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a b s t r a c t

Accurate human traffic prediction, as a vital component of an intelligent transportation system (ITS),
can not only reduce traffic congestion and resource consumption, but also provide a foundation for
other tasks, such as risk assessment and public safety. Owing to the rapid development of computing
power, massive data storage, and parallelization, deep-learning techniques, especially convolutional
neural networks (CNNs), have become a powerful tool for traffic-flow forecasting. However, most of
these methods in the literature over-emphasize the accuracy of traffic-flow forecasting and ignore its
efficiency. It is often beneficial to develop smaller models (e.g., fewer model parameters) to improve
efficiency. In this work, taking into account the efficiency and accuracy of the prediction, a novel
attention CNN based on an encoder–decoder framework, called ED-ACNN, is proposed. First, the
convolutional layer is considered the coding layer to extract spatial and temporal correlations. Then,
the deconvolution layer as a decoding layer is expertly designed to reconstruct the future traffic-flow
image. Next, the attention mechanism is introduced into the proposed model to capture the correlation
between the spatial traffic-flow images’ channels. Finally, for the three characteristics of closeness,
period, and trend, it is concluded that the closeness feature is the most significant for human traffic
prediction in the proposed approach. An extensive experimental evaluation of two types of real-world
crowd flow (Beijing and New York City) is presented, and the results show that the proposed method
can be very competitive with state-of-the-art baselines.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Along with urbanized progress, traffic-flow forecasting is be-
coming increasingly essential to traffic management, resource
consumption, and public safety [1,2]. The increase in numbers of
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ehicles and population can lead to traffic congestion, environ-
ental pollution, and social security problems [3]. For example,

here was a stampede on New Year’s Eve at Shanghai’s Bund in
015 [4] and a dangerous stampede in mid-July of 2016 for the
‘Pokemon Go’’ game [5]. Once the ability to predict traffic flow
n each region of a city is realized, similar events can be avoided.
esearch on traffic-volume forecasting began in the 1970s and
as been ongoing for nearly 50 years. There are many known
raditional traffic-flow forecasting methods reported in the lit-
rature, which can be roughly divided into the following three
ategories.
The first category is the parametric approach, which mainly

ses the autoregressive integrated moving-average-based
ARIMA-based) methods or the Kalman-filtering models to solve
he time series [6]. The ARIMA model is used to predict the
hort-term traffic flow of freeways [7], and its various [8–11]
eformation methods have also been applied to traffic-flow pre-
iction problems. Most Kalman-filtering models are designed to
redict short-term traffic flow. For example, Guo et al. proposed
n adaptive Kalman filter to implement the SARIMA+GARCH

structure, which can provide improved adaptability when traffic
is highly volatile [12].

The second category is the non-parametric methods, which
usually better capture the uncertainty of traffic time series and
complex nonlinearities, such as an artificial neural network
(ANN), support vector regression (SVR), Bayesian networks, and
K-nearest-neighbor (K-NN) [13–18]. ANN, as a typical non-
parametric method, has been widely used in short-term traffic-
flow prediction [13]. SVR has been successfully used to predict
traffic conditions such as hourly flow, travel time, and prediction
of short-term freeway traffic flow under both typical and atyp-
ical conditions [14,15]. Sun et al. designed a Bayesian network
that is modeled by traffic flow among adjacent road links in
a transportation network [16]. Davis et al. first proposed K-NN
as a non-parametric regression approach for short-term freeway
traffic forecasting, which may avoid several of the problems
inherent in parametric forecasting approaches [18].

Given that the above methods have their own good per-
formance for a specific period, researchers have turned their
attention to combining predictors to predict the periods of mul-
tiple spans, especially for combinations of ANN and other al-
gorithms. Zhang et al. suggested a hybrid method combining
ARIMA and ANN models that uses the unique advantages of
ARIMA and ANN models in linear and nonlinear modeling [19].
Moretti et al. presented a hybrid modeling method that combines
an ANN and a statistical approach for forecasting hourly ur-
ban traffic-flow rates [20]. Some improved approaches are com-
bined with other predictors, such as fuzzy theories [21] and
population-based optimization methods [22,23].

Although these studies offer a variety of options with which
to tackle traffic-flow forecasting problems, research in this area
is far from mature. For example, most parametric approaches
based on time series of linear architectures cannot capture non-
linear and spatial features. Thus, it is insufficient to rely on
parametric models alone to predict traffic volume; that is, the
ANN approaches have low prediction accuracy with the limited
data and over-fitting with massive instances. Traditional shallow
neural networks, such as [13], cannot obtain high-level abstract
features. Although both SVR and Bayesian networks can solve
problems like small samples and nonlinearities, their prediction
accuracy is affected by a small amount of noise or random factors
caused by the variability of traffic data. Thus, non-parametric
methods are not the best for predicting traffic volume. The hybrid
models are primarily intended to predict highway traffic with
fewer data training models. However, they are challenging to

use to extract advanced temporal and spatial features for large
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amounts of spatio-temporal data and complex urban environ-
ments. In addition, most existing methods predict flow on single-
or multiple-road segments, rather than on citywide ones. This
demonstrates that there are some regions where stampede events
may occur that cannot be predicted, like the bunds and public
parks [4] where stampede events may occur but are not pre-
dicted. In addition, most of the previous methods cannot adapt to
massive spatio-temporal data. How to effectively predict crowd
flow with exploding traffic data is emphasized in [24–26].

Deep learning (DL), as a new data-driven machine-learning
method, provides new ideas for traffic prediction with exploding
data. Owing to the development of new variants of CNNs and
the advent of efficient parallel solvers optimized for modern
GPUs, DL approaches have recently been successfully applied to
many areas, such as speech recognition, pattern recognition, and
computer vision [27]. DL approaches have also been found to
be suitable for Big Data analysis [27]. The rapid developments
of DL techniques and a large number of mobile location data
acquisitions (e.g., population, vehicle, and devices) make it pos-
sible to build accurate models for a wide range of transportation
applications, such as estimating traffic flow, anticipating the time
of path, and forecasting crowd density.

