
Computer Networks 102 (2016) 172–185

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Performance evaluation of OpenFlow-based software-defined

networks based on queueing model

Bing Xiong

a , ∗, Kun Yang

b , Jinyuan Zhao

c , Wei Li a , Keqin Li d

a School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
b School of Software, Northeast Normal University, Changchun 130024, PR China
c School of Software, Central South University, Changsha 410075, PR China
d Department of Computer Science, State University of New York at New Paltz, New York 12561, USA

a r t i c l e i n f o

Article history:

Received 27 August 2015

Revised 17 January 2016

Accepted 7 March 2016

Available online 4 April 2016

MSC:

00-01

99-00

Keywords:

Software-defined networking

Performance evaluation

Queueing model

SDN controllers

OpenFlow switches

a b s t r a c t

OpenFlow is one of the most famous protocols for controller-to-switch communications

in software-defined networking (SDN), commonly seen as a promising way towards fu-

ture Internet. Understanding the performance and limitation of OpenFlow-based SDN is a

prerequisite of its deployments. To achieve this aim, this paper proposes a novel analyti-

cal performance model of OpenFlow networks based on queueing theory. After depicting

a typical network scenario of OpenFlow deployments, we model the packet forwarding

of its OpenFlow switches and the packet-in message processing of its SDN controller re-

spectively as the queueing systems M

X / M /1 and M / G /1. Subsequently, we build a queueing

model of OpenFlow networks in terms of packet forwarding performance, and solve its

closed-form expression of average packet sojourn time and the corresponding probability

density function. Finally, the numerical analysis is carried out to evaluate our proposed

performance model with different parameter values. Furthermore, our controller model is

contrasted with the classical one by utilizing the popular benchmark Cbench. Experimental

results indicate that our controller model provides a more accurate approximation of SDN

controller performance.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

As a new network paradigm, Software-defined Net-

working (SDN) is currently seen as one of the promising

approaches in the way towards future Internet [1–3] . It de-

couples the network control out of forwarding devices, and

allows for a separate controller entity that may change the

forwarding rules in modern switches [4] . The separation of

the control logic from the forwarding substrate greatly fa-

cilitates the deployment and operation of new services and
∗ Corresponding author. Tel.: +86 18773116229; fax: +86 0731

85258462.

E-mail address: xiongbing@csust.edu.cn , xiongbing.csust@qq.com ,

xiongbing.hust@qq.com (B. Xiong).

http://dx.doi.org/10.1016/j.comnet.2016.03.005

1389-1286/© 2016 Elsevier B.V. All rights reserved.
enables SDN to react gracefully to the change of network

demands and modifications to the substrate topology [5] .

These pave the way for a more flexible, programmable, and

innovative networking [6,7] .

In SDN architecture, packet forwarding devices are ma-

nipulated by the logically centralized controller through

south-band interface, typically the OpenFlow protocol

[8,9] . This architecture raises the performance bottlenecks

of the controller and its capacity to handle all Open-

Flow switches, especially for large and highly distributed

networks [10] . Currently, OpenFlow-based SDN concept is

finding its way into commercial applications [11,12] , and

a growing number of experiments over SDN-enabled net-

works are expected. This will create new challenges, as the

questions of SDN performance and scalability have not yet

been fully investigated in recent researches.

http://dx.doi.org/10.1016/j.comnet.2016.03.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.03.005&domain=pdf
mailto:xiongbing@csust.edu.cn
mailto:xiongbing.csust@qq.com
mailto:xiongbing.hust@qq.com
http://dx.doi.org/10.1016/j.comnet.2016.03.005

B. Xiong et al. / Computer Networks 102 (2016) 172–185 173

Understanding the performance and limitation of

OpenFlow-based SDN concept is a prerequisite for its us-

age in practical applications. Specifically, an initial esti-

mate of the performance of OpenFlow networks is essen-

tial for network architects and designers. Although simu-

lation studies and experimentation are among the widely

used performance evaluation techniques, analytical mod-

eling has its own benefits. A closed-form description of a

networking architecture enables the network designers to

have a quick approximate estimate of the performance of

their design, without the need to spend considerable time

for simulation studies or expensive experimental setups.

To the best of our knowledge, there are very few

research activities to analytically model and evaluate

OpenFlow-based SDN performance. Some researchers [13–

15] utilized network calculus as a mathematical model

to evaluate the performance bounds of controllers and

switches in the worst case. Different from them, we focus

on the average packet forwarding performance of Open-

Flow networks at its equilibrium state. More close to our

work, Zuo [19] and Yao [20] et al. model SDN controller

performance with a M

k / M /1 queue by considering the flow

setup requests to the controller as a batch arrival process.

However, the batch arrival could not exactly characterize

the pattern of flow setup requests from multiple switches.

The closest work is the analytical model of OpenFlow-

based SDN proposed by Jarschel et al., which approximates

the data plane as an open Jackson network with the con-

troller also modeled as a M / M /1 queue [17,18] . Neverthe-

less, the assumptions of their queueing models were a bit

far away from network traffic measurements.

For the above situations, this paper is motivated to pro-

vide an accurate performance model of OpenFlow-based

SDN with multiple OpenFlow switches. To achieve this aim,

we first give a typical network scenario of OpenFlow de-

ployments. Then, we investigate into the arrival process

and processing time of its OpenFlow switches and SDN

controller to reach their queueing models. Subsequently,

we further build a queueing model of OpenFlow networks

to characterize its packet forwarding performance, and

solve its average packet sojourn time and probability den-

sity function. Finally, we perform numerical analysis on the

queueing model in terms of different performance param-

eters, and our controller performance model is also evalu-

ated under various network scenarios by using the preva-

lent benchmark Cbench.

With the above methodology, this paper aims to

achieve the following conclusions as the main contribu-

tions: (a) pointing out that the queueing system M

X / M /1 is

suitable to characterize the packet switching performance

of an OpenFlow switch in our network scenario; (b) con-

cluding that the packet-in message processing performance

of SDN controller can be modeled as a M / G /1 queue; (c)

proposing a queueing model for the packet forwarding per-

formance of OpenFlow networks, and solving the closed-

form expression of its average packet sojourn time and

probability density function.

The rest of the paper is organized as follows.

Section 2 introduces related work. In Section 3 , we

give a typical network scenario of OpenFlow deployments.

Section 4 characterizes the packet switching performance
of an OpenFlow switch as the queueing system M

X / M /1

after the investigations of its packet arrival process and

packet switching procedure. In Section 5 , we model the

packet-in message processing performance of SDN con-

troller as a M / G /1 queue based on the investigation of

the message arrival process. Section 6 builds a queueing

model of the packet forwarding performance through an

OpenFlow switch, and solves its performance parame-

ters including average packet sojourn time. In Section 7 ,

we evaluate the queueing model with different perfor-

mance parameters by utilizing numerical analysis, and

our controller performance model under various net-

work scenarios with the prevalent benchmark Cbench.

Section 8 concludes the paper.

2. Related work

Software-Defined Networking (SDN) is an emerging

paradigm that promises to change the limitations of cur-

rent network infrastructures, by separating the network’s

control logic from the underlying routers and switches,

promoting logical centralization of network control, and in-

troducing the ability to program the network [21–23] . By

this way, SDN offers flexible, dynamic, and programmable

functionality of network systems, as well as many other

advantages such as centralized control, reduced complex-

ity, better user experience, and a dramatic decrease in net-

work systems and equipment costs [24] . However, these

advantages come with non-negligible penalty to essential

network performance such as packet processing speed and

throughput [25] , which attributes to the involvement of a

remote system called a controller in administration of all

forwarding devices.

