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Abstract—Training large Deep Convolutional Neural Networks
(DCNNs) with increasingly large datasets to improve model accu-
racy has become extremely time-consuming. Distributed training
methods, such as data parallelism (DP) and pipeline model parallel-
ism (PMP), offer potential solutions but face challenges like load
imbalance and significant communication overhead. This paper
introduces GroPipe, a novel architecture that synergistically inte-
grates PMP and DP, markedly improving training speeds. GroPipe
employs an automatic model partitioning algorithm based on a per-
formance projection technique, ensuring load balance and facilitat-
ing quantitative performance evaluation in PMP. Additionally, it
adopts a group-based delayed asynchronous communication strat-
egy to efficiently reduce communication overhead in DP. Using the
ResNet and VGG models with the ImageNet dataset, extensive
experiments are performed on an 8-GPU server and demonstrate
GroPipe’s effectiveness. GroPipe achieves substantial improve-
ments in time to accuracy, showing an average improvement of
42.2% and 14.0% on the ResNet series, and 79.2% and 43.9% on
the VGG series, without compromising Top-1 accuracy.

Index Terms—Delayed asynchronous communication, deep
convolutional neural networks, hybrid parallelism, pipelined model
parallelism.

I. INTRODUCTION

DEEP convolutional neural networks (DCNNs) have a wide
range of applications and significant contributions in the

fields of image classification, autonomous driving, smart medi-
cine, and smart agriculture [1], [2], [3]. These successes depend
on the complex structure of the model and massive datasets.
However, the boom in demand for high-quality intelligent serv-
ices requires the development of large-scale models trained on
massive datasets [4], [5], [6]. This demand has exceeded the
computational limits of traditional stand-alone or host-based
training methods.

To meet these computational demands, scholars have pro-
posed distributed architectures that leverage multi-GPU servers
for parallelized training. Notable works in this domain have cre-
atively and significantly influenced the field by enhancing com-
putational power through distributed clusters. Pipeline model
parallelism (PMP), data parallelism (DP), and hybrid parallelism
are the three major strategies for DCNNs’ training.

PMP [7], [8], [9], [10], [11], [12], [13] firstly divides the large
model into separate sub-models and assigns them to each node
for training individually. It is similar to traditional model paral-
lelism, as illustrated in Fig. 1. Due to the under-utilization of
computational resources caused by traditional model partition-
ing [9], PMP divides mini-batches into micro-batches. After the
first stage has finished processing the first micro-batch, the acti-
vation of this stage is immediately passed to the next stages.
PMP is particularly advantaged when dealing with models too
large to fit into a single device’s memory. By splitting the model
across multiple devices, it facilitates the training of significantly
larger models. This method, however, leads to inefficiencies due
to pipeline idling and the difficulty in balancing the workload
across different model segments.

DP [14], [15], [16], [17], [18], [19], [20] involves dividing
the training input data among multiple workers. Each worker
maintains a local copy of the model weights and computes
local gradients independently while using either parameter
servers or all-reduce primitive synchronization [17], as illus-
trated in Fig. 2. With synchronized gradients, global weights
are updated by executing loop iterations until they reach con-
vergence. DP is optimal for scenarios where the model size is
manageable within individual device memory limits, and the
primary goal is to leverage multiple processors to handle large
datasets efficiently. Its simplicity and scalability make it popu-
lar for many standard deep learning tasks. However, it faces
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challenges with large models due to its high communication
overhead and memory constraints.

PMP and DP provide solutions for the efficient training of
DCNNs. However, PMP suffers from poor scalability, and DP
encounters storage limitations. To overcome these challenges,
hybrid parallel methods [21], [22], [23] that combine the
strengths of multiple parallel algorithms have emerged. It offers
a well-rounded solution for handling large models and datasets,
by providing a balanced approach to resource utilization.

In the academic community, this method is recognized as a
practical solution to the imbalance among model size, data
volume, and computational capacity. However, it also intro-
duces greater complexity in its implementation and can lead
to increased communication overhead. More specifically, research-
ers are currently struggling with two major challenges:
� Load Balancing. Using hybrid parallelism, it is difficult

to achieve an even division of computational workload in
distributed systems. Different model segments have dif-
ferent computational requirements, which may lead to
insufficient resource utilization or slower convergence.

� The Cost of Communication. Coordination among vari-
ous compute units, each executing different parallelism
methods, introduces significant communication overhead.
Efficient and timely communication is crucial for perfor-
mance but remains a complex issue in practice.

The paper introduces GroPipe, a novel architecture designed
to tackle the challenges of model partitioning and fine-grained
parallelism. GroPipe ensures balanced workload distribution
across GPUs, enhancing resource efficiency and reducing the
detrimental effects of load imbalance on training performance.
Its innovative group-based delayed asynchronous communica-
tion strategy further decreases communication overhead, boost-
ing training efficiency. The architecture’s strength lies in its
enhanced convergence speed and resource utilization, making it
an ideal solution for handling large-scale models and datasets in
distributed training. GroPipe is implemented by PyTorch and

specializes in training deep learning models quickly and effi-
ciently. The demonstrated practical applicability and effective-
ness of GroPipe confirm its status as a dependable tool for
efficiently training deep learning models on prevalent datasets.

The research proposes a fresh perspective on hybrid distrib-
uted training for DCNNs, highlighting the importance of perfor-
mance analysis and evaluation in achieving load balancing. The
main contributions of our work are as follows:
� A hybrid parallel training architecture is constructed to

speedup the training of DCNNs. This architecture syner-
gistically combines PMP with DP and introduces a novel
grouped pipeline hybrid parallel method. This method
enhances the computational resource utilization and ena-
bles superior scalability of DCNNs across a multitude of
devices or processors.