As is well known, traffic flow is not a static variable, but
is a highly real-time one. Real-time prediction is significant in
traffic-volume forecasting, particularly in short-term prediction
and human emergency behavior forecasting [28]. In other words,
it requires forecasting to be highly efficient. On the one hand,
compared with traditional ANN algorithms, fewer parameters
are required for CNNs, which leads to a significant reduction in
memory and an improvement in efficiency. On the other hand,
one can implement CNN-based methods on modern GPU pro-
cessors to increase the efficiency of processing large amounts of
spatio-temporal data. At the same time, a CNN-based method can
automatically extract the intermediate- and high-level abstrac-
tions obtained from a large amount of original spatio-temporal
data (i.e., spatial traffic-flow images) to complete the current
prediction task. In summary, the CNN-based models are suitable
for current human traffic prediction. Recently, many scholars
have presented several approaches based on CNNs [5,29–32].

Although CNN-based models have certain advantages in pre-
dicting tasks, they still exhibit the problem of reduced effi-
ciency with increasing layers, especially for a large dimension
of the input image, large size of the receptive field, and more
fully connected layers. For instance, VGG-19 [33], as an image-
classification model, contains 575 MB of parameters and most of
its model parameters come from fully connected layers, which
will have a low model efficiency compared with other models,
such as GoogLeNet-v1 (53 MB of parameters) [34]. In addition,
large model parameters are more likely to lead to overfitting and
more data for training. Given the same level of accuracy, it is often
beneficial to design smaller CNNs (i.e., CNNs with fewer model
parameters), as discussed in [35]. However, most scholars only
pay attention to accuracy in traffic-flow forecasting.

In this work, use of a simple model structure is recommended
to ensure accuracy and efficiency. The proposed ED-ACNN is a
compact model based on the encoder–decoder framework. To
the best of our knowledge, it is the first time human traffic-flow
has been predicted based on an encoder–decoder framework. At
the same time, the attention block is introduced in ED-ACNN
to capture the correlation of the images’ channels. Experimental
results show that ED-ACNN demonstrates good performance for
human traffic prediction. The contributions of this work are the
following.

• A novel attention CNN based on an encoder–decoder frame-
work is proposed for forecasting the flow of crowds, which
consists of encoder module, attention unit, and decoder

component.
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• ED-ACNN demonstrates the advantages of a more simple
structure, multi-step forecasting, and higher instance-level
precision by giving up all fully connected layers.
• The attributes of spatio-temporal data are summarized into

three categories: closeness, period, and trend. It is concluded
that the closeness attribute is the most important for crowd-
flow forecasting in this work by analyzing a single traffic
flow-property.
• The proposed method is evaluated on two types of crowd

flow data in Beijing and New York City. The experimen-
tal results show the advantages of the proposed approach
compared with well-known baselines.

The rest of this paper is arranged as follows. We introduce the
related work in Section 2. The related problem statements and
notations are defined in Section 3. We present the detail of the
proposed work in Section 4. Section 5 demonstrates the experi-
ment, and then a discussion is given based on the results. Finally,
the conclusion and the direction of future work are organized in
Section 6.

2. Related work

In this section, an overview research of traffic-volume predic-
tion based on DL approaches is presented.

Deep learning: DL has achieved great success in many ar-
eas [27], such as speech recognition [36,37], computer vision [38,
39], and natural language processing [40]. Recently, many re-
searchers have used DL methods to predict traffic flow. A deep
belief network (DBN) is used for traffic-flow prediction [41,42].
Huang et al. presented a deep architecture that consists of two
parts for traffic-flow prediction, with a DBN at the bottom and
a multitask regression layer at the top [42]. Lv et al. proposed
a stacked autoencoder model, which is used to learn generic
traffic-flow features that are the inherent spatial and temporal
correlations [26]. Then, CNN-based approaches were designed for
spatio-temporal prediction. Deng et al. explored spatio-temporal
relations via deep CNNs, which can tolerate the incomplete traffic
data [32]. Zhang et al. designed a DL-based prediction model
for spatio-temporal data (DeepST), which consists of three parts:
dependent instances, CNNs, and model fusions [29]. Then, Zhang
et al. designed a deep spatio-temporal residual network (ST-
ResNet), which learns on an aggregate output of the three resid-
ual NNs based on spatio-temporal data [5]. Although ST-ResNet
achieves a state-of-the-art result, it comes at the cost of a large
number of model parameters and a huge amount of computation,
which limits its applications. Moreover, this approach does not
take into account the dependencies between different feature
maps. These studies have drawn significant academic interest. For
example, Zonoozi et al. proposed a recurrent convolutional model
(PCRN), which adapts the recurrent convolutional network to cap-
ture the spatio-temporal and fusion periodic representations [30].
Previous research efforts have been made using two-dimensional
(2D) CNNs. Chen et al. designed a multiple 3D CNNfor city-
wide vehicle-flow prediction, which learns the spatio-temporal
correlation features jointly from low- to high-level layers for
traffic data [31]. Video-sequence analysis and prediction have
similarities with traffic flow, both of which have spatial and
temporal correlations. In the next-frame prediction problem in
video analysis, many approaches have achieved great success,
such as a recurrent convolutional network for visual learning [43],
ConvLSTM [44], and ConvGRU [45], which are better at extracting
spatial regularities.

Encoder–decoder framework: This is mainly used for ma-
hine translation [46] and image segmentation [47], such as
CN [48] and unet [49]. It is proved by [49] that unet is a
3

simple and effective method, and it is widely applied to biomedi-
cal image-segmentation tasks. The encoder–decoder framework
also projects onto and maps back from feature-map space or
continuous vector space [46], which means that the high- and
hidden-level features can probably be extracted. ED-ACNN con-
sists of a convolution layer and deconvolution layer that act as
an encoder and decoder pair. The encoder maps the variable-
length image sequences to the feature maps, and the decoder
maps the feature-map representation back to the target image.
The attention mechanism can assist the model focus more on
information that contributes a lot to the output, and some at-
tention mechanism networks are introduced in [50,51]. In this
work, the appropriate flexible SEnet attention blocks [52] are
added by setting weights on the multi-channel feature maps to
capture the correlation between channels. Finally, the attributes
(i.e., closeness, period, and trend) of traffic-flow characteristics are
nalyzed.

