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Abstract

Product and content personalization is now ubiquitous in e-commerce. There is typically too
little available transactional data for this task. As such, companies today seek to use a variety
of information on the interactions between a product and a customer to drive personalization
decisions. We formalize this problem as one of recovering a large-scale matrix, with side
information in the form of additional matrices of conforming dimension. Viewing the matrix we
seek to recover and the side information we have as slices of a tensor, we consider the problem of
Slice Recovery, which is to recover specific slices of ‘simple’ tensors from noisy observations of the
entire tensor. We propose a definition of simplicity that on the one hand elegantly generalizes
a standard generative model for our motivating problem, and on the other subsumes low-rank
tensors for a variety of existing definitions of tensor rank. We provide an efficient algorithm
for slice recovery that is practical for massive datasets and provides a significant performance
improvement over state of the art incumbent approaches to tensor recovery. Further, we establish
near-optimal recovery guarantees that in an important regime represent an order improvement
over the best available results for this problem. Experiments on data from a music streaming
service demonstrate the performance and scalability of our algorithm.
Keywords: personalization; e-commerce; online retail; recommender systems; collaborative
filtering; matrix recovery; tensor recovery; side information; multi-interaction data

1. Introduction

Consider the problem of learning the propensity of individual customers for different products. This
is an important challenge in e-commerce as customer preferences are a core input into a number of
operational and marketing activities. For example, recommender systems are pervasive throughout
e-commerce where they serve as a tool to drive sales and consumption by decreasing search costs
for users. These systems rely on estimates of customer-product propensities to automatically
suggest products to users that they are likely to enjoy. User-item propensities are also used to offer
personalized experiences in more general service settings. Search results and loyalty programs may
all be personalized to a user. One-to-one marketing, including banner advertisements and targeted
sales promotions all benefit from accurate estimates of user-item propensities. The list goes on.
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As an example of the task above, consider the problem faced by a retailer estimating the
likelihood a specific customer might purchase a given product using historical transaction data
available across all customers and products in the retailer’s offering. This task is already quite
challenging due to its massive scale: Amazon.com has upwards of 108 active users and products
(Export-x (2015), Statista (2016)). In addition to scale, however, this task represents a statistical
challenge: the probability of a given customer purchasing a given product is small, so that the
observed matrix of transactions has a very small number of non-zero entires. For instance, in the case
of Amazon, the average active user makes less than a single transaction in a month (FastCompany
(2015)). We will see that this is, in fact, the key problem: meaningful recovery of the underlying
probabilities from their corresponding realizations is hard when these probabilities are small.

Ultimately, the only remedy available in this situation is acquiring more data, perhaps beyond
historical transactions. In the retail setting, this is indeed feasible: e-commerce businesses are able
to capture data from a variety of distinct types of observations at the customer-product granularity.
For example, besides sales transactions, online retailers record users’ browse and search histories
(capturing respectively ‘browse’ and ‘search’ interactions between user-product pairs); clickstream
data (capturing a ‘click’ interaction); and responses to advertisements and promotions (capturing a
‘promotion’ interaction), just to name a few. The ultimate task, of course, remains predicting the
likelihood a customer will purchase a given product. While these ‘slices’ of data encode interactions
between a customer and a product that are distinct from a transaction, they may well inform the
likelihood of a transaction and ultimately help resolve the challenge of limited data.

We refer to this as the problem of learning preferences (e.g. the likelihood of a given customer
purchasing a given product in the retail example) with side information (e.g. data beyond just
historical transactions, as alluded to above). Our first objective will be to formalize this problem;
there are many paths we can take here and we will ultimately propose viewing the problem at hand
as one of recovering a three-dimensional tensor from its noisy observations. We will then seek to
solve this problem and will ultimately present an efficient, near-optimal algorithm for the same that
yields a dramatic improvement over existing approaches to tensor recovery.

1.1. Representing Data as a Tensor

Taking a step back, the problem of estimating customer-product purchase probabilities from a
single type of interaction data can be formulated as a noisy matrix recovery problem – the goal
is to estimate the matrix whose rows correspond to customers, columns correspond to products,
and entries contain the purchase probabilities. If our data consisted purely of transactions, these
transactions could be viewed as a ‘noisy realization’ of the underlying matrix which we seek to
recover. As we discuss in a subsequent section, this formalization can be viewed as equivalent
to assigning latent feature vectors ui, vj to each customer i and each product j respectively, and
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Figure 1: Customer-product interaction matrices represented as slices of a tensor.

assuming the probability of a specific customer i purchasing product j is a bilinear form in these
latent vectors, f(ui, vj). As one allows the dimension of the latent space to grow, the expressive
power of such a model grows as well, ultimately becoming fully general. The problem of matrix
recovery can be viewed as one of learning the latent feature vectors and the bilinear form f(·, ·) from
observed data. Indeed this formalization of the problem has proved to be incredibly productive and
central to the current state-of-the-art in the design of personalization algorithms, as we discuss in
the literature review.

Our goal here is to consider multiple types of interactions (for example, sales transactions
along with other customer-product interactions, such as browse, search, etc.). In analogy to matrix
recovery, we may represent this data as a set of matrices, with each matrix corresponding to a
single type of interaction. We model the various ‘slices’ of data that we have as the slices of a three
dimensional tensor (see Figure 1). Tensors, which are the higher-dimensional analogues of matrices,
have been used in a broad array of applications to represent high-dimensional data. The underlying
generative model (that we will describe in greater detail in the next section) will then, in analogy to
the matrix setting, continue to correspond to assigning latent feature vectors ui, vj to each customer
i and each product j respectively. In addition, however, the likelihood of each interaction type k
between a specific customer i and product j will be described by a distinct bilinear form in these
latent vectors, fk(ui, vj). The problem of ‘recovering’ this tensor from its noisy observations is then
equivalent to learning these latent feature vectors along with each of the bilinear forms associated
with a specific type of interaction.

We may thus formalize the task we have laid out as the problem of recovering a three dimensional
tensor from its ‘noisy observations’. In fact, we will typically be interested in recovering a single
slice of the tensor (for instance, the slice corresponding to the likelihood of a transaction) using data
available across all slices. To clarify the observation model at hand, the observed data, as a special
case, can be seen as a single realization of an underlying tensor of probabilities; i.e. a given entry of
the observed tensor is a Bernoulli random variable with mean equal to the corresponding entry in
the ground truth tensor. When the underlying ground truth probabilities are small, the observed
tensor will be sparse (in the usual mathematical sense of the term). This observation model is
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particularly relevant to the retail example discussed above where the occurrence (or nonoccurrence)
of a transaction or other interactions may be thought of as Bernoulli realizations with specific,
unknown probabilities. A similar generative model is also relevant to our experiments with music
streaming data. This setting, which we will continue to refer to as the problem of tensor recovery
from noisy observations, or tensor recovery for short, is the primary focus of our algorithm and
recovery guarantees.

On the other hand, a distinct but closely related observation model is the setting where some
small subset of entries of the tensor is observed exactly, and nothing is observed outside of this
subset of entries. One application of this setting is the oft-cited Netflix problem: using a dataset
of user-movie ratings, the task was to predict how a user might have rated a movie they had not
watched. The data here is naturally represented as a matrix, with some entries observed in the form
of ratings, and the other entries unobserved. Of course, we can again incorporate side information
in this setting, in the form of additional partially observed matrices – this is typically referred to as
the tensor completion problem. In our retail application this observation model would correspond
to knowing the exact probability of purchase on some subset of customers and nothing outside that
subset. Evidently, the observation model is less relevant to the retail application: we do not observe
probabilities; we observe transactions. Moreover, we observe whether or not a given customer
has purchased a given product for all customers and products; transactions, albeit sparse, are not
hidden from the retailer. Nonetheless, we will describe how our algorithm can be extended to this
observation model using a device originally proposed by Achlioptas and McSherry (2007).

Before summarizing our approach and contributions, we point out that there is by now, a fairly
robust literature on the problem of tensor recovery that one might hope to fall back on at this stage.
The mainstay of this literature is a convex optimization approach that seeks to find a tensor that is
simultaneously ‘close’ to the observed data and ‘simple’ in the sense that a convex surrogate of the
‘tensor rank’ is small. We will formalize the notion of tensor rank in the next section, but ultimately
this quantity can be thought of as restricting the dimension of the latent space of customer and
product feature vectors, as well as the family of bilinear functions fk(·, ·). Unfortunately, we will
see that the convex approach falls short of expectations here. This happens for two key reasons
that we will formalize in a subsequent section but explain in brief here. First and foremost, in the
tensor setting, these convex optimization approaches are difficult to scale to massive amounts of
data and will typically call for dense matrix operations at scales that are untenable. This is unlike
the matrix setting where the convex approach can be shown equivalent to a simple specialized
algorithm (singular value decomposition with soft-thresholding) ideally suited for massive datasets.
More importantly though, the statistical power of these approaches appears to fall well short of
what one might hope for in the tensor setting. As we will show in the sequel, in our setting of three
dimensional tensors, the error rates achieved via these approaches are akin to what one would get
by simply running a matrix recovery algorithm on each individual slice of the tensor (ignoring all
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other slices!). In addition, no guarantees are available on the error of an individual slice which
is particularly relevant since our original motivation is recovering a single slice (for instance, the
likelihood of a transaction) using data from all slices.

1.2. Our Approach and Contributions

Our approach consists of a simple algorithm for learning the slices of a three dimensional tensor;
applied to all slices this also results in an algorithm for the recovery of entire tensors from their
noisy observations. Relative to the extant literature, we make the following contributions:

Statistical Power and Near-Optimal Rates for Noisy Tensor Recovery: Under a broad set of
assumptions, we establish that our approach admits near-optimal guarantees on the rate of recovery
for a broad class of three dimensional tensors from their noisy observations. We accomplish this
by establishing both upper bounds on the estimation error incurred by using our approach as well
as minimax lower bounds applicable to any approach. The guarantees we establish are stronger
than those available for existing convex approaches. Simultaneously, we place looser restrictions on
the underlying ‘ground truth’ tensor and the nature of the noise than those required for rigorous
recovery via those convex approaches.

Our analysis also admits guarantees on error rates for individual slices which do not have a
counterpart in the extant tensor recovery literature. From a pragmatic perspective this is particularly
important in that such guarantees are relevant to our original motivation of recovering a single,
specific slice while utilizing data across all slices.

Perhaps the most important aspect of our theoretical guarantees is that they quantify the precise
extent to which side information can help with dealing with the problem of sparse data. In fact,
a special case of our results establishes a broad set of conditions under which recovery error on
any given single slice (and by implication the entire tensor) decays linearly in the number of slices.
Colloquially this is equivalent to establishing how one may trade off sparsity in one type of data
(say, transactions) for data of a different type (say, search data).

Empirical Evaluation: We conduct an extensive set of experiments that empirically demonstrate the
most important advantages of our approach. In the first suite of experiments using synthetic data,
we benchmark our recovery algorithm against a well-studied algorithm from the family of convex
approaches. We observe that the recovery rate of our algorithm exactly matches that predicted by our
theoretical results, and similarly the recovery rate of the convex algorithm matches the best known
theoretical guarantee for convex approaches, which is weaker by an order of magnitude. Moreover,
these experiments confirm that our approach is drastically more efficient from a computational
standpoint.

In our second suite of experiments, we use real-world data from Xiami.com, a major online
music streaming service. Much like the sales transaction data we have alluded to, this data is
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extremely sparse, but our algorithm is able to leverage side information to outperform two common
benchmarks by a significant margin. These experiments also demonstrate the scalability of our
approach in practice. In particular, they are at a large enough scale that most existing tensor
recovery algorithms, including convex approaches, are intractable. On the other hand, our algorithm
is able to leverage data sparsity to operate on these large-sized tensors.

Scalability: In addition to the above, our approach is provably computationally efficient and, more
importantly, easy to scale to massive datasets. Specifically, every step within our algorithm can be
implemented as a sparse matrix-vector operation, and can thus scale to gigantic amounts of data
using off-the-shelf computational tools. Resultantly, we find that our algorithm is typically faster
than a single iteration of iterative ‘operator splitting’ algorithms used by incumbent approaches,
and considerably simpler to implement.

We will also show that, with a minor modification, our approach can also apply to the tensor
completion setting. Here the nature of the guarantee asks for the number of observed entires needed
for eventual recovery as the dimensions of the tensor scale. We will see there that while our guarantee
is not order-optimal (it is dominated by an alternative but computationally intractable approach),
it is still the case that our approach can leverage side information. Specifically, the number of
observations needed per-slice decreases as more slices are added for our approach.

1.3. Related Work

Our work falls into various diverse streams of literature relating to the nature of the data used,
intended applications, and methodology. We describe these in the following subsections.

Practical Applications: The goal of the present paper is to use data to learn user-item propensi-
ties, which are a fundamental input to many operational and marketing activities. Perhaps the
quintessential application is recommendation. There has been a great amount of work in designing
recommender systems; see Ansari et al. (2000) and references in the nice survey by Adomavicius
and Tuzhilin (2005). Recommendations, and more generally personalization, are used in all sorts of
e-commerce activities and come in many different forms. For some examples in retail, see Linden
et al. (2003) for a description of the various ways that Amazon.com recommends products to
customers, including targeted emails and shopping cart recommendations. Outside of retail, Ghose
et al. (2012) study hotel recommendations in the form of personalized results in online search engines.
Chung et al. (2009) design an adaptive playlist of recommended songs, which is now fairly common
in streaming media, e.g. Spotify’s ‘Discover Weekly’ playlist.

The general problem of learning users’ preferences extends to operational activities as well. For
example, websites can drive usage, and therefore advertising revenue, through recommendations:
Ansari and Mela (2003) study personalized emails and Besbes et al. (2015) study in-page recommen-
dations to other pages. Fleder and Hosanagar (2009) analyze the impact of recommender systems
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on the overall demand for all products, and Demirezen and Kumar (2016) look at ways in which
recommendations and inventory should be considered jointly. Recommendations have also been
studied in the context of promotions (Garfinkel et al. (2008)) and the firm’s profit (Hosanagar
et al. (2008)). Finally, Bodapati (2008) and Jacobs et al. (2016) seek to predict future purchase
probabilities; these estimates can have important applications such as demand estimation.

Our work presents a framework for analyzing multiple, diverse data sources, specifically with
user-item interaction data. Technological advances have allowed modern businesses to easily record
and store massive amounts of data; Naik et al. (2008) survey the many sources of data and point
out that the scale and diversity of data collected is constantly expanding. See Section A of the
Appendix for a survey of articles dealing with user-item interaction data.

