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Abstract
In large-scale distributed training, communication compression techniques are 
widely used to reduce the significant communication overhead caused by the fre-
quent exchange of model parameters or gradients between training nodes. However, 
these techniques often introduce additional computational complexity and may lead 
to data loss, thereby affecting model convergence and performance. This review 
examines key optimization methods in communication compression, including 
pruning techniques that remove irrelevant weights, quantization techniques that con-
vert floating-point parameters to low-precision representations, and sparsification 
techniques that transmit only critical gradients. Low-rank approximation techniques, 
which compress parameters through matrix factorization, are particularly useful for 
large-scale models. These techniques have also been widely applied in various appli-
cation scenarios, demonstrating their effectiveness in different environments. Appli-
cation scenarios include distributed training, federated learning, and edge comput-
ing, where bottlenecks are carefully identified and evaluated in common scenarios, 
providing a basis for further optimization. Future development directions emphasize 
co-design of hardware and algorithms, dynamic strategies, and cross-layer optimi-
zation. This study provides valuable comparisons of key methods and theoretical 
analysis for efficient communication compression in distributed systems.

Keywords  Communication compression · Collective communication · Distributed 
training · Stochastic gradient

1  Introduction

Large-scale distributed training has become the cornerstone of modern machine 
learning, enabling the training of increasingly complex models through the use of 
multiple parallel computing nodes. Unlike traditional distributed learning, which 
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primarily relied on parameter servers or synchronous updates with limited scalabil-
ity [1], modern approaches emphasize decentralized architectures and efficient com-
munication to handle massive datasets and deep neural networks. For example, early 
implementations of distributed stochastic gradient descent (SGD) [2] required syn-
chronizing full gradients across nodes at each iteration, whereas modern frameworks 
adopt advanced decentralized strategies [3] and gradient compression techniques [4] 
to minimize latency and bandwidth consumption.

However, as model sizes have exponentially grown from ResNet’s 25 million 
parameters to approximately 1.8 trillion parameters in today’s GPT-4 [5], the vol-
ume of data exchanged during training (such as gradients and parameters) has cre-
ated significant redundancy, slowing down convergence and increasing costs [6]. To 
address this issue, communication compression techniques have emerged. In their 
seminal work Parallel and Distributed Computation [7], Bertsekas et al. proposed 
scalar quantization of gradients in distributed optimization, mapping continuous 
values to discrete intervals, which laid an important foundation for communication 
compression theory. Subsequent research, such as 1-bit SGD [4], further advanced 
this idea but also revealed two persistent bottlenecks: first, the trade-off between 
communication overhead and computational cost—compression reduces the amount 
of transmitted data but increases local computational burden; second, the trade-off 
between compression efficiency and model accuracy—many lossy methods may 
lose critical information.

To tackle these challenges, researchers have developed a variety of methods. 
Quantization sacrifices precision for bandwidth savings; sparsification, which trans-
mits only important or nonzero data elements while ignoring all zero or insignif-
icant values [8], reduces the volume of data transmitted; low-rank decomposition 
[9] reduces the dimensionality of weight matrices; pruning [10] removes redundant 
weights; and hybrid techniques such as quantized sparsification [11] further opti-
mize overall performance.

These techniques have been widely applied in scenarios such as distributed train-
ing, federated learning, collective communication, and IoT. In distributed training, 
the sparse Allreduce method [12] optimizes communication through Top-K value 
selection; gradient compression [13] accelerates training and reduces communica-
tion needs, but must be flexibly adjusted according to task requirements and envi-
ronmental conditions; and for non-convex smoothing problems, relevant algorithms 
[14] have achieved near-optimal convergence rates and established theoretical lower 
bounds. In federated learning, unstable networks [15] and noisy channels [16] 
degrade performance, but decentralized training [17] and adaptive methods  [18] 
can reduce communication while maintaining performance and convergence. Mean-
while, traditional communication libraries such as NCCL optimize underlying 
transmission but lack built-in compression capabilities, prompting frameworks like 
BytePS [19] to integrate compression mechanisms on their basis.

Looking ahead, from high-density AI training with trillion-parameter models to 
edge-cloud collaboration and emerging paradigms like quantum distributed learn-
ing, adaptive compression techniques will be essential for handling heterogeneous 
hardware and massive data streams. This makes it crucial to systematically evaluate 
the strengths and weaknesses of existing methods for future development.
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The remainder of this paper is structured as follows. Section 2 outlines the two 
major bottlenecks in communication compression. Section  3 delves into the pri-
mary methods of communication compression. Section  4 offers specific solutions 
for these bottlenecks. Section 5 describes the typical application scenarios of com-
munication compression. Section 6 summarizes the relevant communication meth-
ods. Finally, Sect. 7 concludes the paper. Figure 1 shows a brief introduction of the 
whole process.

2 � Bottleneck

This section delves into the two major bottlenecks of communication compression 
in distributed deep neural network training: the trade-off between communication 
overhead and computational costs, and the balance between compression efficiency 
and model accuracy. Communication overhead is a primary bottleneck in distrib-
uted training, especially in large-scale settings where frequent exchanges of model 
parameters significantly increase communication costs. Many solutions attempt to 
reduce these costs through data compression, but this often introduces additional 
computational burdens and may affect model convergence and accuracy. Moreover, 
achieving fast model deployment in resource-constrained environments, such as 
mobile devices and embedded systems, hinges on striking a balance between com-
pression efficiency and maintaining model accuracy.

2.1 � Communication overhead and computational costs

Communication overhead is a key bottleneck in distributed deep neural network 
(DNN) training. High communication costs arise when model parameters need to 
be exchanged frequently across the network, especially in large-scale settings with 
many working nodes. At the moment, a lot of solutions concentrate on cutting down 

Fig. 1   Overview of communication compression
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on communication overhead without realizing that doing so also increases com-
puting overhead. This is particularly true when training complex models on large 
datasets like ImageNet, for instance, ResNet-50. While strategies like the Stich 
method reduce communication costs by locally aggregating updates before shar-
ing, they may introduce additional computational overhead and can significantly 
reduce model accuracy [20]. This research investigates the use of communication 
compression methods like quantization [21] and sparsification in decentralized par-
allel stochastic gradient descent (D-PSGD). It shows that while compression reduces 
communication costs, it can lead to increased computational complexity, especially 
when trying to maintain the correctness and convergence of the algorithms [22].