A controller in SDN paradigm is like an operating sys-

tem for computers, which administrates its subordinate

switching devices and provides a programmatic interface

for user-written network applications. Thus it plays a crit-

ical role in the SDN architecture and has a significant im-

pact on the entire network [26] . However, the current state

of the SDN controller market may be compared to the ex-

treme diversity of early operating systems for mainframes.

Until now, there are more than 30 different controllers,

created by different vendors/universities/research groups,

written in different languages, and using different multi-

threading techniques [32] . These differences make each

controller with its own performance characteristics and

specific controllers better suited for certain scenarios than

others. Thus, it is necessary to understand the performance

of the controllers and its impact factors, when planning a

SDN deployment.

In [27] , Jarschel et al. first developed a flexible Open-

Flow controller benchmark Cbench to understand the

performance characteristics of different controller im-

plementations. The benchmark allows the emulation of

scenarios and topologies by creating a set of message-

generating virtual switches and configuring them in-

dependently from each other. By this way, it can be

employed to carry out the measurement experiments of

the controller performance on a per-switch basis, to reach

a fine-grained analysis of controller performance bottle-

necks. Tootoonchian et al. utilized the benchmark Cbench

174 B. Xiong et al. / Computer Networks 102 (2016) 172–185
to measure several performance aspects of 4 publicly-

available OpenFlow controllers (NOX [28] , NOX-MT, Beacon

[29] , and Maestro [30]), including the minimum and

maximum controller response time, maximum throughput,

and the throughput and latency of the controller with a

bounded number of packets on the fly [31] . Their measure-

ment results achieve the conclusion that a single physical

controller is not enough to manage a sizeable network.

In [32] , Shalimov et al. further developed a more ca-

pable framework hcprobe. The framework can be used to

create a set of advanced testing scenarios and provide the

fine-tuning of measurement parameters to reach an in-

sight into the controller scalability, reliability and secu-

rity issues. With the framework, they provided a com-

prehensive performance analysis of popular open-source

SDN/OpenFlow controllers (NOX [28] , Beacon [29] , Mae-

stro [33]), Floodlight, POX, MuL, Ryu, which concluded that

modern SDN/OpenFlow controllers were not ready for pro-

duction networks. Shah et al. also evaluated the perfor-

mance of four prominent OpenFlow controllers: NOX [28] ,

Beacon [29] , Maestro [33] and Floodlight under different

metrics including thread scalability, switch scalability and

message processing latency, which aimed to identify key

performance bottlenecks and good architectural choices for

designing OpenFlow based SDN controllers [34] .

The concurrent operation of SDN switches with di-

verse capacities for control message processing leads to

highly variable latencies for flow installations and modi-

fications. To address this issue, Bozakov and Rizk used a

queueing model to characterize the behavior of the con-

trol interface between the controller and a switch in terms

of the amount of serviced messages over different time

scales, and provided a measurement-based approach to

derive an estimate of the corresponding service curves

[13] . They also proposed a simple interface extension for

controller frameworks which enables operators to config-

ure time delay bounds for transmitted control messages.

In [14,15] , Azodolmolky et al. presented a mathematical

framework based on network calculus to report the per-

formance of the scalable SDN deployments. Given the pa-

rameters of the cumulative arriving process and the flow

control functionality of the SDN controller, the network ar-

chitect or designer is able to compute an upper bound es-

timate of the delay and buffer requirements of SDN con-

trollers. Besides, Osgouei et al. proposed an analytical per-

formance model of virtualized SDNs using network calcu-

lus to calculate the upper bounds of the latency of virtu-

alized SDN controller and the service curve of each virtual

network [16] .

Closely related to our work, Jarschel et al. derived a ba-

sic analytical model based on M / M /1 queues to estimate

the packet sojourn time and probability of lost packets for

the network scenario, where a SDN controller is responsi-

ble for only a single OpenFlow switch in the data plane

[17] . As a further step, they addressed the challenge of

the case with multiple switches by approximating the data

plane as an open Jackson network with the controller also

modeled as a M / M /1 queue [18] . Nevertheless, their model

was lack of the support of the measurements on the packet

arrival process at the switch and packet-in message ar-

rivals at the controller. Furthermore, Zuo et al. evaluated
the queueing delay of flow setup requests in the control

plane by introducing the multiple arrivals and single de-

parture queue model [19] , but did not reach a precise delay

estimate. Yao et al. also modeled the flow setup requests to

the controller as a batch arrival process to analyze the con-

troller performance with a M

k / M /1 queue [20] . However,

the batch arrival could not exactly characterize the pat-

tern of flow setup requests from multiple switches. Thus,

we are motivated to build a better performance model

of OpenFlow network based on the investigations of the

packet arrival process at the switch and packet-in message

arrivals at the controller.

3. OpenFlow network deployments

As a novel network architecture, SDN enables re-

searchers to test new ideas under realistic conditions on an

existing network infrastructure. To be able to take action in

the switching, OpenFlow separates the control plane from

the data plane and connects them by an open interface,

the OpenFlow protocol. As for OpenFlow deployments, a

typical network scenario is depicted at Fig. 1 .

As illustrated in Fig. 1 , the OpenFlow network can

be distinguished into the edge and the core ones. The

edge network consists of many independent LANs con-

necting hosts, terminals and servers. Each LAN connects

the core network via an access switch. The core net-

work switches packet traffic among LANs and the Inter-

net. To support OpenFlow, all switches in the core network

are connected to a SDN controller directly or via other

switches.

When a packet from a LAN arrives at its access switch

in the core network, the switch performs lookups in its in-

ternal flow tables. If the lookup hits a table entry other

than table-miss, the switch will forward the packet to the

next one in a conventional way. Otherwise, the packet

is supposed to belong to a new flow. In such case, the

switch requests the controller for instructions by sending

a packet-in message in encapsulation of the packet infor-

mation. The controller determines the respective flow rule

and installs it into all switches among the flow path. After

that, all packets within the flow is correctly forwarded to

their destination without requesting the controller.

In OpenFlow networks, a SDN controller is usually im-

plemented as a network operation system, and responsible

for multiple OpenFlow switches. All new flows from a LAN

trigger its access switch to send a sequence of packet-in

messages to the controller. These packet-in messages from

all switches usually form up a waiting queue in the con-

troller. Meanwhile, each switch keeps a packet queue at

each ingress port. In consequence, we can analytically eval-

uate the performance of OpenFlow networks with queue-

ing models.

4. Queueing model of OpenFlow switches

This section investigates into the packet arrival process

and packet forwarding procedure at an OpenFlow switch,

and characterize its packet forwarding performance with

the queueing model M

X / M /1.

B. Xiong et al. / Computer Networks 102 (2016) 172–185 175

Fig. 1. A typical OpenFlow network scenario.

4.1. Queueing model analysis

Up to now, almost all analytical models on OpenFlow

networks suppose that packet traffic into a switch con-

forms to the Poisson distribution. However, previous stud-

ies has pointed out that packet arrivals in computer net-

works is apt to be like trains [35,36] rather than Poisson

stream [37] . The phenomenon of packet groups is a natural

artifact of the protocols and applications for data transmis-

sion [38] . Firstly, the most widespread Internet application,

i.e., web service, usually manifests as a mass of file down-

loading events in the viewpoint of networks. Secondly,

the popular peer-to-peer file sharing produces bulk data

transfer behaviors in network traffic. Lastly, the increasing

streaming media applications, such as Internet telephony

and television, generates persistent data downloading ac-

tivities [39,40] . In summary, current Internet applications

results in packet batch arrivals in packet switching net-

works.

