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 a b s t r a c t

The demand of large models for data has revitalized information extraction research, particularly 
for Chinese texts, where semantic isolation poses unique challenges. Existing methods often rely 
on Chinese word segmentation, but their capacity to capture full semantic meaning is constrained 
by polysemy, flexible word order, and other unique characteristics of the Chinese language. To ad-
dress this limitation, we propose three-level semantic division and design CEREM, a prompt- and 
pointer-based IE network, to extract highly aggregated semantics. In our design, prompts unify 
multiple IE tasks while preserving semantic interactions, a Segment Information Attention mech-
anism implicitly aggregates the high-level semantics to enhance Chinese understanding, and an 
Independent Branches strategy decouples parameters to focus separately on the sub-tasks of start 
and end index prediction. We evaluate CEREM on four datasets–DiaKG, CMedCausal, Title2Event, 
and the self-constructed CAIT–covering named entity recognition (NER), relation extraction (RE), 
and event extraction tasks. CEREM achieves state-of-the-art performance: on CAIT, 88.59% F1 for 
NER and 71.82% for RE; on DiaKG, 81.77% for NER and 65.44% for RE; and for causal relation 
extraction on CMedCausal, 45.30% F1. These results demonstrate CEREM’s effectiveness across 
domains and task types, highlighting its potential as a unified framework for Chinese information 
extraction.

1.  Introduction

The popularity of large models has led to significant data demands, particularly the Chinese texts (Hui et al., 2024). Chinese 
information extraction tasks can extract essential knowledge from chaotic text data, effectively addressing the demand for high-
quality Chinese texts data in large models (Zhang et al., 2019). However, unlike English texts, where words with complete semantics 
are naturally separated by spaces, the semantics of Chinese texts are characterized by their isolation, word segmentation, flexible 
word order, polysemy, and omission phenomena. These unique characteristics of the Chinese language bring huge challenges for 
Chinese information extraction tasks.

Chinese word segmentation task extracts key fragments from Chinese texts to solve the problem of semantic difficulty caused by a 
lack of segmentation (Li et al., 2023; Lin et al., 2023). Researchers have conducted many works on Chinese word segmentation to adopt 
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\begin {equation}W=PLM(s\oplus x) \label {eq:1}\end {equation}
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\begin {equation}s\oplus x=[[cls], p_1, p_2, \cdots , p_m, [sep], x_1, x_2, \cdots , x_n] \label {Xeqn2-2}\end {equation}
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\begin {equation}S_{r}(i,:) = \frac {1}{r} \sum _{m=0}^{r-1} W(i \cdot s + m,:)=t_{[i,(r+i)]} \label {Xeqn3-3}\end {equation}
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\begin {equation}SW_r=Multi(Softmax\left (\frac {AS_r'}{\sqrt {d_k}}\right )\times S_r) \label {Xeqn7-7}\end {equation}
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\begin {equation}W_{stack}=Stack(W,[SW_2,\cdots ,SW_n], dim=-1) \label {Xeqn8-8}\end {equation}
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\begin {equation}\begin {cases} IB_{start} = FSW_{start}\\ IB_{end} = FSW_{end} \end {cases} \label {Xeqn9-9}\end {equation}
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Fig. 1. Understanding Chinese texts from three-level perspectives, including the semantics obtained from characters, word, and segment (high-level 
semantics with actual meaning, which corresponds to the English text in pink bar).

the Chinese pre-trained model such as T5 (Raffel et al., 2020), BERT-Base-Chinese (Devlin et al., 2019), and Chinese-RoBERTa-wwm-
ext (Liu et al., 2019), which achieves great performance improvements in information extraction task. However, word segmentation 
is not sufficient to fully cope with the unique characteristics of Chinese Texts. Some related studies (Lee et al., 2024; Ponce et al., 
2024) have shown that the segmentation task for Chinese language usually divides the text according to the most basic vocabulary, 
which still poses great difficulties for models to understand semantics. Analyzing the reasons, word segmentation typically generates 
lexical units that represent basic semantic elements, and these units often require further contextual integration within phrases 
with high-level structures to be fully comprehended. Using only lexical units that represent basic semantic elements still cannot 
avoid semantic isolation. The Semantic Isolation Index (SII)1 is introduced to quantitatively characterize semantic isolation. It is a 
segmentation-based metric that measures the divergence between token-level compositional semantics and holistic entity meaning. 
Empirical results across multiple datasets consistently show that this divergence increases with entity length, indicating that longer 
entities exhibit stronger semantic isolation and are more likely to be interpreted as integrated semantic units rather than combinations 
of their parts.

To describe the complete semantics, as illustrated in Fig. 1, three levels of semantics are presented. The first level is the low-
level semantics in the original Chinese characters, which are fragmented and isolated, making it difficult for the model to fully 
grasp the meaning of the Chinese text. The second level is the semantics of Chinese words derived from word segmentation which 
has represented a significant improvement, but there is still a gap from the actual meaning. The third level is the actual meaning 
of Chinese phrases, which are endowed by long-term social and cultural influences. It has already permeated into various fields, 
referred to as highly aggregated semantics. Understanding Chinese semantics only from the perspectives of the first and second levels 
is difficult to obtain the actual meaning of the text. The highly aggregated semantics is quite common in Chinese texts, with varying 
degrees of severity. Therefore, it is important for the model to understand Chinese texts from the perspective of highly aggregated 
semantics.

Although highly aggregated semantics have significant importance in Chinese texts, existing research on information extraction 
mainly focuses on the design of model input form and the design of task head with pre-trained language models (PLM)  (Liu et al., 
2019; Raffel et al., 2020), Some of researches insert question templates (Du & Ji, 2022; Li et al., 2020a; Silva et al., 2022), prompt 
information (Li et al., 2020b; Lu et al., 2022), or solid and levitated markers (Ye et al., 2022; Zhong & Chen, 2021) into the text 
as model input, which adopts additional information to promote the information extraction. Other researches develops a range of 
extraction techniques to represent the boundaries and categories of extracted information and use different structures to extract 
specific information, such as sequence labeling (Huang et al., 2015; Yu et al., 2020; Zheng et al., 2017), span-based methods (Jiang 
et al., 2020; Wang et al., 2021; Ye et al., 2022), token pair methods (Yan et al., 2023), word to NER (Li et al., 2022a), and generation-
based methods (Hsu et al., 2022; Yan et al., 2021; Zeng et al., 2018). Due to the lack of emphasis on highly aggregated semantics, 
the difficulty of extracting Chinese information still needs to be further addressed.

In addition, for information extraction, existing researches employ parameter sharing across different sub-tasks to enhance se-
mantic interactions among these sub-tasks (Wang et al., 2020; Wei et al., 2020). While parameter sharing often leads to parameter 
confusion due to the divergent objectives of different sub-tasks. To avoid parameter confusion, some methods utilize independent 
models for different sub-tasks (Ye et al., 2022; Zhong & Chen, 2021), which reduces interactions within semantics and brings in a lack 
of semantic richness. Both parameter confusion and insufficient semantic richness have a negative impact on the semantic quality, 
especially for Chinese information extraction tasks (Chen et al., 2025).

1 A formal definition and cross-dataset analysis are provided in the Appendix.
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In order to further explore Chinese semantic extraction and improve the performance of Chinese information extraction, this paper 
proposes a Chinese entity and relation extraction model (CEREM) for information extraction. Firstly, an architecture based on prompt 
and pointer networks for information extraction is proposed, which unifies multiple information extraction tasks to one task. Then, 
Segment Information Attention (SIA) is presented to enhance the understanding of Chinese texts. Finally, the Independent Branches 
(IB) strategy is conducted to make parameters focus on the semantics from every sub-task split from the single task for information 
extraction. The main contributions are summarized as follows:

• A novel three level semantic of Chinese Texts is presented and an information extraction network CEREM is proposed to extract 
different levels of Chinese semantics. CEREM is designed based on prompt and pointer networks to unify multiple information 
extraction tasks to one task.

• A novel attention structure termed segment information attention is presented to supplement highly aggregated semantics for the 
generation of the word embeddings.

• An independent branches structure is conducted to make parameters focus on the semantics from every sub-task split from the 
single task for entity and relation extraction. The structure alleviates the problem of ineffective utilization of Chinese semantics 
by resolving parameter confusion.

Extensive experiments are conducted on named entity recognition, relation extraction, and causal relationship extraction, using 
two publicly available Chinese texts datasets and one self-constructed Chinese texts dataset. The experimental results indicate that 
CEREM has achieved a signicantly performance outperforms the state-of-the-art models. Moreover, SIA can be inserted into various 
information extraction models to improve the quality of word embeddings.

2.  Research objectives

In order to promote the development of information extraction research in Chinese text, this paper studies the different levels of 
semantics hidden in Chinese text, especially highly aggregated semantics. For that, this paper proposes a Chinese entity and relation 
extraction model CEREM for Chinese information extraction, details as follows: (1) To unify multiple information extraction tasks to 
one task and achieve effective information extraction, the proposed information extraction network is built on prompt and pointer 
networks. (2) To supplement highly aggregated semantics for the generation of the word embeddings, a novel attention structure 
termed segment information attention is presented. (3) To alleviate the problem of ineffective utilization of Chinese semantics by 
resolving parameter confusion, making parameters focus on the semantics from every sub-task, an independent branches structure 
is conducted. (4) To validate the impact of advanced aggregation semantics on the performance of information extraction tasks, 
extensive visualization experiments are conducted.

3.  Related work

In recent years, information extraction has garnered significant attention in various research topics, involving named entity recog-
nition, relation extraction, joint extraction, event extraction, and so on. According to the way of extracting information, existing 
methods can be roughly classified into three categories.