Without sacrificing any information, a lossless homomorphic compression algo-
rithm lowers the amount of communication data. This method involves two phases: 
compression and recovery, aiming to balance the benefits of compression with the 
computational overhead. However, it highlights the increased complexity in com-
putational processes involved in these two steps [23]. Adaptive compression mecha-
nisms like Lazy Aggregation (LAG) and CLAG aim to optimize communication by 
selectively compressing data. The authors note that while these methods can reduce 
communication frequency, they add computational overhead due to the need for 
continuous adjustments and checks to determine when to compress or skip commu-
nication [24].

A theoretical examination of the trade-offs between compute and communication 
in communication compression-based distributed learning algorithms was presented 
by Huang et al. [14]. They establish that while compression can reduce communica-
tion overhead, it often requires more computational steps to achieve similar conver-
gence rates, thereby increasing overall computational costs.

The current Gradient Compression (GC) algorithm applied in a hierarchical 
approach reduces the duration of communication, but introduces a significant com-
pression overhead [25], which consequently decreases overall training efficiency. In 
their discussion of a hybrid communication compression technique, Chen et al. [26] 
emphasized the trade-off between lowering communication overhead and raising the 
computational complexity of handling compressed data during training; this study 
[27] introduced adaptively compressed stochastic gradient descent (AC-SGD) to bal-
ance communication efficiency and computational load. It emphasizes that adaptive 
compression methods, while effective at reducing communication frequency, require 
additional computational resources to manage the dynamic compression levels.

It has been demonstrated that techniques like stochastic gradient compression 
[28] greatly lower communication overheads [29], but they can also lead to consid-
erable accuracy degradation and increased computational costs. Since both gradient 
computation and gradient compression are computationally demanding operations 
with high compression overheads [30] that may cause a slowdown overall, gradi-
ent compression techniques [31] are not appropriate for overlapping with gradient 
computation.

Additionally, gradient compression [32] significantly lowers the communication 
cost, but comes with a non-negligible overhead that prevents scalability and slows 
down training in real-world applications. A unifying framework known as GRACE 
was created by Xu et  al. [33] and supports a number of gradient compression 
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techniques. Nevertheless, in comparison with training ResNet-50 [34] without gra-
dient compression, the findings demonstrate that only random k (sending random k 
elements of the gradient) achieves superior throughput. All other compression tech-
niques, however, work noticeably worse. The performance is worse than it would 
be if compression weren’t used since the overhead of compression outweighs the 
time savings in communication. The main features and performance metrics of these 
methods are summarized in Table 1.

2.2 � Balance between compression efficiency and model accuracy

One of the main obstacles to ensuring fast model deployment which is especially 
important in resource-constrained situations like mobile devices and embedded sys-
tems is striking a balance between compression efficiency and model correctness.

Model accuracy is a key metric for measuring model performance on a given task, 
and the impact of compression distortion on accuracy permeates the entire training 
process. First, in terms of gradient fidelity, quantization or sparsification introduces 
noise, causing the parameter update direction to deviate from the true gradient. This 
misalignment directly disrupts the consistency of the optimization trajectory. Sec-
ond, regarding convergence quality, compression operations (such as high propor-
tions of gradient discarding) can significantly slow down the convergence speed. 
Especially in the early stages of training, more iterations are required to reach the 
target accuracy. Moreover, improper adjustment of dynamic compression strategies 
may trap the model in local optima. Finally, in terms of task accuracy, excessive 
compression can damage the model’s final performance. These phenomena reveal 
that compression techniques, by interfering with gradient statistical properties, 
simultaneously affect the three dimensions of accuracy metrics—task accuracy, con-
vergence quality, and gradient fidelity. Therefore, this multidimensional perspective 
demands explicit metric selection and scenario adaptation to achieve Pareto optimal-
ity between communication efficiency and model performance.

At the same time, the synergy between data exchange frequency and compres-
sion strategies is crucial for balancing accuracy, scalability, and efficiency. High-fre-
quency synchronization reduces communication volume by 90% through lightweight 
methods while maintaining convergence quality via error feedback. Low-frequency 
scenarios adopt extreme quantization and residual encoding to cut energy consump-
tion. Adaptive strategies dynamically adjust compression ratios and synchronization 
intervals based on gradient variance or network bandwidth, achieving corresponding 
efficiency improvements in heterogeneous environments. These strategies show that 
the co-design of compression and frequency control, whether prioritizing speed for 
GPU clusters or scalability for edge devices, plays an important role in communica-
tion compression in distributed training scenarios.

Communication delay was integrated with probabilistic quantization and random 
sparsification by Konevcny et al. [35], and their method also mixes communication 
delay with (random) quantization and sparsification. While the method produces con-
siderable compression benefits on a certain CNN and LSTM model, it also causes 
a notable slowdown in convergence speed, which in turn lowers accuracy; the 3LC 
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compression scheme balances traffic reduction, accuracy, and computation over-
head [36]. The 3LC explores methods to mitigate these errors but acknowledges that 
aggressive compression can still lead to reduced accuracy; the study displays the deep 
gradient compression (DGC) technique, which significantly reduces communication 
bandwidth while implementing various strategies to preserve accuracy. However, 
it [37] demonstrated that if the compression parameters are not carefully tuned, the 
aggressive reduction in gradient information can lead to performance degradation.

In federated learning, the two-layer cumulative quantized compression approach 
improves transmission efficiency. The method reduced communication costs but faces 
challenges in maintaining model accuracy [38], emphasizing the trade-offs inherent in 
compression techniques. When using ScaleCom, it is crucial to be aware of the potential 
loss of model accuracy due to gradient compression [39]. When using large datasets and 
complex models in high-volume training scenarios, compression techniques can nega-
tively impact model convergence and final accuracy. For example, employing a gradient 
compression strategy in a high-volume, multi-worker node training configuration for the 
Transformer model on the WMT14 En-De dataset [40] may cause significant accuracy 
loss. This occurs because gradient compression, while reducing communication data, 
may also remove important information needed for model training.

And the method put forward by strom [41] leads to significant accuracy degrada-
tion; TernGrad introduces accuracy loss (2% in GoogLeNet), computational over-
head from ternary operations, theoretical reliance on gradient-bound assumptions, 
and implementation complexity from layer-wise scaling. [42]. Table  2 provides a 
comprehensive summary of these methods.