Fig. 2 demonstrates the forwarding procedure of a

packet in an OpenFlow switch. On receiving a packet, the

switch puts it into the packet queue of its ingress port.

As for its processing, the switch first retrieves it from the

queue, and extracts its matching fields from all protocol

headers to compute its flow key. After that, the key is used
to look up the flow tables to match an entry. If the match

fails, the switch fires off a packet-in message containing

the full packet or its buffer ID to the connected SDN con-

troller. The handling rule of the flow that the packet be-

longs to is learned in the controller, and is sent down to

the switch to be added into its flow tables. When an entry

other than table-miss is found, the packet is switched to

the port in the entry via backplane, and wait for forward-

ing in the respective egress queue.

As for the packet forwarding procedure shown in Fig. 2 ,

the flow table lookup dominates the processing time of a

packet in an OpenFlow switch, as the backplane switch-

ing has completely broken the limitation of shared band-

width by using CrossBar fabric. Since the table lookups for

all packets are independent from each other, the packet

processing time can be supposed as a random variable

with negative exponential distribution. With the assump-

tion of sufficient packet buffer for all ingress queues in the

switch, the packet forwarding performance of an OpenFlow

switch can be modeled as a M

X / M /1 queue. The queue

can be characterized as the following assumptions: (a)

packet batches arrive at the i th OpenFlow switch as Pois-

son stream with the rate λ(b)
i

; (b) the number of packets

in a batch conforms to Poisson distribution with the pa-

rameter λ(p)
i

; (c) the packet processing time of the switch

176 B. Xiong et al. / Computer Networks 102 (2016) 172–185

Fig. 2. The packet forwarding of an OpenFlow switch.

W

W

W

W

conforms to negative exponential distribution with the pa-

rameter μ(s)
i

.

4.2. Queueing model solution

Suppose there is a batch with m packets arriving at the

i th (1 ≤ i ≤ k) OpenFlow switch, where n packets are wait-

ing in its ingress queue for processing. Then, the l th arriv-

ing packet has to wait until the n waiting ones and the

front (l − 1) ones have been processed. Its sojourn time in

the switch can be expressed as the total processing time

of (n + l) packets in (1) . Then, we can further compute the

average sojourn time of the packet batch is in (2) and that

of a packet in the switch in (3) .

(s)
i

(n, m, l) =

n + l

μ(s)
i

, 1 ≤l ≤m. (1)

(s)
i

(n, m) =

1

m

m ∑

l=1

W

(s)
i

(n, m, l) =

n

μ(s)
i

+

m + 1

2 μ(s)
i

. (2)

(s)
i

=

∞ ∑

n =0

∞ ∑

m =0

W

(s)
i

(n, m) p m

p n

=

1

μ(s)
i

∞ ∑

n =0

np n +

1

2 μ(s)
i

(∞ ∑

m =0

mp m

+ 1

)
. (3)

According to the above assumptions, the number of pack-

ets in a batch m conforms to Poisson distribution with the

parameter λ(p)
i

. Thus there exist (4) . Besides, we can get

the relationship between average queue length and aver-

age sojourn time in (5) . Substituting (4) and (5) into (3) ,

we can solve the average sojourn time of a packet in the

switch in (6) . Finally, we can also get the average queue

length of the switch in (7) by putting (6) into (5) .

∞ ∑

m =1

mp m

= λ(p)
i

. (4)

L (s)
i

=

∞ ∑

n =0

np n = λ(b)
i

λ(p)
i

W

(s)
i

. (5)

(s)
i

=

λ(p)
i

+ 1

2(μ(s)
i

− λ(b)
i

λ(p)
i

)
. (6)

L (s)
i

=

λ(b)
i

λ(p)
i

(λ(p)
i

+ 1)
(s) (b) (p)

. (7)

2(μ

i
− λ

i
λ

i
)
5. Queueing model of SDN controllers

This section investigates into the arrival process and

serving process of packet-in messages in a SDN controller,

and characterize SDN controller performance with the

queueing model M / G /1.

5.1. Packet-in message arrivals

An OpenFlow switch sends a packet-in message as flow

setup request to its SDN controller on the arrival of a new

flow. This implies that packet-in message stream from a

switch to its controller has a one-to-one correspondence

with flow arrival process. Network traffic measurements

have indicated that flow arrival process in packet switch-

ing networks conforms to Poisson distribution [41,42] . In

OpenFlow network deployments, a controller is usually re-

sponsible for multiple switches, and receives a stream of

packet-in messages from each of them. Then, we can con-

clude that all packet-in messages at the controller from its

switches constitute a Poisson stream in terms of the fol-

lowing theorem.

Theorem 5.1. As for a SDN controller in charge of k Open-

Flow switches in reactive mode, if flow arrival process at the

ith (i = 0 , 1 , 2 , . . . , k) switch is a Poisson stream with the pa-

rameter λ(f)
i

independent of those at other switches, then all

packet-in messages from the k switches to the controller con-

form to Poisson distribution with the parameter λ(c) in (8) .

λ(c) =

k ∑

i =1

λ(f)
i

. (8)

Proof 5.1. Let F i, j (t) and M i, j (t) (i = 0 , 1 , 2 , . . . , k, j =
0 , 1 , 2 , . . . , t ≥ 0) respectively be the j th flow coming into

the i th switch at the time t and the j th packet-in message

arriving at the controller from the i th switch at the time

t . On receiving a new flow F i, j (t), the switch looks up the

flow tables in failure and sends a packet-in message to the

controller. The controller receives the message at the time

(t + �t) .

The time difference �t consists of failed lookup time

of the flow tables, the transmission time of the packet-in

message from the switch to the controller, and other negli-

gible time such as forwarding time on switching backplane

and scheduling time among output links in the switch.

The failed lookup time chiefly depends on flow table size,

which comes to be steady soon in network operations. The

transmission time lies on the distance between the switch

B. Xiong et al. / Computer Networks 102 (2016) 172–185 177

and the controller, which is fixed in a given network. In

summary, �t tends to be constant for all packet-in mes-

sages from a certain switch to its controller.

Consequently, it can be referred that the packet-in mes-

sage stream { M i, j (t) , j = 1 , 2 , 3 , . . . } from the i th switch

to the controller is equivalent to the flow arrival pro-

cess { F i, j (t) , j = 1 , 2 , 3 , . . . } at the switch in the sense of

stochastic process. Owing to the assumption that the pro-

cess { F i, j (t)} at the i th switch conforms to Poisson dis-

tribution with the parameter λ(f)
i

and those at all the k

switches are independent of each other, we can further

conclude that packet-in message stream { M i, j (t)} from the

i th switch conforms to Poisson distribution with the same

parameter in (9) and those from all the switches are inde-

pendent of each other.

{ M i, j (t) } ↔ { F i, j (t) } ∼P
(
λ(f)

i

)
. (9)

With the above hypothesis, we can achieve the follow-

ing conclusion that the synthetic packet-in messages at the

controller from all the k switches
∑ k

i =1 M i, j (t) confirms to

Poisson distribution with the parameter λ(c) =

∑ k
i =1 λ

(f)
i

in

(8) in terms of the composition theorem of Poisson stream.

Thus, the above theorem is proved. {
k ∑

i =1

M i, j (t)

}
∼P

(k ∑

i =1

λ(f)
i

)
. (10)

�

5.2. Packet-in message processing

On the arrival of a packet-in message, the controller de-

termines the rule of handing the respective flow and sends

back the flow rule as a response to the packet-in message.