Statistical Methodology: In terms of methodology, our work broadly belongs to the class of collab-
orative filtering algorithms. Since their first introduction by Goldberg et al. (1992), collaborative
filtering algorithms have become a mainstay approach in recommender systems. Our work fits
within the matrix factorization approaches to these problems (Koren et al. (2009)).

A common criticism of collaborative filtering algorithms is their inability to work with sparse
data (Ansari et al. (2000)). Our approach combines various sources of data to alleviate this sparsity.
This fits within a recent stream of research into collaborative filtering algorithms that incorporate
more data; see Shi et al. (2014) for a survey of these approaches. One such approach is matrix
completion with side information, e.g. by Xu et al. (2013), Jain and Dhillon (2013), and Chiang
et al. (2015). In this line of work, ‘side information’ refers to user and item features such as user
demographics and product specifications. In contrast, our approach centers on interactions between
users and items, but we will see that it is flexible enough to incorporate user and item features as
well. Another approach is collective matrix factorization (Singh and Gordon (2008)), which studies
matrix recovery using multiple matrices across multiple groups. In the setting of multiple matrices
across two groups, our approach will in fact apply to a more general version of this problem and
simultaneously allow us to leverage the modeling advantages of tensors.

Tensors have received significant attention recently in an attempt to generalize matrix recovery
to higher dimensions; for a nice survey of tensor decompositions and methods, see Kolda and Bader
(2009). Tensors have been applied in a wide range of areas, e.g. to model 3D images and video
(Liu et al. (2013)), multivariate temporal data (Bahadori et al. (2014)), and multitask learning
(Romera-Paredes et al. (2013)). See Mørup (2011) for a survey of more applications.

We will postpone a thorough review of the tensor recovery literature to §3.1, and for now briefly
state that the majority of theoretical work so far has been on convex optimization formulations
akin to nuclear norm minimization for matrix recovery. This approach was originally proposed by
Liu et al. (2013) and Gandy et al. (2011), and has been analyzed extensively (see Romera-Paredes
and Pontil (2013), Tomioka et al. (2011), Mu et al. (2013), Zheng and Tomioka (2015)). Finally, in
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parallel to the noisy recovery problem, algorithms and guarantees have been shown for the tensor
completion problem by Jain and Oh (2014), Huang et al. (2015), and Yuan and Zhang (2015). The
goal there is typically to provide conditions under which the challenging goal of exact recovery is
possible and those papers prove results under incoherence conditions similar to those made for
matrix completion (see Candès and Tao (2010), Gross (2011), Recht (2011)).

Before proceeding, we make the disclaimer that we are focusing solely on three-dimensional
tensors, so while our algorithm and guarantee may compare favorably against existing tensor recovery
approaches, those approaches are specified for higher order tensors, while ours is not. On the other
hand, there is a vast array of applications that makes studying 3D tensors specifically important,
ranging from spatio-temporal analysis Bahadori et al. (2014) to neuroimaging Zhou et al. (2013) to
the applications we analyze in the present work.

2. Model and Problem

One common problem that we have already alluded to is predicting customers’ preferences for
products from sales transaction data. In beginning to formalize this problem, let us label the
customers i = 1, . . . ,m1 and products j = 1, . . . ,m2. To reduce notation, we will set m1 = m2 = m,
but the entire analysis in what follows easily generalizes to a different number of customers and
products. Say the data we have is a list of sales transactions that occurred over some previous
time period, say the previous month. We encode this data in an m×m matrix called X, whose
(i, j)th element Xij is a binary indicator that equals 1 if customer i purchased product j in the last
month, and 0 otherwise. To formulate a meaningful estimation problem, let us imagine that Xij is
a Bernoulli random variable with mean Mij , and denote by M the matrix of these probabilities.
More generally, we assume

Xij = Mij + εij

where εij is a mean-zero noise term, and the noise terms are independent of each other but not
necessarily identically distributed. To represent Bernoulli observations in this framework, we can let
εij = Ber(Mij)−Mij . Our estimation problem is that of estimating M , having observed X.

Making progress on this problem clearly requires structural assumptions on M ; estimating a
completely general such matrix will require a prohibitive amount of data in a sense we will make
precise shortly. One fairly general generative model for M is as follows: let us assume that every
customer i is associated with some unknown vector of latent features, ui ∈ Rr, and every product j
is similarly associated with an unknown latent vector vj ∈ Rr. We may then consider a generative
model of the form

Mi,j = f(ui, vj)

where f : Rr × Rr → R is also unknown. If f(·, ·) were a bilinear form, so that f(ui, vj) = u>i Svj ,
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for some unknown S, then we may write M as

M = USV >

where U ∈ Rm×r has as its ith row the vector u>i , and similarly for V . Our task is now one
of estimating a general rank r matrix M having observed X; the complexity of the underlying
generative model is governed by r. For instance allowing r = m permits a fully general model,
but as we have noted, one that will be prohibitive to estimate from data. This generative model
has been used extensively in operations and marketing to model product purchases (Grover and
Srinivasan (1987)), ratings (Ansari et al. (2000)), and clickthroughs (Ansari and Mela (2003)), along
with applications in myriad settings spanning information retrieval (Berry et al. (1995)) and latent
semantic analysis (Papadimitriou et al. (1998)), computer vision problems such as facial recognition
(Sirovich and Kirby (1987)) and background subtraction (Oliver et al. (2000)), sensor network
localization (So and Ye (2007)), bioinformatics (Troyanskaya et al. (2001)), social network analysis
(Liben-Nowell and Kleinberg (2007)), and web link analysis (Kleinberg (1999)), just to name a few.

The above setup demonstrates the manner in which the problem of predicting customers’
preferences for products from a single type of data, e.g. transactions, can be formulated precisely
as one of low-rank matrix recovery, which in turn is an incredibly well studied problem. It is well
known that the minimax mean squared error of any matrix estimator is Ω (r/m). That is, for any
estimator M̂(·), we can construct a rank r matrix M for which,

1
m2 E‖M̂(X)−M‖2F = Ω (r/m)

In fact, estimators that achieve this lower bound have been constructed (e.g. Koltchinskii et al.
(2011)). In light of these error rates, recovery is only meaningful in a relative sense if ‖M‖2F is larger
in size than this error, i.e. if ‖M‖2F = Ω(rm). Now, if M encodes purchase probabilities (i.e. the
entries of M are in [0, 1]), then ‖M‖1 ≥ ‖M‖2F , so that for recovery to be meaningful, we require
‖M‖1 = Ω(rm). In other words, we require on average r expected transactions per user to estimate
a rank r model. Put another way, the sparsity of observed transactions limits the complexity of
the model we can estimate. This limitation is often observed in practice – consider that in 2014,
the online music streaming service Spotify had 107 active users and songs, i.e. m ∼ 107, and had
observed 1010 user-song pairs, such that the user listened to the particular song, i.e. ‖M‖1 ∼ 1010.
The most complex models Spotify estimated for use in their recommendation engine had rank ∼ 103

(Bernhardsson (2014)), which matches the error bound just described. This error bound also makes
clear the challenge faced by, say, an online retailer where, as we have noted previously, on average
only a single transaction is observed per user. It is this challenge that our work is meant to address.
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Figure 2: Matrices M1, . . . ,Mn represented as
slices of a tensor

Figure 3: Graphical representation of the mode-1
and mode-2 unfoldings of M

2.1. Multiple Data Types and Tensors

Now suppose the data we have comes from observing multiple types of customer-product interactions.
We label the different types of interactions k = 1, . . . , n, and denote the value generated by an
interaction of type k between customer i and product j as Xk

ij . As before, this data is a noisy
observation of some underlying ‘ground truth’ value denoted Mk

ij that is never observed; for example
Xk
ij might be a Bernoulli random variable with mean Mk

ij . In general, we assume

Xk
ij = Mk

ij + εkij

where εkij is a mean-zero noise term, and the noise terms are independent of each other but not
necessarily identically distributed. In order to model Xk

ij as a Bernoulli random variable with mean
Mk
ij , one simply takes εkij = Ber(Mk

ij)−Mk
ij . We let Mk and Xk denote the m×m matrices whose

(i, j)th elements are Mk
ij and Xk

ij , respectively. Returning to our running example of predicting sales
using data on a variety of distinct interactions, in our notation, X1 may now be the matrix whose
(i, j)th entry is 1 if and only if customer i purchased product j. X2 could be the matrix whose (i, j)th

entry is 1 if and only if customer i browsed product j, and so on. M1 and M2 would then encode
the probabilities of those events, that we seek to estimate. Further matrices X3, . . . , Xn would
encode data observed from ratings, search, etc., taken as noisy observations of the corresponding
matrices M3, . . . ,Mn.

It will be convenient to introduce some basic notation for three-dimensional tensors. Let
M ∈ Rm×m×n denote the three-dimensional tensor obtained by stacking the matrices M1, . . . ,Mn

(see Figure 2). We call each of these matrices slices of the tensor, and continuing with the same
notation, we denote the (i, j)th element of the kth slice as Mk

ij . Without loss of generality, we will
assume that every entry of M lies in [−1, 1]; this can always be satisfied by rescaling.

A common set of operations on tensors that we will use frequently here is that of unfolding,
which essentially flattens the tensor into a matrix (see Figure 3). The mode-1 unfolding of M ,
denoted M(1), is the m× nm matrix whose columns are the columns of M1, . . . ,Mn (the order of
the columns will not matter for us). Similarly the mode-2 unfolding, denoted M(2), is the m× nm
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matrix whose columns are the transposed rows of M1, . . . ,Mn.1

2.2. Generative Model and Slice Rank

Just as in matrix recovery, we cannot hope to recover the tensor M without some assumption on
its simplicity. In analogy with the setting of a single interaction (where we dealt with matrices),
we now seek to propose a natural generative model for M . To that end, we assume that every
customer i is associated with some unknown vector of latent features, ui ∈ Rr, and every product j
is similarly associated with an unknown latent vector vj ∈ Rr. We may then consider that for each
type of interaction k = 1, 2, . . . n, we have

Mk
i,j = fk(ui, vj)

where fk : Rr × Rr → R is also unknown. This model says that the likelihood of an interaction
between a specific user and product depends on feature vectors specific to the user and product
respectively, through a function that is specific to the interaction. Given such a model, the hope
is that data from any interaction can now contribute to learning the underlying user and product
feature vectors, while the function determining a specific interaction is pinned down using data from
just that interaction. It is this intuition that will eventually guide our recovery algorithms.

As before, if fk(·, ·) were a bilinear form, so that fk(ui, vj) = u>i S
kvj , then we may write each

of the slices of M as
Mk = USkV >

where U ∈ Rm×r has as its ith row the vector u>i , and similarly for V . The key aspect of this model
is that U and V do not depend on k; that is, the latent features are the same across matrices. This
assumption relates the various matrices Mk to each other and allows for the potential of using
other slices for learning. In particular, in addition to X1, data from X2, . . . , Xn can be used to
improve the rate of recovery on M1. Note that the possibility for some elements of Sk to be equal
to zero means that different interactions do not need to involve the same latent factors, but rather
all interactions draw from a small, shared pool of latent factors. As before the generality of this
model is determined by the dimension of the latent space, r, a quantity that we will formalize as
the slice rank of the tensor M :

Definition 1. The slice rank of a tensor M ∈ Rm×m×n, denoted Slice(M), is the maximum of the
ranks of its mode-1 and mode-2 unfoldings, i.e. Slice(M) = max(rank(M(1)), rank(M(2))).

In the definition above, rank(M(1)) is the number of latent customer features and rank(M(2))
is the number of latent product features. Since these numbers may not be equal (corresponding

1For completeness, we can also define a third unfolding: for each row and column index, we can take the
corresponding entries across all the slices to create a column vector in Rn; these are the columns of the mode-3
unfolding, denoted M(3), an n×m2 matrix
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to having a different number of customer and product features), the slice rank is defined as the
maximum of the two quantities.

In what follows we will seek to recover tensors of low slice rank from their noisy observations –
a formalization of the estimation problem that motivates this paper. Before doing so, we find it
worthwhile to note that there is a long history of using tensors as a meaningful data structure to
capture multivariate data, and this literature has yielded other notions of tensor rank. Specifically,
the two most common of these notions are the canonical (or CP) rank and the Tucker rank, which
have both been used in applications as diverse as psychometrics (Carroll and Chang (1970)), chemical
analysis (Henrion (1994)), facial recognition (Vasilescu and Terzopoulos (2002)), chatroom analysis
(Acar et al. (2005)), and web search (Sun et al. (2005)). As it turns out the requirement of a low slice
rank is weaker than requiring either low CP rank or low Tucker rank. Specifically, denote by CP(r)
the set of tensors M ∈ Rm×m×n that have CP rank at most r. Similarly denote by Tucker(r, r, l)
the set of tensors M ∈ Rm×m×n with Tucker rank at most (r, r, l) (see Section B of the Appendix
for a formal definition of CP rank and Tucker rank). We then have:

Proposition 1. The set of tensors M ∈ Rm×m×n with slice rank at most r, Slice(r), contains CP(r)
and Tucker(r, r, l):

CP(r) ⊆ Slice(r), and Tucker(r, r, l) ⊆ Slice(r)

The proof of this result can be found in the Section B of the Appendix. In summary, this result
establishes that our requirement of ‘simplicity’ subsumes important existing notions of simplicity
for tensors. More importantly, as is evident from our presentation thus far, the notion of low slice
rank has an elegant interpretation in our context as seeking out latent representations for customers
and products along with functional forms that relate these latent representations to the likelihood
of a specific interaction.

2.3. Our Problem

Our problem is to recover the tensor M from a noisy observation of its entries. In particular, our
observation consists of the data tensor X = M + ε, where the elements of the ‘noise’ tensor ε are
independent with mean zero. We emphasize that, so far, we have not restricted the elements of ε to
be Gaussian or even identically distributed, as is typically done.2

Our goal is to construct an estimator M̂(X) to minimize some loss function with respect to M .
To reduce notation, we will use M̂(X) and M̂ interchangeably. The usual loss function which we
will take here is the mean-squared error (MSE):

MSE(M̂) = E
[
n∑
k=1

1
nm2

∥∥∥M̂k −Mk
∥∥∥2

F

]
.