The significant drop in accuracy due to compression is an unresolved and incom-
plete bottleneck encountered, which can ultimately lead to poor accuracy of the 
results and make the entire experiment impossible to complete.

3 � Optimization methods

In the realm of distributed deep learning, optimizing communication compression 
is crucial for enhancing efficiency and scalability. This chapter delves into a variety 
of optimization methods, including network pruning, weight sharing, quantization, 
sparsification, low-rank approximation, compression coding, and knowledge distil-
lation. Each technique is designed to balance the trade-offs between reducing com-
munication overhead and preserving model accuracy.

3.1 � Communication compression types

Like many other machine learning models, deep neural networks have two stages: 
training and inference. In the training phase, the model’s parameters (which, for 
neural networks, are primarily the network’s weights) are discovered through data 
analysis. In the inference stage, fresh data are added to the model, and the outcomes 
are computed.
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Over-parameterization, however, requires the use of many parameters during the 
training phase in order to capture minute details in the data. Once the training is com-
plete and the model moves to the inference phase, we don’t need as many parameters. 
The notion that we can streamline the model prior to deployment is reinforced by this 
supposition. The benefits of simplifying the model are numerous and include: 

1.	 The reduction in calculation, which leads to shorter computation times and less 
power usage, is the most obvious advantage.

2.	 As the memory footprint shrinks, the model can operate on devices with less 
memory. The possibility of replacing the slow and energy-hungry DRAM with 
SRAM adds another performance advantage.

3.	 Updates and dissemination of applications benefit from smaller package sizes. For 
instance, several mobile phone markets limit the size of applications, and updates 
for cars can be made over-the-air (OTA) with smaller packages.

	   We can approach the enhancement methods from two perspectives: data com-
pression and model compression. A detailed breakdown is provided in Fig. 2.

3.2 � Network pruning

Networks often have more parameters than necessary, with many of them being 
redundant and removable. The main principle behind network pruning is to remove 
the least important components. Formally, this can be expressed as:

The symbols represent the following: min : The minimization operator, indicating 
that we are looking for the minimum value of the expression that follows; w: The 
vector of parameters or weights of the model that we are optimizing; L(D; w): The 
loss function, which measures the discrepancy between the predicted values and the 
actual values in the data set D given the weights w; D: The set of data points or 
data set utilized to train the model; � : A regularization parameter that modulates the 

(1)min
w

�
L(D;w) + �‖w‖0

�

Fig. 2   Communication compression types
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intensity of the penalty imposed on model complexity; ‖w‖0 : The L0 norm of the 
vector w, which counts the number of nonzero elements in w, represents a measure 
of sparsity in the weight vector.

It can be intuitively understood as balancing two goals: 

1.	 Accuracy: Minimize prediction errors on the dataset D (measured by L(D;w)).
2.	 Simplicity: Reduce the number of nonzero weights (measured by the L0 norm 

‖w‖0 , which counts nonzero values).

 � acts like a “knob” to adjust the trade-off: higher � prioritizes simplicity over accuracy.
This equation encapsulates an optimization problem aimed at identifying the opti-

mal set of weights w that minimizes the loss function over the data set D, concurrently 
integrating a regularization term to penalize model complexity, as measured by the L0 
norm of the weights. This type of problem is common in machine learning for promot-
ing sparse solutions and preventing over fitting.

Alternatively, parameter pruning can be written in constrained optimization form:

s.t.: An abbreviation for “subject to,” indicating a constraint on the optimization 
problem; ≤ : The less than or equal to symbol;

� : A constant denoting the upper limit on the permissible number of nonzero entries 
within the weight vector w.

In deep learning model optimization, a pretrained model serves as the foundation. 
Optimization begins with evaluating the importance of the weights and neurons by ana-
lyzing the absolute magnitude of the weights and the activation output of the neurons 
[43]. Weights close to zero or low neuron output indicate relative unimportance, which 
can be assessed quantitatively evaluated using L1 or L2 norms [44].

Algorithm 1 implements the principles of Eq. 1 and 2 through practical approxima-
tions of the L0-norm constraint:

Principle  Remove weights with the smallest absolute values (assuming near-zero 
weights contribute minimally to predictions). 

Algorithm 1   Magnitude-based weight pruning

(2)min
w

L(D;w) + �‖w‖0 s.t. ‖w‖0 ≤ �
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Model pruning entails the elimination of less significant weights or neurons, 
with the objective of diminishing model complexity and the count of parameters 
[45]. After pruning [46], the model may need to recover or improve performance 
through fine-tuning on specific datasets and adjusting the remaining parameters 
to fit the new network structure.

An incremental pruning approach is frequently employed, where a small num-
ber of parameters are gradually removed and fine-tuned to evaluate the perfor-
mance impact, thereby avoiding performance degradation due to a large-scale 
removal at once. Channel pruning on YOLOv5 [47] reduces computational load 
while maintaining detection accuracy on the COCO dataset. For large language 
models, combining sparsification with incremental pruning compresses model 
parameters, and LayerDrop technology [48] retains high accuracy in benchmark 
tests. Movement pruning iteratively removes attention heads based on gradient 
signals, adapting to task requirements and resource constraints. This strategy bal-
ances model efficiency and accuracy, providing a scalable pathway for lightweight 
deployment on edge devices and large-scale models. Through iterative pruning 
and fine-tuning, performance can be preserved while reducing model complexity 
to meet resource constraints or real-time requirements.

3.3 � Quantization

By transforming model parameters from high-precision floating-point representa-
tions to low-bit-width integer representations, a process known as quantization 
is used to optimize deep learning models [49], therefore lowering model storage 
needs and enhancing computing efficiency.

The quantization of stochastic gradients [50] is also a relatively popular 
method for performing communication compression; each gradient in stochastic 
gradient descent (SGD) [51] typically contains a large number of continuous val-
ues [52]. The gradient information can be effectively compressed by quantizing 
these values to a finite number of discrete levels [53]. The most straightforward 
approach is uniform quantization, which maps each element of the gradient to a 
predefined quantization level. The quantization function can be articulated as:

The symbols represent the following: Q(x) : The quantized value of the original input 
x after applying the quantization function; x: The original input value that needs to 
be quantized; Δ : The step size or quantization interval, which determines the granu-
larity of the quantization levels; round(⋅) : A method for rounding real numbers to the 
closest integer value. (e.g., Δ = 1 → 175.3 → 175).