Fig. 3 illustrates the packet-in message processing of a SDN

controller. As shown in Fig. 3 , the controller first caches

all arrived packet-in messages from its substrate OpenFlow

switches in a queue in order of their arrival time. The pro-

cessing unit of the controller reads in a packet-in mes-

sage from the queue after completing the handling of the

last message. Then, the packet-in message is processed by

looking up the forwarding tables commonly called the for-

warding information base (FIB). The FIB is generated from

the routing information base (RIB) at its consistent and sta-

ble state. The RIB contains information about the network

topology built by path computation and topology discovery

through the running of routing protocols or manual pro-

gramming. Finally, the controller encapsulates the found

forwarding rule in a packet-out or flow-mod message to

the respective switch.

As seen from the above packet-in message processing of

a SDN controller, the processing time of a packet-in mes-

sage is chiefly derived from the FIB lookups. The FIB is gen-

erally stored with trie trees and its lookups are performed

with longest prefix matching. So the comparison times of

the FIB lookup are reckoned to distribute normally, and we

can assume that the FIB lookup time conforms to normal

distribution [43] with the position parameter 1/ μ(c) and

the scale parameter σ (c) . The parameter μ(c) represents the

expectation of the processing rate of packet-in messages in

the controller, and the parameter σ (c) denotes the standard
deviation expectation of actual processing time to the ex-

pected one of packet-in messages in the controller.

5.3. Queueing model description

With the above queueing analysis, we can character-

ize the packet-in message processing of a SDN controller

with the M / G /1 queueing model: (a) the arrival process

of packet-in messages at the controller conforms to Pois-

son distribution with the parameter λ(c) ; (b) the processing

time of packet-in messages in the controller conforms to

normal distribution with the position parameter 1/ μ(c) and

the scale parameter σ (c) ; (c) there is a processing unit in

the controller to handle packet-in messages with the first-

come-first-serving principle, and the arrivals and process-

ing of packet-in messages are independent of each other.

Suppose that N (t) stands for the length of the packet-

in message queue in the controller at time t . As for any

time t , if there is a packet-in message being processed, the

distribution of the rest processing time from the time t is

no longer of memoryless property, and the queue length

process { N (t), t ≥ 0} is no longer of Markov property. Sup-

pose X n as the number of packet-in messages in the con-

troller at the time that the processing of the n th message

is finished, it can be proved that { X n , n ≥ 1} is a Markov

chain, particularly called the imbedded Markov chain of

the queue length process { N (t), t ≥ 0}.

Suppose that T n represents the required processing time

of the (n + 1)th message from the time that the n th mes-

sage leaves, we can express its probability density function

in (11) in terms of its normal distribution assumption in

the above queueing model.

g(x) =

1 √

2 πσ(c)

e
− (x −1 /μ(c))

2

2 σ(c)
2

. (11)

Suppose Y n as the number of the newly arrived packet-

in messages during the processing of the (n + 1)th one, its

probability can be derived in (12) with its Poisson distri-

bution assumption in the above queueing model.

P (Y n = j) =

∫ ∞

0

P (Y n = j| T n = x) g(x) dx

=

∫ ∞

0

(λ(c) x)
j

j!
e −λ(c) x g(x) dx, j = 0 , 1 , 2 , · · · (12)

Suppose a j = P (Y n = j) > 0 , it can be proved that { X n ,

n ≥ 1} makes up a Markov chain, whose one-step trans-

fer matrix and state transfer diagram are illustrated in

(13) and Fig. 4 , respectively.

P =

⎛ ⎜ ⎜ ⎜ ⎜ ⎝

a 0 a 1 a 2 · · ·
a 0 a 1 a 2 · · ·
0 a 0 a 1 · · ·
0 0 a 0 · · ·
. . .

. . .
. . .

. . .

⎞ ⎟ ⎟ ⎟ ⎟ ⎠

(13)

5.4. Performance parameter solution

Suppose the controller has the traffic intensity of

packet-in messages ρ(c) = λ(c) /μ(c) , it can be verified that

the Markov chain { X n , n ≥ 1} is ergodic if ρ(c) < 1. So there

178 B. Xiong et al. / Computer Networks 102 (2016) 172–185

Fig. 3. The packet-in message processing of a SDN controller.

Fig. 4. The state transfer diagram of the Markov chain.

exist the stationary distribution { p j , j ≥ 0}, which satisfies

the following equation also expressed as (p 0 , p 1 , p 2 , . . .) =

(p 0 , p 1 , p 2 , . . .) P .

p j =

∞ ∑

i =0

p i p i j , j ≥ 0 . (14)

Then, p j is resolved with generating functions. Let P (x) and

A (x) be the generating functions of X n and Y n respectively

in (15) and (16) .

P (x) =

∞ ∑

j=0

p j x
j . (15)

A (x) =

∞ ∑

j=0

a j x
j . (16)

With P (1) = 1 , A (1) = 1 and A

′ (1) = E(Y n) = ρ(c) , we can

derive the following generating function P (x).

P (x) =

(1 − ρ(c))(1 − x) A (x)

A (x) − x
. (17)

Besides, we can get the result A

′′ (1) = ρ(c)
2 + λ(c)

2 σ(c)
2

by expressing the variance of Y n with A (x) as D (Y n) =

A

′′ (1) + A

′ (1) − [A

′ (1)] 2 , and directly computing the vari-

ance of Y n as D (Y n) = ρ(c) + λ(c)
2 σ(c)

2 with E(Y n) = ρ(c)

and E(Y 2 n) = ρ(c) + ρ(c)
2 + λ(c)

2 σ(c) .
Then, we can derive the average queue length of

packet-in messages in the controller in (18) from the gen-

erating function P (x) by L’Hospital’s rule. Subsequently, we

can further get the average sojourn time of packet-in mes-

sages in the controller in (19) in terms of Little formula.

L (c) = E(X n) = P ′ (1) = ρ(c) +

ρ(c)
2 + λ(c)

2 σ(c)
2

2(1 − ρ(c))
. (18)

W

(c) =

L (c)

λ(c)

=

1

μ(c)

+

ρ(c)
2 + λ(c)

2 σ(c)
2

2 λ(c) (1 − ρ(c))
. (19)

6. Queueing model of OpenFlow networks

In OpenFlow networks, a switch maintains a queue for

all arrived packets through each ingress port, and for-

wards them in term of its internal flow tables. If there

is no entry in the tables matching the packet initiating

a new flow, the switch will send a flow setup request

to its SDN controller and receive the respective flow rule

from the controller to guide the forwarding of packets

within the flow. Meanwhile, the controller keeps a queue

for all flow setup requests, i.e., packet-in messages, from

its subordinate switches. With the above queueing analy-

sis of OpenFlow switches and SDN controllers respectively

B. Xiong et al. / Computer Networks 102 (2016) 172–185 179

Fig. 5. The queueing model of packet forwarding in OpenFlow networks.

W

W

W

W

W

in Sections 4 and 5 , we can model packet forwarding per-

formance in OpenFlow networks as a queueing system in

Fig. 5 .

As illustrated in Fig. 5 , the i th OpenFlow switch with

the forwarding rate μ(s)
i

receives packets in batch with the

rate λ(b)
i

λ(p)
i

. Suppose an arrived packet in the i th switch

belongs to a new flow with the probability q i , the switch

sends packet-in messages with the rate λ(f)
i

in (20) to its

SDN controller. The controller with the processing rate μ(c)

receives packet-in messages with the rate λ(c) in (8) from

k OpenFlow switches. The responses of packet-in messages

are sent back to continue the forwarding of the corre-

sponding packets and update the flow tables in the respec-

tive switch.