Pipeline-based Information Extraction Method employed distinct models to execute various sub-tasks of information extrac-
tion, with each model functioning independently. Yang et al. (2019) separately extracted event trigger and arguments to address 
overlapping arguments. Zhong and Chen (2021) proposed a pipeline model for named entity recognition and relation extraction 
by text slicing and label insertion methods. Based on this study, Ye et al. (2022) improved the strategy of inserting labels, further 
enhancing the performance of the model. Wang et al. (2023) proposed a concise approach using the fused features for the relation 
extraction task. The advantage of this method lies in the independence of the sub-tasks, which minimizes parameter confusion. Yan 
et al. (2025) introduced a modular pipeline, DocExtractNet, for receipt information extraction based on distinct sub-task modules. 
The advantage of this method lies in the independence of the sub-tasks, which minimizes parameter confusion. However, these ap-
proaches presented a problem: the lack of semantic information exchange between sub-tasks, resulting in low utilization of semantic
information.

Joint-based Information Extraction Method utilizes a single integrated model with distinct components designed for various 
sub-tasks. Wei et al. (2020) proposed a joint information extraction method that completed named entity recognition and relation 
extraction tasks end-to-end. Wang et al. (2020) also conducted research in this direction, completing end-to-end information extraction 
by designing matching strategies between tokens and entities. Jia et al. (2023) designed binary factors and ternary factors to directly 
model interactions between not only a pair of instances but also triplets. Su et al. (2023) proposed a three-stage joint extraction model, 
which can tackle overlapping problems. Gui and Cui (2023) proposed a joint entity-relation extraction method AJE based on a dot-
product attention mechanism. Shang et al. (2022a) cast joint extraction as a fine-grained triple classification problem and proposed a 
joint extraction model. Luo and Yu (2024) introduced ESGNet, a multimodal joint model incorporating entity semantic graphs, which 
captures latent semantic information from both text and image modalities to enhance extraction accuracy from Chinese resumes. 
Bölücü et al. (2024) introduced a weakly supervised learning framework with noise-robust training, which effectively improves 
the performance of joint extraction tasks under noisy annotation conditions. These methods allow the model to fully leverage the 
interdependencies among different sub-tasks during the learning process by sharing parameters. However, it may lead to parameter 
confusion.
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Fig. 2. The overview of the proposed CEREM. The "PLM with Prompt" provides information extraction targets and generates original word em-
beddings. The "Branches with SIA" achieves Chinese semantic enhancement and parameter decoupling. The "Pointer Network" indicates the start 
indices and the end indices of the extracted target entities.

Universal Information Extraction Method regards various information extraction sub-tasks as a unified task, thereby enabling 
completion using a singular structure. Li et al. (2020a) transformed event extraction into a multi-round question and answer task, 
abstracting events uniformly and completing event extraction tasks end-to-end. Lu et al. (2021) proposed an end-to-end universal 
event extraction model through generating paradigms of sequence to structure. Afterward, Lu et al. (2022) conducted further research 
and proposed a unified information extraction model based on prompt for various information extraction tasks. Yan et al. (2023) 
unified the information extraction task into a token pair classification task, proposing a unified token pair task head. Ping et al. 
(2023) proposed a new paradigm for universal information extraction that is compatible with any schema format and applicable 
to various IE tasks. In addition, He et al. (2025) proposed a hierarchical generation and multi-evidence alignment fusion model for 
multimodal entity and relation extraction, which further extends the universal information extraction paradigm to the multimodal 
domain by integrating hierarchical semantic generation and multi-source information fusion. The above methods effectively utilize 
the interdependencies among different sub-tasks and prevent parameter confusion to some extent. However, it requires the support 
of word embeddings with rich semantics.

4.  Methodology

In this section, this paper first designs the unified architecture of information extraction, which achieves effective information 
extraction by leveraging semantic interaction among various sub-tasks. Subsequently, this paper presents Segment Information At-
tention to enhance the understanding of Chinese texts by highly aggregated semantics. Finally, this paper conducts a strategy called 
Independent Branches to avoid parameter confusion by adopting a fine-grained strategy for parameter decoupling. The overall archi-
tecture is depicted in Fig. 2.

4.1.  The information extraction architecture

Firstly, this section illustrates the unified information extraction architecture, which adopts prompt and pointer networks to unify 
different tasks. To effectively extract information from Chinese texts and unify various information extraction tasks, the architecture 
is built on prompt techniques and pointer networks, which maintains semantic interaction and reduces parameter confusion. Inspired 
by (Lu et al., 2022), this paper enables the model to maintain semantic richness and unifies sub-tasks by a prompt component.

Specifically, the proposed model accepts a prompt and a text sequence as input and then generates embeddings using the encoder 
from a Chinese PLM by:

𝑊 = 𝑃𝐿𝑀(𝑠 ⊕ 𝑥) (1)

where 𝑠 represents a prompt that controls what to spot, what to associate, and what to extract. 𝑥 represents a text sequence. 𝑊
represents embeddings of the input generated by a Chinese PLM. ⊕ is a splicing format, and the specific structure of input data is as 
follows:

𝑠 ⊕ 𝑥 = [[𝑐𝑙𝑠], 𝑝1, 𝑝2,⋯ , 𝑝𝑚, [𝑠𝑒𝑝], 𝑥1, 𝑥2,⋯ , 𝑥𝑛] (2)
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where [𝑐𝑙𝑠] and [𝑠𝑒𝑝] represent special tokens, used as separators in the input of the model. 𝑝1, 𝑝2,⋯ , 𝑝𝑚 is a sequence of prompt. 
𝑥1, 𝑥2,⋯ , 𝑥𝑛 is a sequence of text.

Using prompt and pointer networks, information extraction tasks can be accomplished through the single task of target entity 
extraction. Given a sentence that contains several entities, there are relationships between these entities. For entity extraction, the 
prompt specifies an entity type, while for relation extraction, it combines an entity and a relation type. As the experiment in this 
paper includes entity extraction, relationship extraction, and causal relationship extraction, an example to describe how to use the 
proposed architecture to complete these extraction tasks is as follows.

For the sentence: "Steve Jobs was born in America in1999.′′

• Entity extraction: The prompt is an entity category (For example, the prompt is "person", where the "person" is an entity category). 
• Relation extraction: The prompt is a combination of an entity and a relation category (For example, the prompt is "Steve Jobs’ 
birthplace", where the "Steve Jobs" is an entity and the "birthplace" is a relation category).

• Causal relationship extraction: The goal of this task is to extract causal triplets, including the extraction of head entities, tail 
entities, and causal relationships. Therefore, it is similar to entity and relationship extraction. 

The proposed model extracts target entities (entities related to the prompt) each time. For completing information extraction, the 
model first uses each entity category as a prompt in turn to extract all entities. Then, all extracted entities are combined with all 
relation categories in turn to form prompts for extracting relations or arguments.

During the above process, Chinese PLM is adopted to generate embeddings. After that, the extraction of the target entities is 
completed using pointer networks, consisting of a pair of head and tail pointers. The head pointer and the tail pointer indicate the 
start indices and the end indices of the extracted target entities, respectively. Both the head and tail pointers are one-dimensional 
tensors, each with a length of the maximum sequence length.

In this architecture, sub-tasks are unified as a target entity extraction task, so that the parameters of the architecture can maintain 
semantic information from these different sub-tasks and interactions among these sub-tasks during training. Since there is only one 
unified task, the parameter confusion is significantly reduced.

4.2.  Segment information attention

This section presents Segment Information Attention. The encoder used for generating embeddings typically relies on the com-
putation of "attention mechanisms". By adaptively learning the relationships between tokens, relevant features are incorporated into 
each token to enrich the embeddings’ global information. Existing attention mechanisms often compute the correlation from the per-
spectives of character and word segmentation, which are different from the actual semantics. Therefore, the introduction of highly 
aggregated semantics for enhancing the model’s understanding of Chinese texts is crucial.

In fact, in the field of computer vision, Vision Transformer (ViT) (Dosovitskiy et al., 2021) has already proposed applications of 
this idea. Instead of using a pixel-based perspective, ViT divides an image into multiple patches, allowing attention mechanisms to 
be computed from complete local features. The difference between Chinese texts and images is that, even though the semantics of 
characters and words in texts may be isolated, they still play a crucial role in understanding the overall meaning of Chinese texts. 
Therefore, it is important to maintain the perspectives of character and word segmentation while also incorporating highly aggregated 
semantics.

In existing pre-trained encoders, the information of tokens uses the semantics of character and word segmentation. Performing 
attention calculations between tokens and segments, attaching the correlation features of tokens and segments to the tokens, and then 
integrating this with the pre-trained encoder constitutes a highly suitable structure. In detail, PLM generates word embeddings with 
the semantics of characters and words. Then, these embeddings are first pooled through multi-scale averaging for generating segment 
embeddings, which represent different segments in the text. Within a Chinese text, there are many phrases with highly aggregated 
semantics that vary in position and length. The multi-scale structure iteratively generates segment embeddings of different lengths, 
enabling coverage of these phrases. During training process, the proposed model adaptively selects the segments that require attention 
and disregards those that can be neglected, thereby enabling segment embeddings to effectively represent highly aggregated semantics 
of phrases. The average pooling is implemented by:

𝑆𝑟(𝑖, ∶) =
1
𝑟

𝑟−1
∑

𝑚=0
𝑊 (𝑖 ⋅ 𝑠 + 𝑚, ∶) = 𝑡[𝑖,(𝑟+𝑖)] (3)

where 𝑊 =
[

𝑡1, 𝑡2,⋯ , 𝑡𝐿
]⊤ ∈ ℝ𝐿×𝑑 is the original word embeddings, 𝐿 is the length of sequence and 𝑑 is the dimension. 𝑟 is 

the kernel size that controls the window size for pooling, which is set to 2, 3… 𝑛. 𝑠 is the stride, which is set to 1. 𝑆𝑟 =
[

𝑡[0,𝑟], 𝑡[1,(𝑟+1)], ⋯ , 𝑡[(𝐿−𝑟),𝐿]
]⊤ ∈ ℝ(𝐿−𝑟+1)×𝑑 is segment embeddings. Each token in 𝑆𝑟 represents a text segment of length 𝑟, 

while each token in 𝑊 ∈ ℝ𝐿×𝑑 represents only one character. Compared to the 𝑊 ∈ ℝ𝐿×𝑑 , the size differs in the sequence dimension 
but remains the same in the feature dimension.