This formula illustrates the process of quantizing the original floating-point value 
x by dividing it by the quantization step size, rounding to the nearest integer, and 
then scaling back by multiplying with Δ to obtain the quantized value Q(x) . This 

(3)Q(x) = Δ ⋅ round
(
x

Δ

)
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approach is an example of uniform quantization, which allocates the input values to 
a finite set of discrete levels.

Meanwhile, to reduce the accumulation of quantization error [54] and bias, ran-
domness can be introduced. The main methods for this are as follows:

where x is some element of the gradient, Δ is the quantization interval, round(⋅) 
denotes the nearest integer rounding.

In practice, quantization discards details (e.g., 175.3 → 175 loses 0.3 cm); to fur-
ther improve the accuracy of quantization, an error compensation mechanism is 
often added to the quantization process; then, track errors and adjust future steps. 
enew represents the newly updated value of a variable, often used to represent the 
new error or a new estimate in an iterative process. Define the cumulative error e, 
which is updated after each quantization:

add this cumulative error to the next gradient update:

This error compensation approach has the potential to drastically minimize system-
atic errors generated by quantization while also improving model training accuracy.

QSGD [55] quantized the gradient data to a discrete set of values using ran-
dom rounding. The preservation of the statistical properties of the original data is 
maximized to ensure that the gradient information is retained to the fullest extent 
anticipated.

Ramezani-Kebrya et  al. [56] introduced a new Non-Uniform Quantized Sto-
chastic Gradient Descent (NUQSGD) scheme that quantizes the gradient using a 
log-quantization approach to ensure homogeneous and unbiased gradient informa-
tion, maintaining accurate gradient estimation within a unit L2 paradigm. Mapping 
the gradient data into a smaller space and compressing it significantly reduce the 
communication cost required during transmission [57]; hierarchical quantization 
of high-dimensional stochastic gradients [58] is mostly utilized for edge learning. 
Through error analysis, a bit of allocation system is designed to distribute the entire 
number of bits among different quantizers to minimize the total quantization error; 
Abdi [59] introduced a new quantized compressive sampling (quantized compres-
sive sampling) in his paper. Abdi mentioned a new quantized compressive sampling 
(QCS) method, which maps the gradient data into a smaller space and compresses 
it through stochastic mixing matrices and jitter quantization, achieving a high com-
pression efficiency; adaptive quantization [60] is also widely used in deep neural 
networks. It dynamically adjusts the transmission ratio according to each minibatch, 
ensuring a balance between communication volume and the accuracy of gradient 
updates [4]. It uses error feedback for accurate quantization and decoding to achieve 
more efficient data transmission.

(4)Q(x) = Δ ⋅

(||||
x

Δ

||||
+ �

)
,

(5)enew = e + x − Q(x),

(6)Q(x + e)
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In federated learning, the design of quantization frameworks has been primar-
ily focused on reducing communication overhead. For example, A novel frame-
work called FedZip was introduced by Malekijoo [61]. It used several encoding 
techniques, quantized clustering, and Top-z sparsification to dramatically minimize 
the amount of model updates in federated learning. As depicted in Algorithm 2, the 
FedZip Compression algorithm efficiently implements these concepts by setting a 
threshold for gradient values based on a sparsity rate, applying a mask to filter out 
less significant values, and then using k-means clustering and Huffman coding to 
further compress the remaining data. This streamlined process ensures that only the 
most critical information is communicated, significantly cutting down on the data 
transmitted in federated learning environments. 

Algorithm 2   FedZip compression

As shown in Fig. 3, this visualization of the FedZip Accuracy Landscape dem-
onstrates the framework’s parameter–performance relationship. The test accuracy 
(z-axis, 94–97%) is maximized (96.5–97%, yellow highlight) when the compression 
ratio (x-axis) is set to 40–60× and the sparsity threshold (y-axis) is maintained at 
0.85–0.90. Higher compression ratios (>80×) or lower sparsity thresholds (<0.80) 
significantly degrade accuracy to 94–95% (purple regions). FedZip achieves an opti-
mal balance by compressing communication data to 1.7% of its original size while 
preserving model performance, validating its ability to harmonize communication 
efficiency and model quality under constrained settings. And FedZip achieves a 
compression ratio of 40–60 times while maintaining a 97%.

Additionally, two new quantization frameworks, FedCOMGATE and FedGATE 
[62], aimed to improve communication efficiency by compressing data in feder-
ated learning. These frameworks minimize the amount of data transferred during 
each communication round by utilizing a variety of quantization techniques, includ-
ing sparsification and hierarchical compression. Frequent model updates and large 
model sizes can lead to communication bottlenecks, which are a major issue limiting 
scalability. To address this issue, the FedDQ approach [63] is implemented, which 
employs a diminishing quantization strategy that scales down the quantization bit 
count in proportion to the range of model updates, consequently minimizing the vol-
ume of data transmitted during communication. A comparison of these methods is 
referred to in Tables 3 and 4.
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Paper [64] presents a quantization compression-aware federated learning frame-
work (FedQCS). By compressing the gradient of each device, the framework per-
forms accurate gradient reconstruction at the server side (PS). The quantized 
approach to communication compression offers several advantages in distributed 
machine learning and deep learning; for data quantization, the core idea employed 
by Hanna and his team is to quantize the raw data generated on distributed nodes 
directly, reducing each data sample to fewer bits to lower transmission costs. This 
data quantization [65] is based on the importance of the samples and uses a specific 
quantization scheme to select and quantize the data.

Quantization minimizes the quantity of data that must be transferred by decreas-
ing the number of bits in a gradient or model update, hence reducing communication 
overhead. Specifically, compressing models from 32-bit floating-point to 4-bit inte-
ger precision on resource-constrained edge devices, such as Raspberry Pi, achieves 
15 ms inference latency with less than 1% accuracy drop. For distributed non-IID 
data training, methods like QSGD employ stochastic rounding to preserve gradient 
statistics. In federated learning scenarios, FedQCS combines gradient chunking and 
adaptive bit allocation to achieve 90% communication compression on non-IID data, 
such as medical images, while residual accumulation ensures convergence stability 
in cross-device training. By balancing precision and efficiency, these methods pro-
vide scalable lightweight solutions for edge computing and distributed systems. For 
large distributed clusters or edge devices, where bandwidth is usually limited, com-
munication compression can effectively alleviate bandwidth bottlenecks.