� An Automatic Model Partitioning Algorithm (AMPA) is
presented to facilitate optimal load distribution. AMPA
employs a performance projection technique to quantita-
tively evaluate and adjust processing times for different
model partitions. The optimal partitioning scheme derived
from this assessment is then applied to map model segments
to the appropriate hardware resources, promoting equitable
load distribution and augmented GPU efficiency.

� A group-based delayed asynchronous communication strat-
egy is proposed to refine the efficiency of communication
processes. The strategy is activated during backward propa-
gation to reduce the gradient synchronization time of global
weights. The adoption of group-based delayed asynchro-
nous communication effectively reduces communication
latency and enhances the throughput of GPUs.

In summary, this research advances parallel training method-
ologies for large-scale models by specifically addressing inher-
ent computational inefficiencies. The remainder of this paper is
organized into the following sections: Section II reviews exist-
ing research relevant to our study.

Section III presents the GroPipe architecture and the imple-
mentations in detail. In Section IV, the experimental results are
shown to validate the efficiency of the proposed hybrid parallel
method. In Section V, we summarize the findings of this paper
and offer insights into our future research directions.

II. RELATED WORK

In this section, the relevant literature about the study is
reviewed, with a focus on DP and PMP strategies in DCNNs
distributed training methods. Additionally, the differences and
uniqueness of this research compared to existing studies are
emphasized.

For DCNNs’ distributed training, hybrid parallelism com-
bines data and model parallelism’s features, offering a flexible
solution. It addresses memory constraints in DP and “bubbles”
in PMP by merging the strengths of both techniques. This inte-
grative approach provides a more balanced and flexible solution,
surpassing the constraints encountered when each technique is
applied in isolation. Generally, hybrid parallelism can be catego-
rized based on how these techniques are integrated:

Fig. 1. Traditional model partitioning with 4 GPUs.

Fig. 2. Pipelined model parallelism and data parallelism.
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� Operator Parallelism with DP: This approach involves
splitting the operators across different devices (model paral-
lelism) and simultaneously processing different batches of
data on each of these segments (DP). Alpa [26] presents an
innovative approach to automating the parallelization pro-
cess for distributed deep learning. It is designed to automati-
cally generate model-parallel execution plans, leveraging
inter-operator and intra-operator parallelisms. This hier-
archical optimization allows Alpa to manage the compu-
tational graph and device cluster efficiently, enabling
effective and scalable training of large-scale neural net-
works with minimal manual intervention. 3D parallel
technology in DeepSpeed [28] is an advanced training
approach that combines data and model parallelism. This
method distributes the model layers and the data batches
among various workers, enhancing memory efficiency.
This design facilitates scaling AI models across multiple
GPUs and nodes, optimizing memory use, cutting down
communication overhead, and boosting the overall train-
ing speed.

� PMP with DP: This variant combines PMP (where dif-
ferent stages of the model’s computation are done on dif-
ferent devices) with DP. Ye et al. addressed the issue of
excessive GPU memory consumption during distributed
training and introduced a hybrid parallel method called
Hippie [24]. This approach introduces communication
and computation scheduling operations to mitigate mem-
ory consumption and hide communication overhead. Het-
Pipe [25] trains large DCNN models on heterogeneous
GPU clusters, which reduces training time and improves
model convergence speed. This strategy utilizes dynamic
scheduling algorithms to ensure model convergence, reduce
GPU memory consumption, and identify the optimal paral-
lelization scheme. Narayana et al. propose a general hybrid
parallel training system PipeDream [10], which combines
inter-batch pipeline and intra-batch parallelism to achieve
high throughput.

The existing research has significantly pushed the boundaries
of what we can achieve with DCNN models. However, two nota-
ble areas require further attention. The first is load imbalance.
While distributing workloads across devices, it’s often observed
that the distribution is not always even, leading to inefficiencies
in the system, particularly in hybrid parallelism. The second is
high communication overhead. Communication among devices
in distributed training can become a bottleneck, which results in
increased training time. This issue is even more pronounced
in hybrid parallelism scenarios, where the need for dense

communication can substantially increase computational over-
head. Table I illustrates the distinctions between GroPipe and
other methods in addressing primary issues.

To emphasize the innovation and originality of this paper, the
differences between our research and existing studies in DCNN
training are presented as follows:
� Innovative Approach to Load Balancing: In contrast to

existing research, our study rigorously evaluates the
impact of efficient load balancing on DCNN training by
integrating AMPA and performance prediction methods.
This approach accurately minimizes the time difference
among GPUs. This is quite different from traditional
approaches, which focus on optimizing resource alloca-
tion to improve training efficiency.

� Group-Based Delayed Asynchronous Communication
Strategy: This study introduces a novel group-based
delayed asynchronous communication strategy, a tech-
nique that has never been employed in existing DCNNs
training methods. The strategy is initiated during back-
ward propagation to shorten the gradient synchronization
duration. This innovation not only reduces the communi-
cation overhead but also enables the GPU to perform
computational tasks with higher efficiency.

III. GROPIPE: GROUPED PIPELINE PARALLELISM

This section introduces GroPipe, a hybrid parallel training
architecture that combines PMP and DP to improve model scal-
ability and training efficiency. Note: To help readers better
understand the key concepts, fundamental knowledge on distrib-
uted training, including DP, model partitioning, and parameter
update strategies, along with a detailed discussion on DP and
Torchgpipe, has been provided. Due to space constraints, this
content has been relocated to Section I of the supplementary
file, available online.