In the attention mechanism, the correlation between tokens is calculated through matrix multiplication. For traditional self at-
tention mechanisms, the correlation is calculated by 𝐴𝑆 = 𝑊 ⋅𝑊 ⊤, where 𝐴𝑆 ∈ ℝ𝐿×𝐿 is the attention score. Given a semantically 
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complete text segment in a sentence that the index starts with 𝑐 and ends with 𝑒, its correlation should be highlighted in the 𝐴𝑆 as:

𝐴𝑆 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⋯ , ⋯ , ⋯ , ⋯ , ⋯
⋯ , 𝒕𝒄,𝒄 , ⋯ , 𝒕𝒄,𝒆, ⋯
⋮, ⋮, ⋱, ⋮, ⋮
⋯ , 𝒕𝒆,𝒄 , ⋯ , 𝒕𝒆,𝒆, ⋯
⋯ , ⋯ , ⋯ , ⋯ , ⋯

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (4)

However, due to the scattered and isolated semantic meaning of Chinese characters, it is difficult to establish (𝑒 − 𝑐)2 relationships 
completely and accurately. To address this issue, SIA is proposed. The correlation is calculated by 𝐴𝑆′

𝑟 = 𝑊 ⋅ 𝑆⊤
𝑟 , where 𝐴𝑆′

𝑟 ∈
ℝ𝐿×(𝐿−𝑟+1) can be expanded as:

𝐴𝑆′
𝑟 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑡0,[0,𝑟], 𝑡0,[1,(𝑟+1)], ⋯ , 𝑡0,[(𝐿−𝑟),𝐿]
𝑡1,[0,𝑟], 𝑡1,[1,(𝑟+1)], ⋯ , 𝑡1,[(𝐿−𝑟),𝐿]
⋮, ⋮, ⋱, ⋮

𝑡(𝐿−1),[0,𝑟], 𝑡(𝐿−1),[1,(𝑟+1)], ⋯ , 𝑡(𝐿−1),[(𝐿−𝑟),𝐿]

⎤

⎥

⎥

⎥

⎥

⎦

(5)

where 𝑡𝑎,[𝑐,𝑒] represents the correlation between character 𝑎 and segment [𝑐, 𝑒]. Similarly, for the above given example, the highlighted 
cases in 𝐴𝑆 are as follows:

𝐴𝑆′
𝑟 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⋯ , ⋯ , ⋯
⋯ , 𝒕𝒄,[𝒄,𝒆], ⋯
⋮, ⋮, ⋮
⋯ , 𝒕𝒆,[𝒄,𝒆], ⋯
⋯ , ⋯ , ⋯

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (6)

On the one hand, correlation mining is conducted between characters and segments allows the full utilization of the highly aggre-
gated semantics within segments, which is more likely to trigger a correlation response, making it highlighted and thereby facilitates 
the acquisition of more comprehensive and accurate correlations. On the other hand, compared to the self-attention mechanism, 
the number of relationships extracted by this method decreases exponentially (specifically, 𝑒 − 𝑐, and the number of self-attention is 
(𝑒 − 𝑐)2), making the computational process more focused and preventing the loss of correct correlations.

Furthermore, in order to reduce the negative impact of redundancy and useless correlations, multi-head and multi-scale structures 
were designed to complete the attention calculation process. In brief, the multi-head process is obtained through:

𝑆𝑊𝑟 = 𝑀𝑢𝑙𝑡𝑖(𝑆𝑜𝑓𝑡𝑚𝑎𝑥

(

𝐴𝑆′
𝑟

√

𝑑𝑘

)

× 𝑆𝑟) (7)

where 𝑆𝑊𝑟 is the new word embeddings that have semantics of characters, words, and phrases of length 𝑟. Due to 𝐴𝑆
′
𝑟

√

𝑑𝑘
∈ ℝ𝐿×(𝐿−𝑟+1)

and 𝑆𝑟 ∈ ℝ(𝐿−𝑟+1)×𝑑 , and the 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(⋅) and 𝑀𝑢𝑙𝑡𝑖(⋅) do not affect the shape of the matrix, so 𝑆𝑊𝑟 ∈ ℝ𝐿×𝑑 remains consistent with 
the original word embeddings 𝑊  in shape.

And the multi-scale process is obtained through:
𝑊𝑠𝑡𝑎𝑐𝑘 = 𝑆𝑡𝑎𝑐𝑘(𝑊 , [𝑆𝑊2,⋯ , 𝑆𝑊𝑛], 𝑑𝑖𝑚 = −1) (8)

After calculating by the 𝑆𝑡𝑎𝑐𝑘(⋅), 𝑊 ,𝑆𝑊2,⋯ , 𝑆𝑊𝑛 will be integrated into 𝑊𝑠𝑡𝑎𝑐𝑘 ∈ ℝ𝐿×𝑑×𝑛. The final embeddings with complete 
semantic can be extracted by a Linear layer through 𝐹𝑆𝑊 = 𝑊𝑠𝑡𝑎𝑐𝑘 × 𝑇𝑙𝑖𝑛𝑒𝑎𝑟. The 𝑇𝑙𝑖𝑛𝑒𝑎𝑟 ∈ ℝ𝑛×1, so 𝐹𝑆𝑊 ∈ ℝ𝐿×𝑑 remains consistent 
with the original word embeddings 𝑊  in shape.

Multi-head structure enables the model to obtain correlations from different perspectives and improve the weight of correct 
correlations during the calculation process. Multi-scale structure also has this effect. and it can adapt to text segments of different 
scales to support complete correlation acquisition. The final embeddings 𝑆𝑊  possesses richer semantic information. While, it retains 
the same shape as the original word embeddings 𝑊 , which enables it to be well ported to other jobs that require PLM to improve 
performance.

4.3.  Independent branches

To alleviate the issue of parameter confusion brought by parameter sharing, this section conducts Independent Branches to decou-
ple the parameters. DNN’s parameters can be divided into those in shallow layers and those in deep layers. The parameters in shallow 
layers are close to the input and used to extract universal characteristics, while deep layer parameters are close to the output and are 
used to extract specialized characteristics. For example, CNN extracts universal features such as edges and textures by shallow layers, 
and further extracts specialized features by deep layers to perform classification or regression tasks (Zeiler et al., 2014).

Therefore, the SIA structure behind the encoder becomes the deep layers for extracting specialized features. While the encoder 
becomes the shallow layers for extracting universal features, as shown in Fig. 3. Considering that shallow layers exhibit minimal 
parameter confusion while deep layers are prone to confusion, the architecture employs a strategy of using two independent SIA 
branches to decouple deep layer parameters. These two branches are dedicated to extracting start and end indices, respectively.

Unlike other methods that adopt shared parameters to solve different sub-tasks, this paper treats start index extraction and end 
index extraction as different sub-tasks and decouples parameters based on them. This allows deep parameters to serve only a single 
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Fig. 3. The process of parameter decoupling. The unified information extraction task is divided into starting index extraction and ending index 
extraction tasks. It consists of two independent SIA branches.

task, with individual task objectives, enabling the parameters to focus on completing that task without being distracted. In detail, 
SIA is used to generate embeddings with complete semantics. For IB, two SIA structures are used in parallel, with original word 
embeddings as input, to generate two embeddings with complete semantics, which are applied to different sub-tasks respectively. 
This process can be obtained through:

{

𝐼𝐵𝑠𝑡𝑎𝑟𝑡 = 𝐹𝑆𝑊𝑠𝑡𝑎𝑟𝑡

𝐼𝐵𝑒𝑛𝑑 = 𝐹𝑆𝑊𝑒𝑛𝑑
(9)

where 𝐹𝑆𝑊𝑠𝑡𝑎𝑟𝑡 and 𝐹𝑆𝑊𝑒𝑛𝑑 represent two independent SIA architectures used to complete different sub-tasks. Then the generated 
𝐼𝐵𝑠𝑡𝑎𝑟𝑡 and 𝐼𝐵𝑒𝑛𝑑 are fed into the start pointer network and end pointer network to generate start and end pointers, which represents 
start and end indices, respectively. This process can be implemented by:

𝑃𝑁(𝐼𝐵) = 𝐼𝐵 × 𝑃𝑙𝑖𝑛𝑒𝑎𝑟 (10)
{

𝑃𝑜𝑖𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑟𝑡 = 𝕀(𝑃𝑁𝑠𝑡𝑎𝑟𝑡(𝐼𝐵𝑠𝑡𝑎𝑟𝑡) ≥ 𝜏)
𝑃𝑜𝑖𝑛𝑡𝑒𝑟𝑒𝑛𝑑 = 𝕀(𝑃𝑁𝑒𝑛𝑑 (𝐼𝐵𝑒𝑛𝑑 ) ≥ 𝜏)

(11)

where 𝑃𝑁 reduces the feature dimension to 1 via 𝑃𝑙𝑖𝑛𝑒𝑎𝑟 ∈ ℝ𝑑×1, and 𝕀 means to set values greater than 𝜏 in the tensor to 1, otherwise 
set them to 0. 𝑃𝑜𝑖𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑟𝑡 ∈ ℝ𝐿×1 and 𝑃𝑜𝑖𝑛𝑡𝑒𝑟𝑠𝑡𝑎𝑟𝑡 ∈ ℝ𝐿×1 are the pointers used to represent start and end indices of entities. The 
number of elements with a value of 1 in these two is consistent. Take an example in the Fig. 4.