3.4 � Sparsification

Sparsification [11] is a strategy that reduced model size and memory read time 
by zeroing out some of the weights in neural networks. Sparsification [66] aims 
to reduce model complexity while maintaining performance, which is particularly 
important for resource-constrained devices.

Data matrices frequently have a high number of nonzero values in machine learn-
ing models and signal processing applications, which adds needless compute and 
storage overhead [67]. Sparsification can significantly reduce data complexity and 
improve processing efficiency by identifying and compressing this unimportant 
information. A vector or matrix is considered sparse if most of its elements are zero 
[68]. Sparsification seeks to maximize the number of zero elements in the data while 
preserving the essential features of the data.

L0 Parameters: The L0 parameter of a vector x is represents the number of nonzero 
elements in the vector. The sparsification problem is an optimization problem that aims 
to minimize the number of L0 norms:

where A is the system matrix and b is the observation vector. It can be understood as: 
Minimize the number of nonzero parameters while maintaining model performance.

The existing sparsification methods are: 

(7)min ‖x‖0 subject to Ax = b,
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1.	 Top-K Sparsification: Retain only the top K largest values (similar to keeping 
only the highest-scoring subjects in an exam). As described in Algorithm 3, 
the process begins by computing the absolute values of the gradient elements 
abs_grad = |grad| to establish a ranking of these elements. Following this, the 
values are sorted in descending order, and a threshold is determined, set to the 
magnitude of the K-th largest value. Subsequently, a binary mask is generated 
where any entries that are greater than or equal to the threshold are marked with 1 
(indicating they will be kept), and all other entries are marked with 0 (indicating 
they will be discarded). The final step involves multiplying the original gradient 
by this binary mask sparse_grad = grad⊙mask , resulting in a sparse gradient 
that retains only the K most significant values. 

Algorithm 3   Top-K sparsification

2.	 Random-K Sparsification: Randomly select K values to retain (similar to drawing 
lots to decide which subjects to keep). Algorithm 4 first checks if K is greater than 
or equal to the array length, in which case it returns the original array. Otherwise, 

Fig. 3   FedZip accuracy land-
scape
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it randomly selects K unique indices from the array and initializes a new array 
filled with zeros. The algorithm then assigns the values from the original array 
to the selected indices in the new array, effectively sparsifying the data while 
preserving the most significant elements. 

Algorithm 4   Random K-sparsification

3.	 Block-K Sparsification: Randomly select a starting point and retain K consecutive 
values (suitable for efficient memory access) [69]. Algorithm 5 efficiently trims 
down an array’s size by preserving only a continuous subset of K elements. It 
initially verifies if K surpasses the array’s length, returning the array as is if that 
condition is met. If not, it randomly picks a starting point to accommodate a block 
of K elements. Subsequently, it initializes a zero-filled array and duplicates the 
values from the original array into the designated block of indices. 

Algorithm 5   Block K-Sparsification

Aiming at the limitations of the currently used Top-K sparsification technique, 
which reduces the communication burden by selecting the largest K values in the 
gradient but is prone to error accumulation, especially in the initial stage of training, 
paper [70] analyzes a hard threshold sparsification method. This method dynami-
cally adjusts the number of transmitted weights according to a fixed threshold in 
each iteration, thus improving communication efficiency while reducing the accu-
mulation of errors.
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Meanwhile, gradient sparsification is an excellent strategy to reduce the num-
ber of passes, considerably cutting communication overhead by reducing the quan-
tity of gradient data transmitted in each iteration [73]. Shi et al. [72] introduced a 
new scheme called gTop-k [76], which uses a tree structure for approximation and 
reduces Top-k’s communication complexity from O(kP) to O(klogP), significantly 
improving the system’s scalability (based on distributed synchronized stochastic 
gradient descent); ATOMO [71] is utilized for gradient sparsification under arbitrary 
atomic decompositions, in which framework it can sparsify the gradient stochasti-
cally and unbiasedly according to a given sparsity budget. An optimal gradient spar-
sification method called "OMGS-SGD" is introduced. By combining gradient fusion 
techniques, OMGS-SGD [72] can optimally realize the overlap between computa-
tion and communication on GPUs; Wangni et al. [11] defined the gradient sparsi-
fication problem as a type of convex optimization problem, focusing on finding the 
best sparsification strategy to minimize the coding length. They use probability vec-
tors (p) to decide which parts of the stochastic gradient to keep and which parts to 
discard, ensuring the algorithm’s convergence at the theoretical level.

Nowadays, there is also the newly compressed sensing-based sparsification (CSP) 
approach [74], which treats the sparsity and compression error minimization prob-
lem as a dual optimization task by introducing the compressed sensing process in 
the feed-forward stage of the model. This ensures that local sparsity does not affect 
global performance, maintaining the model’s performance while reducing com-
munication volume; similarly, "time-dependent sparsification" [75] is developed 
to address situations where the importance of neural network parameters does not 
change significantly within a short period. The current iteration can determine the 
location of important parameters for the next iteration. The important parameter 
positions identified in the current iteration can be utilized and reused in subsequent 
iterations to reduce the amount of communication data transmitted. The comparative 
results of these strategies are found in Tables 5 and 6.

Overall, sparsification approaches can enhance data transmission efficiency by 
transmitting only important information (i.e., nonzero components), resulting in 
shorter transmission times and lower energy consumption. These benefits are par-
ticularly evident in scenarios with high communication overhead. For instance, in 
distributed training across large-scale clusters, methods like Top-K gradient selec-
tion and the ATOMO framework enable efficient communication by focusing on 
critical parameters. In federated learning over wireless networks, hard threshold 
sparsification achieves substantial gradient truncation, reducing communication 
rounds and energy consumption. Additionally, the majority of sparsification tech-
niques can be amalgamated with complementary data compression methodologies, 
such as quantization, low-rank approximation, and coding, to augment the efficacy 
of compression and communication. This synergy renders them more potent across 
diverse domains.
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3.5 � Low‑rank approximation

In deep learning architectures, low-order approximation is a widely used commu-
nication compression technique. The underlying concept involves the factorization 
of the original high-dimensional weight matrix into a product of two or more matri-
ces of reduced order. Consider a weight matrix W of dimension M × N whose theo-
retical maximum rank is min(M, N). According to the low-rank approximation, the 
original matrix W can be factored into a product of two matrices U and V, where the 
ranks of both U and V are not greater thanK(K < min(M,N))

By the nature of matrix rank, rank(AB) is min(rank(A), rank(B)),
The rank of the decomposition matrix product is also no more than K, thus reduc-

ing the number of parameters significantly.
The low-rank approximation is usually mathematically achieved by matrix 

decomposition, such as singular value decomposition (SVD) and principal compo-
nent analysis (PCA). Low-rank approximation can compress data to lessen the quan-
tity of data carried over the network, saving bandwidth and lowering transmission 
latency in the context of communication and data transmission.