2In our analysis, we will place substantially weaker requirements on ε.
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We will refer to the problem of constructing an estimator to minimize MSE as tensor recovery.
In addition, as we have noted, in many cases we might only be interested in recovering a single
slice of the tensor (having observed all of X). For example, even with data from many types of
customer-product interactions, we may be solely interested in predicting purchase probabilities. In
these settings, the MSE is not an ideal loss function, as it measures average recovery error over all
slices. Therefore, in addition to MSE, we will also consider the slice mean-squared error (SMSE):

SMSE(M̂) = max
1≤k≤n

E
[ 1
m2

∥∥∥M̂k −Mk
∥∥∥2

F

]
,

and refer to the problem of constructing an estimator to minimize SMSE as slice recovery. SMSE is
a more robust loss function, as it measures the maximum recovery error over all slices, and so a
guarantee on the SMSE applies to every single slice. Also, since SMSE is always greater than or
equal to MSE, any upper bound for SMSE will apply to MSE, and therefore the tensor recovery
problem.

3. A Lower Bound and Incumbent Approaches

In the previous section, we recalled a minimax lower bound on the error rate one may hope to
achieve under any algorithm for the problem of matrix recovery. Indeed, this bound motivated
our problem of tensor recovery, where, loosely stated, we hope to use data from multiple types of
customer-product interactions to improve our estimate of the likelihood of a given type of interaction.
Our goal in this section will be to understand the extent to which data on additional types of
interactions can help with the recovery of a specific type of interaction. Thus motivated we next
establish a lower bound on the error rate that one may hope to achieve under any algorithm for our
problem.

Proposition 2. For any estimator M̂ , we can construct a tensor M ∈ Slice(r) with entries in [−1, 1]
and a random noise ε with independent, zero mean entries, such that X = M + ε has entries in
[−1, 1] almost surely, and

SMSE(M̂) ≥ MSE(M̂) ≥ C
(
r2

m2 + r

nm

)
,

where C is a universal constant.

The proof of Proposition 2 is presented in Section C of the Appendix, and relies on a carefully
constructed ensemble of problem instances. The proposition lets us draw several key conclusions
with regard to the power of side information:

1. The Special Case of Matrix Recovery: In the matrix recovery setting, i.e. n = 1 so
that M is a matrix of rank r, we recover a minimax lower bound of MSE(M̂) = Ω(r/m).
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This bound is well-known (e.g. Candès and Plan (2011)) and a number of matrix recovery
algorithms achieve this bound. Consequently, the naive approach of using an optimal matrix
recovery algorithm separately on each slice achieves MSE = O(r/m) and SMSE = O(r/m).
Beating such an approach is precisely the motivation for our work here.

2. The Potential Benefit of Side-Information: The impact of side-information is made
precise by the dependence, on n, of our lower bound on achievable error rate. The minimax
bound above suggests that additional side information might permit up to a linear reduction
in recovery error up to a certain point beyond which additional side information cannot
help. Specifically, the lower bound is dominated by an error term that scales like r/nm for
n sufficiently small, and can be no smaller than r2/m2 irrespective of the amount of side
information n. How does side information alleviate the sparsity problem? Recall that from
our motivating example in the introduction, the minimax optimal recovery rate of O(r/m)
achievable with a single type of data (n = 1) implies that we need to observe on the order
of r purchases per user, which was a problem since users make on average less than a single
purchase a month. In the setting above, we may hope to get away with on the order of just r/n
purchases per user as long as we recover a total of r2 purchases across all users and products.
Put another way, a retailer that can easily collect data on 102 types of interactions can hope
to estimate a much richer model with r = 102.

In summary, the minimax lower bound established above raises the specter of dramatically
increasing our ability to cope with sparse data provided we have access to sufficient side information.
Do existing algorithms come close to achieving this lower bound?

3.1. Incumbent Approaches

The dominant approach to tensor recovery relies on convex optimization. To motivate this approach
by example, consider the recovery of a low Tucker rank tensor from noisy observation X. We can
formulate this problem as the following (hard) optimization problem:

(1)
min
Y

‖Y −X‖2F

s.t. rank(Y(i)) ≤ ri, i = 1, 2, 3.

That is, to choose a tensor Y that most closely ‘matches’ the observed data X, from the set of tensors
with Tucker rank bounded by (r1, r2, r3). For certain noise models, for example i.i.d. Gaussian
noise, the solution to (1) would correspond to the maximum likelihood estimator.

Since this is a difficult problem (due to the rank constraints), the standard approach taken is to
come up with a convex surrogate for the tensor rank. So for example, one such variant is:

(2) min
Y
‖X − Y ‖2F +

3∑
i=1

λi
∥∥∥Y(i)

∥∥∥
∗
,
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where the ranks are replaced by the nuclear norms of the appropriate unfoldings, and in addition
the rank constraints have also been dualized (in keeping with how such relaxations are presented in
the literature) – the weights λi are chosen by the user and intuitively should encode prior knowledge
of rank. This convex algorithm has been studied extensively (Gandy et al. (2011), Tomioka et al.
(2011), Liu et al. (2013), and Signoretto et al. (2014)). In the case where n = 1, the mode-3
unfolding would naturally be removed from the objective, in which case the algorithm is precisely
equivalent to the de facto convex formulation for matrix recovery, rendering the formulation a
natural one. Tomioka et al. (2011) show that if the noise tensor has i.i.d. Gaussian entries with
standard deviation σ, the estimator above achieves

(3) MSE(M̂) = O
(
σ2(r/m+ r/n)

)
if the Tucker rank of M is (r,r,r). Recall that any tensor with Tucker rank (r,r,r) has slice rank
at most r, so this result applies to a subset of tensors with slice rank r. There is good reason to
believe that this guarantee is tight. For example, Tomioka et al. (2011) also show a very similar
guarantee in a related setting where random linear combinations of the entries of M are observed,
and Mu et al. (2013) show that in fact that guarantee is tight. Furthermore, in our experiments
later on, we will empirically observe that the recovery rate scales as (3).

Taken together, this is disappointing – it shows that the convex approach above does not
improve on recovering individual slices of the matrix via an optimal matrix completion algorithm
and leaves a wide chasm between the minimax lower bound of Proposition 2 and the error rate
achieved. Put simply, this approach does not solve the data sparsity problem. The issue of why
existing convex approaches do not achieve optimality is a very interesting question. The main
reason to hope that convex approaches might work in the tensor setting is because of their success
in matrix recovery where the nuclear norm is easily shown as the tightest convex relaxation of the
rank function. The major challenge in going from matrices to tensors is that there is not an obvious
‘optimal’ convexification of (1) above. The formulation (2) is one possible convexifiction, but it is
provably not a tight convexification. Other convex problems have been suggested, for instance in
Romera-Paredes and Pontil (2013), Mu et al. (2013), Tomioka and Suzuki (2013), but none of these
proposals improve on the recovery guarantee above.

Outside of convex formulations, Suzuki (2015) recently proposed a Bayesian estimator that
matches the lower bound in Proposition 2 for i.i.d. Gaussian noise, and tensors with low CP
rank (as is evident from the definition of CP rank, this is significantly more restrictive than slice
rank). Unfortunately, this procedure relies on a Monte Carlo approach in high dimension and its
computational efficiency is unknown (i.e. we no longer have the computational efficiency guarantees
that come with the convex approach).

In summary, we may conclude that employing existing tensor recovery machinery for the problem
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at hand does not yield a solution to the data sparsity problem. In fact, using the de facto convex
approaches for the problem cannot be expected to yield any improvement over the approach of
individually recovering each slice of data. Now in contrast to taking the convex relaxation approach
above, our algorithm works by directly (and efficiently) constructing a feasible solution to the
original problem (1). The constructed solution is not necessarily an optimal solution to (1), but our
core theoretical result shows that it is minimax optimal for noisy recovery.

4. An Algorithm for Slice Recovery

We will now present our algorithm for slice recovery and tensor recovery, which we will see is of a
fundamentally different nature than the convex approaches, as just described. Recall from the setup
that X is our observed data tensor and M is the ground truth tensor we are trying to recover. M is
assumed to have slice rank r, which implies the existence of a decomposition wherein every slice
Mk can be represented as Mk = USkV >, where U, V are m× r matrices encoding latent customer
and product features, and each Sk is an r × r matrix that captures the specific bilinear form for
each slice Mk.

Up to this point, it has been convenient to think of each column of U and V as encoding a
specific, possibly interpretable feature (e.g. customer demographics, product specifications), but
in fact our algorithm is best understood when U and V are viewed as latent feature spaces. In
particular, U and V each encode a linear subspace of Rm, the subspaces spanned by their respective
columns. Note that because our model places no restriction on the bilinear interaction terms Sk,
the terms U and V in the decomposition Mk = USkV > are only unique up to the subspaces they
span, i.e. we could replace U and V with any set of features that span the same feature space.
For this reason, we will refer to U and V as features and feature spaces interchangeably, and for
mathematical convenience, we will assume without loss of generality that the columns of U and V
are orthonormal.

The algorithm proceeds in two stages, both of which we motivate from first principles:

Stage 1: Learning Subspaces: In the first stage, we use data from every slice to estimate the latent
feature spaces U and V . Let us first focus on the procedure for learning U . Our first step in this
regard is to construct the mode-1 unfolding X(1), which recall is the m× nm matrix whose columns
are the columns of X1, . . . , Xn (the order of the columns does not matter). We then compute Û , our
estimate of U , as the first r left singular vectors of X(1). More precisely, assuming that X(1) admits
the singular value decomposition X(1) = U1Σ1V

>
1 , we set Û to be the columns of U1 corresponding

to the r largest singular values. We denote this entire procedure with the shorthand

(4) Û = svds(X(1), r).
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Under very mild assumptions, it will turn out that Û is a ‘good’ estimate of U . To see this, we
can view X(1) as a noisy observation of M(1), which is a wide matrix with a row for each customer
and a column for each product-interaction type pair. The key point is that the columns of M(1)

span the feature space U , so if we were allowed to observe M(1), we could easily find U as the space
spanned by the columns of M(1), i.e. its ‘column space.’ Instead, we observe X(1), which because of
the added noise, does not have column space U ; in fact, its columns are likely to span all of Rm.
Still, under mild assumptions on the nature of the noise, we can expect that the columns of X(1)

lie approximately in U , and therefore estimate Û as the orthonormal matrix that minimizes the
function f defined as

f(U1) = min
R1∈Rr×mn

∥∥∥U1R1 −X(1)

∥∥∥
F
.

For any r-dimensional subspace U1, f(U1) measures how closely X(1) can be approximated by a
matrix with column space U1, and its minimizer Û is precisely (4). This stage is exactly where we
take advantage of having multiple slices of data, as the accuracy of Û as an estimate of U is better
the more slices we have, or the wider M(1) is. We will quantify this exactly in the next section.

To estimate V , we apply a similar procedure using the mode-2 unfolding X(2), which recall is
the m× nm matrix whose columns are the transposed rows of X1, . . . , Xn. Just as in the previous
discussion, X(2) is a noisy observation of M(2), whose column space is V . It follows that, under some
assumptions on the noise, the columns of X(2) lie approximately in V and a natural estimate of V is

V̂ = svds(X(2), r).

Stage 2: Projection: The second stage works on each slice separately. Having estimated U and V
as Û and V̂ , it remains to estimate the bilinear terms Sk for each slice Mk. We do this by solving
the following optimization problem for each slice:

(5) Ŝk = argmin
S

∥∥∥ÛSV̂ > −Xk
∥∥∥
F
.

To motivate this, suppose that instead of Û and V̂ , we had access to U and V exactly. Then
knowing that Mk takes the form USkV > for some Sk, our estimate of Mk should take this same
form. Therefore, we would use the closest approximation to Xk of this form, essentially ‘projecting’
Xk onto the feature spaces U and V . Since we only have Û and V̂ , we use the closest approximation
of the form ÛSkV̂ > instead, as in (5).

The above is a least-squares problem and as such admits a closed-form solution: assuming that
Û and V̂ are orthonormal, the solution of (5) is Ŝk = Û>XkV̂ , and so our final estimate of Mk can
be written as

M̂k = Û Û>XkV̂ V̂ >.

One nice interpretation here is that Û Û> and V̂ V̂ >, which we will denote PÛ and PV̂ , are projection
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operators: left multiplying a matrix by PÛ replaces each of its columns with the orthogonal projection
onto the space Û , and similarly right multiplying by PV̂ replaces rows by the orthogonal projection
onto V̂ . The resulting matrix lies in the feature spaces Û and V̂ .

The entire slice learning algorithm is outlined in Algorithm 1. The algorithm and our
forthcoming analysis are easily extended to using different values of r when forming Û and V̂ . This
may be advantageous when the latent customer and product feature spaces of M are of significantly
different dimension, but we use a single value r here for ease of notation.

Algorithm 1: Slice Learning
Input :X, r
1. Û ← svds(X(1), r)
2. V̂ ← svds(X(2), r)
3. M̂k ← PÛX

kPV̂ , k = 1, . . . , n
Output : M̂k, k = 1, . . . , n

4.1. Practical Considerations

We conclude this section with a discussion of practical implementation and computation issues:

Knowing r: The slice learning algorithm above takes the slice rank r as input, but in some settings
we may not know r in advance. In particular, we do not know the ranks of the two unfoldings
M(1) and M(2) in advance. This is a common challenge in low-rank matrix recovery, though in that
setting the problem has proven to be relatively benign. Specifically, there exists a wide array of rank
estimation methods that we may borrow from, including cross-validation (Wold (1978), Owen and
Perry (2009)), visual inspection of plotted singular values (Cattell (1966)), and bayesian methods
(Hoff (2012)).

Perhaps the simplest approach when r is not known is a ‘universal’ thresholding scheme where we
only preserve singular vectors corresponding to singular values above a certain easily precalculated
threshold. This has been shown to work in the matrix recovery setting (Chatterjee (2014), Gavish
and Donoho (2014)), and we anticipate that such a scheme will work just as effectively here. In
particular, X(1) is the sum of the signal M(1) and the noise ε(1), so if the singular values of ε(1) are
all significantly lower than the r non-zero singular values of M(1), then by Weyl’s inequality, X(1)

will have r singular values that are much larger than the rest.
To make this more precise, consider the following argument, which also serves as an introduction

to the type of arguments used in the next section. Suppose the terms of ε(1) are i.i.d. with unit
variance and bounded fourth moment; we will assume a more general noise model later. To fix the
signal-to-noise ratio, assume that the terms of M(1) are of constant order, so ‖M(1)‖2F = Θ(m2n).
First, M(1) has rank r (for some unknown r), so if the non-zero singular values of M(1) are all within
a constant order of each other, then these singular values will be of Θ(‖M(1)‖F /

√
r), or Θ(m

√
n/r).
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At the same time, by the Bai-Yin law (Yin et al. (1988)), the largest singular value of ε(1) does
not scale greater than O(

√
mn). Therefore, a clear separation forms asymptotically between the

non-zero singular values of M(1) and the singular values of ε(1). By Weyl’s inequality, X(1) will have
r singular values of Θ(m

√
n/r) and its remaining singular values are of O(

√
mn). It follows that

choosing a threshold in this gap and retaining the singular values greater than this threshold will
closely approximate using the correct value of r. This result can be formalized as a theorem, but we
do not do so here.