λ(f)
i

= q i λ
(b)
i

λ(p)
i

. (20)

Let W i be the forwarding time of a packet through the

i th OpenFlow switch, then we can compute it in (21) by

dividing the packet into two cases: directly forwarding and

forwarding with the involvement of the controller. The

packet forwarding time of the latter case chiefly consists

of two parts, the sojourn time of the packet in the switch

(s)
i

, and the sojourn time of the respective packet-in

message in the controller W

(c) .

 i =

{
W

(s)
i

with the probability 1 − q i ,

W

(s)
i

+ W

(c) with the probability q i .
(21)

As in (21) , the expectations of W

(s)
i

and W

(c) have been

inferred respectively in (6) and (19) . With the above re-

sults, we can calculate the average packet forwarding time

through an OpenFlow switch in (22) . Finally, we resolve

the probability density function (PDF) of the packet for-

warding time W i (t) in (23) shown in the Theorem 6.1 , and

further compute the cumulative distribution function (CDF)

of that in (31) .
 i = E[W i] = (1 − q i) E[W

(s)
i

] + q i (E[W

(s)
i

] + E[W

(c)])

= W

(s)
i

+ q i W

(c)

=

λ(p)
i

+ 1

2(μ(s)
i

− λ(b)
i

λ(p)
i

)
+ q i

(
1

μ(c)

+

ρ(c)
2 + λ(c)

2 σ(c)
2

2 λ(c) (1 − ρ(c))

)
.

(22)

Theorem 6.1. Let W i in (21) be the forwarding time of

a packet through the ith (i = 1 , 2 , . . . , k) OpenFlow switch

where W

(s)
i

and W

(c) respectively represent the packet so-

journ time in the ith switch and the controller, suppose a i =
1 / W

(s)
i

and a c = 1 / W

(c) , then the probability density func-

tion of the packet forwarding time W i can be derived as

(23) .

 i (t) = (1 − q i) a i e
−a i t +

q i a i √

2 π
e

(a 2
i
σ(c)

2

2 + a i a c
−a i t)

×
[
�

(
t − 1 /a c − a i σ(c)

2

σ(c)

)
−�

(−1 /a c − a i σ(c)
2

σ(c)

)]
. (23)

Proof 6.1. According to the assumptions, a i and a c respec-

tively denote the average processing rates of the i th switch

and the controller. So, we can get the probability density

functions of the packet sojourn time in the switch and the

controller respectively in (24) and (25) .

f i (t) = a i e
−a i t . (24)

g(t) =

1 √

2 πσ(c)

e
− (t−1 / a c)

2

2 σ(c)
2

. (25)

Then, we can derive the following expression from (21) by

using Laplace transformation.

 i (s) = E
[
e −sW i

]
= (1 − q i)

a i
a i + s

+ q i

[
a i

a i + s
× 1 √

2 π
e

(
σ(c)

2 s 2

2 − s
a c

)
�

(1

a c σ(c)

− σ(c) s
)]

.

(26)

Let �(s) in (27) be the tail of (26) . Since there are

(28) and (29) , we resolve the inverse Laplace transforma-

tion of �(s) in (30) according to the convolution theorem.

�(s) =

a i
a i + s

× 1 √

2 π
e

(
σ(c)

2 s 2

2 − s
a c

)
�

(1

a c σ(c)

− σ(c) s
)

(27)

L −1
(

a i
a i + s

)
= a i e

−a i t . (28)

L −1
[

1 √

2 π
e

(
σ(c)

2 s 2

2 − s
a c

)
�

(1

a c σ(c)

− σ(c) s
)]

)

=

1 √

2 πσ(c)

e
− (t−1 / a c)

2

2 σ(c)
2

. (29)

180 B. Xiong et al. / Computer Networks 102 (2016) 172–185

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet sojourn time/ms

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n(

C
D

F
)

u
i
(s)=20k

u
i
(s)=25k

u
i
(s)=35k

u
i
(s)

Fig. 6. The cumulative distribution function of packet sojourn time.

W

L −1 (�(s)) =

(
a i e

−a i t
)

∗
[

1 √

2 πσ(c)

e
− (t−1 / a c)

2

2 σ(c)
2

]
=

∫ t

0

a i e
−a i (t−τ) 1 √

2 πσ(c)

e
− (τ−1 / a c)

2

2 σ(c)
2

dτ

=

a i √

2 π
e

(a 2
i
σ(c)

2

2 + a i a c
−a i t) [

�
(t − 1 /a c − a i σ(c)

2

σ(c)

)
−�

(−1 /a c − a i σ(c)
2

σ(c)

)]
(30)

Until now, we can derive the inverse Laplace transfor-

mation of W i (s) in (26) as (23) with (28) and (30) . Thus,

the above theorem is proved.

˜

 i (t) = P (W i > t) =

∫ + ∞

t

W i (t) dt . (31)

�

7. Performance evaluation

This section evaluates our proposed queueing model of

OpenFlow networks with different performance parame-

ters by using numerical analysis, and our controller per-

formance model under various network scenarios by using

the prevalent benchmark Cbench.

7.1. Numerical analysis

Suppose there are 128 OpenFlow switches connected

to a SDN controller with the processing rate of packet-

in messages μc = 16 K, and each switch with the packet

forwarding rate μ(s)
i

= 32 k receives packet traffic with the
batch rate λ(b)
i

= 256 and the average number of packets

per batch λ(p)
i

= 8 . According to network traffic measure-

ments, a packet at the switch belongs to a new flow with

the average probability q i = 2 −5 . Then, we can calculate the

arrival rate of packet-in messages at the controller from

each switch as λ(f)
i

= 64 . The above values of model pa-

rameters are taken as the benchmark of the following nu-

merical analysis.

With the processing rate of the controller and the prob-

ability of a packet belonging to a new flow respectively

set as μc = 16 K and q i = 2 −5 , we can calculate the cu-

mulative distribution function of packet sojourn time in

Fig. 6 . As shown in Fig. 6 , the higher the processing rate

of the controller is, the faster the cumulative probability

comes close to 1. In particular, the cumulative probability

increases sharply before 0.7 and grows up slowly when the

packet sojourn time goes beyond 1.

Fixing the packet forwarding rate of each switch and

the average probability of a packet belonging to a new flow

respectively as μ(s)
i

= 32 k and q i = 2 −5 , we can get the

packet sojourn time with the increasing batch arrival rate

λ(b)
i

for different message processing rate of the controller

μc in Fig. 7 . As seen from Fig. 7 , the packet sojourn time

slowly rises up before the batch arrival rate reaches 300

per second, and sharply increases after the rate exceeds

400 per second. Furthermore, we can also see that the

higher the processing rate of the controller is, the greater

the number of packet batches can go through the network

with identical sojourn time.

With the packet forwarding rate of each switch and the

processing rate of the controller respectively configured as

μ(s)
i

= 32 k and μc = 16 K, we can reach the relationship of

network throughput and packet sojourn time for different

probability of a packet belonging to a new flow q i in Fig. 8 .

As shown in Fig. 8 , the network throughput rises up to

B. Xiong et al. / Computer Networks 102 (2016) 172–185 181

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Batch arrival rate/bps

P
ac

ke
t s

oj
ou

rn
 ti

m
e/

m
s

u
(c)

=15k

u
(c)

=20k

u
(c)

=25k

u
(c)

Fig. 7. The packet sojourn time with the increasing batch arrival rate.