. Problem statement

In this section, we mainly define some notations and problem
tatements. The factors involved with the traffic information of
uman traffic volume primarily comprises the region, spatial traf-
ic flow image, inflow, outflow, spatial dependencies, temporal
ependencies, late fusion, and human traffic prediction. They are
efined as follows:

efinition 1 (Region). Region of this kind is a grid area based
on the real map, which can almost cover the citywide ones. The
target area is divided into I×J grids. For example, we map Beijing
nto 32 × 32 regions, with 1 km × 1 km grid size each. Fig. 1(b)
llustrates the schematic diagram for distributing the grid area.

efinition 2 (Spatial Traffic Flow Image). We pre-defined geo-
raphic region during a fixed time interval (0.5 h or 1 h). And
hen we aggregate and transform spatio-temporal data into a 2-D
imensional multi-channel image X (t)

∈ RM×I×J . M , I , J , represents
the channel of the image, width, and height, respectively. X (t) is
called ‘‘spatial traffic flow image’’, and in this work, M refers to 2,
which are inflow and outflow. S =

{
s0,0, s0,1, s0,2, . . . , si,j

}
is used

to represent the attributes of spatial traffic flow image, where si,j
refers to ith rows and jth column area. Fig. 1(c) is the spatial traffic
flow image, which is transformed by the traffic volume of regions.

The operation of transforming time-series GPS points informa-
tion into spatial traffic flow images is necessary. The reasons can
be summarized as follows:

• Transforming the GPS points information into traffic flow
images based on grid maps can predict the entire city. Com-
pared with road-based traffic flow prediction, prediction
areas are wider.
• Transforming into traffic flow images can better extract

spatial features (i.g., nearby dependencies and distant corre-
lations). As we all know, CNNs-based methods are very good
at extract spatial correlation. Some similar studies [5,30,31]
have shown state-of-the-art results in using spatial images
to predict traffic flow.
• Transforming into spatial traffic flow images is a key step of

data processing for our attention framework. Although other
frameworks based on encoder–decoder framework also can
process time-series signals and achieves great success, such
as Google’s neural machine [53] for translation tasks, it
depends on a large number of language samples, related
word-pieces, semantically, and syntactically rules [46]. And
It focuses on context correlations. Different from them, we
pay attention to the correlation between different regions in
different periods, which needs to convert original data into
spatial traffic flow images as input.
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Fig. 1. Data processing on TaxiBJ. (a) is the map of Beijing. (b) is regional division by Definition 1. (c) is the spatial traffic flow image by Definition 2.
Fig. 2. Four regions of inflow on TaxiBJ data for a week.
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efinition 3 (Inflow and Outflow). The inflow and outflow of an
rea s(i,j) at the fixed time interval t are formulated as:

xin,i,jt =

∑
Tr∈Q

⏐⏐{k > 1|gk−1 /∈ si,j ∧ gk−1 ∈ si,j
}⏐⏐ (1)

xout,i,jt =

∑
Tr∈Q

⏐⏐{k > 1|gk−1 /∈ si,j ∧ gk−1 ∈ si,j
}⏐⏐ (2)

where Tr : g1 → g2 → g3 → · · · → g|Tr| is a trajectory in Q ,
which is acquired at the tth time interval, and gk is the geospatial
coordinate; gk ∈ (i, j) means the point of gk is displayed within
the grid(i, j), vice versa, and we calculate by latitude and longitude
properly; |.| denotes the cardinality of a set. The traffic flow of
Beijing is illustrated in the 3D and 2D images in Fig. 3, which can
be expressed the whole inflow and outflow condition. In Fig. 2, we
show the inflow pattern of four regions in a week. We can find
that the inflow of a region shows a certain periodicity from Fig. 2.

Definition 4 (Spatial Dependencies). Spatial dependencies are
earby dependencies and distant correlations.

• Nearby dependencies: As shown in Fig. 4, the inflow of
region r1 is affected by outflow of nearby regions (e.g., r2,
r3, r4). Likewise, the outflow of r4 would affect inflow from
other regions (e.g., r2). The inflow of region r4 would affect
its own outflow as well.
• Distant correlations: The flow can be affected by that of

farther areas. For instance, people who live in the residential
area far from the office area, take the subway or bus from
the residential area to the office area, and then the flows in
the office area are affected by the residential area (e.g., The
flow of r1 is affected by r5).

efinition 5 (Temporal Dependencies). Temporal dependencies
nclude closeness, period, and trend.
4

• Closeness: The flow of human in a region is affected by
recent time intervals, both near and far. For instance, traffic
congestion occurring at 6:00 a.m. will affect the flow at 8:00
a.m. In this work, if the target is the prediction flow at 10:00
a.m. on Friday, the flow of closeness (time interval is 0.5 h)
is at 8:30, 9:00, 9:30, and the length of the closeness is 3.
• Period: Traffic conditions during morning and evening peak

interval may be similar for consecutive working days, re-
peating every 24 h.
• Trend: Last Friday’s flow of human at 8:00 a.m. may be very

similar to this week, repeating every week.

efinition 6 (Feature-Map Fusion). Feature-map fusion can also
e called late fusion, which is fused in feature maps after a
onvolution operator. The closeness, period, and trend of feature
aps are merged, which can be written as follows:
d
meta = Merge

(
H i

C ,H
j
P ,H

k
S

)
, (3)

here i, j, and k denotes the channels of feature maps of
loseness(HC ), period(HP ), and trend(HS), respectively. Hd

meta refers
o a mixed multi-channel spatial traffic flow of feature maps,
nd d is the sum of i, j, and k. After feature-map fusion, the
erged features are still connected to the convolution layers,
hich obtains the information of closeness, period, and trend
ependencies.

efinition 7 (Meta-Data Fusion). Meta-data fusion is also called
arly data fusion. The closeness, period, and trend are mainly
erged into a multi-channel image by concatenation:
d
meta = Merge

(
X i
C , X

j
P , X

k
S

)
. (4)

n Eq. (4), i, j, and k denote the channels of spatial traffic-flow
mages of closeness (XC ), period (XP ), and trend (XS), respectively.
d
meta refers to a mixed multi-channel traffic spatial traffic-flow
mage of meta-data, and d is the sum of i, j, and k.
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Fig. 3. The 3D and 2D image represent traffic volume in Beijing. (a) is the outflow of the 2D image at 11:00 a.m. in one day, and (b) is the 3D image. (c) is the
inflow of the 2D image at 9:00 a.m. on in one day, and (d) is the 3D image at the same time.
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Problem 1 (Single-Step Human Traffic Prediction). Human traffic
prediction aims at estimating the number of people in a given
specific area and time interval. Therefore, X =

X1, X2, X3, . . . , Xn−1
}

represents historical observations of a
raffic-flow image, and the object is to predict Xn.

roblem 2 (Multi-Step Human Traffic Prediction). The main idea
of multi-step prediction is that the predicted data are used as
input data with which to predict the next period, e.g., two-step
forecasting. We obtain Xn by defining Problem 1 and using Xn

as the input for the learned model M to predict Xn+1, and then
{Xn, Xn+1} is obtained.