A. GroPipe Architecture for Large DCNNs

To efficiently train large models on a single server with multi-
ple GPUs, the proposed GroPipe architecture combines the
advantages of PMP and DP. Fig. 3 shows the architecture of the
proposed hybrid parallel method. GroPipe first assigns comput-
ing resources into N groups based on grouping configurations,
with each group consisting of k homogeneous GPUs (e.g., k ¼ 3
as shown in Fig. 3). Then, for the given large DCNN model and
allocated k GPUs, the model partitioner automatically divides
the model into k partitions such that the speedup performance of
the pipeline executed within each group can be maximized.

TABLE I
COMPARISON OF DIFFERENT METHODS

Method Training Efficiency Memory Overhead Load Imblancing Communication Overhead Quantitative Analysis
GroPipe � � � �

Hippie [24] � � �
PipeDream [10] � � �
HetPipe [25] � �
Alpa [26] � �

DAPPLE [27] � � �

LIU et al.: GROPIPE FOR ACCELERATING DCNN TRAINING 2489



Finally, DP is employed among the groups to achieve efficient
model training.

B. Performance Analysis

This paper proposes an advanced performance analysis method
called performance projection to ensure load balancing in model
partitioning. Performance projection provides quantitative perfor-
mance metrics for partitioning. It ensures an even distribution of
computational loads across layers, preventing resource wastage
and performance bottlenecks.

Fig. 4 shows an example of a forward pass diagram for an
unevenly divided pipeline model. Assume that the model is
divided into k partitions and the mini-batch is divided into m
micro-batches. Fi,j denotes the forward pass task in the jth parti-
tion with the ith micro-batch, Bi,j denotes the backward pass task
in the jth partition with the ith micro-batch. The total minimum
latency of the entire computation T� is written as Equation (1):

T� ¼minðTF þ TBÞ, (1)

where TF represents the forward pass time and TB represents the
back pass time. Assuming TM,K represents the total time required
to train m micro-batches on k GPUs, and tm,k represents the time
required to train the mthmicro-batch on the kth GPU. In the pipe-
line model, the total time TF is determined by the duration

required to finish the final task on the last GPU. This time frame
is influenced by the predecessor task on the same GPU as well as
the corresponding task on a preceding GPU. This sequence of
dependencies extends regressively to the very first task under-
taken on the initial GPU, and we have:

TF ¼ TM,K ¼ tm,k þmaxðTm,k−1,Tm−1,kÞ: (2)

Given that the study is carried out in a homogeneous environ-
ment, the duration required for a single GPU to process different
batches is the same in this case. Consequently, the total time can
be seen as the longest path from F1,1 to FM,K . Equation (2) can
be further refined and expressed in an altered form Equation (3),
allowing for a more streamlined analysis and interpretation of
the data:

TF ¼ Tstable þ Trising: (3)

In Equation (3), the model training time can be divided into
two parts: Tstable and Trising. Tstable refers to the training time
required by the GPU with the longest training time, as shown by
GPU 3 in Fig. 4. Trising represents the time required for each of
the remaining GPUs to train one micro-batch. Equation (4) is
utilized to compute the GPU number n associated with the lon-
gest path Tstable:

n¼ argmax
k

j¼1

Xm

i¼1

ti,j

 !
: (4)

Subsequently, the value n is substituted into Equation (5), and
Equation (6) to calculate Tstable and Trising:

Tstable ¼
Xm

i¼1

ti,n, (5)

Trising ¼
Xk

p¼nþ1

tk,p þ
Xn−1

q¼1

t1,q: (6)

Ultimately, under the assumption that the computational pro-
cess of forward propagation is equivalent to that of backpropa-
gation, arranging the aforementioned equations culminates in

Fig. 3. GroPipe utilizes pipeline model parallelism within groups and data parallelism between groups. Asynchronous delayed communication is employed between
groups to reduce communication overhead.

Fig. 4. Unevenly divided pipeline model with 4 GPUs.
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the derivation of the final Equation (7):

TB ¼ TF ¼
Xm

i¼1

ti,n þ
Xk

p¼nþ1

tk,p þ
Xn−1

q¼1

t1,q: (7)

Fig. 5 illustrates the performance projection method. It keeps
track of the training time for each partition in each batch iteration
and records the differences among them. This method quantitatively
analyzes the performance differences of each partition compared to
the average value from a statistical perspective. When the perfor-
mance dispersion of each partition is smaller than a specified thresh-
old, the AMPA can identify the optimal partitioning approximately.
Assuming the model is divided into k partitions, with each partition
having a runtime of Ti, the average runtime per partition is l. The
performance dispersion (PD) can be summarized as follows:

PD¼
Xk

i¼1
ðTi − lÞk
kl

: (8)

C. Automatic Model Partitioning for PMP

To address the issue of load imbalance in PMP, AMPA is
proposed. It consists of three components. Firstly, the AMPA is
used to divide a large DCNN model into multiple partitions to
solve the programmers’ burden of partitioning manually. Sec-
ondly, it utilizes the performance projection method to assess
the time differences among partitions quantitatively and tries to
minimize these differences. Finally, the PMP algorithm is
applied to the micro-batches divided by a mini-batch to improve
the degree of training parallelism.