An arbitrary matrix can be broken down using the singular value decomposition 
technique into the product of three particular matrices, as shown below:

where U and V  are orthogonal matrices (whose columns represent the principal 
directions of the data) and Σ is a diagonal matrix with elements being the singular 
values (arranged in descending order).

A low-rank approximation of X can be obtained by keeping the first k largest sin-
gular values and setting the others to zero:

Here Uk , Σk and VT
k

 are the first k columns (for U and V) and the first k singular val-
ues (for Σ ) truncated from U, Σ , and V, respectively.

Hou et al. [77] proposed the SLRMA algorithm, which effectively compresses 
data by combining low-rank approximation and sparsity; the PowerSGD method 
[78], as detailed in Algorithm 6, employs the power iteration algorithm and com-
putes the low-rank approximation iteratively through subspace iteration of the 
gradient matrix. The core idea of PowerSGD is to achieve efficient compression 
by iteratively approximating the dominant singular vectors of the gradient matrix:

Initialization Random orthogonal matrix Q ∈ ℝ
N×k (via QR decomposition).

Iteration Compute P = ∇W ⋅ Q , extract top-k left singular vectors Uk via SVD. 
Update Q = (∇W)T ⋅ Uk , orthogonalize via QR.

Compress gradient ∇Wcompressed = Uk(U
T
k
∇WQ)QT.

Key Reduces parameter size from O(MN) to O(k(M + N)) , preserving dominant 
gradient directions for efficient communication. 

(8)X = UΣVT ,

(9)Xk = UkΣkV
T
k
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Algorithm 6   PowerSGD compression

This enables fast compression and transmission of the model gradient while 
ensuring that the model maintains comparable performance to the standard SGD 
[79]. And the team subsequently proposed the PowerGossip method for decen-
tralized deep learning environments [80], which achieves significant compression 
of gradient transmission by approximating the differences between model param-
eters through low-rank matrix compression.

Low-rank approximation also has relevant applications in compressed sensing. 
The nonlocal low-rank regularization (NLR) approach is suggested for compres-
sive sensing of photographic and MRI images [82]. Images can be retrieved more 
efficiently by partitioning the data matrix into chunks and applying a low-rank 
approximation to each chunk. In the theory and application of structured low-
rank algorithms [85], the structured low-rank matrix completion theory for con-
tinuous-domain multidimensional signals stands out. This theory converted the 
signal recovery problem into a structured low-rank matrix completion problem 
based on the correlation between the compactness (e.g., sparsity) of the signals 
and the rank of the structured matrices. This method is remarkably flexible and 
effectively exploits different signal properties; the DRONE algorithm [83] has 
been used to de-rank approximate the weight matrix of large natural language 
processing models [86] (e.g., BERT [87]) by exploiting the subspace properties 
of the input vectors to perform dimensionality reduction, ensuring that the model 
performance stays within acceptable limits.

In the context of federated Learning, the extensive scale of model parameters pre-
sents a challenge, the communication burden is extremely high, and a new train-
ing method is carried out. Federated learning with dual-side low-rank compression 
(FedDLR) [81] reduced communication costs by performing low-rank approxima-
tions on both the client and server sides. The differences among these works are 
observed in Tables 7 and 8.

Intuitively, an approach like Ps (low-rank approximation model compression) 
reduces model parameters by adding a hidden layer between two fully connected 
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layers. Although an additional layer is introduced, the overall number of parameters 
is reduced because of the lower dimensionality of this layer. This structural change, 
while limiting the size of the representation space, improves the storage and com-
putational efficiency of the parameters and is particularly useful when the commu-
nication burden needs to be minimized. The core advantages of these methods are 
particularly prominent in large-scale Transformer training. Low-rank approximation, 
enabled by SVD for attention matrices and LoRA for fine-tuning [88], achieves high 
accuracy with minimal parameter training. In heterogeneous federated learning, the 
FedDLR framework uses dual low-rank decomposition to compress Non-IID model 
updates by 70%, significantly reducing transmission overhead. By leveraging matrix 
factorization and parameter-sharing mechanisms, these methods maintain model 
performance while delivering efficient solutions for distributed training and edge 
computing. With low-rank approximation, it is possible to reduce the storage and 
transmission costs of the model while maintaining sufficient representational power.

3.6 � Weight sharing

In convolutional neural networks (CNNs), weight sharing is a parameter-efficient 
strategy that allows the same weights and biases to be applied at various locations, 
thereby achieving translational invariance in feature detection. This approach lever-
ages the local correlation of the image by using a fixed convolutional kernel across 
the entire input space to effectively extract features such as edges and maintain posi-
tional insensitivity. This method increases computational performance while lower-
ing the number of model parameters.

Further, the weight-sharing mechanism can facilitate network model compres-
sion. In the fully linked layer, the number of parameters will approach the million 
level if there are 1000 nodes in each of the two neighboring layers [89]. Param-
eters can be significantly reduced by employing a clustering algorithm to group 
these weights, replacing similar weights with the central values of their clusters. For 
instance, clustering a million parameters into a thousand categories results in sub-
stantial compression of the model size [90].

In practice, each category [91] retains a representative weight and correspond-
ing index, significantly reducing storage requirements. During the backpropagation 
process of model training, the gradients within the same cluster are accumulated and 
combined with the learning rate to update the weights. This method improves stor-
age efficiency and speeds up the model training and inference processes.