4. Model architecture

In this section, we introduce the detail of ED-ACNN, which
consists of three parts, encoder component, the attention blocks
of the intermediate unit, and decoder module. Encoder compo-
nent captures nearby dependencies and distant correlations of
grid regions from traffic flow attributes (i.e., closeness, period, and
trend). SE block is selected to enhance the channels dependencies
of these three traffic attributes’ feature maps during the different
cases. Decoder module decodes the high-level traffic flow features
into the next time-interval traffic flow.

4.1. Encoder component

CNNs are very effective at extracting correlations of spatial
features [54], which is one of the reasons that deep-learning-
related methods can outperform other approaches. As shown in
Fig. 5, the input layer (assume that I is the total number of feature
maps), Qi (i = 1, . . . , I), is connected to the convolution layer
(assume that J is the total number), Qj (j = 1, . . . , J), which
s based on many local weight matrices (I × J , in total), wi,j
(i = 1, . . . , I, j = 1, . . . , J). Assuming that the input feature maps
are all one-dimensional, each element of a feature map in the
convolutional layer can be calculated as

qj,m = σ

(
I∑

i=1

F∑
n=1

Qi,n+m−1ωi,j,n + ω0,j

)
(j = 1, . . . , J), (5)

here Qi,m is mth unit of the ith input feature map Qi, and,
imilarly, Qj,m is the mth unit of the ith input feature map Qj; wi,j,n
enotes the weight scalar of the nth element; and wi,j refers to
onnected weight, which connects the ith input features maps to
he jth feature maps. F represents filter size, which determines
he receptive field of input feature maps. The pooling layer is used
ndependently for convolution feature maps. The max pooling
unction is applied for this work, which can be defined as

i,m =
G

max qi,(m−1)∗s+n, (6)

n=1

5

Fig. 4. Dependencies of the nearby and distant.

here G refers to the pooling size; s is the shift size, which is
etermined by the overlap of adjacent pooling windows.
In the reference process, the advantage of sharing local weight

an effectively reduce the number of parameters. Convolution is
filter sliding on the traffic flow image sequence and detecting

eatures in different locations. In this work, the inputs are three
equences of the spatial traffic flow images (i.e., closeness, period,
nd trend). (1)

[
Xt−lc , Xt−(lc−1), . . . , Xt−1

]
donates the closeness

part; (2)
[
Xt−lp.p, Xt−(lp−1).p, . . . , Xt−p

]
is the period part; (3)[

Xt−ls.s, Xt−(ls−1).s, . . . , Xt−s
]
means the trend part. lc , lp, and ls

refer to the lengths of closeness, period, and trend sequences,
respectively, p and s are a fixed period (i.e., a day and a week).
With these notations, the convolution over sequences of the
spatial traffic flow images can be defined as:

H (1)
c = f

⎛⎝ lc∑
j=1

ω
(1)
cj ∗ Xt−j + b(1)c

⎞⎠ (7)

H (1)
p = f

⎛⎝ lp∑
j=1

ω
(1)
pj ∗ X(t−j).p + b(1)p

⎞⎠ (8)

H (1)
s = f

⎛⎝ ls∑
j=1

ω
(1)
sj ∗ X(t−j).s + b(1)s

⎞⎠ (9)

where ∗ represents the convolution operator. W and b denote the
learned weight parameters and bias parameters, respectively. Hc ,
Hp, and Hs refer to the output of the convolution layer in closeness,
period, and trend respectively.
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4.2. SEnet block for intermediate unit

The Squeeze-and-Excitation (SE) block enhances the repre-
sentation of the network from the perspective of enhancing the
data space dimension. For the multi-channel image after the
convolution layer, the SE-block is mainly focused on the chan-
nel dimension [52]. The dependencies between the channels are
modeled, and the characteristic response values of each chan-
nel can be adaptively adjusted. We add SE-block inception to
the encoder–decoder framework to extract the spatial-channel
weight dependencies features. These dependencies include the
extraction of feature maps of closeness, period, and trend, respec-
tively, and the dependencies between them, as well as inflow and
outflow. The SE-block includes the squeeze operator (i.e., global
information embedding) and the excitation part (i.e., adaptive
recalibration).

A squeeze operation squeezes global spatial information into
a channel descriptor, which is achieved by using global average
pooling to generate channel-wise statistics. Formally, a channel-
wise based on statistics Z ∈ RC is generated by global average
ooling, and the cth element of Z is calculated by:

c = Fsq(Uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j) (10)

where uc denotes the feature map of the cth channel, uc(i,j) refers
to ith row unit of jth column of the feature map of the cth
channel; H and W denote the feature map height and width
respectively. Zc is the scalar that is the output of the cth element.

Excitation is primarily about learning nonlinear interactions
between channels, and this effect is interdependent. First, it must
be capable of learning a nonlinear interaction between channels.
Second, it must acquire a non-mutually-exclusive relationship
since we would like to ensure that multiple channels are al-
lowed to be emphasized. To meet these standards, the tanh
activation function ensures that multiple channels are activated
simultaneously.

s = F z,W = σ g z,W = σ W σ W z (11)
ex ( ) ( ( )) ( 2 ( 1 ))

6

In Eq. (11), σ refers to the tanh function in our approach, W1∈

R
C
r ×C , W2 ∈ RC× C

r represents weights in two fully connected
layers. Z is the scalar that is obtained by the squeeze operator.
σ (W1z) indicates that a fully connected layer is activated by an
ctivation function. In this work, by multiplying the gates of each
hannel of the corresponding feature maps (i.e., r = 4, 8, 16),
e can control the flow of information for each feature map. s

s the scalar weights. Then, we can obtain the new feature map
y multiplying the s and u.

c̃ = Fscale (Uc, Sc) = Sc · Uc (12)

n Eq. (12), Sc is the scalar that represents a set of weights of c
hannels, Uc can be seen as c feature maps in U , and X̃c refers to
he feature maps after the Senet block. It should be noted that the
eights Sc and the feature maps Uc ∈ RH×W are matched. Fig. 6

interprets this process of squeezing and excitation.
As shown in Fig. 7, we can obtain features maps of three

traffic flow temporal properties after CNN operation. Features
maps are fused by concatenating, which can form a multi-channel
feature map, written as Ucmerge . We use an SE block to capture
he dependencies of feature maps channels of different attributes.
his operation can be described as follows:

cmerge = Scmerge · Ucmerge (13)

where cmerge is the number of feature maps after fused operation
and Scmerge is the weights that focus on cmerge channels. The SE
block makes the deep neural networks give different attention
to different channels of the feature maps in traffic flow temporal
attributes. In different cases, the attention degrees of different
channels are different, and the SE block can capture them.