Algorithm 1 describes the AMPA. This algorithm aims to
minimize Equation (1), allowing for load balancing across dif-
ferent partitions of the model. The algorithm divides the differ-
ent layers of a large model into k partitions and puts them on k
GPU devices within a group, respectively. In this paper, the vol-
ume of parameters for different DCNN models is investigated,
as shown in Table II. The theoretical analysis shows that the
parameters of the full-connection layer are a small percentage of
the DCNN model. Therefore, this algorithm does not require any
partition on the full-connection layer. To maximize the efficiency
of the pipeline, the execution time of each partition should be as
equal as possible. The inputs of the algorithm are an L-layer
DCNN model, a mini-batch, and the number of partitions. The
output is a list of the number of layers in each partition. Lines 1-3
in the algorithm are independent pre-training processes of the
DCNN model. The execution time of each layer is first collected

based on the mini-batch in pre-processing. Then, to eliminate the
undesirable effects caused by singular time values, all the times
are normalized to [0,1], as shown in Equation (9):

ti ¼ ti − minðTÞ
maxðTÞ − minðTÞ : (9)

At last, the times are divided into k partitions. Lines 4-22 are the
partition iteration process with a double loop. The maximal par-
tition representing the longest-running partition pmax is found in

Fig. 5. Performance mapping of the pipeline with 4 GPUs enables load balanc-
ing across the GPUs.

TABLE II
THE VOLUME OF PARAMETERS

Model Full-Connection Layer Params Total Params
ResNet-50 1.9M 24.4M
ResNet-101 1.9M 42.5M
ResNet-152 1.9M 57.4M
VGG-16 3.9M 131.9M
VGG-19 3.9M 137M

Algorithm 1: Automatic Model Partitioning Algorithm.

LIU et al.: GROPIPE FOR ACCELERATING DCNN TRAINING 2491



the outer loop. The minimal partition pmin with the minimum
runtime and the ph next to pmin between pmax and pmin are found
in the inner loop. On each iteration, the current partition P is
changed to another one P0, and the only difference between P
and P0 is that either the last element of ph is moved to phþ1 or
the first element of ph is moved to phþ1 for h 2 f1, 2, :::, kg. The
algorithm introduces the performance projection method to
quantitatively measure the time differences among partitions
and aims to achieve load balancing by minimizing these differ-
ences. The sum of the maximal partition in P is gradually
smaller in each iteration, so the algorithm eventually terminates
and returns a partition result as shown in Lines 8-10. The total
time complexity of the algorithm is only Oðk� L3Þ where k is
the number of partitions and L is the number of layers. Experi-
ments show that the algorithm takes about ten seconds for all
models in the experiment and has a negligible impact on the
training time.

Building upon the load balancing partitions, a pipeline model
parallelism algorithm based on intra-group algorithm (PMPIA)
is proposed. As shown in Fig. 6, the main idea of PMPIA is to
split a large DCNN model into multiple partitions with similar
training times. Then a mini-batch is divided into multiple micro-
batches, which are fed into the multiple partitions. These parti-
tions are trained in a pipelined-parallel manner within a
group. The algorithmic details of PMPIA are presented in
Algorithm 2.

PMPIA is shown in Algorithm 2, its inputs are a mini-batch
and the result of k-partition in Algorithm 1. The outputs are the
trained parameters of the model. Lines 1-2 in the algorithm are
initialization work. The k host threads (T1,T2,… , Tk) are first
created, and each thread has a pair of task queues
(in_queuei,out_queuei,i¼ 1, 2, :::, k). Each thread is responsible
for scheduling and executing the tasks submitted to the corre-
sponding in_queuei. In addition, multiple partitions of the large
model need to be copied to the corresponding GPU devices,
respectively. Lines 3-9 are the training iteration process. A
mini-batch is first divided into m micro-batches and then fed
into the corresponding partitions one after the other in a pipe-
lined manner for executing forward pass and backward pass.
Lines 11-19 are the forward scheduling process of the pipeline.
All tasks Fi,j per clock cycle are submitted to the in_queuei ði¼

1, 2, :::,kÞ for asynchronously processing the tasks, and then put
the results of the tasks to the corresponding out_queuei ði¼
1, 2, :::,kÞ. Due to PyTorch’s dynamic computation graph, the
automatic differentiation (autograd) engine of PyTorch may not
run exactly in the reverse order of execution as in the forward
pass during the backward pass. Hence two key dependencies
structure of the graph have to be built to force the pipeline to
work as desired. First, the dependencies of the micro-batches
need to be established (as line 14). It is enforced that Fi−1,j must
be completed before executing Fi,j and Bi,j must be completed
before executing Bi−1,j. Second, the dependencies of the parti-
tions (devices) need to be established (as line 15), it is enforced
that Fi,j must be completed before executing Fi,jþ1 and Bi,j must
be completed before executing Bi,j−1.

D. Group-Based Delayed Asynchronous Communication
for DP

As illustrated in Fig. 7, to reduce communication further
overhead to speed up the training of large DCNN models, a
novel DP is presented in GroPipe. In this paper, DP is supported
by a notion of a group that consists of k GPUs. A group is
allowed to load a large DCNN model by aggregating multiple

Fig. 6. Execution diagram of PMP. The solid arrows indicate copy dependen-
cies between devices, the dotted arrows represent virtual dependencies (vd)
between batches and the dash-dot arrows represent committing the task of Fi,j to
the in_queuei.

Algorithm 2: Pipelined Model Parallelism Based on Intra-
Group Algorithm.
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GPUs when an individual GPU may be resource-limited. DP is
used among multiple groups, each group with multiple GPUs to
load the whole large DCNN model. By distributing the data
across multiple devices and processing them independently, DP
reduces the amount of data that needs to be communicated
among devices. Instead of exchanging all the intermediate acti-
vations and gradients among devices for each training iteration,
only the parameter updates need to be communicated. This
reduction in communication volume helps mitigate the commu-
nication overhead and improves training efficiency.