0

50

100

150

200

250

300

350

400

0 0.5 1 1.5 2 2.5 3 3.5 4

T
hr

ou
gh

pu
t/p

ps

Packet sojourn time/ms

q
i
=0.04

q
i
=0.1

q
i
=0.2

q
i

Fig. 8. The relationship of network throughput and packet sojourn time.

be constant along with the increasing packet sojourn time,

and greatly relies on the probability of a packet belonging

to a new flow.

Keeping the packet forwarding rate of each switch and

the packet probability respectively to stay at μ(s)
i

= 32 k

and q i = 2 −5 , we can compute the packet sojourn time

with the increasing number of switches for different mes-

sage processing rate of the controller μc in Fig. 9 . As seen

from Fig. 9 , the packet sojourn time slowly rises up at the

time of the number of switches below 150, and sharply
increases after the number go beyond 200. Moreover, we

can also see that the higher the processing rate of the con-

troller is, the larger the number of switches can be accom-

modated in the network with identical sojourn time.

7.2. Controller performance

We evaluate the controller performance with the pub-

licly available benchmark Cbench [27] , which can simulate

a variety of network scenarios with different number of

182 B. Xiong et al. / Computer Networks 102 (2016) 172–185

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

The number of switches

P
ac

ke
t s

oj
ou

rn
 ti

m
e/

m
s

u
(c)

=15k

u
(c)

=20k

u
(c)

=25k

u
(c)

Fig. 9. The packet sojourn time with the increasing number of switches.

Fig. 10. The fundamental framework of the Cbench.

OpenFlow switches and PC hosts. Fig. 10 illustrates the fun-

damental framework of the Cbench. Under this framework,

the measurements of SDN controller performance are per-

formed with the following steps: (a) simulating a network

topology by setting the amount of OpenFlow switches and

hosts per switch; (b) generating a sequence of packet-in

messages from each switch to the controller, and captur-

ing their responses, i.e., packet-out messages or flow-mod

messages; (c) recording the statistical information such as

the amount of responses, and calculating the performance

parameters of the controller such as the average sojourn

time of packet-in messages.

The Cbench has two operation modes, i.e., throughput

mode and latency mode. In the throughput mode, each

switch continuously sends a stream of packet-in messages
to the controller. The controller cannot process all the mes-

sages in real time, and results in its full-load state. Thus,

this mode can be utilized to measure the processing rate of

a SDN controller μ(c) for each network scenario, by count-

ing the number of response messages within a pre-set

time interval. Different from the throughput mode, each

switch would not send a packet-in message to the con-

troller until it receives a response to the last message it

sends in the latency mode. This implies that there are a

largely fixed number of packet-in messages waiting to be

processed or being processed in the controller. Hence, we

can utilize this mode to measure the sojourn time of a

packet-in message and estimate the arrival rate of packet-

in messages λ(c) in the same way as the previous mode.

As for a given network scenario, we run the Cbench

in the throughput mode with n times to get a sequence

of measurement results about the processing rate of the

controller μ(c) i (i = 0 , 1 , 2 , . . . , n) . Each result is calculated

by dividing the number of response messages by the set-

ting time interval. Then, we can estimate the processing

rate of the controller μ(c) and its standard deviation σ re-

spectively in (32) and (33) in terms of parameter estima-

tion in mathematical statistics. After that, the operation of

the Cbench turns to the latency mode to measure the so-

journ time of a packet-in message for multiple times. Each

measured time is computed by dividing the counting time

by the amount of received response messages. Meanwhile,

the mean of their reciprocals is taken as the estimation of

the arrival rate of packet-in messages λ(c) . With these pa-

rameters, we can calculate the estimated sojourn time of

a packet-in message for our proposed performance model

M / G /1 and the simple one M / M /1 according to (19) and

(34) respectively. Finally, we evaluate our proposed model

by verifying whether its estimated sojourn time are more

closer to all measured sojourn time of packet-in messages

B. Xiong et al. / Computer Networks 102 (2016) 172–185 183

Table 1

The performance parameters of both controller models.

Performance parameters The number of switches

8 16 24 32 40 48 56 64

Arrival rate λ(c) 8 .02 7 .86 7 .36 6 .82 6 .68 6 .42 6 .27 6 .17

Processing rate μ(c) 16 .8 16 .0 15 .0 14 .1 13 .7 13 .3 13 .1 12 .8

Standard deviation σ (c) 0 .062 0 .065 0 .069 0 .074 0 .076 0 .079 0 .081 0 .082

Estimated delay of the M / G /1 model 0 .116 0 .125 0 .133 0 .140 0 .145 0 .149 0 .151 0 .154

Estimated delay of the M / M /1 model 0 .114 0 .123 0 .131 0 .137 0 .142 0 .145 0 .146 0 .151

0 8 16 24 32 40 48 56 64 72
0.11

0.12

0.13

0.14

0.15

0.16

0.17

The number of switches

D
e

la
y
/m

s

average measured delays

estimated delays of our proposed model M/G/1

estimated delays of the simple model M/M/1

Fig. 11. The measured and estimated delays of both controller models.

W

than the simple one under various network scenarios.

μ(c) =

1

n

n ∑

i =1

μ(c) i . (32)

σ(c) =

√

1

n

n ∑

i =1

(μ(c) i − μ(c)) 2 . (33)

 =

1

μ(c) − λ(c)

. (34)

With the Cbench, we compare our proposed controller

model with the simple one [17] in terms of the sojourn

time of packet-in messages in the well-known controller

Floodlight under various network scenarios. First of all,

8 network topologies are simulated with the number of

switches increasing progressively from 8 to 64 and that of

hosts fixed as 1024 per switch. As for each scenario, we

measure essential performance parameters including the

processing rate of the controller and the sojourn time of

a packet-in message. In particular, each parameter is mea-

sured for 36 times, among which the results of the first 4

times are ignored due to their unstable state at the start-

up phase. Then, we estimate the expectation of other per-

formance parameters, including the arrival rate of packet-
in messages λ(c) , the processing rate of the controller μ(c)

and its standard deviation σ (c) in Table. 1 . With these pa-

rameters, we compute the estimated delays of packet-in

messages for both controller models in Table. 1 .

Fig. 11 illustrates all measured delays of packet-in mes-

sages with confidence intervals and the estimated ones

of both controller models for the 8 network scenarios. As

seen from Fig. 11 , the estimated delays of our proposed

model M / G /1 come closer to the measured delays than

those of the simple one M / M /1 in all cases. This implies

that our proposed model offers a more accurate estimation

of SDN controller performance than the simple one. Be-

sides, both estimated delays are less than almost all mea-

sured delays for each scenario in Fig. 11 . This attributes

to the fact that our experiments introduce the additional

transmission delays between the controller and the sim-

ulated switches into the measured delays, besides of the

queueing and processing delays only considered by queue-

ing models.

8. Conclusion and future work

Understanding the performance and limitation of

OpenFlow-based SDN is a prerequisite of its deployments.

To achieve this goal, this paper present an analytical

184 B. Xiong et al. / Computer Networks 102 (2016) 172–185

performance model of OpenFlow networks based on

queueing theory, and resolves its average packet sojourn

time through a switch. The numerical analysis on our per-

formance model indicate that the packet forwarding per-

formance in large-scale OpenFlow networks greatly relies

on the packet-in message processing capacity of the con-

troller. Furthermore, the experiments with the controller

benchmark Cbench indicate that our controller model is a

more precise approximation of SDN controller performance

than the other ones.