Compared to the parameter decoupling strategy of pipeline methods, the proposed parameter decoupling avoids parameter confu-
sion to a greater extent. In addition, this paper unifies different tasks using prompts, so that the parameters retain the rich semantics 
of different extraction tasks. In this way, parameter confusion is avoided in a great measure without losing the rich semantics in texts.
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Fig. 4. Example of a practical application of the pointer network.

4.4.  The dataflow of CEREM

In sum, the data flow of CEREM framework proceeds from prompt construction to final span decoding in a stage-wise manner. 
The concatenated input 𝑠 ⊕ 𝑥 (Eq.  (1)) is encoded by the pre-trained language model to produce contextualized token embeddings 
𝑊 = PLM(𝑠 ⊕ 𝑥), where 𝑊 ∈ ℝ𝐿×𝑑 denotes the sequence length by embedding dimension. These token-level embeddings retain 
alignment with both the prompt tokens and the target text tokens and serve as the shared representation for all subsequent operations.

To enrich the semantic representation of compositional or long expressions, 𝑊  is then processed by the Segment Information At-
tention module. SIA aggregates multi-scale, phrase-level features and fuses them back with the original token embeddings, producing 
an enhanced representation 𝑆𝑊  that keeps the same shape as 𝑊  but encodes additional segment-aware context. Importantly, SIA is 
designed to be plug-and-play with the PLM output. It does not change embedding dimensionality or token alignment, which ensures 
compatibility with downstream heads.

After semantic enhancement, CEREM uses the Independent Branches strategy to decouple boundary predictions. As shown in 
Fig. 3, two parallel branches (one specialized for start positions and one for end positions) independently process the SIA-enhanced 
embeddings and produce task-specific hidden states 𝐼𝐵start and 𝐼𝐵end. Each branch is projected by a lightweight pointer head that 
scores tokens and, after thresholding, yields binary start/end pointers. Extracted spans are decoded from matched start–end pairs. 
By repeating forward passes with different prompts (entity-category prompts for NER, entity+relation prompts for RE, and causal 
prompts for causal triplet extraction), the same encoder and SIA/IB pipeline unify multiple subtasks while preserving task-specific 
precision through branch-level parameter decoupling.

5.  Experiments

This article conducts experiments on multiple information extraction tasks using datasets from different fields to fully validate the 
effectiveness of the proposed method. To validate the effectiveness of the methods proposed in this paper for Chinese information 
extraction, this paper has selected several widely studied tasks in information extraction, including entity and relation extraction, 
and causal relationship extraction.

5.1.  Datasets

The publicly available dataset Diakg (Chang et al., 2021) and the self-built dataset CAIT are chosen as the experimental datasets 
for entity and relation extraction. Diakg is a widely used Chinese medical text dataset specifically designed for diabetes-related 
research. It contains a comprehensive collection of clinical knowledge, treatment guidelines, and research findings on diabetes. The 
Diakg dataset is derived from 41 diabetes guidelines and consensus, which are from authoritative Chinese journals, including basic 
research, clinical research, drug usage, clinical cases, diagnosis and treatment methods, etc. This dataset covers the most extensive 
research content and hot areas in recent years, containing a total of 22,050 entities and 6890 relationships. CAIT is a Chinese 
information extraction dataset in the agricultural domain, primarily focusing on entity recognition and relation extraction related to 
crop diseases and pests. The dataset contains approximately 400 original sentences, which are expanded to 15,200 samples through 
prompt construction and negative sample generation. It covers 13 types of entity categories and 14 types of relation categories. 
On average, each sentence contains 7.75 entities and 7.00 relations, indicating a high level of information density and semantic 
complexity. With its strong domain specificity and clear structure, the CAIT dataset is well-suited for training and evaluating models 
in complex scenarios involving multiple entities and relations. The reason for choosing to use the CAIT dataset is that, on the one 
hand, compared with the existing public datasets, it has a higher density of entity relationships and a greater difficulty in extraction. 
On the other hand, this dataset is relatively small in scale and is more suitable for the rapid validation of model performance. Other 
details about the CAIT dataset will be described in the appendix. For causal relationship extraction, the publicly available dataset 
CMedCausal (Li et al., 2022b) is chosen as the experimental dataset. CMedCausal is a widely used Chinese medical texts dataset 
proposed by Alibaba, which contains rich knowledge of medical causality. The dataset covers various causal relations such as drug 
reactions, disease progressions, and treatment outcomes, serving as a valuable resource for training and evaluating models in this task. 
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Table 1 
The key relevant experimental environment.
 Indicator  Values
 Operating System  Ubuntu 20.04.3 LTS
 CPU  Intel Xeon Gold 5318Y @ 2.10GHz
 GPU  NVIDIA A40
 Number of GPUs  2
 PyTorch  1.10.0
 Transformers  4.22.1
 Scikit-learn  1.1.2

It consists of 800 labelled training samples, 200 validation samples, 1000 test samples, and an additional 1000 unlabelled samples. 
CMedCausal comprises richly annotated clinical notes, with the longest text spanning 544 characters. For the event extraction task, 
the Title2Event(Deng et al., 2022) dataset is chosen, which is a large-scale Chinese dataset designed for open event extraction. It 
consists of over 40,000 real-world news titles collected from multiple domains, each annotated with one or more event triplets in the 
form of (subject, predicate, object). Different from traditional event datasets with fixed event types and predefined argument roles, 
Title2Event follows an open schema and focuses on extracting diverse predicates and entities directly from titles. Because Chinese 
news titles are usually short, condensed, and may contain multiple or incomplete events, this dataset presents unique challenges such 
as argument omission, predicate diversity, and event overlap. All annotations were manually verified through multiple rounds of 
quality control to ensure high reliability and coverage across different topics.

5.2.  Implementation details

In the experiment, some of the related works with publicly available code and the method proposed in this paper are conducted 
in the same environment, where the CPU is an Intel Xeon Gold 5318Y CPU@2.10GHz, and the GPU is an NVIDIA A40. The operating 
system is Ubuntu 20.04.3 LTS. All models are evaluated using the Chinese PLM "Chinese-RoBERTa-wwm-ext" published by the Harbin 
Institute of Technology on Hugging Face, serving as the encoder. The experimental data for other related works are sourced from 
their respective papers. The details of the training and testing environment for the proposed model are shown in the Table 1.

As the method proposed in this paper relies on prompts, the model’s ability to adapt to prompts needs to be strength. This paper 
applies the strategy of the generation of negative samples to better adapt to prompts and enhance the generalization of the model. 
In detail, many additional data are added to the dataset, where there prompts are unrelated to text or incorrect, and lable_list is 
an empty list. The mixing of a large number of negative samples helps improve the performance of information extraction tasks 
during the training process of the model. Especially, when testing and applying the model in practice, in order to extract complete 
information from the text, a comprehensive but redundant prompt set needs to be provided. The strategy of the generation of negative 
samples can effectively address this scenario.

During the experimental process, parameter freezing and thawing strategies are set in this paper. Considering that the parameters 
in the pre-trained model have been trained on a large amount of Chinese data, their parameters already contain rich and accurate 
knowledge. However, parameters that have not been trained in the model can lead to significant loss in the early stages of training. 
Adjusting the pre-trained model’s parameters based on this loss could negatively impact the pre-trained model. Therefore, in this 
paper, we froze the pre-trained model during the initial training phase. The model was only unfrozen for overall training once its F1 
score on the test set exceeded the threshold (default value is set to 0.2).

During the model performance evaluation phase. In the comparative experiments, Diakg, CAIT, and CMedCausal datasets are used 
for validation. The evaluation metrics for the relation extraction and causal relationship extraction tasks are the F1 score of triplet 
extraction, while the evaluation metric for the named entity recognition task is the F1 score of entity extraction. In the ablation 
experiments, the same three datasets are used for validation, and the evaluation metric employed is the F1 score of the unified 
information extraction task. In the pluggability experiments, the self-constructed dataset CAIT is used for validation. The evaluation 
metric for the relation extraction task is the F1 score of triplet extraction, and for the named entity recognition task, the evaluation 
metric is the F1 score of entity extraction.

In order to verify the effectiveness of the proposed methods in this paper, we have selected influential models in the field of 
information extraction in recent years.

5.3.  Comparison for entity and relation extraction

The datasets Diakg and CAIT are used to validate performance on entity and relation extraction tasks. All models involved in 
the comparison are classified into three categories: Pipeline-based IE, Joint-based IE, and Universal IE. The experimental results are 
shown in the Table 2. It indicates that our method universally outperforms several previous studies on the two datasets.

Compared with advanced methods in Pipeline-based IE, the model proposed in this paper unifies multiple sub-tasks, allowing the 
embeddings to maintain the semantic interaction of information. The proposed model also uses the SIA structure to further enrich 
the embeddings, which promotes the model’s understanding of semantics and has better generalization ability. Additionally, the 
parameter decoupling strategy conducted in this paper is more detailed than the Pipeline strategy, enabling the parameters to focus 
more precisely on specific problems without confusion. Compared with advanced methods in Joint-based IE, the model proposed 
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Table 2 
Results of the comparative experiments, where NER represents the named entity recognition 
task, and RE represents the relation extraction task.