However, DP requires all GPUs to perform all-reduce opera-
tions simultaneously, leading to high communication overhead
and network congestion. Fig. 8 presents a group-based delayed
asynchronous communication strategy for DP to address the
mentioned challenges. Considering that all-reduce collective
communication is time-consuming, especially on large models
with massive parameters. GroPipe should not communicate all
gradients in a single all-reduce. Otherwise, there is no opportu-
nity to conceal communication latency. As illustrated in Fig. 8,
a naive solution inserts a gradient synchronization phase after
the backward pass and before updating parameters. Instead of
traditional delayed asynchronous communication, GroPipe lever-
ages the advantages of its architecture by implementing delayed
asynchronous communication based on different groups, further
achieving higher throughput and lower latency. The process
includes four steps: First, GroPipe registers one autograd hook for
each partition within all groups. Second, PMP and DP are simul-
taneously employed for training. Third, the corresponding hook
fires after the partition completes a backward pass for the current

mini-batch. Finally, the all-reduce operation is launched asyn-
chronously to synchronize all gradients of the partition. For exam-
ple, as shown in Fig. 8, when the task that belongs to the last
partition P4 (Group 1 and Group 2) is completed, then the all-
reduce operation is started to synchronize the gradients of the par-
tition P4 and the following tasks are executed at the same time.
So, DP can utilize group-based delayed asynchronous communi-
cation during the backward pass, effectively reducing the DT
latency and preventing network congestion caused by hardware
bandwidth limitations.

IV. EXPERIMENT AND DISCUSSION

This section explores three key experimental areas: perfor-
mance comparison, load balancing, and communication effi-
ciency. To further evaluate GroPipe’s effectiveness, a memory
occupancy experiment assesses the partitioning algorithm, while
an ablation experiment examines the impact of removing the DP
component by comparing throughput results. Due to space con-
straints, the details of these experiments have been relocated to
Sections II and IV of the supplementary file, available online.

A. Experiment Setup

In this section, the accuracy-to-time of GroPipe is proposed
in this paper, and DP [19], Torchgipe [29], Dapple [27], and
DeepSpeed [28] are compared for ResNet-50, ResNet-101,
ResNet-152, VGG-16, and VGG-19, respectively, using the
ImageNet dataset, with a global batch size of 256. DP and
Torchgipe are well-established methods, widely used across var-
ious model architectures and tasks, providing strong baselines
due to their simplicity and effectiveness in distributed training.
To converge to the expected results faster, the experiments use
the same cosine learning rate schedule for GroPipe, DP, and
Torchgipe training. The initial learning rate starts at 0.1 for the
ResNet series and 0.01 for the VGG series, followed by a cosine
drop adjustment strategy before 32 epochs and a linear drop
adjustment strategy after 32 epochs, reducing the learning rate
to 0.0001.

Fig. 7. Training process of DP among the groups.

Fig. 8. Comparison of training time with and without delayed asynchronous
communication.

TABLE III
EXPERIMENTAL ENVIRONMENT

Configuration Value
Graphics processor units NVIDIA Tesla T4 � 8

GPU memory 16GB � 8
Operation system Ubuntu 16.04.2 LTS (64-bit)

Deep learning framework PyTorch
CUDA version CUDA 10.1

Dataset ImageNet

TABLE IV
BENCHMARK MODELS

Model Global Batch Size Forward/Backward Pass Size Memory
ResNet-50 256 71.64GB 71.88GB
ResNet-101 256 107.43GB 107.74GB
ResNet-152 256 151.65GB 152.02GB
VGG-16 256 54.70GB 55.35GB
VGG-19 256 59.67GB 60.35GB
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B. Performance Evaluations

In this section, the accuracy-to-time of GroPipe is proposed
in this paper, DP [19], Torchgipe [29], Dapple [27], and Deep-
Speed [28] are compared for ResNet-50, ResNet-101, ResNet-
152, VGG-16, and VGG-19, respectively, using the ImageNet
dataset, with a global batch size ¼ 256. To converge to the
expected results faster, the experiments use the same cosine
learning rate schedule for GroPipe, DP, and Torchgipe training.
The initial learning rate starts from 0.1 for the ResNet series and
0.01 for the VGG series, respectively, followed by a cosine drop
adjustment strategy before 32 epochs and a linear drop adjust-
ment strategy after 32 epochs to reduce the learning rate to
0.0001.

For the configuration of GroPipe in the experiment, we
selected the setup with N ¼ 4 and K ¼ 2, where N represents
the number of data-parallel groups and K represents the pipeline
depth within each group. This configuration was chosen to opti-
mally balance memory efficiency, parallelism, and communica-
tion overhead, ensuring efficient resource utilization across the
GPUs.

As illustrated in Fig. 9, the accuracy after every two epochs is
plotted. At the beginning of the training, the learning rate is
larger, so the accuracy rises quickly. Then, as the learning rate
decreases, the accuracy increases more and more slowly and
finally stabilizes. In addition, GroPipe, Dapple, DeepSpeed, and
Torchgpipe complete each corresponding epoch significantly
faster than DP during the entire training process. It clearly
shows that the high communication overhead of gradient syn-
chronization of DP leads to a long training time per iteration.
Moreover, GroPipe is slightly faster than Dapple, DeepSpeed,
and Torchgpipe during each epoch. One explainable reason is
that the group-based delayed asynchronous communication

causes GroPipe to have lower GPU communication overhead
than Torchgipe. Fig. 9 shows the comparison of the time to
achieve the same Top-1 accuracy by the five approaches of Gro-
Pipe, Dapple, DeepSpeed, Torchgipe, and DP on the ResNet-50,
ResNet-101, ResNet-152, VGG-16, and VGG-19. Therefore,
the GroPipe can achieve almost the same convergence accuracy
and faster convergence speed than Torchgipe and DP.