In our future work, we will apply the queueing theory

to build analytical performance models for other prevalent

SDN deployments such as data center networks. Mean-

while, we will extend the analytical performance models

from single SDN controller to the case of controller clus-

ters. Moreover, we also plan to carry out the performance

evaluation of the controller with our performance model to

other popular controllers, such as NOX, POX, Beacon, Mae-

stro and Ryu, which aims to provide a comprehensive un-

derstanding of SDN controller performance.

Acknowledgment

This work was supported in part by National Natu-

ral Science Foundation of China (61502056 and 61303043),

Hunan Provincial Natural Science Foundation of China

(2015JJ3010 and 13JJ4052), and Scientific Research Fund of

Hunan Provincial Education Department (15B009).

References

[1] S. Rowshanrad , S. Namvarasl , V. Abdi , M. Hajizadeh , M. Keshtgary , A

survey on SDN, the future of networking, J. Adv. Comput. Sci. Tech-
nol. 3 (2) (2014) 232–248 .

[2] A . Hakiri , A . Gokhale , P. Berthou , D.C. Schmidt , T. Gayraud , Soft-

ware-defined networking: Challenges and research opportunities for
future internet, Comput. Netw. 75 (24) (2014) 453–471 .

[3] J. Pan , S. Paul , R. Jain , A survey of the research on future internet
architectures, IEEE Commun. Mag. 49 (7) (2011) 26–36 .

[4] A . Lara , A . Kolasani , B. Ramamurthy , Network innovation using open-
flow: A survey, IEEE Commun. Surv. Tutor. 16 (1) (2014) 493–512 .

[5] N. McKeown , T. Anderson , H. Balakrishnan , G. Parulkar , L. Peterson ,

J. Rexford , S. Shenker , J. Turner , Openflow: Enabling innovation in
campus networks, ACM SIGCOMM Comput. Commun. Rev. (CCR) 38

(2) (2008) 69–74 .
[6] N. Feamster , J. Rexford , E. Zegura , The road to SDN: An intellectual

history of programmable networks, Networks 11 (12) (2013) 20–40 .
[7] B.N. Astuto , M. Mendonca , X.N. Nguyen , K. Obraczka , T. Turletti , A

survey of software-defined networking: Past, present, and future of

programmable networks, IEEE Commun. Surv. Tutor. 16 (3) (2014)
1617–1634 .

[8] A. Greenberg , G. Hjalmtysson , D.A. Maltz , A. Myers , J. Rexford , G. Xie ,
H. Yan , J. Zhan , H. Zhang , A clean slate 4D approach to network con-

trol and management, ACM SIGCOMM Comput. Commun. Rev. 35 (5)
(2005) 41–54 .

[9] M. Casado , M.J. Freedman , J. Pettit , J. Luo , N. McKeown , S. Shenker ,

Ethane: Taking control of the enterprise, ACM SIGCOMM Comput.
Commun. Rev. 37 (4) (2007) 1–12 .

[10] F. Benamrane , M.B. Mamoun , R. Benaini , Short: A case study of the
performance of an openflow controller, in: Proceedings of the Sec-

ond International Conference on Lecture Notes in Computer Science
(LNCS), 2014, pp. 330–334 .

[11] S. Jain , A. Kumar , S. Mandal , J. Ong , L. Poutievski , A. Singh ,

S. Venkata , J. Wanderer , J. Zhou , M. Zhu , J. Zolla , U. Holzle , S. Stuart ,
A. Vahdat , B4: Experience with a globally-deployed software defined

wan, ACM SIGCOMM Comput. Commun. Rev. 43 (4) (2013) 3–14 .
[12] C.Y. Hong , S. Kandula , R. Mahajan , M. Zhang , V. Gill , M. Nan-

duri , R. Wattenhofer , Achieving high utilization with software-driven
WAN, ACM SIGCOMM Comput. Commun. Rev. 43 (4) (2013) 15–26 .
[13] Z. Bozakov , A. Rizk , Taming SDN controllers in heterogeneous hard-
ware environments, in: Proceedings of the Second European Work-

shop on Software Defined Networks (EWSDN), 2013, pp. 50–55 .
[14] S. Azodolmolky , P. Wieder , R. Yahyapour , Performance evaluation of

a scalable software-defined networking deployment, in: Proceedings
of the Second European Workshop on Software Defined Networks

(EWSDN), 2013, pp. 68–74 .

[15] S. Azodolmolky , R. Nejabati , M. Pazouki , P. Wieder , An analytical
model for software defined networking: A network calculus-based

approach, Proceedings of the 2013 IEEE Global Communications Con-
ference (GLOBECOM), 2013, pp. 1397–1402 .

[16] A .G. Osgouei , A .K. Koohanestani , H. Saidi , A. Fanian , Analytical per-
formance model of virtualized SDNs using network calculus, in: Pro-

ceedings of the Twenty-third Iranian Conference on Electrical Engi-
neering (ICEE), 2015, pp. 770–774 .

[17] M. Jarschel , S. Oechsner , D. Schlosser , R. Pries , S. Goll , T.G. Phuoc ,

Modeling and performance evaluation of an openflow architecture,
in: Proceedings of the Twenty-third International Teletraffic Congress

(ITC), 2011, pp. 1–7 .
[18] K. Mahmood , A. Chilwan , O. Osterbo , M. Jarschel , Modelling of open-

flow-based software-defined networks: the multiple node case, IET
Netw. 4 (5) (2015) 278–284 .

[19] Q. Zuo , M. Chen , P. Jiang , Delay evaluation of openflow control plane

by queue model, J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.) 8 (1)
(2013) 44–49 .

[20] L. Yao , P. Hong , W. Zhou , Evaluating the controller capacity in soft-
ware defined networking, in: Proceedings of the Twenty-third Inter-

national Conference on Computer Communication and Networks (IC-
CCN), 2014, pp. 1–6 .

[21] H. Farhady , H.Y. Lee , A. Nakao , Software-defined networking: A sur-

vey, Comput. Netw. 81 (22) (2015) 79–95 .
[22] D. Kreutz , F.M.V. Ramos , P. Verissimo , E.C. Rothenberg , S. Azodol-

molky , S. Uhlig , Software-defined networking: A comprehensive sur-
vey, Proc. IEEE 103 (1) (2015) 14–76 .

[23] M. Jammal , T. Singh , A. Shami , R. Asal , Y. Li , Software defined net-
working: State of the art and research challenges, Comput. Netw. 72

(29) (2014) 74–98 .

[24] F. Hu , Q. Hao , K. Bao , A survey on software-defined network and
openflow: From concept to implementation, IEEE Commun. Surv. Tu-

tor. 16 (4) (2014) 2181–2206 .
[25] A. Gelberger , N. Yemini , R. Giladi , Performance analysis of soft-

ware-defined networking (SDN), in: Proceedings of the Twenty-first
IEEE International Symposium on Modeling, Analysis and Simula-

tion of Computer and Telecommunication Systems (MASCOTS), 2013,

pp. 389–393 .
[26] F. Alencar , M. Santos , M. Santana , S. Fernandes , How software aging

affects SDN: A view on the controllers, in: Proceedings of the Sixth
Global Information Infrastructure and Networking Symposium (GIIS),

2014, pp. 1–6 .
[27] M. Jarschel , F. Lehrieder , Z. Magyari , R. Pries , A flexible openflow–

controller benchmark, in: Proceedings of the First European Work-

shop on Software Defined Networking (EWSDN), 2012, pp. 48–
53 .