Models Type
 CAIT  Diakg
 NER  RE  NER  RE

 CasRel (Wei et al., 2020)  Joint-based  -  60.29%  -  56.90%
 TPLinker (Wang et al., 2020)  Joint-based  -  67.87%  -  59.89%
 PLMarker (Ye et al., 2022)  Pipeline-based  86.35%  68.53%  80.53%  63.49%
 UIE (Lu et al., 2022)  Universal  87.66%  65.48%  81.69%  64.97%
 UTC-IE (Yan et al., 2023)  Universal  85.48%  71.81%  80.38%  63.58%
 PP-UIE-0.5b (PaddleNLP, 2025)  Universal  81.99%  56.58%  79.45%  54.23%
 PP-UIE-1.5b (PaddleNLP, 2025)  Universal  79.89%  59.38%  63.68%  67.72%
 PP-UIE-7b (PaddleNLP, 2025)  Universal  83.77%  68.71%  81.07%  60.70%
 PP-UIE-14b (PaddleNLP, 2025)  Universal  87.50%  72.76%  83.49%  65.55%
 CEREM  Universal  88.59%  71.82%  81.77%  65.44%

Table 3 
Results of the comparative experiments on causal relationship ex-
traction task.
 Models  Precision  Recall  F1
 TSBN (Jiang & Zhao, 2022)  45.92%  41.64%  43.23%
 DRP (Liang et al., 2022)  -  -  42.58%
 OneRel (Shang et al., 2022b)  46.80%  37.10%  41.40%
 PRGC (Zheng et al., 2021)  41.10%  20.70%  27.50%
 UIE (Lu et al., 2022)  38.24%  40.53%  39.35%
 PP-UIE-0.5b (PaddleNLP, 2025)  13.92%  36.50%  20.16%
 PP-UIE-1.5b (PaddleNLP, 2025)  28.99%  42.86%  34.59%
 PP-UIE-7b (PaddleNLP, 2025)  32.92%  52.64%  40.51%
 PP-UIE-14b (PaddleNLP, 2025)  40.12%  43.80%  41.88%
 CEREM  48.69%  42.35%  45.30%

in this paper effectively avoids parameter confusion through parameter decoupling, which is a common issue in Joint methods. 
Meanwhile, by using the SIA structure, the model enhances its ability to understand Chinese texts by incorporating the perspective 
of highly aggregated semantics. Compared with advanced methods in Universal IE, the proposed model achieves the best overall 
performance, obtaining the highest NER score of 88.59% on CAIT and competitive results on Diakg. Although the large-scale PP-
UIE-14B model achieves comparable performance on some RE metrics, CEREM still exhibits superior generalization and semantic 
understanding with a more compact architecture. These results further confirm the effectiveness and robustness of the proposed 
approach.

5.4.  Comparison for casual relationship extraction

The dataset CMedCausal is used to validate the performance on causal relationship extraction tasks. The relevant work for com-
parison are TSBN, DRP, OneRel, PRGC, UIE, and PP-UIE. The experimental results are shown in the Table 3. It indicates that our 
method universally outperforms several previous studies on the CMedCausal datasets.

For the causal relationship extraction tasks, the proposed CEREM model consistently achieves the highest precision and F1-score 
among all compared methods, demonstrating its strong overall effectiveness and stability. Although PP-UIE-7B attains the highest 
recall, CEREM still outperforms all PP-UIE variants in terms of precision and comprehensive performance, reflecting its better bal-
ance between accuracy and coverage. Compared with previous studies, the proposed model unifies multiple sub-tasks, enabling the 
embeddings to preserve semantic interaction and contextual consistency. In addition, the introduced Segment Information Attention 
structure further enriches the semantic representations, enhancing the model’s understanding of complex causal semantics and im-
proving generalization capability. Furthermore, the parameter decoupling strategy allows the parameters to focus more precisely on 
task-specific representations, reducing interference among sub-tasks and further improving model robustness.

5.5.  Comparison for event extraction

The Title2Event dataset is used to validate the performance on event extraction tasks, including trigger extraction, argument 
extraction, and event triplet extraction. The model is trained with a batch size of 128, for 100 epochs, using a multi-scale kernel 
size of 5. Comparative methods include EventGLM-gwn (EGLM), ST-Seq2SeqMRC (ST-Seq2Seq), ST-SpanMRC (ST-Span), SeqTag, 
Unsuper, and UIE, and the results are summarized in Table 4.

For the event extraction tasks, CEREM demonstrates robust and consistent performance across trigger extraction, argument ex-
traction, and event triplet extraction. It achieves a precision of 80.2 and an F1-score of 74.8 in trigger extraction, confirming its strong 
ability to accurately identify event-triggering expressions. In argument extraction, the model attains precision, recall, and F1-scores 
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Table 4 
Results of the comparative experiments on event extraction task. P, R, F1 stand for precision, 
recall, and F1-score, respectively.

 Trigger Ex.  Argument Ex.  Triplet Ex.
 Methods  P(%)  R(%)  F1(%)  P(%)  R(%)  F1(%)  P(%)  R(%)  F1(%)
 EGLM  70.4  70.7  70.5  58.5  58.3  58.4  50  50.2  50.2
 ST-Seq2Seq  -  -  -  57.9  58.6  58.2  49.8  50.1  49.9
 ST-Span  -  -  -  60.1  54.9  57.4  44.5  44.8  44.7
 SeqTag  69.5  69.9  69.7  50.8  51.2  51  41.1  41.3  41.2
 Unsuper  21  32  25.4  12  15.5  13.5  4.5  6.8  5.4
 UIE  80.9  67.5  73.6  67.5  62.9  65.1  57.8  51.2  54.3
 CEREM  80.2  70.1  74.8  65.3  67.3  66.3  56.3  54.1  55.7

Table 5 
The pluggability experiments for the proposed SIA module, 
which significantly improves the performance of existing 
methods.

 Models  SIA  NER  REL
 CasRel (Wei et al., 2020)  -  -  60.29%

 3  -  62.84%
 TPLinker (Wang et al., 2020)  -  -  67.87%

 3  -  71.85%
 UIE (Lu et al., 2022)  -  87.66%  65.48%

 3  89.66%  71.86%
 UTC-IE (Yan et al., 2023)  -  85.48%  71.81%

 3  87.09%  73.29%

of 65.3, 67.3, and 66.3, respectively, revealing its effectiveness in capturing event-related entities and their semantic roles. Moreover, 
CEREM obtains an F1-score of 55.7 for event triplet extraction, illustrating its robustness in integrating multiple event components 
into coherent structural representations.

Distinct from traditional models that process event elements separately, CEREM models the entire event structure in a holistic 
and interaction-aware manner. This design allows the contextual embeddings to dynamically capture dependencies among triggers, 
arguments, and their roles within a unified semantic space. The SIA mechanism facilitates fine-grained interaction across segments, 
effectively distinguishing overlapping or nested event patterns. In parallel, the IB design contributes to stable optimization by selec-
tively refining event-related representations without cross-task interference. Through this synergy of global semantic modeling and 
modular parameter learning, CEREM achieves a deeper comprehension of complex event semantics and delivers superior robustness 
and generalization in diverse event extraction scenarios. The above results demonstrate that CEREM is not confined to entity and 
causal relation extraction but can also be effectively extended to more complex tasks such as event extraction. Given its unified 
architecture and semantic modeling capability, CEREM exhibits strong potential for cross-domain generalization and can be readily 
adapted to various application fields with minimal structural modification, highlighting its scalability.

5.6.  Ablation studies

5.6.1.  Pluggability of the SIA
The presented SIA is a structure used to enrich the semantics of embeddings without changing the shape of the embeddings. 

Therefore, SIA is a portable structure that can be widely inserted into other models. In the comparative experiment, although our 
method outperforms the relevant advanced works, the performance improvement is not significant. In order to further verify the 
effectiveness of our method and to verify the pluggability of SIA, pluggability experiments are conducted. The experimental results 
are shown in Table 5.

This paper successfully inserts SIA in several advanced models and achieved improvements in named entity recognition and 
relation extraction tasks in all of them. The application method is just inserting SIA after the encoder of the model. Since SIA does not 
change the shape of embeddings, embeddings generated by SIA can still be smoothly applied to subsequent calculations of the model. 
Furthermore, SIA enriches the semantics of embeddings, which can provide a better foundation for subsequent information extraction. 
Inserting SIA in several advanced models consistently resulted in significant improvements in both named entity recognition and 
relation extraction tasks. In order to clearly demonstrate the performance improvement effect brought by SIA to several related 
studies, the experimental results are visualized as shown in the Fig. 5(a). The experimental results demonstrate that the SIA presented 
in this paper possesses excellent pluggability. And it is orthogonal to other works, which can further improve the performance of 
information extraction. It can be easily applied to other information extraction models and enhance their ability in Chinese information 
extraction tasks by enriching the semantics of Chinese.
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Fig. 5. Performance comparison of the proposed components with baseline.

Table 6 
The performance improvement brought by the proposed components and the corresponding 
resource overhead. GPU Memory is measured with batch size 1.

Order SIA IB
 F1

Paras FLOPs Memory
 CAIT  Diakg  CMedCausal

 1  -  -  66.55%  56.38%  63.75%  85.65M  21.76B  1947MB
 2  -  4  71.36%  65.03%  66.82%  +6.3M  +1.61B  +80.5MB
 3  4  -  70.93%  64.94%  67.01%  +15.76M  +4.04B  +202MB
 4  4  4  73.14%  70.04%  67.88%  117.17M  29.84B  2391MB

5.6.2.  Module analysis of SIA and IB
This section conducts ablation studies to assess the improvements attributed to the contributions proposed in this paper and 

provides an analysis of the experimental results. Four models are introduced to compare performance. The first model is the baseline, 
which is combined by prompt and pointer networks. The second model only uses the IB structure, which replaces two SIA modules 
with two multi-head cross-attention modules in CREAM. The third model only uses one SIA structure, which is inserted after the PLM. 
The whole structure is depicted in Fig. 3 (a). The fourth model is the proposed CEREM (Fig. 3 (b)).