Based on the time-accuracy comparison experiments, the per-
formance of GroPipe compared to Dapple, DeepSpeed, Torchg-
pipe, and DP can be obtained. As depicted in Table V, it can be
observed significant performance improvements with GroPipe.
When the optimal value of k is chosen for different models
based on the subsequent experiment, GroPipe outperforms DP
by 59.6%, 36.2%, 30.8%, 111.2%, and 47.2% on the ResNet-
50, ResNet-101, ResNet-152, VGG-16, and VGG-19 models,
respectively. In both the ResNet and VGG series, the perfor-
mance has shown an average improvement of 42.2% and
79.2%, respectively.

Furthermore, comparing with Torchgipe, it can be found that
GroPipe achieves a speedup performance improvement of 14.3%,
11.5%, 16.2%, 30.9%, and 56.9% on the ResNet-50, ResNet-101,
ResNet-152, VGG-16, and VGG-19 models, respectively. The
average performance improvement is 14.0% in the ResNet series

Fig. 9. Time-accuracy comparison of GroPipe with 4 other methods across 5 different models.

TABLE V
TRAINING TIME AND PERFORMANCE IMPROVEMENT OF DIFFERENT METHODS

ACROSS VARIOUS MODELS USING THE IMAGENET DATASET

GroPipe DP DAPPLE Torchgipe DeepSpeed
Performance
Improvement

ResNet50 50.154 80.045 61.226 57.326 60.892 14.3% � 59.6%
ResNet101 69.735 94.959 74.796 77.769 76.084 7.3% � 36.2%
ResNet152 73.965 96.746 83.639 85.947 88.356 13.1% � 30.8%
VGG16 78.784 166.392 91.717 103.128 80.273 1.9% � 111.2%
VGG19 65.689 96.695 90.411 103.067 99.459 37.6% � 56.9%

2494 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 7, JULY 2025



and 43.9% in the VGG series. Similarly, when compared to DAP-
PLE, GroPipe demonstrated improvements of 22.1%, 7.3%,
13.1%, 16.4%, and 37.6% on the same five models, with an aver-
age speedup of 14.2% for the ResNet series and 27.0% for the
VGG series. Additionally, against DeepSpeed, GroPipe showed
significant enhancements, achieving speedups of 21.4%, 9.1%,
19.5%, 1.9%, and 51.4%, with average gains of 16.7% for the
ResNet series and 26.7% for the VGG series. These substantial
performance gains highlight GroPipe’s effectiveness in improv-
ing the efficiency of deep learning model training.

An interesting observation is that GroPipe achieves a greater
speedup over Torchgipe on the VGG model compared to
ResNet. This difference can be explained by the architectural
characteristics of the two models, which directly influence their
time to accuracy, the key performance metric in our experi-
ments. Time to accuracy measures the duration required for a
model to reach a target accuracy during training, and it is highly
sensitive to both model complexity and convergence speed.
VGG, with its deeper architecture and numerous convolutional
and fully connected layers, has a higher computational burden
and slower convergence, making it more prone to the vanishing
gradient problem due to the absence of residual connections.
This results in a longer time to accuracy for VGG. GroPipe,
with its hybrid of data and pipeline parallelism, significantly
reduces this extended training time, leading to a much larger
performance improvement for VGG. In contrast, simpler pipeline
parallelism is less effective for such a deep and computationally
heavy model. On the other hand, ResNet, which features residual
blocks, benefits from faster convergence and fewer parameters,
resulting in a shorter time to accuracy. Since ResNet already
achieves quicker convergence due to its architecture, the relative
impact of GroPipe’s optimizations is smaller. As a result, while
GroPipe still provides a speedup for ResNet, the improvement is
less dramatic than that seen with VGG. In summary, the experi-
mental results highlight that GroPipe delivers more significant
speedup for VGG compared to ResNet, validating the effective-
ness of GroPipe’s optimizations, particularly for models with
higher computational demands like VGG.

In addition, the paper also tests the number of training epochs
achieved by GroPipe, Torchgipe, and DP when training the
ImageNet dataset within a 20-hour timeframe. As shown in
Fig. 10, the experimental results indicate that GroPipe achieves

a higher number of training epochs within the 20-hour duration.
This could be attributed to the advantages of GroPipe’s parallel
computation and memory allocation mechanisms, enabling more
frequent updates of model parameters within the given time
frame.

In continuation of the previous experiments, this paper exam-
ines the influence of different micro-batch sizes on the training
rate and the subsequent impact on training speed. Specifically,
the performance of GroPipe is evaluated by measuring the train-
ing time for one epoch using various micro-batch sizes on the
mini-ImageNet dataset. The observed results, as illustrated in
Fig. 11, indicate that GroPipe achieves higher training efficiency
when the micro-batch size ranges from 8 to 12.

By comparing the training time for different micro-batch
sizes, it can be observed the effect of micro-batch size on the
overall training efficiency of GroPipe. When a mini-batch is
divided into more micro-batches, the computational workload
per micro-batch decreases, allowing them to be processed more
quickly in the pipeline. This enables different stages of the pipe-
line to receive the next micro-batch faster, reducing idle time
and improving parallel efficiency.

However, dividing a mini-batch into too many micro-batches
can also have some negative effects. Firstly, micro-batch parti-
tioning introduces additional overhead, such as the time for par-
titioning and merging micro-batches, as well as communication
overhead. Secondly, excessive micro-batches may lead to work-
load imbalance among stages in the pipeline, causing certain
stages to take longer to compute and limiting overall parallel
efficiency improvement.