[28] N. Gude , T. Koponen , J. Pettit , B. Pfaff, M. Casado , N. McKeown ,
S. Shenker , NOX: Towards an operating system for networks, ACM

SIGCOMM Comput. Commun. Rev. 38 (3) (2008) 105–110 .
[29] D. Erickson , The beacon openflow controller, in: Proceedings of the

Second ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking (HotSDN), 2013, pp. 13–18 .

[30] Z. Cai , A.L. Cox , N.T.S. Eugene , Maestro: Balancing Fairness, Latency

and Throughput in the OpenFlow Control Plane, Rice University,
2011 . Technical report 10-11.

[31] A. Tootoonchian , S. Gorbunov , Y. Ganjali , M. Casado , R. Sherwood , On
controller performance in software-defined networks, in: Proceed-

ings of the Second USENIX Conference on Hot Topics in Management
of Internet, Cloud, and Enterprise Networks and Services (Hot-ICE),

2012, p. 10 .

[32] A. Shalimov , D. Zuikov , D. Zimarina , V. Pashkov , R. Smeliansky , Ad-
vanced study of SDN/OpenFlow controllers, in: Proceedings of the

Ninth Central and Eastern European Software Engineering Confer-
ence in Russia, 2013, pp. 1–4 .

[33] Z. Cai , Maestro: Achieving Scalability and Coordination in Centralized
Network Control Plane, (Ph.d. thesis). Rice University, 2011 .

[34] S.A. Shah , J. Faiz , M. Farooq , A. Shafi, S.A. Mehdi , An architectural

evaluation of SDN controllers, in: Proceedings of the 2013 IEEE In-
ternational Conference on Communications (ICC), 2013, pp. 3504–

3508 .
[35] R. Jain , S.A. Routhier , Packet trains: measurements and a new model

for computer network traffic, IEEE J. Sel. Areas Commun. 4 (6) (1986)
986–995 .

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100004735
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0035

B. Xiong et al. / Computer Networks 102 (2016) 172–185 185

[36] B.D. Choi , D.I. Choi , Y. Lee , D.K. Sung , Priority queueing system with
fixed-length packet-train arrivals, IEE Proc. Commun. 145 (5) (1998)

331–336 .
[37] V. Paxson , S. Floyd , Wide area traffic: The failure of Poisson model-

ing, IEEE/ACM Trans. Netw. (ToN) 3 (3) (1995) 226–244 .
[38] H. Okamura , T. Dohi , K.S. Trivedi , Markovian arrival process parame-

ter estimation with group data, IEEE/ACM Trans. Netw. 17 (4) (2009)

1326–1339 .
[39] C.W. Huang , S. Sukittanon , J. Ritcey , A. Chindapol , J.N. Hwang , An

embedded packet train and adaptive FEC scheme for VoIP over
wired/wireless IP networks, in: Proceedings of the 2006 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing
(ASSP), vol. 5, 2006, pp. 429–432 .

[40] P. Zalan , S. Molnar , T. Elteto , Jitter analysis of multimedia stream-
ing traffic assuming batch arrivals, in: Proceedings of the 2008

Euro-NGI Conference on Next Generation Internet Networks (NGI),

2008, pp. 268–275 .
[41] C. Williamson , Internet traffic measurement, Internet Comput. 5 (6)

(2001) 70–74 .
[42] J. Yang , W.C. Li , Y.Y. Qiao , Z.M. Fadlullah , N. Kato , Characterizing and

modeling of large-scale traffic in mobile network, in: Proceeding of
the 2015 IEEE Wireless Communications and Networking Conference

(WCNC), 2015, pp. 801–806 .

[43] Z. Liang , K. Xu , J. Wu , A novel model to analyze the performance
of routing lookup algorithms, in: Proceeding of the 2003 IEEE In-

ternational Conference on Communication Technology (ICCT), 2003,
pp. 508–513 .

Bing Xiong received his Ph.D. in 2009 by
master-doctorate program from the School of

Computer Science and Technology, Huazhong

University of Science and Technology (HUST),
China, and B.Sc. in 2004 from Hubei Normal

University, China. He is currently a lecturer
in the School of Computer and Communica-

tion Engineering, Changsha University of Sci-
ence and Technology, China. His main research

interests include software defined networks, fu-

ture internet architecture, network security.

Kun Yang received his Ph.D. from the Depart-

ment of Electronic & Electrical Engineering of
University College London (UCL), UK, and M.Sc.

and B.Sc. from the Computer Science Depart-
ment of Jilin University, China. He is currently

a full Professor in the School of Computer Sci-
ence & Electronic Engineering, University of Es-

sex, UK. Before joining in University of Essex at

2003, he worked at UCL on several European
Union (EU) research projects for several years.

His main research interests include heteroge-
neous wireless networks, fixed mobile conver-

gence, pervasive service engineering, future In-
ternet technology and network virtualization, cloud computing. He man-

ages research projects funded by various sources such as UK EPSRC, EU

FP7 and industries. He has published 60+ journal papers. He serves on
the editorial boards of both IEEE and non-IEEE journals. He is a Senior

Member of IEEE and a Fellow of IET.
Jinyuan Zhao received her M.S. and B.S. in 2007

and 2004, respectively, from Central China Nor-
mal University and Hubei Normal University.

She is currently a lecturer in the Department

of Computer and Communication, Hunan Insti-
tute of Engineering, China, and also a Ph.D. can-

didate of software engineering in the School of
Software, Central South University (CSU), China.

Her main research interests include cloud com-
puting and future networks.

Wei Li received his B.S. in 2013 from Hei-
longjiang Bayi Agricultural University. He is

currently a master candidate in the School
of Computer and Communication Engineering,

Changsha University Of Science and Technol-
ogy, China. His main research interests include

software defined networks and network perfor-

mance evaluation.

Keqin Li received B.S. degree in computer sci-

ence from Tsinghua University, Beijing, China,
in 1985, and Ph.D. degree in computer science

from the University of Houston, Houston, Texas,
USA, in 1990. He was a full professor (1999–

2009), and has been a SUNY distinguished pro-
fessor of computer science since 2009 in State

University of New York at New Paltz. He was

the acting chair of Department of Computer
Science during Spring 2004. Since November

2011, he has been an Intellectual Ventures en-
dowed visiting chair professor at the National

Laboratory for Information Science and Tech-
nology, Tsinghua University, Beijing, China. He has been a IEEE Fellow

since January 2015.

http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0038
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0038
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0038
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0038
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0039
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0039
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0039
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0039
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0039
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0039
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0040
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0040
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0040
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0040
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0041
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0041
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0042
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0042
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0042
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0042
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0042
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0042
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0043
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0043
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0043
http://refhub.elsevier.com/S1389-1286(16)30069-X/sbref0043

	Performance evaluation of OpenFlow-based software-defined networks based on queueing model
	1 Introduction
	2 Related work
	3 OpenFlow network deployments
	4 Queueing model of OpenFlow switches
	4.1 Queueing model analysis
	4.2 Queueing model solution

	5 Queueing model of SDN controllers
	5.1 Packet-in message arrivals
	5.2 Packet-in message processing
	5.3 Queueing model description
	5.4 Performance parameter solution

	6 Queueing model of OpenFlow networks
	7 Performance evaluation
	7.1 Numerical analysis
	7.2 Controller performance

	8 Conclusion and future work
	 Acknowledgment
	 References