As shown in Table 6, both innovation points proposed in this paper have shown significant improvements compared to the 
baseline. The complete model proposed in this paper achieves the best evaluation metric value. SIA structure satisfies the baseline 
model’s dependency on semantics, leading to improved performance of information extraction tasks. Additionally, the conducted 
IB provides effective parameter decoupling, allowing parameters to focus on different sub-tasks and thus achieving performance 
gains. The complete model demonstrates optimal performance, indicating that the methods proposed in this study can be effectively 
integrated to enhance information extraction capabilities. The F1 curve on the dev dataset during the model training process is plotted 
in Fig. 5(b), where the curve has undergone smooth spline interpolation. The improvement brought by each innovation point can be 
intuitively observed from the F1 trend.

In addition, parameters, FLOPs, and GPU memory were used to validate the computational overhead of the SIA module. The results 
are shown in Table 6. Compared with the baseline model, the SIA module introduces only a slight increase in model complexity, 
accounting for 18.40% of the parameter count and 18.57% of the FLOPs of the baseline. Although the SIA and IB components incur 
non-negligible computational overhead, this cost is justified by their significant performance improvement and SIA’s unique capability 
to address the core issue of semantic isolation in Chinese, which cannot be achieved merely by scaling up the model. Therefore, the 
additional computation introduced by SIA and IB can be considered a reasonable and effective trade-off between efficiency and 
accuracy.

As shown in Table  7, the introduction of the Segment Information Attention module results in a moderate decrease in throughput 
and an increase in batch-level latency under different batch sizes. This additional computational cost mainly arises from the segment-
aware attention computation and multi-scale semantic aggregation. Nevertheless, the efficiency degradation remains limited under 
small batch settings, which are representative of latency-sensitive inference scenarios. When considered together with the consistent 
performance improvements reported in the preceding experiments, these results indicate that SIA achieves a reasonable efficiency-
performance balance. By focusing computation on semantically meaningful token-segment interactions rather than exhaustive token-
level correlations, SIA improves semantic representation quality while maintaining practical computational efficiency.
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Table 7 
Throughput and latency of different model variants un-
der various Batch sizes.
 Batch  Models  Throughput  Average delay

 (samples/sec)  (ms)
 1  Baseline  9.09  109.97

 IB  7.06  141.72
 SIA  6.80  147.03
 IB+SIA  5.24  190.96

 2  Baseline  9.95  200.96
 IB  8.30  240.89
 SIA  7.84  255.23
 IB+SIA  6.43  311.07

 4  Baseline  10.13  394.88
 IB  8.37  477.86
 SIA  7.89  507.16
 IB+SIA  6.45  620.38

Table 8 
Performance of CEREM on the CAIT 
dataset under different maximum 
window sizes k.

 k  NER(%)  RE(%)
 3  92.70  74.70
 4  92.02  76.59
 5  92.47  76.04
 6  92.43  77.44
 7  93.26  74.75

Table 9 
Performance comparison of UTC-IE and CEREM on NER and RE tasks 
under different random seeds on the CAIT dataset.

Seed
 NER(%)  RE(%)
 UTC-IE  CEREM  UTC-IE  CEREM

 9  85.48  88.59  71.81  71.82
 42  87.40  91.86  73.20  72.50
 567  85.71  90.66  70.96  72.32
Mean ± Std 86.20 ± 1.05 𝟗𝟎.𝟑𝟕 ± 𝟏.𝟔𝟓 71.99 ± 1.13 𝟕𝟐.𝟐𝟏 ± 𝟎.𝟑𝟓

5.6.3.  Robustness and parameter sensitivity analysis
In this section, we analyze the robustness and parameter sensitivity in the proposed model. Firstly, to investigate the impact 

of the maximum window size k on CEREM’s performance, we conduct a systematic ablation study on the CAIT dataset. All other 
hyperparameters are kept fixed (random seed = 1234, batch size = 128, epochs = 600), while the maximum window scale k is 
varied from 3 to 7. This analysis aims to assess the robustness of the Segment Information Attention mechanism across different 
segment scales and to provide guidance for selecting an appropriate k value in practice.

As shown in Table 8, CEREM maintains consistently strong performance across all tested window sizes. For the NER task, the 
F1 scores fluctuated narrowly between 92.02% (k=4) and 93.26% (k=7), while for the RE task, the F1 scores ranged from 74.70% 
(k=3) to 77.44% (k=6). Although minor variations exist, no single window size demonstrates a decisive advantage across both tasks, 
indicating that CEREM is relatively insensitive to the choice of maximum window scale within the tested range. These findings suggest 
that the SIA mechanism is capable of effectively capturing semantic information across different segment lengths, maintaining stable 
performance even when the maximum window size varies. Considering both computational efficiency and semantic coverage, we 
selected k=5 as the default configuration. This value provides a balanced trade-off, covering the majority of typical phrase lengths in 
Chinese text while avoiding unnecessary computational overhead. Overall, the parameter sensitivity analysis confirms the robustness 
of CEREM and validates the flexibility of the SIA mechanism to adapt to different segment scales.

Moreover, to ensure the reliability of the improvements presented, we perform a multi-run assessment on the CAIT dataset. For 
CEREM and the UTC-IE baseline, each model was trained and evaluated multiple times using different random seeds, with three 
independent runs per model. For each run, F1 scores were recorded in both the Named Entity Recognition and Relation Extraction 
tasks. This setup enables the computation of mean performance, mean deviation, paired differences, 95% confidence intervals (CI), 
and statistical significance, allowing a comprehensive evaluation of both effectiveness and stability. The experimental results are 
shown in Table 9.
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Fig. 6. The attention scores of the model after training with/without SIA on CAIT dataset. Three examples are as input, where light blue images 
without SIA and dark blue images with SIA. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

The results demonstrate that CEREM consistently outperforms UTC-IE on the NER task, achieving an average improvement of 
approximately 4.17%, which is statistically significant (t(2) = 7.586, p = 0.0169; 95% CI = [1.81, 6.54]). This confirms CEREM’s 
ability to effectively capture entity semantics. For the RE task, the improvement achieved by CEREM is relatively small (0.22%) and 
not statistically significant (t(2) = 0.370, p = 0.7471; 95% CI = [-2.38, 2.82]), indicating that part of the observed gain may fall 
within the range of random variation. Nevertheless, CEREM exhibits notably lower variability across runs, especially for RE (Â±0.35 
compared with Â±1.13 for UTC-IE), which highlights the stability and reliability of its predictions. Although the RE improvement on 
the CAIT dataset is limited, CEREM delivers clearly stronger gains on other datasets such as DiaKG, where the absolute improvement 
reaches 1.86%. Combined with the substantially reduced variance, these results suggest that the advantages of CEREM are reflected 
not only in average F1 scores but also in prediction stability and cross-domain robustness. Overall, CEREM integrates NER and RE 
through prompt-based and pointer-based modeling in a stable and scalable manner, providing both competitive performance and 
consistent, theoretically meaningful results.

Finally, to assess the model’s robustness against semantic isolation, we conduct a length-based evaluation on the CAIT dataset 
using the named entity recognition (NER) task. To quantify the prevalence of long entities, we introduce the Long Entity Ratio, 
defined as the proportion of entities whose length exceeds six Chinese characters. Long entities typically contain multiple lexical 
units and represent highly aggregated semantics, which makes them more susceptible to semantic isolation. A cross-dataset statistical 
summary of long-entity proportions under this length threshold is provided in the Appendix to quantify the prevalence of long entities 
across datasets and substantiate the six-character threshold as a meaningful boundary for identifying semantically isolated units. This 
analysis supports the consistency and general applicability of the definition across different datasets. All entities are grouped by length, 
and the performance of CEREM is compared across different length intervals, including 1, 2, 3, 4, 5, 6, 7, and at least 8 characters. 
For fairness, entities longer than eight characters were combined into a single group due to their relatively small number. Table 10 
depicts the proportion of entities of different lengths in the CAIT dataset alongside model performance within each group. The results 
show a general downward trend in performance as entity length increases, confirming that longer entities pose greater challenges for 
extraction due to their complex compositional semantics. Nevertheless, CEREM maintains strong and stable performance across all 
length groups and achieves particularly significant gains for long entities. Specifically, CEREM attains an overall F1-score of 88.95%, 
outperforming UIE (86.45%) and all PP-UIE variants. Notably, its relative advantage becomes more evident with increasing entity 
length, demonstrating its superior resilience to semantic aggregation and contextual sparsity.

The above results indicate that the Segment Information Attention mechanism plays a key role in alleviating semantic isolation by 
capturing internal segment dependencies within long entities. The length-based robustness analysis provides direct empirical evidence 
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Fig. 7. A comparison example of SIA and self-attention. The same color grading method was used for SIA and self attention to demonstrate the 
difference in their attention scores.

Table 10 
Comparison of model performance (F1%) on the CAIT dataset for entities of different lengths. Prop. represents 
the percentage of entities of each length within the CAIT dataset.
 Length  Prop.(%)  UIE(%)  PPUIE-0.5b(%)  PPUIE-1.5b(%)  PPUIE-7b(%)  PPUIE-14b(%)  CEREM(%)
 1  1.84  100.00  81.82  100.00  100.00  90.00  100.00
 2  54.61  91.60  90.05  86.70  90.04  94.41  94.76
 3  12.40  93.33  93.43  92.75  90.00  94.03  95.45
 4  11.73  84.06  80.00  81.63  83.22  85.71  86.13
 5  2.85  90.91  65.12  45.90  66.67  68.18  80.00
 6  3.52  68.42  75.00  76.60  87.50  89.36  72.22
 7  1.51  80.00  60.87  73.68  73.68  80.00  80.00
≥8  11.56  59.50  46.88  50.38  53.85  60.29  63.87
 All  100  86.45  81.99  79.89  83.77  87.50  88.95

that CEREM not only performs reliably on short, compositional entities but also generalizes effectively to complex, semantically 
entangled expressions. Collectively, these results reinforce CEREM’s robustness and interpretability in Chinese information extraction 
tasks, particularly in scenarios involving highly aggregated semantics.