As shown in Fig. 11, it also can be seen that these five models
bring more benefits from N than from k for the same number of
GPUs. For example the optimal throughput for N ¼ 4, k ¼ 2 is
higher than the optimal throughput for N ¼ 2, k ¼ 4. This is
because PMP tends to reach a performance bottleneck when
scaling across multiple GPUs.

Therefore, in practical applications, it is necessary to choose
the number of micro-batches based on the specific task and com-
putational resources, to take the trade-off between parallel effi-
ciency and additional overhead.

C. Evaluation of Load Balancing in PMP

Throughput experiments are conducted on ResNet-50,
ResNet-101, ResNet-152, VGG-16, and VGG-19, using various
grouping configurations and batch sizes in this section. These
experiments aim to find the highest throughput under the corre-
sponding grouping configuration. The throughput serves as an
indicator of pipeline load balancing, with a higher throughput
indicating a more balanced model load. As shown in Tables VI
and VII, N represents the number of groups, k represents the
number of stages in each group, and m represents the number of
micro-batches. The optimal throughput of the model is shown in
the bolded data in Table VI. The experimental results are ana-
lyzed from the vertical and horizontal dimensions. From the ver-
tical dimension, for the same models with different grouping
configurations, the throughput first increases and then decreases
with m increasing. As shown in Fig. 12, the peaks are

Fig. 10. Epoch completion within a 20-hour timeframe on ImageNet.
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Fig. 11. GroPipe training time for one epoch across different models using Mini-ImageNet with various configurations.

TABLE VI
THROUGHPUT RESULTS OF GROPIPE ACROSS DIFFERENT CONFIGURATIONS ON THE RESNET SERIES

m

ResNet-50 ResNet-101 ResNet-152

N ¼ 2 N ¼ 3 N ¼ 4 N ¼ 2 N ¼ 3 N ¼ 4 N ¼ 2 N ¼ 3 N ¼ 4

k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 2 k ¼ 2 k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 2 k ¼ 2 k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 2 k ¼ 2

1 161.332 155.808 156.566 230.394 290.740 99.664 98.284 95.106 140.985 174.504 70.340 69.496 67.134 99.312 122.744
2 198.494 216.618 230.784 287.625 357.504 127.494 139.496 145.980 177.390 217.808 89.038 99.808 104.246 125.364 153.364
4 222.374 249.136 293.256 310.623 385.288 131.138 155.748 173.344 181.146 223.316 90.612 109.820 121.046 126.654 154.836
6 226.146 262.460 313.516 315.303 391.504 134.852 165.074 184.316 184.275 226.644 92.750 116.988 129.446 128.778 158.652
8 243.632 292.414 312.962 337.083 417.128 152.364 181.888 196.510 207.720 251.404 106.406 132.720 143.424 146.568 178.624
10 247.632 291.054 309.290 339.243 414.160 148.098 187.014 189.336 206.298 256.696 105.642 134.046 138.406 147.123 180.448
12 248.836 293.194 295.000 344.985 425.860 150.618 186.148 183.610 208.944 255.668 104.160 135.134 134.684 145.431 178.152
14 246.758 292.530 290.450 339.699 419.952 148.614 182.560 178.100 207.108 243.544 96.074 132.168 133.806 129.702 149.348
16 235.824 261.472 261.220 325.056 406.764 141.556 169.836 161.368 195.279 236.292 95.656 122.612 123.528 129.741 154.840

TABLE VII
THROUGHPUT RESULTS OF GROPIPE ACROSS DIFFERENT CONFIGURATIONS ON THE VGG SERIES

m

VGG-16 VGG-19

N ¼ 2 N ¼ 3 N ¼ 4 N ¼ 2 N ¼ 3 N ¼ 4

k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 2 k ¼ 2 k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 2 k ¼ 2

1 96.052 97.1 101.168 139.257 176.396 86.732 86.768 88.344 121.146 157.404
2 127.6 135.162 147.102 184.353 230.14 116.202 123.814 130.858 160.383 203.584
4 137.48 157.232 173.044 195.954 246.38 120.232 140.82 156.1 174.93 219.516
6 130.776 153.202 170.894 181.227 233.696 116.45 140.894 155.706 161.019 201.628
8 142.246 168.442 188.886 201.726 251.804 128.462 153.852 169.65 174.96 220.172
10 133.746 168.314 186.052 190.137 243.196 116.948 153.246 165.762 166.503 214.416
12 122.922 170.036 183.79 177.756 224.676 108 143.756 154.94 154.026 195.94
14 121.06 166.108 181.546 174.726 221.152 104.082 139.442 151.188 151.209 189.812
16 108.762 150.74 159.796 157.842 201.076 98.414 126.746 132.876 136.548 172.428
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concentrated between m¼ 6 and m¼ 12. Before the throughput
rate reaches its peak value, the idle time in the pipeline gradually
decreases and the throughput shows an upward trend with the
increase of m. Throughput reaches its maximum value when
idle time and communication overhead are balanced. As m con-
tinues to increase, the throughput begins to decrease gradually,
because the benefits of DP are not enough to offset the commu-
nication overhead. From the horizontal dimension, for different
models with the same grouping configurations, the throughput
decreases gradually as the number of model parameters increases,
this is because communication overhead becomes a bottleneck
that affects the training speed.

The throughput is influenced not only by load balancing but
also by the number of micro-batches. From Fig. 12 and Table VI,
it is evident that for the same configuration of the model (with k
and N held constant), the training speed first increases and then
decreases as the number of batches increases. Fig. 12 shows that
when m is small, due to the limited PMP algorithm, the through-
put is low. At this time, only the computation operation from
one device can be performed at any specific time, which leads to
an under-utilization of GPU. Then, as m increases, the through-
put grows accordingly, but the growth rate also gets lower and
lower. Finally, after the peak throughput is reached, the through-
put becomes lower and lower as m increases, because the com-
munication overhead within the group becomes larger and
larger, and gradually becomes a performance bottleneck that
dominates the training speed. At this time, the benefits brought
by PMP are not enough to offset the communication cost.