Computation with large tensors: An important consideration is the scale at which the slice
learning algorithm needs to operate – the nature of the applications necessitates that predictions
be made rapidly, as the data is constantly changing and up-to-date output is required. Therefore,
computational efficiency is of paramount importance in practice.

The only computationally intensive step in the slice learning algorithm is in Stage 1, which
requires the computation of two partial SVDs. Again, the largest retailers have upwards of 108

unique customers and products (m ∼ 108), and can easily collect data on hundreds of interactions
(n ∼ 100), at the very least. For dense matrices, this massive scale renders generic SVD algorithms
intractable. Fortunately, while the ambient dimensions of the input data are large, the data is itself
typically quite sparse. Data sparsity has so far been treated as a disadvantage, since it limits the
complexity of the models we can learn, but it is a key advantage from a computational standpoint –
there exist mature linear algebraic algorithms that compute the top singular vectors while exploiting
data sparsity, for example using Lanczos iterations as in the PROPACK algorithm (Larsen (1998)).
Specifically, these algorithms rely on a power method that repeatedly applies a matrix-vector
multiplication subroutine. Since the matrix in question (the unfolding of the sparse tensor) is sparse,
this operation can be implemented with running time linear in the number of non-zero elements of
the matrix. This is already drastically less computation than convex approaches to this task, which
by and large are solved with iterative algorithms (Gandy et al. (2011)) that require performing
dense SVDs multiple times.

Customer/Product Side Information: Our generative model includes a set of latent customer and
product features U and V , and Stage 1 of our algorithm essentially works by estimating these
features jointly across all slices of data. We will see that the performance of our algorithm boils
down to how well U and V can be estimated, and that going from a single slice of data to many
slices interpolates between standard matrix recovery (with no prior knowledge of U or V ), and
recovery given U and V exactly.

In many cases, we may have side information in the form of explicit features about customers or
products that are believed to be relevant, e.g. customer demographics and product specifications.
This is the subject of a line of work in matrix recovery (Xu et al. (2013), Soni et al. (2016)) that
seeks to recover a single slice, assuming that the feature spaces U and V are known exactly.
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The approach we have laid out is flexible enough to incorporate the same kind of customer and
product features, without requiring the assumption of knowing U and V exactly. Suppose that in
addition to the data tensor X, we have ` customer features which we encode in the m× ` matrix
A. We can include this information in our algorithm by expanding the estimated feature space Û
with these extra features, i.e. after producing the estimate Û in Stage 1 as usual, we can replace Û
with the subspace spanned by the columns of Û and A, and then execute Stage 2 normally. The
equivalent procedure can be done with V̂ if we have product features.

5. Recovery Guarantees for Slice Learning

The goal of this section is to provide a statistical recovery guarantee for our slice learning algorithm.
In particular, we are looking for a guarantee that improves upon the naive approach of ignoring side
information and recovering each slice separately. As discussed in Section 3, that naive approach,
which is effectively a matrix recovery algorithm, can achieve SMSE = O(r/m).

So far, we have made the assumption that the ground truth tensor has low slice rank, which as
we have seen, restricts the complexity of the underlying generative model and offers the possibility
of improving on the matrix recovery rate. However, beating this rate is impossible without making
further assumptions. Specifically, consider the case where M has n− 1 slices, all of whose entries
are identically 0, and a single non-trivial, low-rank slice, which we take without loss of generality as
the first slice. Further, assume that the noise tensor has independent unit variance Gaussian entries
on the first slice, and is identically zero on the remaining n− 1 slices. Though the ground truth
tensor has low slice rank, the problem of recovering the first slice is now literally no different than
the problem of matrix recovery on the first slice since the remaining slices are superfluous.

To this end, we define a structural parameter for M that we will eventually see controls the rate
at which learning across slices is possible. Letting σ2

r (M(1)) and σ2
r (M(2)) denote the rth largest

singular values of M(1) and M(2), respectively, we define the learning rate as follows:

Definition 2. The learning rate of a tensor M ∈ Rm×m×n with slice rank r, denoted γM , is defined
as

γM = r

m2n
min

(
σ2
r (M(1)), σ2

r (M(2))
)

We will shortly see how γM plays the role of a rate of learning. For now, we merely comment on
the range of values one might reasonably expect this quantity to take. On the low end observe that
by Marčenko and Pastur (1967), if the noise tensor were i.i.d., the (squared) singular values of the
noise tensor unfoldings ε(1) and ε(2) are O(mn). A minimal requirement is that the singular values of
M(1) and M(2) dominate those of the noise unfoldings which would in turn imply that γM = Ω(r/m),
so the loosest requirement we can reasonably place on γM is to require γM = Ω(r/m).

At the other end of the spectrum, given that the entries of M are required to be bounded,
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we must have that ‖M(1)‖2F = O(m2n), so that σ2
r (M(1)) = O(m2n/r). This in turn implies that

γM = O(1), and the strongest requirement we can place is to require γM be a constant. In fact,
in terms of scaling, it is reasonable to treat γM as constant: the condition ‖M(1)‖2F = Θ(m2n) is
satisfied for all but trivial examples like the one just described, and then σ2

r (M(1)) = Θ(m2n/r)
follows as long as the largest and smallest non-zero singular values of M(1) are not significantly
different, i.e. a parameter akin to the condition number is bounded.3

Before proceeding with a statement of our main result, we will place an assumption on the noise
(our only non-trivial assumption thus far). Specifically, we will require the noise to be ‘balanced’ in
a certain sense.

Assumption 1 (Balanced Noise). Let v be the tensor whose entries are the variances of the corre-
sponding entries of ε. Specifically, vki,j = E[(εki,j)2]. The noise ε is said to be balanced if the row-sums
of v(1) are all equal and the row-sums of v(2) are all equal.

The assumption above is trivially satisfied in the case of i.i.d. noise, and in particular the case
of i.i.d. Gaussian noise that is often studied in the matrix and tensor recovery setting. Refinements
of our result allow for weaker versions of this assumption; we will see in the next subsection that we
can permit a certain amount of discrepancy in the row sums of v(1) and v(2), and allow this to grow
with m and n. We are now ready to state our main result.

Theorem 1 (Balanced Noise). Assume the entries of M lie in [−1, 1]. If the entries of ε are
independent, mean-zero, and E[(εkij)6] ≤ K6, and if furthermore ε is balanced, then there exists a
constant c(K) that depends only on K such that for the slice learning algorithm,

MSE(M̂) ≤ SMSE(M̂) ≤ c(K)
[
r2

m2 + r2

γ2
Mmn

]
.

The proof of Theorem 1 can be found in Section D in the Appendix. We next evaluate this result
in light of the minimax guarantee established in Proposition 2, and more generally, our broader
goal of slice recovery:

1. Learning from slices: As discussed earlier, at the very least we expect γM = Ω(r/m). Even in
this setting, we see that provided n is sufficiently large, Theorem 1 guarantees an SMSE (and
consequently MSE as well) that is O(r2/m2). In particular, for n sufficiently large, we obtain
a recovery rate that meets the leading term of the minimax guarantee in Proposition 2. Of
course, this is substantially better than the available guarantee for the naive approach which
was O(r/m).

2. High learning rate: As γM grows, so does our ability to learn across slices. Specifically, for
γM = Θ(1), Theorem 1 guarantees MSE ≤ SMSE = O(r2/m2 + r2/mn). This is within a

3The condition number of a matrix can be defined as the ratio of its largest singular value to its smallest singular
value. The ratio we describe here is defined only for the non-zero singular values.
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factor of r off from the lower bound of MSE = Ω(r2/m2 + r/mn) in Proposition 2. Put a
different way, we achieve SMSE = O(r2/m2) with only n = Ω(m) slices of side information.

3. The recovery rate in Theorem 1 is for low slice rank tensors, which includes tensors with low
Tucker rank and CP rank. We emphasize that the rate MSE = O(r2/m2 + r2/mn) greatly
improves upon the best known theoretical guarantees for noisy recovery of low Tucker rank
tensors, and for convex optimization approaches to recovering low CP rank tensors.

5.1. Relaxing the Balanced Noise Assumption

While the balanced noise assumption is already a generalization of many frequently studied noise
models, it is worth considering how our algorithm performs when this assumption does not hold.
To do so, we will present a more general version of Theorem 1 that relaxes the balanced noise
assumption and reflects the recovery error caused by ‘unbalanced’ noise.

To proceed, we need to precisely quantify the concept of ‘unbalanced’ noise. Recall that if v is
the tensor whose entries are the variances of the corresponding entries of ε, i.e. vkij = E[(εkij)2], then
ε is balanced if the row-sums of v(1) are equal and the row-sums of v(2) are equal. An equivalent way
to state this assumption is E[ε(1)ε

>
(1)] = ρ1Im and E[ε(2)ε

>
(2)] = ρ2Im for some constants ρ1 and ρ2,

where Im is the m×m identity matrix. To see this, note that the off-diagonal elements of E[ε(1)ε
>
(1)]

and E[ε(2)ε
>
(2)] are always equal to zero when the noise terms are independent, and the diagonal

elements are exactly the row sums of v(1) and v(2), so the balanced noise assumption states that
E[ε(1)ε

>
(1)] and E[ε(2)ε

>
(2)] are multiples of the identity matrix.

For general, possibly unbalanced noise, it turns out that the appropriate quantities to measure
the level of ‘unbalance’ in the noise are

min
ρ

1
m

∥∥∥E[ε(1)ε
>
(1)]− ρIm

∥∥∥2

F
and min

ρ

1
m

∥∥∥E[ε(2)ε
>
(2)]− ρIm

∥∥∥2

F
.

These quantities measure how far E[ε(1)ε
>
(1)] and E[ε(2)ε

>
(2)] are from a multiple of the identity matrix.

One nice interpretation is that the quantities correspond to population variances, one each for the
row-sums of v(1) and the row-sums of v(2). We denote the maximum of these two quantities as δ2,
and can now state our more general result:

Theorem 2. Assume the entries of M lie in [−1, 1]. If the entries of ε are independent, mean-zero,
and E[(εkij)6] ≤ K6, then there exists a constant c(K) that depends only on K such that for the slice
learning algorithm,

SMSE(M̂) ≤ c(K)
[
r2

m2 + r2

γ2
Mmn

+ r2δ2

γ2
Mm

3n2

]
.

To interpret the guarantee in Theorem 2, consider the range of values that δ2 might take. The
lowest possible value is δ2 = 0, which corresponds to the balanced noise setting, and in this case
we recover Theorem 1 exactly. On the other hand, each row of v(1) and v(2) contains mn elements,
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so their row-sums may scale as O(mn), and thus in the worst case, δ2 = O(m2n2). In this worst
case setting, Theorem 2 does not improve upon the guarantee for the naive approach. However,
the recovery rate in Theorem 2 matches that in Theorem 1 as long as δ2 = O(m2n). Also, since δ2

measures the population variances of the two sets of row-sums, it is highly robust to settings where
only a few row-sums are significantly ‘unbalanced’. All of this suggests that Theorem 1 holds even if
the balanced noise assumption is significantly relaxed.

To this point, our work has applied to the problem of noisy tensor recoveryb, a framework that
addresses settings such as the retail example and our experiment with music streaming data. As
discussed in Section 1, there are settings and applications where the existing data instead can be
represented as a partially observed tensor, i.e. the tensor completion problem. The challenge here
is to design algorithms that are optimal in terms of the number of observed entries required for
exact recovery. Now, under the assumption that entries are observed uniformly at random, it is
possible to map completion problems to noisy recovery problems using a technique developed for
matrix completion (Achlioptas and McSherry (2007), Keshavan et al. (2010), Chatterjee (2014)).
We discuss this topic in Section G of the Appendix, where we (a) use this same device to adapt the
slice learning algorithm to tensor completion, (b) state a Corollary to Theorem 2 that characterizes
the requisite number of observed entries, (c) compare this result to existing tensor completion
algorithms, and (d) show results of synthetic tensor completion experiments.

6. Experiments

We performed two sets of experiments to evaluate the slice learning algorithm, the first using
randomly generated tensors, and the second using a real-world dataset. This section describes these
experiments and their results in detail, wherein the following points emerge:

1. The slice learning algorithm drastically outperforms convex algorithms by an order of mag-
nitude, even though convex algorithms require drastically greater computation. On tensors
with low slice rank, the slice learning algorithm outperforms a convex benchmark we propose
that is in the spirit of incumbent approaches; this is a ‘home court’ setting, as the recovery
guarantees from the previous section show that our algorithm is expected to recover these
tensors. More surprisingly, on tensors with low Tucker rank, the slice learning algorithm also
outperforms an existing convex benchmark designed specifically for low Tucker rank tensors.

2. On real-world, sparse data, the slice learning algorithm outperforms two common benchmark
approaches. This suggests that real data, when represented as a tensor, indeed exhibits the
type of structure that the slice learning algorithm is able to exploit.

3. By leveraging sparsity, the slice learning algorithm can be used on large datasets, in regimes
where common operations such as taking the SVD of a dense matrix are intractable.
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Figure 4: Comparison of slice learning and convex approach for noisy recovery of low Tucker rank
tensors. MSE vs. (r/m)2 is plotted for each replication.

6.1. Synthetic Recovery Experiments

We conducted a number of experiments on randomly generated tensors to test the performance of
the slice learning algorithm, for learning individual slices and the tensor as a whole. In all of our
experiments, we compare against a benchmark convex optimization approach.