4.3. Decoder module

Deconvolution modules play a role in DL approaches, and
is applied in many applications, such as unsupervised feature
learning [55,56] and feature visualization of CNNs [57]. [56] in-
troduced a simple framework of overcomplete feature hierarchies
for learning parsing, which can capture high-order structure. The
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Fig. 7. SE block focuses on feature maps’ channels of traffic-flow temporal
attributes.

feature map is restored to the pixel space by a deconvolution
operator to observe which patterns are more sensitive to the
specific feature map [57]. Deconvolution ply as an upsampling
operation is used for pixel-wise prediction [48,58]. To obtain full
predictions for each pixel, deconvolution modules (more pre-
cisely, ‘‘transposed convolutions’’) are used in the present work
to up-sample feature maps in the width and height dimensions.
Up-sampling of the deconvolution layer can be described as

F =
n1∑
i=1

zi ⊗ f ji , (14)

here F is the reconstructed traffic-flow image, zi represents ith
feature map, and f ji donates the ith deconvolution kernel of the jth
ayer. More precisely, the input feature map is expanded larger by
he zero-padding, and one can obtain the up-sampled image by a
econvolution operation. In this work, a deconvolution operation
y convtranspose in Keras is used. Fully connected layers are
emoved as in [48], which is a matter of transforming the feature
aps back to another image space and up-sampling. The reasons
ne can apply a deconvolution module to reconstruct traffic-flow
mages for the next period are the following.

(1) Many deconvolution kernels with a deconvolution layer con-
tain weight parameters and bias parameters, which can be
well trained like CNNs.

(2) Spatial traffic-flow images are used in the present work
as the training data, which is closely related to the traffic
flow of the next period, and can also be used for pixel-wise
prediction in the future.

(3) The previous deconvolution operator is used to restore the
original pixel space [48,58], but the goal in this work is
to reconstruct the pixel space of a next period of traffic
flow, which requires modification of the loss function. The
traffic-flow images encoded by CNNs are low-resolution fea-
ture maps, and then a deconvolution module is applied to
reconstruct the version for the future.

(4) The gating mechanism is used in the present work by form-
ing a bottleneck with convolution layers, max pooling, and
deconvolution plies around the learning abilities.

he un-sampled images are controlled by ‘‘k’’, which is the step
f the convtranspose operation (i.e., a setting parameter of con-
transpose is ‘‘stride’’). For example, k = 2 means that the height

nd width of the feature map will be magnified 2 times.

7

4.4. ED-ACNN architecture

ED-ACNN is an adaptively optimized model for learning an ap-
proximate function that is based on the encoder–decoder frame-
work. The function is defined as

X̂ (t)
= f

([
X1
meta, X

2
meta, X

3
meta, . . . , X

t−1
meta

]
; θ
)
, (15)

where
[
X1
meta, X

2
meta, X

3
meta, . . . , X

t−1
meta

]
is the historical observation

of the spatial traffic-flow images, θ denotes the parameters that
are needed to learn and represent the future spatial traffic-
flow image generated by the approximate function. ED-ACNN
is mainly composed of three parts: encoder, attention block,
and decoder. An overall structure containing these three parts
is shown in Fig. 8. The encoder extracts abstract temporal and
spatial features by 2D convolution layers. The intermediate at-
tention structure is an attention mechanism that focuses on the
correlation of feature-map channels. The decoder reconstructs the
pixel space of the image and generates an image of the next time-
interval traffic flow by a deconvolution layer. The traffic-flow
image prediction problem is formulated as a regression problem.
The proposed method aims to apply the deconvolution module to
the regression prediction problems in the field of transportation
analysis.

In this work, the encoding process can be written as

F i
conv = CNN(T )(i = 1, 2, 3, . . . , n), (16)

where F i
conv refers to ith encoding. If i = 1, T is the original input

data; on the contrary, T is the feature maps. The whole of the
intermediate attention structure is described as follows:

Fse = Fex
(
Fsq (Fconv)

)
. (17)

Feature maps, Fconv , are connected to the ‘‘squeeze’’ (i.e., Fsq) and
‘‘excitation’’ (i.e., Fex) operations, and the attention feature maps
Fse are obtained. The decoding process can be summarized as
follows:

F j
deconv = DeCNN(Fse)(j = 1, 2, 3, . . . , n), (18)

where F j
conv refers to jth decoding. CNNs comprise a top-down

approach, and use of a deconvolution module is a bottom-up
method. ED-ACNN is a mixed method with both top-down and
bottom-up approaches, which attempts to generate next time-
interval traffic flow through the deconvolution of mapped fea-
tures and obtains the same size as the input traffic-flow image.
One can use three sequences to predict X̂ by minimizing the
mean-square error between the predicted and ground truth:

Γ (θ) = ||X − X̂ ||
2
2, (19)

where θ is the learned parameters and X is ground truth.

4.5. Training and optimization

Algorithm 1 outlines the training process of ED-ACNN. The
training instances are created from the historical sequence data
first (lines1–4), and then ED-ACNN is trained by back-propagation
and Adam (lines6–9); the learned ED-ACNN model will then be
returned (line10).

To better understand the prediction procedure, the flow chart
of the proposed method is depicted in Fig. 9. First, GPS-based
data is collected, and then these GPS points will be statistically
calculated and generate three types spatial flow images by Defi-
nitions 1 and 2. Three attributes of traffic flow data are used as
input for training model. Next, training samples and prediction
samples are prepared. An ED-ACNN deep learning model is es-
tablished, and its detailed structure is illustrated in Fig. 8. Finally,
the testing samples will be fed into the proposed model when the
training process is finished, and the testing traffic flow results can
be obtained.
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Fig. 8. Overall architecture of ED-ACNN. The network contains convolution (encoder) and deconvolution (decoder) layers, as well as an attention mechanism. Late
fusion is used by Definition 6.
Algorithm 1 Framework of ED-ACNN training.

