

hosts fixed as 1024 per switch. As for each scenario, we

measure essential performance parameters including the

processing rate of the controller and the sojourn time of

a packet-in message. In particular, each parameter is mea-

sured for 36 times, among which the results of the first 4

times are ignored due to their unstable state at the start-

up phase. Then, we estimate the expectation of other per-

formance parameters, including the arrival rate of packet-
in messages λ( c ) , the processing rate of the controller μ( c )

and its standard deviation σ ( c ) in Table. 1 . With these pa-

rameters, we compute the estimated delays of packet-in

messages for both controller models in Table. 1 . 

Fig. 11 illustrates all measured delays of packet-in mes-

sages with confidence intervals and the estimated ones

of both controller models for the 8 network scenarios. As

seen from Fig. 11 , the estimated delays of our proposed

model M / G /1 come closer to the measured delays than

those of the simple one M / M /1 in all cases. This implies

that our proposed model offers a more accurate estimation

of SDN controller performance than the simple one. Be-

sides, both estimated delays are less than almost all mea-

sured delays for each scenario in Fig. 11 . This attributes

to the fact that our experiments introduce the additional

transmission delays between the controller and the sim-

ulated switches into the measured delays, besides of the

queueing and processing delays only considered by queue-

ing models. 

8. Conclusion and future work 

Understanding the performance and limitation of

OpenFlow-based SDN is a prerequisite of its deployments.

To achieve this goal, this paper present an analytical
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performance model of OpenFlow networks based on 

queueing theory, and resolves its average packet sojourn 

time through a switch. The numerical analysis on our per- 

formance model indicate that the packet forwarding per- 

formance in large-scale OpenFlow networks greatly relies 

on the packet-in message processing capacity of the con- 

troller. Furthermore, the experiments with the controller 

benchmark Cbench indicate that our controller model is a 

more precise approximation of SDN controller performance 

than the other ones. 

In our future work, we will apply the queueing theory 

to build analytical performance models for other prevalent 

SDN deployments such as data center networks. Mean- 

while, we will extend the analytical performance models 

from single SDN controller to the case of controller clus- 

ters. Moreover, we also plan to carry out the performance 

evaluation of the controller with our performance model to 

other popular controllers, such as NOX, POX, Beacon, Mae- 

stro and Ryu, which aims to provide a comprehensive un- 

derstanding of SDN controller performance. 
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