6.1.1. Noisy Recovery and Tucker Rank

For our first experiment, we randomly generated m ×m ×m tensors with Tucker rank (r, r, r),
where in each replication, m was drawn uniformly from the integers between 10 and 50, and r

was then drawn uniformly from the integers between 1 and m. In each replication, we randomly
drew orthonormal m × r matrices U , V , and W , along with an r × r × r tensor S with entries
drawn from the standard normal distribution. The ground truth tensor was then constructed in the
canonical way from U , V , W , and S (see Appendix, Section B), and the observed data tensor X
was constructed by adding independent mean-zero gaussian noise of standard deviation 0.1 to each
entry. This is nearly identical to the experimental setup in Tomioka et al. (2011).

We compared the slice learning algorithm against the convex algorithm that minimizes (2) in
§3.1. Recall that this is one of the few well-studied algorithms with a theoretical recovery guarantee
(see Tomioka et al. (2011)). We solved this via the Douglas-Rachford splitting method, as described
by Gandy et al. (2011). Note that the slice learning algorithm requires an estimated rank as input,
and in this experiment, the algorithm was given the true rank r in each replication. On the other
hand, the convex objective (2) has a parameter λ that encodes knowledge of the rank; to level the
playing field, in each iteration we solved (2) for values of λ ranging from 2−2 to 25 and reported the
best performance among all of these.

We performed 100 replications. The results are depicted in Figure 4, where each replication
is represented by two points, one for each algorithm. Each point represents the MSE versus the
value (r/m)2 for that particular replication. The reason we plot the MSE against (r/m)2 is that
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Theorem 1 predicts the MSE of the slice learning algorithm should scale linearly with this value,
which appears to be the case in Figure 4. On the other hand, the best theoretical results for the
convex algorithm state that the MSE scales linearly with r/m, i.e. sublinear in (r/m)2; Figure 4
confirms that this is indeed the case. That is to say the slice learning algorithm outperforms the
convex algorithm in recovering tensors of low Tucker rank, even though the convex algorithm is
suited specifically for tensors of low Tucker rank.

In terms of computation, the slice learning algorithm is also superior. The first order Douglas-
Rachford splitting method for solving (2) requires three SVDs in each iteration. Compared to the
two SVDs required by the entire slice learning algorithm, this means each iteration is slower than
the entire slice learning algorithm, and in our experiments, the whole algorithm was consistently at
least 10 times slower. Along these lines, there is ongoing progress in improving the computational
efficiency of convex optimization approaches, e.g. by Liu et al. (2014).

6.1.2. The Value of Side Information

We performed a similar experiment to test the recovery of tensors with varying numbers of slices,
and particularly recovery in terms of SMSE. We randomly generated m×m× n tensors of slice
rank r where in each replication, m was drawn randomly between 10 and 50, then r was drawn
randomly between 1 and m, and finally n was set equal to either 1, r, or m. In each replication, we
randomly drew orthonormal m× r matrices U and V , along with r × r matrices S1, . . . , Sn with
entries drawn from the standard normal distribution, and we set the slices of the ground truth
tensor to be Mk = USkV >. Independent mean-zero gaussian noise of standard deviation 0.1 was
then added as before.

We used a similar convex algorithm as a benchmark:

(6) argmin
Y

2∑
i=1

λ
∥∥∥Y(i)

∥∥∥
∗

+ ‖Y −X‖2F .

This objective is almost identical to (2), except that it does not include the nuclear norm of the
mode-3 unfolding. This is catered to recovering low slice rank tensors, as it imposes no penalty on
the complexity between slices. We solved this with a similar Douglas-Rachford splitting method
that requires two singular value decompositions in each iteration. Just as in (2), the parameter λ
encodes knowledge of rank, and so we solve (6) for λ ranging from 2−2 to 25 and report the best
performance among all of these.

We performed 400 replications. In each replication, we measured the SMSE of the slice learning
algorithm and the convex algorithm (6). The results for each of the three cases (n = 1, r,m) are
depicted in three separate plots in Figure 5. Figure 5a shows that with a single slice, both algorithms
have SMSE sublinear in (r/m)2; this is to be expected as the exercise is equivalent to matrix
recovery where the best achievable rate is r/m (Proposition 2). Figure 5c shows that the slice
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(a) n = 1 (b) n = r (c) n = m

Figure 5: Comparison of slice learning and convex approach for noisy slice recovery of low slice rank
tensors with varying numbers of slices. SMSE vs. (r/m)2 is plotted for each replication.

learning algorithm achieves the gold standard performance of SMSE linear in (r/m)2 with n = m

slices, while the convex algorithm is still sublinear. The good performance of the slice learning
algorithm is to be expected since in Theorem 1 we were able to show that n = m slices are sufficient
to achieve the (r/m)2 rate. The surprising result is that Figure 5b is almost identical to Figure
5c, implying that n = r slices are sufficient to achieve this same rate. This suggests that there are
settings where slice learning can greatly outperform standard matrix learning, with only very little
side information.

6.2. Experiments on Real Data

In addition to synthetic experiments, we also performed experiments using real-world data to address
a number of important challenges that occur in practice. In particular, these experiments differ
greatly from the previous synthetic experiments in that the data is very large and sparse. The data
is from Xiami.com, a major online music streaming service where users may listen to songs and
share their own music. Within the service, users can interact with songs in different ways: they
can ‘Listen’ to, ‘Download’, and ‘Collect’ any song offered by the service. The collect interaction is
especially important, as it is a strong signal of a user’s affinity for a song, but is performed with
the least frequency in our data. Our dataset4 is a sample of all three interaction types between
users and songs over a six month period in 2015. For the experiments, we represent this data as a
three-dimensional tensor X with three slices, one for each type of interaction, with binary entries
indicating whether that particular user-song interaction occurred during the six month period. Just
as in our motivating retail example, we model this as Bernoulli noise, i.e. we assume that the data
X is a Bernoulli observation of some ground-truth tensor M of probabilities: Xk

ij ∼ Ber(Mk
ij).

We compared the slice learning algorithm against two benchmarks. The first benchmark is the
4https://tianchi.shuju.aliyun.com/
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naive approach of using a matrix recovery algorithm separately on each slice, which is still today a
typical approach to collaborative filtering. The second benchmark is a more sophisticated approach:
form one of the unfoldings and use a matrix recovery algorithm on the unfolding; we will refer to
this algorithm as the matrix approach. This approach nicely exploits tensor structure and can be
performed at large scale; Mu et al. (2013) studied such algorithms and demonstrated theoretical
guarantees for high-dimensional tensors.

Both benchmarks require a matrix recovery algorithm, and for our experiments, we recovered
matrices by replacing hidden entries with zeros and then calculating a low-rank approximation of
this modified matrix (Achlioptas and McSherry (2007), Keshavan et al. (2010)). This procedure
requires roughly the same computational budget as the slice learning algorithm. Finally, since our
experiments were quite large (see Table 1), calculating SVDs using standard libraries meant for
dense matrices was not feasible. Instead, we used the off-the-shelf software package PROPACK5

(Larsen (1998)), which exploits data sparsity through the iterative algorithms described in Section
4.1.

6.2.1. Experimental Setup

Since the data is binary, we evaluated performance vis-à-vis a binary classification task, i.e. the
task of classifying entries as being equal to zero or one, on half of the entries. Since each entry of
the tensor corresponds to whether or not a particular user interacted with a particular song, we will
refer to the values zero and one as ‘did not occur’ and ‘did occur’, respectively.

Our algorithm and the two benchmark algorithms return complete tensors with continuous
values. To convert these continuous values to classifications of occurring and not occurring, we chose
a fixed threshold θ and classified any entry exceeding θ as occurring, and the remaining entries as
not occurring. To evaluate an algorithm’s performance, we can calculate two important performance
metrics: the true positive rate (TPR) and the false positive rate (FPR). Out of all the hidden
entries that occurred, the TPR is the proportion that the algorithm correctly classified as occurring,
and out of all the hidden entries that did not occur, the FPR is the proportion that the algorithm
incorrectly classified as occurring.

A ‘good’ classification has a high TPR and low FPR. This might inform the choice of the
threshold θ, but unfortunately there is a tradeoff: both the TPR and FPR are non-increasing in θ,
so it is impossible to improve on both metrics just by changing θ. In particular, by varying θ, a
given algorithm produces a set of classifications ranging from classifying all entries as not occurred
(TPR and FPR equal to 0) to classifying all entries as occurred (TPR and FPR equal to 1). To
evaluate the performance of an algorithm independently from the choice of θ, we can plot each of
these classifications in receiver operating characteristic (ROC) space, and calculate the area under

5http://sun.stanford.edu/~rmunk/PROPACK/
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the resulting curve (AUC), as in Figure 6. The AUC is always in [0, 1], and a higher value generally
signifies greater accuracy; as a benchmark, the AUC of a random classification is expected to be 0.5.

Figure 6: Sample ROC curves for re-
covering the Collect slice. These curves
were generated from a single replica-
tion of the experiment in the first row
of Table 1. For each algorithm, TPR
vs. FPR is plotted, and the AUC is
reported.

Users Songs Sparse Naive Matrix Slice
2,412 1,541 5.7 0.76 (4) 0.83 (7) 0.91 (14)
4,951 2,049 4.1 0.73 (7) 0.78 (12) 0.91 (15)

27,411 3,472 2.0 0.66 (9) 0.67 (19) 0.87 (20)
23,300 10,106 1.0 0.86 (1) 0.87 (1) 0.95 (18)
53,713 10,199 0.6 0.82 (3) 0.84 (1) 0.95 (13)

Table 1: Summary of experiments on Xiami data for recover-
ing the Collect slice. Each row corresponds to an experiment
on a subset of the data. Columns ‘Users’ and ‘Songs’ show the
number of users and songs in each experiment, and ‘Sparse’
gives the average number of collects per user in the data. Re-
sults for the naive benchmark, the matrix-based benchmark,
and the slice learning algorithm are shown in the last three
columns. The average AUC over 10 replications is reported,
along with the rank in parentheses.

6.2.2. Summary of Results

The results of the experiment, in terms of recovering the Collect slice, are summarized in Table
1. We performed experiments on tensors of five different sizes, described in the first two columns.
These tensors were created by selecting subsets of the densest rows and columns of the original data
set. The third column shows the sparsity of the Collect slice in each of the five tensors, measured in
average number of collects per user. Note that the data is extremely sparse – in the largest tensor,
we observe less than a single collect per user.

For each tensor, 10 replications were performed, where each replication included a resampling of
observed entries, followed by performing all three algorithms with ranks ranging from 1 to 20. For
each algorithm and rank, the AUC was averaged over all 10 replications. The best average AUC of
each algorithm is reported in the last three columns of Table 1, and the best ranks are given in
parentheses.

In absolute terms, the slice learning algorithm performs very well, with an AUC consistently
above 0.87. The algorithm also consistently outperforms both benchmark approaches by a significant
margin. For example, in the largest experiment with approximately 50K users and 10K songs, the
slice learning algorithm has an average AUC of 0.95, while the naive and matrix algorithms have
AUCs of 0.82 and 0.84, respectively. Part of this strong performance comes from the fact that the
slice learning algorithm is able to estimate more complex models, which is demonstrated by the
consistently higher rank values.
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The equivalent tables for recovering the Listen and Download slices can be found in Section F in
the Appendix. To summarize those results succinctly, the slice learning algorithm again consistently
outperforms both benchmarks across all experiments. The margin of improvement is lower, but
that is to be expected as those slices are less sparse than the Collect slice, and so the Collect slice
does not offer as much side-information.

7. Conclusion

This paper introduced a new approach to modeling and learning with side information. Motivated
by settings in e-commerce, where data is sparse but multiple interactions occur, we formulated the
problem of recovering slices of a three-dimensional tensor from a noisy observation of the tensor. We
proposed the slice learning algorithm, a computationally efficient algorithm that scales to enormous
size by leveraging sparsity. Theoretically, we showed that the algorithm achieves the minimax lower
bound for recovery with sufficiently many slices; this guarantee is the best known guarantee for
noisy recovery of tensors and the first guarantee of its kind for recovery of specific slices. Synthetic
experiments further supported the fact that this algorithm outperforms existing convex methods
in both efficiency and accuracy. Experiments on real-world data from the music streaming service
Xiami.com demonstrated the scalability of the approach and provided real empirical evidence that
having side information is advantageous and that our approach utilizes side information effectively.

Our work points to a number of interesting, exciting directions for future work:
1. Different forms of side information: side information may come in the form of data specific to

the row space or the column space. For example, retailers have demographic information on
their customers, and basic information about their products. As we discussed in §4, the slice
learning algorithm can incorporate this kind of side information. A deeper analysis of this
procedure is an important next step.

2. Trimming: our algorithm performs best under the balanced noise assumption. We defined
precisely how to measure the level of unbalance, and quantified the penalty of unbalance.
When the noise is known to be significantly unbalanced, it may be possible to weight the
rows and columns of the tensor in such a way that induces balanced noise. This weighted
tensor can be estimated and then unweighted to recover the original tensor. Such ‘trimming’
procedures need to be analyzed.

3. Higher-dimensional tensors: there are many applications for tensors of dimension greater
than three. For example, retailers might view their sales transactions over time, producing
a three-dimensional tensor where time is the third dimension. Time-series data for multiple
interactions may then be viewed as a four-dimensional tensor. There may be ways that the
slice learning algorithm can be generalized to higher dimensions.
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A. Survey of works employing user-item interaction data

Table 2 summarizes the different forms of user-item interaction data that have previously been studied.

Activity Interaction Representative articles
Direct Feedback Numerical ratings Breese et al. (1998)

Ansari et al. (2000)
Herlocker et al. (2002)

Text reviews Hu and Liu (2004)
Das and Chen (2007)
Archak et al. (2011)

Purchases In-store sales transactions Fader and Hardie (1996)
Chong et al. (2001)
Chintagunta et al. (2005)
Chintagunta and Dube (2005)

Online sales transactions Bodapati (2008)
Moon and Russell (2008)

In-site actions Add to cart, search Wu and Rangaswamy (2003)
Product view Moe (2006)
Clicks on email links sent by site Ansari and Mela (2003)
Product customization Sismeiro and Bucklin (2004)
Browsing Bucklin and Sismeiro (2003)

Montgomery et al. (2004)
Besbes et al. (2015)

Outside online Twitter, Google, Wiki, IMDB Liu et al. (2016)
Blogs Gopinath et al. (2013)
Browsing Trusov et al. (2016)
Tagging Ghose et al. (2012)

Physical actions Try-on, facial expressions Lu et al. (2016)
Movement, direction faced, gaze Hui et al. (2013)

Usage Song listening time Chung et al. (2009)

Table 2: List of user-item interactions.