Input:
Given dataset of historical observations;
Sc =

[
Xt−lc , . . . , Xt−1

]
;

Sp =
[
Xt−lp.p, Xt−(lp−1).p, . . . , Xt−p

]
;

Ss =
[
Xt−ls.s, Xt−(ls−1).s, . . . , Xt−s

]
;

LabelData : Ylabel ← Xt
Output:

ED-ACNN model M;
1: D← ∅;
2: for all available time interval t(1 ⩽ t ⩽ n− 1) do
3: put Sc, Sp, Ss, Ylabel → D;
4: end for
5: Initialize: parameters of the model are θ (includes wi,b and

other parameters);
6: repeat
7: randomly select a batch of instances Db from D;
8: find θ by minimizing objective formula (19) with D;
9: until stopping criteria are met (Usually the steps of epochs is

reached);
10: return learned ED-ACNN model M;

5. Experiment

In this section, ED-ACNN and its variants are evaluated on two
ypes of crowd flows in Beijing and New York City and compared
ith baselines.

.1. Data and experimental setup

Two different datasets are used: a group of crowd flows from
eijing and one from New York City. TaxiBJ: GPS data from more
han 34,000 taxis were collected in four parts (1 Jul. 2013–30 Oct.
013, 1 Mar. 2014–30 Jun. 2014, 1 Mar. 2015–30 Jun. 2015, and 1
ov. 2015–10 Apr. 2016). The original data are mainly composed
f GPS locations, and contain latitude, longitude, time, and taxi
assenger status. Using Definition 3, inflow and outflow in every
egion is obtained. The data of the last four weeks are chosen as
est data and the other data for training data. BikeNYC: Trajectory
ata of crowds are obtained from the New York City bike system
rom April 1 to September 30, 2014. The trip data include trip
uration, station IDs, and starting and ending times, which are
btained from more than 6800 bikes. The last 10 d are selected
s test data and the rest as training data.
8

Fig. 9. Flow chart of the proposed method.

Setting: Table 1 lists the hardware and software on the com-
puter used in the experiments. The popular Keras DL library was
adopted.

Hyperparameters: The convolution and deconvolution layers
employ 3∗3 filters. 95% of the training data is selected for training
each model, and the remaining 5% is chosen as the validation
set. Early-stop training is used for pre-training the algorithm
based on the best validation score, and the training of the model
continues on the full training data for a fixed epoch number. L2
regularization is used to avoid overfitting.

Evaluation index: The proposed method is measured by root-
mean-square error (RMSE):

RMSE =

√1
n

n∑(
X̂i − Xi

)2
, (20)
i=1
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able 1
omputer hardware and software used in experiments.
Item Content

Processor GPU GTX1060Ti(6g) Ti 4core
Memory 16g
Operating system Linux
Tensorflow Tensorflow1.8
keras 2.1.5
Python Python 3.5

where Xi and X̂i are ground truth and predicted value, respec-
ively. n represents the number of predictions, X,∈ RM∗I∗J .

.2. Results

For the evaluation, the proposed method was compared with
he following 10 well-known baselines.
A: Historical average is based on statistics, counting the values
t the same time interval, and finally calculating the average.
RIMA: The autoregressive integrated moving average method is
ne of the best methods for time-series predictive analysis.
ARIMA: The seasonal autoregressive integrated moving aver-
ge is a variant of ARIMA and is very popular in time-series
rediction.
GBoost [59]: Extreme gradient boosting is an excellent ensem-
le learning method that is widely used in many areas.
RU [46]: Gated recurrent unit as a variant of LSTM is simpler in
tructure, which is good at dealing with periodic problems.
onvLSTM [44]: The convolutional LSTM network is designed to
rimarily process sequence images.
eepST [29]: A method based on a learning-based prediction
odel for spatio-temporal data (DeepST).
T-ResNet [5]: ST-ResNet is a more advanced spatio-temporal
odel that is based on the unique properties of spatio-temporal
ata and residual learning.
ST3D [31]: A multiple 3D CNN is an approach to apply 3D CNNs

o learn the spatio-temporal correlation features jointly from low-
o high-level layers for traffic data.
CRN [30]: A convolutional recurrent model used to learn traf-
ic patterns and explicit periodic representations or time-series
orecasting in geospatial data.
ariants of ED-ACNN: Feature-map fusion is used on the struc-
ure of ED-ACNN by Definition 6. ED-ACNN includes four encod-
ngs and four decodings, as explained in Fig. 8. The structure is
implified and the first decoding layer with the most model pa-
ameters is removed, called ED-ACNN-S. There are four encodings
nd three decodings with ED-ACNN-S. Meta-data fusion is mainly
sed based on the structure of ED-ACNN-M by Definition 7.
D-ACNN-M is similar to ED-ACNN, except for feature fusion. ED-
CNN extracts features for closeness, period, and trend separately,
nd then merges them by Definition 6. Meta-data fusion is used,
nd then features are extracted from the mixed multi-channel
raffic spatial traffic-flow images with ED-ACNN-M.

.2.1. Single-step prediction
Our experiments were performed on the TaxiBJ and BikeNYC

atasets, using historical observations to obtain the single-step
rediction of time t . The RMSE of all methods is shown in Table 2,
ncluding 10 baselines and the method presented in this work.
ur baseline methods include ensemble learning, time series, 3D
NNs, 2D CNNs, and statistical calculation approaches. As can
e seen from Table 2, ED-ACNN outperforms all baselines on
axiBJ. ST-ResNet, MST3D, and PCRN all have good performance,
hich indicates that DL methods do play a role in traffic-flow
rediction. The results of the DL approaches demonstrate that

t is practical to use the CNN-based methods to predict crowd

9

able 2
erformance comparisons of baselines on TaxiBJ.
Method RMSE

TaxiBJ BikeNYC

HA 57.69 21.58
ARIMA 22.78 10.07
SARIMA 26.88 10.56
XGBoost [59] 17.92 6.98
GRU [46] 22.8 8.71
ConvLSTM [44] 19.63 8.03
DeepST [29] 18.18 7.43
ST-ResNet [5] 16.88 6.33
MST3D [31] 16.05 5.81
PCRN [30] 15.85 —
ED-ACNN-S 16.4 5.78
ED-ACNN-M 16.15 5.80
ED-ACNN 15.7 6.04

flows. The XGBoost algorithm is more robust than the two time-
series methods, and the ensemble learning method is better
than ARIMA and SARIMA on TaxiBJ. All in all, ED-ACNN achieves
the best RMSE. ED-ACNN-S is a simplified version of ED-ACNN,
which can be described as an ED-ACNN variant. The error of ED-
ACNN-S is higher than that of ED-ACNN because the simplified
structural model parameters are too few compared with other
DL methods [5,30,31] to fit an excellent model. However, its
error is still lower than ST-ResNet, HA, ARIMA, SARIMA, XGBoost,
GRU, ConvLSTM, DeepST, as well as ED-ACNN-M. This shows that
the proposed method extracts effective and useful features on
spatio-temporal data.