3.7 � Compression coding

In communication compression, compression coding is a widely used technique 
aimed at reducing data transmission volume to improve communication efficiency. 
Compression coding diminishes the volume of data necessitated for transmission by 
encapsulating data within a more condensed format.
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However, it also introduces additional computational overhead. Here is a detailed 
analysis of compression coding in communication compression. Compression cod-
ing involves utilizing the redundancy in data to represent it more efficiently. Com-
mon compression coding techniques include Huffman coding, run length encoding, 
and arithmetic coding. By employing more effective representations, these tech-
niques seek to lower the amount of bits needed to represent each data unit.

1.	 Huffman Coding A lossless data compression technique called Huffman coding 
[92] creates an ideal prefix tree by assigning longer codes to less common sym-
bols and shorter codes to higher frequency symbols. This is a commonly used 
technique in deep learning compression. For example, the authors [93] proposed 
a three-stage compression pipeline that uses quantization, pruning, and Huffman 
coding to reduce the amount of storage needed by neural networks.

2.	 Run Length Encoding For data with lengthy sequences of identical symbols, like 
big blocks of single-colored areas in pictures or films, run length encoding (RLE) 
[94] is appropriate. By recording the symbol and its frequency, RLE effectively 
reduces data volume. Although this method is commonly used in image process-
ing, its application in distributed training is relatively limited.

3.	 Arithmetic Coding A more sophisticated lossless compression technique that 
expresses a complete message as a fraction inside an interval is arithmetic cod-
ing [95]. Compared to Huffman coding, arithmetic coding can adjust code lengths 
more precisely [96], making it suitable for scenarios requiring high compression 
ratios.

Compressive coding is a powerful communication compression tool that offers 
significant advantages in reducing the amount of data transferred. However, it also 
requires a careful balance between computational overhead and potential informa-
tion loss. Future research should focus on developing more efficient compression 
algorithms and optimizing their integration with distributed computing frameworks 
to improve the overall performance of the system and the accuracy of the model.

3.8 � Knowledge distillation

Since its inception by Hinton et al., knowledge distillation (KD) has become a cor-
nerstone for model compression and knowledge transfer. The core idea is to transfer 
"soft knowledge" from teacher networks [97] to student networks using temperature-
scaled class probability distributions pteacher = softmax(zteacher∕T) . The temperature 
parameter T  adjusts the confidence distribution of the teacher model’s outputs, con-
trolling prediction ambiguity—higher temperatures T > 1 produce smoother outputs 
(e.g., "the answer might be a cat with a 10% chance of being a dog"), while lower 
temperatures T = 1 yield more deterministic outputs (e.g., "the answer is definitively 
a cat"). The distillation loss function combines KL divergence and cross-entropy:

where � balances the two losses.

(10)LKD = � ⋅ LKL(pteacher ∥ pstudent) + (1 − �) ⋅ LCE(y, pstudent),
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Recent advancements in KD include: Dynamic KD: Online mutual learning [98] 
and dynamic temperature scheduling [99] for large language models. Self-distilla-
tion: Layer-wise attention transfer [100] and cross-modal self-distillation [101]. 
Multi-teacher KD: Federated client aggregation [102] and localized soft label 
exchange [103]. Efficient KD: Data-free distillation [104] and quantization-aware 
distillation [105].

Challenges remain, such as the capacity gap in ultra-compact students and 
dynamic environment adaptation. Future directions include multimodal distillation 
[106] and hardware–algorithm co-design [107].

3.9 � Hybrid methods

In practical applications, the choice between quantization and sparsification depends 
on specific requirements, resource constraints, and model characteristics. Quan-
tization is suitable for hardware-accelerated low-precision operations, storage-
constrained environments, and bandwidth-limited workflows. It directly reduces 
computational energy and storage needs, with techniques like dynamic quantiza-
tion mitigating accuracy loss. Sparsification addresses communication bottlenecks 
by transmitting only significant gradients to reduce bandwidth usage. It is effective 
in models with redundant parameters and adapts well to dynamic network environ-
ments. By preserving critical parameters and offering adjustable compression ratios, 
sparsification maintains model performance while optimizing efficiency. These 
methods can be combined for extreme resource constraints and error-sensitive sce-
narios, where hybrid strategies balance compression and precision.

Facing the dual challenges of extremely large-scale models and heterogeneous 
systems, hybrid methods that integrate techniques such as quantization, pruning, and 
low-rank approximation have demonstrated stronger adaptability to various scenar-
ios. In training models with hundreds of billions of parameters, DeepSpeed ZeRO-
Offload [108] combines parameter partitioning between CPU and GPU with 8-bit 
quantization, reducing memory usage by a factor of 10 and enabling efficient train-
ing of trillion-scale models on a 512-GPU cluster. Meanwhile, OMGS-SGD [109] 
reduces the training time of ResNet-50 on a 128-GPU cluster by 40% through gradi-
ent sparsification and overlapping computation with communication. For edge-cloud 
collaborative inference, hybrid visual Transformers [110] process 4-bit quantized 
image patches on the edge side, while the cloud performs global attention calcu-
lations based on FP32 precision, achieving end-to-end latency of 20ms with 98% 
accuracy retention. This hierarchical compression strategy [111] not only addresses 
the limitations of individual techniques such as precision loss in quantization or 
structural constraints in pruning but also achieves global optimal allocation of com-
puting, communication, and storage resources through cross-layer optimization from 
training to inference and from edge to cloud [112]. As the ultimate form of commu-
nication compression, hybrid methods are driving distributed deep learning toward 
higher efficiency and stronger scalability.
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4 � Balancing compression and efficiency

In modern distributed deep learning, the core challenge of communication compres-
sion techniques lies in the dynamic balance between efficiency and model accuracy. 
Efficiency is defined across three interrelated dimensions: convergence time—the 
number of iterations or actual time required for the model to reach the target accu-
racy; bandwidth usage—the amount of data transmitted between nodes; and energy 
consumption—the computational and communication power required for training 
iterations. These dimensions directly determine the practical feasibility and scalabil-
ity of communication compression methods. To address the proposed bottlenecks, 
research focuses on adaptive compression strategies, hardware–algorithm co-optimi-
zation, and hybrid compression paradigms, aiming to seek Pareto optimal solutions 
in multi-objective trade-offs. This chapter will delve into the following two aspects 
to explore the contradictions between efficiency and accuracy.