A classic user-item interaction is users’ direct feedback in the form of numerical ratings. Numerical
ratings have been the traditional subject of study for recommender system researchers (Breese et al. (1998),
Herlocker et al. (2002) and Ansari et al. (2000)). The prototypical example of this is the Netflix Prize
competition (Bennett and Lanning (2007)), where the data consisted of users’ movie grades on a scale from 1
to 5. Advances in text mining techniques have also allowed analysis of users’ text reviews; see Hu and Liu
(2004) and Archak et al. (2011).

Bodapati (2008) points out that ‘in real-world systems, explicit self-reports of ratings are not observed
as frequently as behavioral data in the form of purchases.’ Along these lines, another well-studied type of
interaction is purchases. Sales transaction data at the customer-product granularity has existed for some
time now in many forms, e.g. customer transactions have been tracked in brick-and-mortar retail with the
use of scanning devices and loyalty programs. There have been studies dealing with this type of data; for
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example, Chong et al. (2001), Fader and Hardie (1996), Chintagunta et al. (2005), and Chintagunta and Dube
(2005) all analyze purchase data among households at brick-and-mortar stores. Online retail has made sales
transactions even easier to record. Both Bodapati (2008) and Moon and Russell (2008) use online purchase
data to make product recommendations.

Beyond purchases, advanced tracking software allows for all types of online behavior to be recorded.
Within a business’ website, a variety of user-item interactions may be recorded, including adding an item to
a virtual shopping cart (Wu and Rangaswamy (2003)), viewing an item’s page (Moe (2006)), and clicking on
personalized email links (Ansari and Mela (2003)). These interactions also extend beyond a business’ own
website into general online behavior, including user-generated content such as blogs (Gopinath et al. (2013))
and social media (Liu et al. (2016)).

Increasingly sophisticated technology has even allowed for collection and analysis of new kinds of data in
the brick-and-mortar setting. Data is generated for example through cell phone tracking and in-store video:
Macy’s encourages shoppers to scan products through their mobile app (MobileCommerceDaily (2013)), and
video can be used to record when customers slow down and look at a product (Hui et al. (2013)); Lu et al.
(2016) were even able to record and analyze customers’ facial expressions while trying on clothing items.

B. Comparison of slice rank to existing tensor ranks

There are many definitions of rank for tensors that have already been studied. The two most common, which
tensor recovery has focused on, are referred to here as CP rank and Tucker rank. We review the canonical
definitions of these ranks here. See Kolda and Bader (2009) for a more thorough treatment of these concepts.

CP rank The CP rank of a tensor relates to its orthogonal decompositions. A rank-one tensor is any tensor
M ∈ Rm×m×n that is the outer product of three vectors, i.e. M = u⊗ v ⊗ w for some u ∈ Rm, v ∈ Rm, and
w ∈ Rn, or equivalently, Mk

i,j = uivjwk. For any tensor M , we denote its CP rank as CP(M), which is the
minimum number r such that M can be expressed as the sum of r rank-one tensors.

Tucker rank The Tucker rank of a tensor M , denoted Tucker(M), is the vector (r1, r2, r3), where rd is the
rank of its mode-d unfolding. This relates to its higher order singular value decomposition: given a tensor of
Tucker rank (r1, r2, r3), there exist vectors u1, . . . , ur1 ∈ Rm, v1, . . . , vr2 ∈ Rm, and w1, . . . , wr3 ∈ Rn, and a
smaller tensor S ∈ Rr1×r2×r3 , such that M =

∑r1
`1=1

∑r2
`2=1

∑r3
`3=1 S

`3
`1,`2

u`1 ⊗ v`2 ⊗ w`3 .
Proposition 1 establishes that the slice rank is a less restrictive measure of complexity than either of these

two rank definitions. Recall that CP(r) is the set of tensors with CP rank at most r, Tucker(r, r, l) is the set
of tensors whose Tucker rank is component-wise at most (r, r, l), and Slice(r) is the set of tensors whose slice
rank is at most r.

Proof of Proposition 1. We first prove that CP(r) ⊆ Slice(r). Suppose M ∈ CP(r). By definition there
exist vectors u1, . . . , ur ∈ Rm, v1, . . . , vr ∈ Rm, and w1, . . . , wr ∈ Rn, such that each entry of M can be
expressed as

Mk
i,j =

r∑
`=1

u`iv
`
jw

`
k.

Let U and V be the matrices with columns u1, . . . , ur and v1, . . . , vr, respectively. Then we can equivalently
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write the above expression in matrix form for slices as

Mk =
r∑
`=1

w`k
(
u`v`>

)
= USkV >,

where Sk is the diagonal matrix whose diagonal elements are w1
k, . . . , w

r
k. This equivalent expression for the

slices of M reveals that the slice rank of M is at most r, and so M ∈ Slice(r).
Now we prove that Tucker(r, r, l) ⊆ Slice(r). Suppose M ∈ Tucker(r, r, l). By definition there exist

vectors u1, . . . , ur ∈ Rm, v1, . . . , vr ∈ Rm, and w1, . . . , wl ∈ Rn, and a tensor S ∈ Rr×r×l, such that
M =

∑r
`1=1

∑r
`2=1

∑l
`3=1 S

`3
`1,`2

u`1 ⊗ v`2 ⊗ w`3 . Equivalently, each entry of M can be expressed as

Mk
i,j =

r∑
`1=1

r∑
`2=1

l∑
`3=1

S`3
`1,`2

u`1
i v

`2
j w

`3
k .

Let U and V be the matrices with columns u1, . . . , ur and v1, . . . , vr, respectively. Then we can equivalently
write the above expression in matrix form for slices as

Mk =
l∑

`3=1
w`3
k

r∑
`1=1

r∑
`2=1

S`3
`1,`2

(
u`1v`2>

)
=

l∑
`3=1

w`3
k (US`3V >) = U

(
l∑

`3=1
w`3
k S

`3

)
V >.

Once again, this equivalent expression for the slices of M reveals that the slice rank of M is at most r, and
so M ∈ Slice(r). �

C. Proof of Proposition 2

Our proof follows a standard Bayesian argument for minimax lower bounds; for example, see the proof of
Theorem 1.2 in Chatterjee (2014). We will separately show that MSE(M̂) ≥ C(r2/m2) and MSE(M̂) ≥
C(r/mn). We first give a detailed proof that MSE(M̂) ≥ C(r2/m2). For each ground truth slice Mk, let the
elements sitting in the first r rows and first r columns be drawn independently from a uniform distribution,
and the remaining elements set equal to 0:

(7) Mk
ij ∼

Uniform[0, 1] if i ≤ r and j ≤ r

0 if i > r or j > r
.

Note that all slices of M share the same column and row spaces, both with dimension at most r. Finally,
conditional on M , each entry Xk

i,j of X is drawn from the following two point distribution:

(8) Xk
ij ∼ Ber(Mk

ij).
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Then for each i ≤ r and j ≤ r, we have

E
[
Var

(
Mk
ij

∣∣X)] = Var
(
Mk
ij

)
−Var

(
E
[
Mk
ij

∣∣X])
= Var

(
Mk
ij

)
−Var

(
E
[
Mk
ij

∣∣Xk
ij

])
= Var

(
Mk
ij

)
−Var

(
1 +Xk

ij

3

)

= 1
12 −

1
36 = 1

18(9)

The first equality is the law of total variance. For the second equality, observe that Mk
ij is independent of

all entries of X except for its corresponding entry Xk
ij . The third equality comes from the fact that, having

defined Mk
ij to be distributed as Uniform[0, 1] (or equivalently Beta(1, 1)), its distribution conditional on Xk

ij

is Beta(1 +Xk
ij , 2−Xk

ij).
Then for any estimator M̂ , the definition of variance implies that

E
[(
M̂k
ij −Mk

ij

)2
∣∣∣∣X] ≥ Var

(
Mk
ij

∣∣X) .
Taking expectations of both sides, and applying (9), we have

E
[(
M̂k
ij −Mk

ij

)2
]
≥ 1

18 .

The proof concludes by summing both sides over all entries of M in the first r rows and first r columns (i.e.
nr2 entries in total) and dividing by m2n.

A nearly identical argument shows that MSE(M̂) ≥ C(r/mn). For the first slice M1, let the elements in
the first r rows be drawn independently from a uniform distribution, and the remaining elements set equal to
0:

(10) M1
ij ∼

Uniform[0, 1] if i ≤ r

0 if i > r
.

Set the entries of the remaining slices equal to the corresponding entries in the first slice, i.e. Mk
ij = M1

ij for
all k. Once again, conditional on M , each entry Xk

ij is drawn independently from the distribution in (8), so
while the slices of M are copies of each other, the slices of X are not. Then for each i ≤ r, we have

E
[
Var

(
Mk
ij

∣∣X)] = Var
(
Mk
ij

)
−Var

(
E
[
Mk
ij

∣∣X])
= Var

(
Mk
ij

)
−Var

(
E
[
Mk
ij

∣∣X1
ij , . . . X

n
ij

])
= Var

(
Mk
ij

)
−Var

(
1 +X1

ij + · · ·+Xn
ij

n+ 2

)

= 1
12 −

n

12(n+ 2) = 1
6(n+ 2)(11)

Again, the first equality is the law of total variance, and for the second equality, observe that Mk
ij is

independent of all entries of X except for the (i, j)th entry of each slice. For the third equality, the distribution
of Mk

ij conditional on X1
ij , . . . , X

n
ij is Beta(1 +X1

ij + · · ·+Xn
ij , n+ 1− (X1

ij + · · ·+Xn
ij)).
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Therefore, for any estimator M̂ we have

E
[(
M̂k
ij −Mk

ij

)2
]
≥ 1

6(n+ 2) .

The proof concludes by summing both sides over all entries of M in the first r rows (i.e. nmr entries in total)
and dividing by m2n. �

D. Proofs of Theorems 1 and 2 and Corollary 1

Before proceeding with the proofs, it will be convenient to review and introduce some additional notation.
For n ∈ Z+, [n] denotes the set {1, . . . , n}. If X is a matrix, then ‖X‖2, ‖X‖F , and ‖X‖∗ are respectively
the operator, frobenius, and nuclear norms of X. σi(X) is the ith largest singular value of X. For a matrix
U ∈ Rm×r with orthonormal columns, we will refer to U as a matrix and subspace interchangeably, where the
subspace is the space in Rm spanned by the columns of U ; PU = UU> is the projection operator onto the
subspace U . We use d(U, Û) =

∥∥PU − PÛ∥∥F as a metric for subspaces.
It will suffice to prove Theorem 2; Theorem 1 is just the special case when δ = 0. The proof of Theorem

2 involves two steps, corresponding to the two stages of the algorithm: learning subspaces and projection. In
the first step, we show that we are able to closely estimate the column and row spaces, and in the second
step, we show that if our estimates of the ‘true’ column and row spaces are close, then our estimate of each
slice is close.

D.1. Step 1: Column and Row Space Estimation

To estimate the column space (and similarly the row space), we take the top column singular vectors of
X(1) = M(1) + ε(1), so it is important to understand the extent to which ε(1) changes the singular vectors of
M(1). Lemma 1 bounds the error of this step. The first result in Lemma 1 is an upper bound on E

[
d(U, Û)2

]
,

which is the expected error of our subspace estimate. Because of the decomposition we make later on, we
also need to bound E

[∥∥εk∥∥2
F
d(U, Û)2

]
for any slice of the noise tensor εk, which is complicated by the fact

that εk and d(U, Û) are not independent. The second result in Lemma 1 controls this term.

Lemma 1. Let M ∈ Rm×mn be a matrix with column space U ∈ Rm×r. Suppose ε ∈ Rm×mn is a random
matrix with independent elements, where each element εij is mean-zero, and E[ε2ij ], E[ε4ij ], and E[ε6ij ] are
respectively bounded by K2, K4, and K6. Let X = M + ε, and let Û ∈ Rm×r be the column singular vectors
of X corresponding to its largest r singular values. Then taking expectation over ε, we have

E
[
d(U, Û)2

]
≤ 24

4K2m ‖M‖2F +K4m
2n+K2

2m
3n+ minρ

∥∥E[εε>]− ρIm
∥∥2
F

σ4
r(M) , and

E
[∥∥ε1∥∥2

F
d(U, Û)2

]
≤ 24m2 4K2

2m ‖M‖
2
F + 3K4K2m

2n+K3
2m

3n+K2 minρ
∥∥E[εε>]− ρIm

∥∥2
F

σ4
r(M)

+ 24m2 4K4
∥∥M1

∥∥2
F
/m+K6

σ4
r(M) ,

where M1 and ε1 are the m×m submatrices consisting of the first m columns of M and ε, respectively.
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Note that M1 and ε1 in the statement of Lemma 1 can in fact be any m×m submatrices of M and ε;
they are taken to be the first M columns to save on notation, and without loss of generality. The proof of
Lemma 1 relies on the Davis-Kahan Theorem (Davis and Kahan (1970)), via a recent extension by Yu et al.
(2015), which we reproduce as Lemma 2. Note that Lemma 2 is a statement about symmetric matrices, which
we adapt to our setting where the matrices are not symmetric or even square; Yu et al. (2015) also show
a version of Lemma 2 for rectangular matrices that is a similar modification to Wedin’s Theorem (Wedin
(1972)), but applying that directly would not yield as strong a bound as Lemma 1. However, this stronger
bound requires the noise to be balanced.

Lemma 2 (Davis-Kahan Variant; Yu et al. (2015), Theorem 2). Suppose S and Ŝ are symmetric matrices, and
let U and Û be the eigenvectors corresponding to the r largest eigenvalues of S and Ŝ, respectively. Let λr(S)
and λr+1(S) be the rth and r + 1th largest eigenvalues of S. Then assuming λr(S) 6= λr+1(S) , we have

d(U, Û) ≤
2
√

2
∥∥∥S − Ŝ∥∥∥

F

λr(S)− λr+1(S) .

Proof of Lemma 1. First note that the column singular vectors of M and X are identical to the eigenvectors
of MM> and XX>, respectively, and further, the eigenvectors of XX> − ρIm are the same for any ρ ∈ R.
Thus, Lemma 2 can be applied directly with S = MM>, and Ŝ = XX> − ρIm for any ρ ∈ R, and
λr(MM>)− λr+1(MM>) = σr(M)2 − σr+1(M)2 = σr(M)2:

(12) d(U, Û)2 ≤
8 minρ

∥∥MM> − (XX> − ρIm)
∥∥2
F

σ4
r(M) .