The proposed ED-ACNN-S algorithm achieves the lower RMSE
on BikeNYC data compared with other baselines in Table 2. Com-
pared with TaxiBJ, BikeNYC data has fewer grid divisions, which
is 16∗8, so an attention SE-block is used in the proposed method.
The Beijing area was mapped into 32 ∗ 32 grids, and there were
more grids to forecast. Therefore, seven attention blocks were
designed for TaxiBJ, which demonstrates that the more predicted
regions may include the more sophisticated feature. Thus, more
attention blocks are needed to capture more region information.
We try to use ED-ACNN on BikeNYC and find a little over-fitting,
so the simplified structure (ED-ACNN-S) is designed. To the best
of our knowledge, most of the model parameters can lead to
overfitting, so the structure of ED-ACNN-S is more reasonable.
Figs. 10(a–x) show the visualization results of the middle layers,
including the conv1 layer, conv2 layer, conv3 layer, merge layer,
pooling layer, deconv1 layer, deconv2 layer, and deconv3 layer. It
can be found that some feature maps [e.g., (a), (b), and (merge6)]
have some of the silhouette features of human traffic flow, which
shows that some target features have been extracted. Regarding
other images [e.g., (merge2), (p), and (q)], what information they
capture cannot be determined, and are probably high-level or
hidden features.

5.2.2. Attention block analysis
Fig. 11 illustrates the effects of different numbers of SE at-

tention blocks on TaxiBJ. The structure of ED-ACNN contains
four convolution and deconvolution layers. Each convolution op-
eration is followed by an attention block, except for the last
deconvolution layer. The first three convolution layers are the
feature extractions of closeness, period, and trend, and the fourth
is the merged features. Fig. 11, taking ‘‘encoding attention blocks
(3)’’ as an example, represents the attention based on closeness,
eriod, and trend, and each convolution ply of them has an atten-
ion mechanism block. ‘‘(3)’’ denotes the three attention blocks.
s can be seen from Fig. 11, seven attention blocks of ED-ACNN
chieve the lowest error. The prediction error of the attention
lock after the convolution layer is higher than the deconvolution



B. Pu, Y. Liu, N. Zhu et al. Applied Soft Computing Journal 97 (2020) 106688

d

p
m
n
o

5

m
p
o
o
t

Fig. 10. Feature-map visualization of ED-ACNN on TaxiBJ data.
Fig. 11. Effects of different numbers of attention mechanism blocks on TaxiBJ
ata.

lies, which indicates that the effects of the attention blocks are
ore vital when reconstructing images. Comparing the RMSE of
o attention mechanism block, the results demonstrate that one
r more attention blocks are valid.

.2.3. Volume analysis
Crowd flows can be divided into three categories: high,

edium, and low volume. If the area is a 32 ∗ 32 size, one must
redict the traffic of 1024 regions. It can be found that the pattern
f the ED-ACNN predicted traffic volume is similar to that of
bserved traffic flow in Figs. 12(a–f). Our prediction for the three
raffic types (i.e., high, medium, and low volume) are stable, and
10
there is no particularly bad situation, which demonstrates the
robustness of the proposed model. In fact, one should pay more
attention to the situation of high and medium human traffic flow.
Hence, using the method proposed in practice is recommended.

5.2.4. Multi-step prediction
Multi-step prediction definition Problem 2 is used. Traffic vol-

ume can be predicted over multiple periods, increasing efficiency
compared with single-step prediction. As shown in Fig. 13, a four-
step prediction experiment was conducted. The multi-step error
of ED-ACNN is lower than that of PCRN and ST-ResNet. However,
Fig. 13 shows that as the number of prediction steps increases,
the error also increases, which indicates that an overly large
step prediction is not practical. In actual problems, therefore it
is suggested that the number of prediction steps should be less.

5.2.5. Efficiency comparison
The efficiencies of three particularly deep learning models

were compared, namely PCRN, ST-ResNet, and MST3D. As can be
seen in Fig. 14, the results show that the proposed model has
the fewest parameters, smallest model size, and shortest testing
time. The proposed method can obtain better performance with
fewer parameters, which shows that the proposed method can
fit the changes in human traffic volume. ST-ResNet is redundant
because of more residual units, model fusion, and fully connected
layers. The reason that MST3D has more parameters is due to the
fully connected layers. If the prediction regions become abun-
dant, e.g., 64 ∗ 64, model parameters will exceed the areas of
32 ∗ 32 and 16 ∗ 8. However, the proposed method does not
rapidly increase the number of model parameters due to the
increase of the prediction regions. To the best of our knowl-
edge, training time is generally positively correlated with the
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model parameters, model size, and testing time [60]. As shown
in Fig. 14, our simple model (i.e., ED-ACNN-S) features a 2.6 MB
model size, 21.36 W parameters, and 0.2 s test time, which is
approximately 1/12 that of ST-ResNet. Compared with MST3D
and PCRN, ED-ACNN outperforms them in efficiency. As shown in
Figs. 14(a–c), ED-ACNN contains 4.6 MB (i.e., 36.6 W parameters)
of parameters and the test runtime is 0.37 s. Compared with
PCRN, ST-ResNet, and MST3D baselines, the higher instance-level
precision is achieved using the proposed model with smaller
model size (6.4 times smaller than ST-ResNet, 4.4 times smaller
than MST3D, and 1.9 times smaller than PCRN), faster prediction
speed (5.8 times faster than ST-ResNet, 3.3 times faster than
MST3D, and 43.8 times faster than PCRN). The proposed model
 t

11
also exhibits smaller computation, which proves it can be used
in practical problems.