5.7.  Visualization: The effectiveness of SIA

As shown in Fig. 6, the attention scores after applying SIA exhibit distinct "patch-like" patterns. These "patches" mainly gather on 
the diagonal and are almost all square in shape. This phenomenon occurs because, when a token is in a text segment with complete 
semantics, SIA strengthens the correlations between this token and all other tokens within the segment. This suggests that SIA 
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facilitates the model in achieving a holistic semantic understanding of complete text segments, enabling it to get the actual meaning 
of the segment.

In fact, it is also observed from the attention scores without the SIA that weak "patch-like" patterns emerge. However, due to 
the absence of the perspective of highly aggregated semantics, the responses between tokens and segments are relatively weak, 
resulting in phenomena such as blurred and incomplete boundaries in the "patches". In contrast, the SIA treats segments as wholes 
and captures correlations between tokens and segments. When a token is deemed relevant to a specific segment, SIA enhances the 
correlation between that token and all other tokens within the segment, leading to significant "patch-like" patterns. This phenomenon 
indicates that the perspective of highly aggregated semantics is fully leveraged by SIA, improving the model’s understanding of 
Chinese semantics.

In order to present this phenomenon more intuitively, we selected a piece of data from the CAIT dataset for display, and the 
results are shown in the Fig. 7. Among them, p1-p4 are semantically complete text spans. For shorter words (p2, p3, p4), SIA and self 
attention can establish good correlations. However, for longer segments (p1), SIA establishes clearer and more accurate correlations 
(this is reflected in its patch-like characteristics and precise span on p1.). This ability can promote SIA to better understand the 
meaning of Chinese text. Moreover, this paper introduces two quantitative metrics to ensure that our interpretability: attention 
entropy and cluster distance. The calculation processes of these two quantitative metrics are described in detail in the appendix. The 
attention entropy of SIA is 1.7284, which is significantly lower than that of Self Attention (2.9137), representing a 68.5% reduction. 
This indicates that SIA encourages a more concentrated attention distribution. More importantly, the inter-cluster distance of the 
SIA model reaches 3.6479, 2.5 times larger than the baseline model (1.4620). This quantitatively demonstrates that the "block-style" 
attention patterns generated by SIA can better separate different semantic units, effectively alleviating the semantic isolation problem 
in Chinese. The quantitative analysis further validates the effectiveness of the SIA mechanism. The detail calculation principles are 
explained in the Appendix.

6.  Discussion

The designed model demonstrates consistent superiority across datasets from multiple domains, which strongly indicates its ro-
bust cross-domain generalization capability. Since highly aggregated semantics are also present in other languages, this finding may, 
to some extent, validate the broader relevance of the methodology presented in this paper. Nevertheless, CEREM faces significant 
limitations. The quadratic computational complexity of its attention mechanism, coupled with the fixed input length constraint of 
its underlying pre-trained language model, leads to performance degradation when processing long documents containing complex 
discourse structures or nested semantic dependencies. While the Segment Information Attention mechanism partially mitigates this 
issue by aggregating segment-level context, it cannot fully capture long-range dependencies spanning multiple sentences or para-
graphs. This constraint may restrict the model’s scalability in real-world applications such as document-level information extraction, 
legal text analysis, or long-form medical reporting.

Beyond these architectural constraints, linguistic and domain diversity in Chinese presents further challenges and opportunities 
for extending CEREM. The framework has been evaluated primarily on standard Mandarin corpora, which exhibit relatively uniform 
lexical and syntactic characteristics. In practice, however, substantial linguistic variation exists–from regional dialects to domain-
specific registers in fields such as law, finance, and agriculture. These variations introduce deviations in vocabulary, prosody, and 
contextual semantics that challenge the model’s underlying assumptions. To improve generalization and robustness, future research 
could explore theoretically grounded adaptation strategies, including domain-informed fine-tuning, cross-dialect transfer learning, 
and multi-level semantic alignment. Such efforts would not only broaden CEREM’s applicability across diverse linguistic contexts but 
also contribute to a more nuanced computational understanding of language variation in complex, low-resource environments.

In sum, while CEREM provides an effective and interpretable solution for Chinese semantic extraction, addressing its limitations 
in long-sequence modeling and extending its applicability to dialectal and domain-specific contexts represent key avenues for future 
research.

7.  Conclusion

In this paper, we propose an information extraction architecture to extract highly aggregated semantics within Chinese texts. 
Firstly, a prompt-based unified information extraction network is proposed, which promotes semantic interaction and solves the 
parameter confusion issue. Secondly, a designed attention mechanism enrichs extracted semantics from the perspective of highly 
aggregated semantics. Finally, a parameter decoupling structure is conducted to make parameters focus on individual tasks. Experi-
mental results indicate that the proposed network effectively addresses highly aggregated semantics and has a significant extent to 
guide the research of information extraction tasks on Chinese texts.

CRediT authorship contribution statement

Bin Liu: Methodology, Funding acquisition; Jiaqi Han: Writing – original draft, Data curation; Zhenyu Zhang: Validation, Formal 
analysis; Shijun Li: Investigation, Data curation; Haixi Zhang: Supervision, Methodology; Yijie Chen: Supervision, Methodology, 
Funding acquisition, Formal analysis, Conceptualization; Keqin Li: Supervision, Resources, Methodology.

Information Processing and Management 63 (2026) 104617 

16 



B. Liu et al.

Data availability

The authors do not have permission to share data.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgments

This research is supported by the National Natural Science Foundation of China (No. grantnumGS50110000180962376226), the 
Natural Science Foundation of Shaanxi Province (No. Natural Science Foundation of Shaanxi Province2025JC-YBQN-888), Shaanxi’s 
Key Research and Development Program (No. 2024NC-ZDCYL-05-05), Xi’an Key Technology Research Projects for Key Agricultural 
Industry Chains (No. 2024JH-NYZD-0027)’ and the Yangling Demonstration Zone Science and Technology Plan Project (No. 2024NY-
14).

Supplementary material

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.ipm.2026.104617

References

Bölücü, N., Rybinski, M., Dai, X., & Wan, S. (2024). An adaptive approach to noisy annotations in scientific information extraction. Information Processing & Management, 
61(6), 103857.

Chang, D., Chen, M., Liu, C., Liu, L., Li, D., Li, W., Kong, F., Liu, B., Luo, X., Qi, J. et al. (2021). Diakg: An annotated diabetes dataset for medical knowledge graph 
construction. In China conference on knowledge graph and semantic computing (pp. 308–314). Springer.

Chen, Z., Hao, J., Sun, H., Zhao, L., Li, J., Qian, Q., Peng, Q., Wang, X., Cong, S., Shen, L. et al. (2025). MedscaleRE-PF: A prompt-based framework with retrieval-
augmented generation, chain-of-thought, and self-verification for scale-specific relation extraction in chinese medical literature. Information Processing & Manage-
ment, 62(6), 104278.

Deng, H., Zhang, Y., Zhang, Y., Ying, W., Yu, C., Gao, J., Wang, W., Bai, X., Yang, N., Ma, J. et al. (2022). 2event: Benchmarking open event extraction with a large-scale 
chinese title dataset. arXiv preprint arXiv:2211.00869.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. (pp. 4171–4186). 
Minneapolis, Minnesota.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. 
(2021). An image is worth 16x16 words: Transformers for image recognition at scale. In International conference on learning representations.

Du, X., & Ji, H. (2022). Retrieval-augmented generative question answering for event argument extraction. (pp. 4649–4666). Abu Dhabi, United Arab Emirates.
Gui, W., & Cui, A. (2023). Aje: Attention mechanism for entity-relation joint extraction. In Journal of physics: Conference series (pp. 12020–12027). Virtual, Online (vol. 

2504).
He, X., Li, S., Zhang, Y., Li, B., Xu, S., & Zhou, Y. (2025). The more quality information the better: Hierarchical generation of multi-evidence alignment and fusion 

model for multimodal entity and relation extraction. Information Processing & Management, 62(1), 103875.
Hsu, I.-H., Huang, K.-H., Boschee, E., Miller, S., Natarajan, P., Chang, K.-W., & Peng, N. (2022). DEGREE: A data-efficient generation-based event extraction model. 

(pp. 1890–1908). Seattle, United States.
Huang, Z., Xu, W., & Yu, K. (2015). Bidirectional LSTM-CRF models for sequence tagging.
Hui, B., Yang, J., Cui, Z., Yang, J., Liu, D., Zhang, L., Liu, T., Zhang, J., Yu, B., Lu, K., Dang, K., Fan, Y., Zhang, Y., Yang, A., Men, R., Huang, F., Zheng, B., Miao, Y., 

Quan, S., Feng, Y., Ren, X., Ren, X., Zhou, J., & Lin, J. (2024). Qwen2.5-coder technical report.
Jia, Z., Yan, Z., Han, W., Zheng, Z., & Tu, K. (2023). Modeling instance interactions for joint information extraction with neural high-order conditional random field. 

(pp. 13695–13710). Toronto, Canada.
Jiang, Y., & Zhao, J. (2022). Medical causality extraction: A two-stage based nested relation extraction model. In China health information processing conference (pp. 

73–85). Springer.
Jiang, Z., Xu, W., Araki, J., & Neubig, G. (2020). Generalizing natural language analysis through span-relation representations. (pp. 2120–2133). Online.
Lee, J., Moon, H., Lee, S., Park, C., Eo, S., Ko, H., Seo, J., Lee, S., & Lim, H. (2024). Length-aware byte pair encoding for mitigating over-segmentation in korean 

machine translation. In L.-W. Ku, A. Martins, & V. Srikumar (Eds.), Findings of the association for computational linguistics: ACL 2024 (pp. 2287–2303). Bangkok, 
Thailand: Association for Computational Linguistics.