To further validate the effectiveness of the partitioning algo-
rithm, a memory occupancy experiment is conducted based on
the throughput experiments. A balanced memory occupancy

indicates that the partitioning algorithm successfully achieves
load balancing.

The experiment focuses on examining the memory usage of
GroPipe under the ResNet and VGG series. GroPipe divides the
model into N groups, with PMP running among the groups.
Throughout the execution process, the memory usage of each
GPU is monitored and recorded. As shown in Fig. 13, the exper-
imental results shows that under different partitioning scenarios,
a relatively balanced distribution of GPU memory usage is
observed, except for the first GPU. This disparity in memory
usage arises because the first GPU is responsible for processing
the data sent by other GPUs, necessitating additional memory to

Fig. 12. GroPipe throughput across different models with various configurations.

Fig. 13. GroPipe GPU memory occupancy on ResNet-152 and VGG-16 mod-
els with different configurations.
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store and handle this extra data. Consequently, the first GPU tends
to exhibit higher memory occupancy compared to the other GPUs.
This balanced distribution indicates efficient memory utilization
and helps prevent memory bottlenecks during model training.

By analyzing these factors and interpreting the data obtained
from the experiments, valuable insights can be gained into the
memory utilization patterns of GroPipe and make informed
decisions regarding resource allocation and memory manage-
ment for optimal performance.

D. Evaluation of the Group-Based Delayed Asynchronous
Communication Strategy

In this section, the group-based delayed asynchronous com-
munication among multiple groups with mini-ImageNet dataset
is evaluated in detail combined with PMP within a group, on
ResNet-50, ResNet-101, ResNet-152, VGG-16, and VGG-19.
Here, them is set to the optimal value, which means that the spe-
cific m makes the highest throughput. Then, how the group-
based delayed asynchronous communication affects the speedup
is tested over different models with different configurations. As
illustrated in Fig. 14, it can be seen that the speedup perfor-
mance of GroPipe improves by 76% (the maximum value)
when using VGG-16 with the configuration of N ¼ 4 and k ¼ 2.
When N remains constant, the speedup increases with increasing
k. This is mainly because the total amount of gradient communi-
cation for each partition in all the groups is smaller during the
backward pass. As shown in Fig. 8, it can be theoretically
inferred that the communication overhead for each all-reduce is
lower and the iteration speed is faster. Moreover, ResNet-152
has almost similar speedup to ResNet-101 in the same configu-
ration, and the speedup of ResNet-50 is slightly lower than
ResNet-101 and ResNet-152 in the same configuration, except
for N ¼ 2, k ¼ 2. The explanation for the above appearance is
that ResNet-101 and ResNet-152 have more parameters than
ResNet-50, which can better play the effect of group-based
delayed asynchronous communication. Finally, it can be found

that the acceleration performance of the VGG series is more sig-
nificant than that of the ResNet series under the same configura-
tion. The main reason is that the ratio of the parameter amount
to the calculation amount of the two models of the VGG series
is larger than that of the ResNet series, and the communication
of parameters is undoubtedly much larger than the computa-
tional time overhead of the model. As a result, the acceleration
effect of the VGG series is more obvious. This indicates that the
group-based delayed asynchronous communication strategy has
a significant acceleration effect and promising application pros-
pects in hybrid parallelism.

We also evaluated the throughput of GroPipe against SOTA
methods across five models, as shown in Fig. 15. The results
demonstrate that GroPipe consistently outperforms other meth-
ods, achieving a performance lead of 12.1% to 79.3% on the
ResNet series and 41.2% to 102.3% on the VGG series.

Memory and Computation Balance: GroPipe smartly parti-
tions layers based on both execution time and memory usage,
mitigating load imbalance issues that are common in other
methods, thereby improving overall performance.

E. Language Model Experiment

In this section, we conducted a comparison of five methods
using the BERT-base language model, a widely recognized

Fig. 14. Speedup performance improvement with different configurations.

Fig. 15. Throughput comparison of five methods across five models.
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architecture in natural language processing. GroPipe performs
exceptionally well, achieving up to a 51% performance
improvement. Due to space limitations, the detailed experi-
mental results are moved to Section III of the supplementary
file, available online.

V. CONCLUSION AND FUTURE WORK

This paper introduces GroPipe, a novel grouped pipeline
hybrid parallel training architecture that combines the strengths
of PMP and DP. By achieving pipeline load balancing and mini-
mizing communication overhead, GroPipe accelerates DCNN
training. It utilizes AMPA for model partitioning and applies the
performance projection method to ensure quantitative load bal-
ancing. Additionally, GroPipe incorporates group-based delayed
asynchronous communication among the groups. Experimental
results show that GroPipe outperforms DP and Torchgpipe, with
an average acceleration of 42.2% and 14.0% on the ResNet
series and 79.2% and 43.9% on the VGG series, respectively,
when reaching the same Top-1 accuracy. Future improvements
may focus on reducing GPU memory consumption through
techniques like model compression, gradient aggregation, and
memory-efficient algorithms, which will further optimize Gro-
Pipe’s memory utilization. We are eager to engage in academic
discussions and share insights regarding the implementation and
experimental results. Interested researchers are encouraged to
contact the authors for further details, and we look forward to
future collaborations and knowledge exchange.
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