5.2.6. Spatio-temporal property analysis
From the properties of closeness, period, and trend, the closeness

s more important for traffic-volume prediction. LC , LP , and LS
efer to the length of closeness, period, and trend, respectively.
aking LC as an example, LC = 3 refers to the length of closeness
eing 3. As can be seen from Table 3, only a single data attribute
s used for prediction, and the prediction error of the closeness
s significantly lower than the other two attributes (i.e., period
nd trend) in using ST-ResNet and ED-ACNN. This indicates that
he property of closeness plays a more significant role in the



B. Pu, Y. Liu, N. Zhu et al. Applied Soft Computing Journal 97 (2020) 106688

t
o
a
b
p
M

Fig. 13. Four-step prediction on TaxiBJ data.

prediction of traffic flow in DL methods than the other two
properties. This condition can be explained as being like a traffic
jam at 8:00 a.m. in a region having a great influence on the
number of people at 8:30 and 9:00 a.m. The closeness feature con-
tains continuous information for the prediction target tendency,
e.g., the target is the human traffic prediction at 9:00 a.m. and
the closeness length is 3, which means that the human traffic
flow at 7:30, 8:00, and 8:30 a.m. (assuming that the fixed time
interval is 0.5 h). The spatial traffic-flow images of these three
periods (i.e., 7:30, 8:00, and 8:30 a.m.) can compose spatial flow
information with a 0.5 h interval, which can accurately forecast at
9:00 a.m. Assuming that the target is the human traffic prediction
at 9:00 a.m. on Friday, LP = 3 (period-length = 3) indicates traffic
flow at 9:00 a.m. on Tuesday, Wednesday, and Thursday morning.
period can represent spatial flow information with a time interval
of 24 h. Similarly, trend can demonstrate the flow of information
consisting of spatial traffic-flow images a week apart.

The continuousness of closeness (0.5 h), period (1 d), and trend
(1 week) are all related to the prediction target. However, the
closeness property is most similar to the prediction target ten-
dency. For example, traffic congestion at 8:00 a.m. in a region
definitely affects crowd traffic at 8:30 and 9:00 a.m. Traffic con-
gestion at 8:00 a.m. on Tuesday does not demonstrate that con-
gestion will occur at 8:00 a.m. on Wednesday. Similarly, last
week’s congestion does not mean that there will be congestion
this week. These situations are influenced by environmental and
external factors. At the same time, the importance of the closeness
property is reflected in the short-term traffic-flow forecast, es-
pecially for 5–15 min forecasting. From the experimental results

shown in Table 3, one cannot clearly find that period is more

12
important than trend; that is to say, for human traffic prediction,
24-h information flow is not necessarily more important than
that of 1 week. This may be due to people always resting on
weekends and going to work during the week.

The trend property of spatio-temporal data is similar to the
statistics of HA. As shown in Table 3, a single trend attribute
is designed for prediction. The errors of ED-ACNN (i.e., 39.32
and 8.91) and ST-ResNet (i.e., 40.33 and 8.93) are much lower
than those of HA (i.e., 57.69 and 21.58), which demonstrates
that DL methods are better than traditional statistical methods.
As illustrated in Table 3, a phenomenon is noted, namely when
period length= 1 the prediction errors of ED-ACNN and ST-ResNet
are less than period length = 2 and period length = 3 on TaxiBJ.
Theoretically, more related attribute data should obtain better
prediction results in DL methods, which suggests that there may
be some noise or redundancy in our data.

To better understand the attributes of traffic flow, the param-
eters of temporal closeness, period, and trend before the fusion
layer are visualized separately, which facilitates learning different
temporal influence degrees for each region of a city, as shown
in Fig. 15. Each element based on a grid map in each sub-figure
indicates a learned parameter of a certain region that reflects
the influence degree by closeness, trend, or period. In Fig. 15(a),
the parameters of the three long striped regions are very low,
and these regions represent the freeways in the real world. This
indicates that these regions have less closeness. In contrast, the
small blue squares represent the regions near the university
town, which has strong closeness. As shown in Fig. 15(b), Sun Park
and Beijing Zoo are high-trend regions, like the Zhong guan cun
regions, which have a higher period than Xuanwu hospital regions
in Fig. 15(c).

6. Conclusion

In this paper, a novel attention convolution neural network
based on an encoder–decoder framework (called ED-ACNN) is
proposed for forecasting the flow of crowds in every region in an
entire city, based on historical human traffic data. The proposed
ED-ACNN is capable of learning all spatial (i.e., nearby and distant)
and temporal (i.e., closeness, period, and trend) dependencies on
raffic-flow images. The performance of ED-ACNN on three types
f real-world datasets in Beijing and New York City are evalu-
ted, winning the competitive performance between 10 popular
aselines in accuracy and efficiency, which indicates that the
roposed method is more applicable to traffic-flow prediction.
eanwhile, it is found that find the closeness information is more

important compared with the other two properties by analyz-
ing the single attribute of traffic flow. In the future, a human
traffic-flow warning decision support system (e.g., Fig. 16) will be
deployed on the parallel version to monitor the flow of crowds.
In addition, the optimization of ED-ACNN and its application
to other datasets (e.g., social media positioning, RFID, and WIFI

positioning) comprises our planned future work.
Fig. 14. Comparison with baselines in model size, model parameters, and runtime.
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Fig. 15. Visualization of parameters on TaxiBJ.
Fig. 16. Framework of human traffic-flow warning decision support system based on ED-ACNN.
able 3
omparison with ST-ResNet in using a single attribute on TaxiBJ.
Method Setting RMSE

TaxiBJ BikeNYC

ED-ACNN

LC = 3 16.91 6.12
LC = 2 17.20 6.20
LC = 1 17.31 6.27
LP = 3 38.59 9.90
LP = 2 36.88 10.68
LP = 1 35.41 11.65
LS = 3 39.32 8.91
LS = 2 39.17 8.93
LS = 1 40.73 9.56

ST-ResNet

LC = 3 19.95 6.38
LC = 2 21.04 6.46
LC = 1 21.6 6.51
LP = 3 39.4 9.97
LP = 2 37.47 10.37
LP = 1 36.76 11.41
LS = 3 40.33 8.93
LS = 2 37.56 9.15
LS = 1 38.52 9.43
13
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