Li, F., Peng, W., Chen, Y., Wang, Q., Pan, L., Lyu, Y., & Zhu, Y. (2020a). Event extraction as multi-turn question answering. (pp. 829–838). Online.
Li, H.-W., Lin, Y.-J., Li, Y.-T., Lin, C., & Kao, H.-Y. (2023). Improved unsupervised chinese word segmentation using pre-trained knowledge and pseudo-labeling 

transfer. (pp. 9109–9118). Singapore.
Li, J., Fei, H., Liu, J., Wu, S., Zhang, M., Teng, C., Ji, D., & Li, F. (2022a). Unified named entity recognition as word-word relation classification. Proceedings of the 

AAAI Conference on Artificial Intelligence, (p. 10965–10973).
Li, X., Feng, J., Meng, Y., Han, Q., Wu, F., & Li, J. (2020b). A unified MRC framework for named entity recognition. (pp. 5849–5859). Online.
Li, Z., Chen, M., Ma, Z. et al. (2022b). Cmedcausal: Chinese medical causal relationship extraction dataset. Journal of Medical Informatics, 43(12), 23–27.
Liang, T., Yuan, S., Zhou, P., Fu, H., & Wu, H. (2022). Domain robust pipeline for medical causal entity and relation extraction task. In China health information 

processing conference (pp. 57–65). Springer.
Lin, C., Lin, Y.-J., Yeh, C.-J., Li, Y.-T., Yang, C., & Kao, H.-Y. (2023). Improving multi-criteria chinese word segmentation through learning sentence representation. 

(pp. 12756–12763). Singapore.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). Roberta: A robustly optimized BERT pretraining 

approach. CoRR, abs/1907.11692, 1–13.
Lu, Y., Lin, H., Xu, J., Han, X., Tang, J., Li, A., Sun, L., Liao, M., & Chen, S. (2021). Text2event: Controllable sequence-to-structure generation for end-to-end event 

extraction. (pp. 2795–2806). Online.
Lu, Y., Liu, Q., Dai, D., Xiao, X., Lin, H., Han, X., Sun, L., & Wu, H. (2022). Unified structure generation for universal information extraction. (pp. 5755–5772). Dublin, 

Ireland.
Luo, S., & Yu, J. (2024). Esgnet: A multimodal network model incorporating entity semantic graphs for information extraction from chinese resumes. Information 

Processing & Management, 61(1), 103524.

Information Processing and Management 63 (2026) 104617 

17 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100007128
http://dx.doi.org/10.1016/j.ipm.2026.104617
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0001
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0001
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0002
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0002
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0003
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0003
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0003
https://arxiv.org/abs/2211.00869
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0005
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0005
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0006
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0006
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0007
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0008
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0008
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0009
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0009
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0010
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0010
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0013
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0013
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0014
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0014
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0015
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0016
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0016
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0016
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0017
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0018
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0018
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0019
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0019
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0020
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0021
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0022
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0022
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0023
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0023
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0024
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0024
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0025
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0025
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0026
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0026
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0027
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0027


B. Liu et al.

PaddleNLP, C., (2025). PaddleNLP: An Easy-to-use and High Performance NLP Library, https://github.com/PaddlePaddle/PaddleNLP.
Ping, Y., Lu, J., Gan, R., Wang, J., Zhang, Y., Zhang, P., & Zhang, J. (2023). UniEX: An effective and efficient framework for unified information extraction via a 

span-extractive perspective. (pp. 16424–16440). Toronto, Canada.
Ponce, D., Etchegoyhen, T., Calleja, J., & Gete, H. (2024). Split and rephrase with large language models. In L.-W. Ku, A. Martins, & V. Srikumar (Eds.), Proceedings of 

the 62nd annual meeting of the association for computational linguistics (volume 1: Long papers) (pp. 11588–11607). Bangkok, Thailand: Association for Computational 
Linguistics.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified 
text-to-text transformer. Journal of Machine Learning Research, 21(140), 1–67.

Shang, Y.-M., Huang, H., & Mao, X. (2022a). Onerel: Joint entity and relation extraction with one module in one step. Proceedings of the AAAI Conference on Artificial 
Intelligence, (pp. 11285–11293).

Shang, Y.-M., Huang, H., & Mao, X. (2022b). Onerel: Joint entity and relation extraction with one module in one step. In Proceedings of the AAAI conference on artificial 
intelligence (pp. 11285–11293). (vol. 36).

Silva, R. J., Gedela, K., Marr, A., Desmet, B., Rose, C., & Zhou, C. (2022). QA4IE: A quality assurance tool for information extraction. (pp. 4497–4503). Marseille, 
France.

Su, Y., Wang, P., Cui, S., Xu, F., & Ishdorj, T.-O. (2023). Bije: A joint extraction model for biomedical information extraction. In Lecture notes in computer science (pp. 
119–130). Zhengzhou, China (vol. 14088 LNCS).

Wang, Y., Sun, C., Wu, Y., Zhou, H., Li, L., & Yan, J. (2021). UniRE: A unified label space for entity relation extraction. (pp. 220–231). Online.
Wang, Y., Wang, Y., Peng, Z., Zhang, F., & Yang, F. (2023). A concise relation extraction method based on the fusion of sequential and structural features using ERNIE. 

MATHEMATICS, 11(6), 1439–1458.
Wang, Y., Yu, B., Zhang, Y., Liu, T., Zhu, H., & Sun, L. (2020). TPLInker: Single-stage joint extraction of entities and relations through token pair linking. (pp. 

1572–1582). Barcelona, Spain.
Wei, Z., Su, J., Wang, Y., Tian, Y., & Chang, Y. (2020). A novel cascade binary tagging framework for relational triple extraction. (pp. 1476–1488). Online.
Yan, H., Gui, T., Dai, J., Guo, Q., Zhang, Z., & Qiu, X. (2021). A unified generative framework for various NER subtasks. (pp. 5808–5822). Online.
Yan, H., Sun, Y., Li, X., Zhou, Y., Huang, X., & Qiu, X. (2023). UTC-IE: A unified token-pair classification architecture for information extraction. (pp. 4096–4122). 

Toronto, Canada.
Yan, Z., Ye, Z., Ge, J., Qin, J., Liu, J., Cheng, Y., & Gurrin, C. (2025). Docextractnet: A novel framework for enhanced information extraction from business documents. 

Information Processing & Management, 62(3), 104046.
Yang, S., Feng, D., Qiao, L., Kan, Z., & Li, D. (2019). Exploring pre-trained language models for event extraction and generation. (pp. 5284–5294). Florence, Italy.
Ye, D., Lin, Y., Li, P., & Sun, M. (2022). Packed levitated marker for entity and relation extraction. (pp. 4904–4917). Dublin, Ireland.
Yu, B., Zhang, Z., Shu, X., Liu, T., Wang, Y., Wang, B., & Li, S. (2020). Joint extraction of entities and relations based on a novel decomposition strategy. In Frontiers 

in artificial intelligence and applications (pp. 2282–2289). Santiago de Compostela, Online, Spain (vol. 325).
Zeiler, Matthew, D., FergusR., (2014). Visualizing and understanding convolutional networks. In Computer vision – ECCV 2014 (pp. 818–833). Cham: Springer Inter-

national Publishing.
Zeng, X., Zeng, D., He, S., Liu, K., & Zhao, J. (2018). Extracting relational facts by an end-to-end neural model with copy mechanism. (pp. 506–514). Melbourne, 

Australia.
Zhang, Z., Han, X., Liu, Z., Jiang, X., Sun, M., & Liu, Q. (2019). ERNIE: Enhanced language representation with informative entities. (pp. 1441–1451). Florence, Italy.
Zheng, H., Wen, R., Chen, X., Yang, Y., Zhang, Y., Zhang, Z., Zhang, N., Qin, B., Xu, M., & Zheng, Y. (2021). Prgc: Potential relation and global correspondence based 

joint relational triple extraction. arXiv preprint arXiv:2106.09895.
Zheng, S., Wang, F., Bao, H., Hao, Y., Zhou, P., & Xu, B. (2017). Joint extraction of entities and relations based on a novel tagging scheme. (pp. 1227–1236). Vancouver, 

Canada.
Zhong, Z., & Chen, D. (2021). A frustratingly easy approach for entity and relation extraction. (pp. 50–61). Online.

Information Processing and Management 63 (2026) 104617 

18 

https://github.com/PaddlePaddle/PaddleNLP
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0028
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0028
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0029
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0029
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0029
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0030
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0030
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0031
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0031
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0032
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0032
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0033
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0033
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0034
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0034
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0035
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0036
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0036
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0037
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0037
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0038
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0039
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0040
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0040
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0041
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0041
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0042
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0043
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0044
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0044
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0045
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0045
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0046
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0046
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0047
https://arxiv.org/abs/2106.09895
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0049
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0049
http://refhub.elsevier.com/S0306-4573(26)00009-9/sbref0050

	CEREM: A segment-wise attention network for chinese highly aggregated semantic extraction
	1 Introduction
	2 Research objectives
	3 Related work
	4 Methodology
	4.1 The information extraction architecture
	4.2 Segment information attention
	4.3 Independent branches
	4.4 The dataflow of CEREM

	5 Experiments
	5.1 Datasets
	5.2 Implementation details
	5.3 Comparison for entity and relation extraction
	5.4 Comparison for casual relationship extraction
	5.5 Comparison for event extraction
	5.6 Ablation studies
	5.6.1 Pluggability of the SIA
	5.6.2 Module analysis of SIA and IB
	5.6.3 Robustness and parameter sensitivity analysis

	5.7 Visualization: The effectiveness of SIA

	6 Discussion
	7 Conclusion