To upper bound the numerator, we make the following decomposition:

min
ρ

∥∥MM> − (XX> − ρIm)
∥∥
F
≤ 2

∥∥Mε>
∥∥
F

+ min
ρ

∥∥εε> − ρIm∥∥F
≤ 2

∥∥Mε>
∥∥
F

+
∥∥εε> − E[εε>]

∥∥
F

+ min
ρ

∥∥E[εε>]− ρIm
∥∥
F
,

and since (a+ b+ c)2 ≤ 3(a2 + b2 + c2) for any a, b, c ∈ R, we have

min
ρ

∥∥MM> − (XX> − ρIm)
∥∥2
F
≤ 3

(
4
∥∥Mε>

∥∥2
F

+
∥∥εε> − E[εε>]

∥∥2
F

+ min
ρ

∥∥E[εε>]− ρIm
∥∥2
F

)
.

We have decomposed the numerator of (12) into three terms. The last term is a deterministic quantity.
The proof concludes by bounding the expectation of the first two terms. All of the following calculations
proceed in the same manner: the equalities come from rewriting expressions in expanded form and setting
any summands with a lone E[εij ] to zero, and the inequality applies the assumptions on the moments of the
noise terms.

E
[∥∥Mε>

∥∥2
F

]
=

∑
i1∈[m],i2∈[m]

E


 ∑
j∈[mn]

Mi1jεi2j

2
(13)

=
∑

i1∈[m],i2∈[m]

∑
j∈[mn]

M2
i1jE

[
ε2i2j
]
≤ K2m ‖M‖2F
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E
[∥∥ε1∥∥2

F

∥∥Mε>
∥∥2
F

]
= E

∥∥ε1∥∥2
F

∑
i1,i2∈[m]

 ∑
j∈[mn]

Mi1jεi2j

2
(14)

=
∑

i1,i2∈[m]

∑
j∈[mn]

M2
i1jE

[
ε2i2j

∥∥ε1∥∥2
F

]
=

∑
i1,i2∈[m]

∑
j∈[m]

M2
i1jE

[
ε4i2j
]

+
∑

i1,i2,i3∈[m]

∑
j1∈[mn],j2∈[m]
(i2,j1)6=(i3,j2)

M2
i1j1

E
[
ε2i2j1

]
E
[
ε2i3j2

]
≤ K4m

∥∥M1∥∥2
F

+K2
2m

3 ‖M‖2F

E
[∥∥εε> − E[εε>]

∥∥2
F

]
=
∑
i∈[m]

Var

 ∑
j∈[mn]

ε2ij

+
∑

i1∈[m],i2∈[m]
i1 6=i2

E


 ∑
j∈[mn]

εi1jεi2j

2
(15)

=
∑
i∈[m]

∑
j∈[mn]

Var
[
ε2ij
]

+
∑

i1∈[m],i2∈[m]
i1 6=i2

∑
j∈[mn]

E
[
ε2i1j
]

E
[
ε2i2j
]

≤ K4m
2n+K2

2m
3n

E
[∥∥ε1∥∥2

F

∥∥εε> − E[εε>]
∥∥2
F

]
= E

∥∥ε1∥∥2
F

∑
i∈[m]

 ∑
j∈[mn]

ε2ij − E
[
ε2ij
]2

+
∥∥ε1∥∥2

F

∑
i1,i2∈[m]
i1 6=i2

 ∑
j∈[mn]

εi1jεi2j

2


(16)

=
∑
i∈[m]

∑
j∈[mn]

E
[∥∥ε1∥∥2

F

(
ε2ij − E

[
ε2ij
])2]+

∑
i1,i2∈[m]
i1 6=i2

∑
j∈[mn]

E
[∥∥ε1∥∥2

F
ε2i1jε

2
i2j

]

=
∑
i∈[m]

∑
j∈[m]

E
[
ε2ij
(
ε2ij − E

[
ε2ij
])2]+

∑
i1,i2∈[m]

∑
j1∈[mn],j2∈[m]
(i1,j1)6=(i2,j2)

E
[
ε2i2j2

]
E
[(
ε2i1j1

− E
[
ε2i1j1

])2]

+
∑

i1,i2∈[m]
i1 6=i2

∑
j∈[m]

2E
[
ε4i1j
]

E
[
ε2i2j
]

+
∑

i1,i2,i3∈[m]
i1 6=i2

∑
j1∈[mn],j2∈[m]
(i3,j2)6=(i1,j1)
(i3,j2)6=(i2,j1)

E
[
ε2i3j2

]
E
[
ε2i1j1

]
E
[
ε2i2j1

]

≤ K6m
2 +K4K2m

4n+ 2K4K2m
3 +K3

2m
5n

≤ K6m
2 + 3K4K2m

4n+K3
2m

5n

Combining (13) and (15) completes the first result, and combining (14) and (16), along with the fact that
E
[∥∥ε1∥∥2

F

]
≤ K2m

2, completes the second.
�

D.2. Step 2: Projection onto Estimated Spaces

Lemma 3 decomposes the error of the projection step in terms of the error of our column and row space
estimates. For any slice Mk, our estimate of this slice is the projection of Xk onto the estimated subspaces
Û and V̂ , i.e. PÛMkPV̂ + PÛ ε

kPV̂ . If Û and V̂ are close to U and V , then PÛM
kPV̂ ≈ PUM

kPV = Mk.
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Furthermore, since Û and V̂ are low-dimensional subspaces, PÛ εkPV̂ will be small (this argument needs to
be made carefully as Û and V̂ depend on εk).

Lemma 3. Let M1 ∈ Rm×m be a matrix with column and row spaces U, V ∈ Rm×r. Let ε1 ∈ Rm×m be a
random matrix, and let Û , V̂ ∈ Rm×r be random subspaces, where none of these variables are required to be
independent. If M̂1 = PÛ (M1 + ε1)PV̂ , then taking expectation over ε1, Û , and V̂ :

E
[∥∥∥M̂1 −M1

∥∥∥2

F

]
≤ 9E

[∥∥PU ε1PV ∥∥2
F

]
+3
∥∥M1∥∥2

F
E
[
4d(U, Û)2 + d(V, V̂ )2

]
+9E

[∥∥ε1∥∥2
F

(
4d(U, Û)2 + d(V, V̂ )2

)]
.

Proof of Lemma 3. We begin by making the following decomposition, where the first two inequalities rely
on the sub-multiplicative and sub-additive properties of the frobenius norm, and the first inequality also
relies on the fact that

∥∥PV̂ − PV ∥∥2 ≤ 1. The final inequality comes from (a+ b+ c)2 ≤ 3(a2 + b2 + c2).∥∥∥M̂1 −M1
∥∥∥2

F
=
∥∥PÛ (M1 + ε1)PV̂ −M

1∥∥2
F

=
∥∥[PU + (PÛ − PU )]M1[PV + (PV̂ − PV )]−M1 + PÛ ε

1PV̂
∥∥2
F

=
∥∥M1(PV̂ − PV ) + (PÛ − PU )

[
M1 +M1(PV̂ − PV )

]
+ PÛ ε

1PV̂
∥∥2
F

≤
(∥∥M1(PV̂ − PV )

∥∥
F

+ 2
∥∥(PÛ − PU )M1∥∥

F
+
∥∥PÛ ε1PV̂ ∥∥F )2

≤
(∥∥M1∥∥

F

(
2d(U, Û) + d(V, V̂ )

)
+
∥∥PÛ ε1PV̂ ∥∥F)2

≤ 3
∥∥M1∥∥2

F

(
4d(U, Û)2 + d(V, V̂ )2

)
+ 3

∥∥PÛ ε1PV̂ ∥∥2
F
.

The last term is decomposed further in a similar way:∥∥PÛ ε1PV̂ ∥∥2
F

=
∥∥[PU + (PÛ − PU )]ε1[PV + (PV̂ − PV )]

∥∥2
F

≤
(∥∥PU ε1PV ∥∥F +

∥∥ε1(PV̂ − PV )
∥∥
F

+ 2
∥∥(PÛ − PU )ε1

∥∥
F

)2
≤
(∥∥PU ε1PV ∥∥F +

∥∥ε1∥∥
F

(
2d(U, Û) + d(V, V̂ )

))2

≤ 3
∥∥PU ε1PV ∥∥2

F
+ 3

∥∥ε1∥∥2
F

(
4d(U, Û)2 + d(V, V̂ )2

)
.

We conclude the proof by taking expectations. �

D.3. Final Steps

We are now ready to conclude the proof. Fix any slice k ∈ [n]. Lemma 3 first gives us:

E
[∥∥∥M̂k −Mk

∥∥∥2

F

]
≤ 9E

[∥∥PU εkPV ∥∥2
F

]
+3
∥∥Mk

∥∥2
F

E
[
4d(U, Û)2 + d(V, V̂ )2

]
+9E

[∥∥εk∥∥2
F

(
4d(U, Û)2 + d(V, V̂ )2

)]
.

The first term is bounded as follows:

E
[∥∥PU εkPV ∥∥2

F

]
= E

[∥∥UU>εkV V >∥∥2
F

]
= E

[∥∥U>εkV ∥∥2
F

]
=

∑
i1∈[r],i2∈[r]

E
[(
U>i1 ε

kVi2
)2] ≤ r2K2.
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The remaining terms are bounded by applying Lemma 1 directly. Replacing running constants with c, we
have

∥∥Mk
∥∥2
F

E
[
d(U, Û)2

]
≤ 24

∥∥Mk
∥∥2
F

4K2m
∥∥M(1)

∥∥2
F

+K4m
2n+K2

2m
3n+mδ2

σ4
r(M(1))

≤ cm2 (K2 +K2
2 )m3n+K4m

2n+mδ2

γ2
Mm

4n2/r2 ,

E
[∥∥εk∥∥2

F
d(U, Û)2

]
≤ 24m2 4K4

∥∥Mk
∥∥2
F
/m+ 4K2

2m
∥∥M(1)

∥∥2
F

+K6 + 3K4K2m
2n+K3

2m
3n+K2mδ

2

σ4
r(M(1))

≤ cm2K4m+ (K2
2 +K3

2 )m3n+K6 +K4K2m
2n+K2mδ

2

γ2
Mm

4n2/r2 ,

and similarly for E
[
d(V, V̂ )2

]
and E

[∥∥εk∥∥2
F
d(V, V̂ )2

]
. Note that in both calculations above, in the second

inequality, we plug in our definition of γM , mini=1,2{σ2
r(M(i))} ≥ γMm2n/r, and use the facts that

∥∥Mk
∥∥2
F
≤

m2 and
∥∥M(1)

∥∥2
F
≤ m2n.

Putting all of this together and rearranging terms, we have

1
m2 E

[∥∥∥M̂k −Mk
∥∥∥2

F

]
≤ c

[
K2r

2

m2 + (K2 +K2
2 +K3

2 )m3n+K6 +K4(K2 + 1)m2n+ (K2 + 1)mδ2

γ2
Mm

4n2/r2

]
≤ c

[
K2r

2

m2 + (K2 +K2
2 +K3

2 )r2

γ2
Mmn

+ K6r
2

γ2
Mm

4n2 + K4(K2 + 1)r2

γ2
Mm

2n
+ (K2 + 1)r2δ2

γ2
Mm

3n2

]
(17)

≤ c
[
K2r2

m2 + K2(K4 + 1)r2

γ2
Mmn

+ (K2 + 1)r2δ2

γ2
Mm

3n2

]
.

In the last step above, we consolidated terms by using the fact that K2, K4 and K6 are respectively bounded
by K2, K4 and K6. Note that this entire analysis holds for any k ∈ [n], so

SMSE(M̂) = max
k∈[n]

1
m2 E

[∥∥∥M̂k −Mk
∥∥∥2

F

]
≤ c

[
K2r2

m2 + K2(K4 + 1)r2

γ2
Mmn

+ (K2 + 1)r2δ2

γ2
Mm

3n2

]
.

This concludes the proofs of Theorems 1 and 2. Corollary 1 follows by returning to (17), and applying (22)
from Section G:

1
m2 E

[∥∥∥M̂k −Mk
∥∥∥2

F

]
≤ c

[
K2r

2
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2 )r2
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+ K6r
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Mm

4n2 + K4(K2 + 1)r2
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+ (K2 + 1)r2δ2
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3n2

]
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[
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3 + r2
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γ2
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Mm
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]
.
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E. Additional Synthetic Experiments

E.1. Additional Results for Section 6.1.2

Figure 7 depicts results from an extension of the experiment described in Section 6.1.2. This extension is
meant to show the behavior of the slice learning and convex algorithms when the number of slices n falls in
between the cases depicted in Figures 5a and 5b. We used the exact same experimental setup for three more
values of n: 2,

√
r, and r − 1. Figure 7a shows that the slice learning algorithm starts to show improvement

even when n = 2, i.e. a single additional slice. Figures 7b and 7c reveal a progression as n increases until the
slice learning algorithm achieves the (r/m)2 rate.

(a) n = 2 (b) n =
√
r (c) n = r − 1

Figure 7: Comparison of slice learning and convex approach for noisy slice recovery of low slice rank
tensors with varying numbers of slices. SMSE vs. (r/m)2 is plotted for each replication.

E.2. The Effect of Unbalanced Noise

To test the effect of unbalanced noise, we randomly generated ground truth tensors with varying sizes and
low slice rank exactly as described in Section 6.1.2. Each tensor had n = m slices. We again added mean-zero
gaussian noise, but this time with varying standard deviations. In all cases, the total noise was kept constant,
i.e. the noise model ε satisfied

(18) E
[∥∥εk∥∥2

F

]
= .01m2, k = 1, . . . , n.

For example, the experiments in Section 6.1.2 had all noise terms set with standard deviation 0.1, which
satisfies (18).

In our first experiment, the top half of each slice εk had variance 0.2 and the bottom half had zero
variance, i.e.

E
[(
εkij
)2] =

.02 if i ≤ m/2

0 if i > m/2
.

In Section 5.1, we defined an unbalance term δ, and here this corresponds to δ2 = O(m2n2), which is the
highest scaling for δ when the variances are bounded. The results are summarized in Figure 8b, and compared
with Figure 8a, which is a reproduction of the corresponding balanced noise experiment from Section 6.1.2,
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they show that the slice learning algorithm still performs well, even though Theorem 2 no longer makes such
a guarantee.

For our second experiment, only the top two rows have noise, but this noise is allowed to grow unbounded:

E
[(
εkij
)2] =

.005m if i = 1, 2

0 if i ≥ 3
.

This case corresponds to δ2 = O(m3n2), and is summarized in Figure 8c. At this point, the slice learning
algorithm performs poorly when r/m is small.

(a) δ = 0 (b) δ = O(m2n2) (c) δ = O(m3n2)

Figure 8: Comparison of slice learning and convex approach for noisy slice recovery of low slice rank
tensors with varying levels of unbalanced noise. SMSE vs. (r/m)2 is plotted for each replication. Display
(a) is a reproduction of Figure 5c.

For another view into what is going on here, we fixed a particular tensor size and rank, and varied the
unbalance level further. We randomly generated tensors of size 30× 30× 30 with slice rank 5. For the added
noise, as before, the bottom rows had zero variance, and the variance of the top rows were set to satisfy (18),
so that the unbalance level can be varied by changing the number of these non-zero variance rows. For each
level of unbalance, we ran 15 replications. The results shown in Figure 9 reveal that the performance of both
algorithms worsens as the unbalance increases, and that the slice learning algorithm outperforms the convex
algorithm for lower levels.

E.3. The Effect of Correlated Noise

The goal of our final set of synthetic experiments is to evaluate what happens when the independence
assumption is relaxed. Following the same experimental setup as in the previous section, we randomly
generated tensors of size 30× 30× 5 with slice rank 5. We will focus on the setting where the noise between
slices is correlated. To do so, each noise term was a zero-mean gaussian with standard deviation 0.1, but the
covariances between corresponding entries across slices were allowed to vary:

Cov(εkij , ε`ij) = c, k 6= `,
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Figure 9: Comparison of slice learning and convex approach for tensors of size 30× 30× 30 with slice
rank 5 and varying levels of unbalanced noise. SMSE vs. δ2 is plotted. Each point is the aggregate of 15
replications.

where c takes values between 0 and its maximum possible value of 0.01. Put another way, for each i, j, the
vector of corresponding noise terms (ε1ij , . . . , εnij) was an independently generated mean-zero multivariate
gaussian, with the above covariance structure.

(a) Different Slices (b) Identical Slices

Figure 10: Comparison of slice learning and convex approach for tensors of size 30× 30× 5 with slice
rank 5 and varying levels correlated noise. SMSE vs. covariance is plotted for each replication. Each
point is the aggregate of 15 replications, with 95% error bars. Points in Figure (b) are slightly offset
horizontally to show overlapping error bars more clearly.

The results in Figure 10a show that both algorithms are only slightly affected by increasing covariance;
note that at the most extreme case of c = .01, the noise terms across slices are identical! However, this does
not necessarily mean that correlated noise is always innocuous, at least without further assumptions beyond
slice rank. For example, for the experiment shown in Figure 10b, we used randomly generated tensors whose
slices are identical. These tensors still have low slice rank, but the effect of correlation on noise is much
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stronger. In particular, the extreme case c = .01 is now identical to having only a single slice of data.

F. Additional Results for Xiami Experiments

Tables 3 and 4 summarize the results of the experiments using data from Xiami.com, in terms of recovering
the Download and Listen slices. See Section 6.2 for a detailed description of the experiment.

Users Songs Sparsity Naive Matrix Slice
2,412 1,541 9.6 0.84 (11) 0.87 (7) 0.91 (12)
4,951 2,049 7.9 0.83 (14) 0.85 (9) 0.91 (12)

27,411 3,472 3.2 0.83 (11) 0.86 (8) 0.91 (14)
23,300 10,106 14.2 0.94 (18) 0.93 (13) 0.94 (18)
53,713 10,199 8.2 0.93 (10) 0.93 (7) 0.94 (20)

Table 3: Summary of experiments on Xiami data for recovering the Download slice. Each row corresponds
to an experiment on a subset of the data. Columns ‘Users’ and ‘Songs’ show the number of users and
songs in each experiment, and ‘Sparsity’ gives the average number of downloads per user in the data.
Results for the naive benchmark, the matrix-based benchmark, and the slice learning algorithm are
shown in the last three columns. The average AUC over 10 replications is reported, along with the rank
in parentheses.

Users Songs Sparsity Naive Matrix Slice
2,412 1,541 14.8 0.88 (6) 0.88 (7) 0.91 (11)
4,951 2,049 12.6 0.88 (7) 0.87 (11) 0.91 (11)

27,411 3,472 7.5 0.87 (6) 0.87 (3) 0.90 (9)
23,300 10,106 21.3 0.94 (7) 0.92 (8) 0.94 (15)
53,713 10,199 14.1 0.92 (5) 0.92 (12) 0.93 (7)

Table 4: Summary of experiments on Xiami data for recovering the Listen slice. Each row corresponds
to an experiment on a subset of the data. Columns ‘Users’ and ‘Songs’ show the number of users and
songs in each experiment, and ‘Sparsity’ gives the average number of listens per user in the data. Results
for the naive benchmark, the matrix-based benchmark, and the slice learning algorithm are shown in the
last three columns. The average AUC over 10 replications is reported, along with the rank in parentheses.

G. Commentary on Tensor Completion

To this point, our work has applied to the problem of noisy tensor recovery, a framework that addresses
settings such as the retail example and our experiment with music streaming data. As discussed in Section
1, there are settings and applications where the existing data instead can be represented as a partially
observed tensor, i.e. the tensor completion problem. To model the tensor completion setting mathematically,
let Ω be the set of indices (i, j, k) of the observed entries, so that our data consists of the set of values
{Mk

ij : (i, j, k) ∈ Ω}, where M ∈ Rm×m×n is the ground truth tensor; for this discussion, we are assuming
that the observed entries are observed without noise. Moreover, assume that Ω is generated randomly such
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that each entry is observed independently with probability p > 0. The goal then is to design an estimator M̂ ,
which is now a function of only the observed entries.

Theoretical guarantees in this area should address performance in terms of four parameters now: m,n, r
and p. In particular, the quantity of m2p is of interest as it is equal to the expected number of observed
entries per slice. Consider that a necessary condition for any algorithm to complete a tensor is

(19) m2p = Ω(r2 +mr/n).

This lower bound comes from the fact that having slice rank r allows for O(nr2 +mr) degrees of freedom,
and that the quantity m2np is the expected total number of observed entries. Dividing through by n gives
the lower bound in terms of the number of observed entries per slice. Achieving this bound would mean that
(1) in the best case, the per-slice data requirement is r2, which does not depend on the size of the slices,
and (2) as sources of side information are added, the per-slice data requirement decreases linearly until r2.
In contrast, a matrix-based approach such as using a matrix completion algorithm on each slice separately
would reduce to completing n matrices of size m×m and rank r. In that case, the best known guarantees
(e.g. Gross (2011)), which have matching lower bounds, are exact recovery with high probability given that

m2p = Ω(mr),

where we have omitted polylogarithmic factors. Another matrix-based approach of applying a matrix
completion algorithm on a single unfolding would not improve on this guarantee.

There has been much work in designing algorithm tailored to the tensor completion problem. The
strongest existing guarantee is by Yuan and Zhang (2015), who propose an algorithm that recovers M exactly,
with high probability, when

m2p = Ω(r2 +mr2/n+m
√
r/
√
n).

This result makes significant progress toward the lower bound (19), but unfortunately the proposed algorithm
is computationally intractable. Huang et al. (2015) analyze a tractable algorithm and show that a sufficient
condition for recovery is

(20) m2p = Ω(mr).

Now, when entries are observed uniformly at random, it is possible to map completion problems to
noisy recovery problems by dividing the observed entries by p and treating unobserved entries as zero. This
technique has been applied in the matrix completion setting (Achlioptas and McSherry (2007), Keshavan
et al. (2010), Chatterjee (2014)). Following the same arguments, we could use the slice learning algorithm for
tensor completion: we (1) divide each observed entry by the proportion of entries observed, i.e. |Ω|/m2n, (2)
treat all hidden entries as observations of the value zero, and (3) execute the slice learning algorithm as usual
on this modified tensor. In other words, we execute the slice learning algorithm on tensor (m2n/|Ω|)MΩ,
where MΩ is the tensor defined as

(MΩ)kij =

Mk
ij if (i, j, k) ∈ Ω

0 if (i, j, k) /∈ Ω
.

The modified tensor (1/p)MΩ is a noisy observation of M . To see this, note that we can define the additive
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noise term of the (i, j, k)th entry as

(21) εkij ∼
Ber(p)
p

Mk
ij −Mk

ij .

These noise terms are independent with mean zero, and (1/p)MΩ = M + ε. It follows that M could be
estimated by applying our slice learning algorithm to (1/p)MΩ. Since we do now know p, we use the proportion
of observed entries as an estimate of p.

Since we can reformulate the completion problem as a noisy recovery problem, a natural question then is
what Theorems 1 and 2 tell us about the performance of the slice learning algorithm, where again performance
is measured in terms of p. To analyze the slice learning algorithm as in Theorems 1 and 2, assume that the
entries of M lie in [−1, 1]. It follows directly from (21) that

(22) E[(εkij)d] = (Mk
ij)d

(
(1− p)d

pd−1 + (1− p)
)
≤ 1
pd−1 ,

for even values of d. Now in the statements of Theorems 1 and 2, the guarantee is parameterized by K, where
it is assumed that E[(εkij)6] ≤ K6. This is actually a compact version of a more specific guarantee we show
(see (17) in the Appendix) that is parameterized by the second, fourth, and sixth moments of the noise terms.
Combining (22) and that guarantee, we have the following result:

Corollary 1. Assume the entries of M lie in [−1, 1]. Suppose Ω is randomly chosen such that each index is
included independently with probability p > 0. Let M̂ be the result of applying the slice learning algorithm to
(1/p)MΩ. Then there exists a constant c such that

SMSE(M̂) ≤ c
[
r2

m2p
+ r2

γ2
Mmnp

3 + r2

γ2
Mm

4n2p5 + r2

γ2
Mm

2np4 + r2δ2

γ2
Mm

3n2p

]
.

Corollary 1 implies that we can expect to recover M using the slice learning algorithm as long as the
denominator of each term in the guarantee is much larger than the numerator. To make more sense of this
sufficient condition, let us assume that the noise is balanced (δ = 0) and that γM scales as a constant, in
which case after some algebraic contortion, the condition can be expressed as

m2p = Ω(r2 +m5/3r2/3/n1/3 +m3/2r1/2/n1/4).

Unlike the guarantee (20) of Huang et al. (2015), this guarantee decreases with n and achieves the final r2

value for sufficiently large n. On the other hand, the scaling with m is worse, and so is only an improvement
when n grows sufficiently faster than m. Finally, our algorithm is dominated by that of Yuan and Zhang
(2015), but is computationally efficient. The guarantees we have described here are summarized in Table 5.

G.1. Experiment

We ran a set of synthetic experiments to test the performance of the slice learning algorithm in the tensor
completion setting. Our first experiment is an exact replication of one of the experiments from Gandy
et al. (2011): we randomly generated tensors of size 20× 30× 40 with Tucker rank (2, 2, 2), using the same
procedure described in §6.1.1, and observed each entry with probability 0.6. We benchmarked against the
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Method Per-Slice Observations

Lower Bound r2 +mr/n

Matrix-Complete Slices mr

Matrix-Complete Unfolding mr

Huang et al. (2015) mr

Yuan and Zhang (2015) r2 +mr2/n+mr1/2/n1/2

Slice Learning r2 +m5/3r2/3/n1/3 +m3/2r1/2/n1/4

Table 5: Comparison of guarantees for tensor completion algorithms, in terms of the number of per-slice
observations sufficient for completion. Logarithmic terms are omitted.

convex algorithm

(23) argmin
Y

3∑
i=1

λ
∥∥Y(i)

∥∥
∗ + ‖YΩ −XΩ‖2F ,

which we solved via the Douglas-Rachford splitting method described in Gandy et al. (2011), using their
recommended values for the step size and index of the proximal operator, and solving (23) multiple times
with increasing values of λ until the solutions converged. This procedure was repeated for 60 replications,
and the results are summarized in Figure 11a, where we give the root mean squared error (RMSE, square
root of MSE) averaged over the 60 replications for both the slice learning algorithm and the convex algorithm
(23). Since Douglas-Rachford is an iterative method, we report the average RMSE at various points in the
procedure, i.e. various numbers of iterations. On the other hand, the slice learning algorithm consists of only
a single ‘iteration’, and so a single value is reported. We also performed a second experiment that is a larger
version of the first. We randomly generated tensors of size 200 × 200 × 200 with Tucker rank (10, 10, 10),
with the rest of the experiment remaining the same. The results are summarized in Figure 11b.

Method Iterations RMSE
Slice Learning 1 1.6×10−3

Convex 1 1.5×10−2

10 5.7×10−3

*24 1.2×10−3

100 8.2×10−6

(a) 20× 30× 40 tensors of Tucker rank (2, 2, 2)

Method Iterations RMSE
Slice Learning 1 3.9×10−4

Convex 1 9.7×10−3

10 4.8×10−3

*22 3.2×10−4

50 1.1×10−4

(b) 200× 200× 200 tensors of Tucker rank (10, 10, 10)

Figure 11: Results of synthetic completion experiments. Entries were observed with probability 0.6.
RMSE and iteration count are reported, averaged over 60 replications. Starred (*) rows correspond to
the iteration of the convex algorithm in which, for the first time, the average RMSE falls below that of
the slice learning algorithm.

The slice learning algorithm performs reasonably well, achieving RMSE on the order of 10−3 to 10−4. To
put this into perspective, the size of the elements of the randomly generated tensors is on the order of 10−2,
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so this RMSE amounts to a relative error of about 1% to 10%. Ignoring computational costs, the convex
algorithm outperforms the slice learning algorithm, achieving a lower average RMSE in both experiments
after approximately 20 iterations. Moreover, we observe the RMSE continuing to decrease with each iteration,
and indeed with enough iterations the RMSE may go to zero (or machine precision), corresponding to exact
recovery of the original tensor. On the other hand, when factoring in computational costs, the slice learning
algorithm performs very well. Each Douglas-Rachford iteration requires singular value decompositions of all
three (dense) unfoldings of the tensor, which means each iteration is more computationally expensive than
the entire slice learning algorithm, which only requires SVDs of two (sparse) unfoldings. In concrete terms,
this meant that for our larger experiment, the slice learning algorithm ran in less than a minute, while the
convex approach took upwards of one hour to reach the same level of accuracy.
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