4.1 � Control communication overhead and computation overhead

Many scientists have provided insights and innovative solutions to address the 
increased computational costs due to communication compression in distributed 
learning environments. Existing NLP model compression techniques have their limi-
tations, so Optimus-CC [113] used selective stage compression to minimize accu-
racy degradation and reduce inter-stage communication costs, thus accelerating 
training while reducing computational overheads. In distributed Newton-type meth-
ods with communication compression and Bernoulli aggregation [114], new strate-
gies like adaptive thresholding and Bernoulli aggregation are introduced to decrease 
communication and computing costs while maintaining convergence. The report 
includes thorough numerical evaluations that demonstrate the effectiveness of these 
novel strategies.

In addition to these advancements in NLP model compression, other research-
ers have also made significant contributions to communication compression in dis-
tributed learning environments. Adaptive compression for efficient distributed train-
ing introduced AdaCGD [24], an innovative optimization algorithm designed for 
communication-efficient training, featuring an adaptive compression level. It aims 
to reduce both communication and computational costs while maintaining con-
vergence. A bandwidth-adaptive gradient compression algorithm, ACE [115], has 
been proposed as an adaptive compression technique. This method is responsive to 
the variability of network conditions, effectively reducing both the communication 
and computational overheads associated with distributed deep learning. The study 
[116] evaluated various gradient compression methods and proposes optimizations 
to reduce computational costs. It emphasizes how gradient compression techniques 
may be made more efficient and scalable by utilizing HiPress and ByteComp. The 
compressed LANS (CLAN) algorithm [117] is highlighted for its capability to alle-
viate computational overheads, sustain convergence velocity, and scale efficiently 
with an increased number of workers and larger batch sizes. It addresses the chal-
lenges of error feedback and scalability in adaptive gradient methods.
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To ensure a fair comparison, experiments were conducted under a unified 
environment:

Hardware: 128 NVIDIA A100 GPUs (80GB memory) interconnected via 
200Gb/s HDR InfiniBand;
Software: CUDA 11.3, cuDNN 8.6.0, PyTorch 1.10.1, with environment vari-
ables optimized for GPU-CPU coordination;
Network: A dynamic bandwidth simulator emulating 5–200Gb/s fluctuations, 
with a baseline latency of 2.1μs.
Datasets: ImageNet-1K and CIFAR-100 for vision task validation.

Under this configuration, the performance of each method is detailed in Table 9.
Optimus-CC significantly enhances computational efficiency through selective 

stage compression and low-rank decomposition, achieving a 15–44% speedup while 
maintaining precision loss within 0.5%. Its design, tailored for large-scale distributed 
training, effectively reduces synchronization overhead through pipeline parallelism 
and inter-stage compression, with an expected acceleration of 20–50%. CLAN and 
ACE excel in low-latency network environments. CLAN’s bi-directional compres-
sion and robust error feedback mechanisms deliver a 30–60% speedup. ACE’s band-
width-adaptive compression strategy enables rapid error feedback processing and 
dynamic adjustment of compression strategies. Both methods avoid global reduction 
bottlenecks, making them well-suited for large-scale node and large-batch training 
scenarios.

Alternating compression, leveraging low-rank decomposition and system optimi-
zation integration, demonstrates a remarkable 3–4× speedup with minimal precision 
loss (<0.5%). It shows good scalability in large-scale distributed training, though it 
may encounter performance bottlenecks in extremely large models due to coordi-
nation overhead. AdaCGD’s dynamic compression levels and balanced CPU-GPU 
load distribution achieve a 25–40% speedup. It further reduces computational over-
head through optimized linear algebra operations and performs robustly in high-
speed training environments. Hessian compression, despite scalability challenges in 
large models, still offers a 10–30% speedup thanks to its theoretically superlinear 
convergence properties while maintaining precision and convergence. It is suitable 
for convex optimization problems.

Overall, in a unified high-performance computing environment, Optimus-CC and 
CLAN achieve the best balance between acceleration, scalability, and precision with 
their hardware-aware designs. Alternating compression and AdaCGD stand out in 
medium-scale tasks, while Hessian compression plays an important role in specific 
optimization scenarios.
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4.2 � Control communication overhead and accuracy

For various scenarios such as gradient compression and joint learning, a range of 
solutions and insights is presented here to improve the efficiency of machine learn-
ing communication while preserving high accuracy.

Huang et  al. [118] proposed the SCALLION and SCAFCOM algorithms to 
address the issues of data heterogeneity and partial participation in federated learn-
ing. SCALLION employs unbiased compression, supporting arbitrary data distribu-
tions and partial client participation, with a communication complexity of O

(
1+�

�2

)
 . 

SCAFCOM introduces a momentum mechanism to support biased compression, 
achieving a 46% improvement in convergence rate and realizing accuracy compara-
ble to full-precision SGD in distributed ImageNet training. Zheng et  al. [119] 
designed a block gradient compression method, reducing communication volume by 
32 times through 1-bit quantization combined with Nesterov momentum, while 
maintaining the same test accuracy as the original method in ResNet distributed 
training and shortening wall-clock time by 46%. Li’s team [120] developed an adap-
tive Top-K sparsification algorithm, dynamically adjusting synchronization fre-
quency and sparsity, achieving a 38% reduction in energy consumption in mobile 
edge networks and a 1.8 times increase in convergence speed. The Byz-EF21 algo-
rithm [121] innovatively combines error feedback mechanisms with contractive 
compressors. By dynamically compensating for compression bias, it achieves a 2.3 
times faster convergence rate compared to traditional unbiased compression meth-
ods under heterogeneous data scenarios, without requiring additional assumptions 
on the boundedness of gradient differences.

Zhang et  al. [122] proposed the FZ-GPU framework, integrating dual quan-
tization, bit shuffling, and fast encoding techniques. Compared with cuSZ, it 
achieved a 4.2 times speedup and a 2 times improvement in compression ratio 
on the A100 GPU. The SPERR method [123], based on the improved SPECK 
algorithm and incorporating an outlier correction mechanism, achieved a 100:1 
compression ratio in climate simulation data compression, with the maximum 
point error controlled within the user-defined threshold. HLRcompress [124], 
combining hierarchical low-rank approximation with binary compression, real-
ized a 100 times compression rate in combustion simulation, with an 8.2 times 
improvement in storage efficiency compared to ZFP. Liu et al. [125] developed 
a cross-field prediction CNN model, leveraging the correlation between physical 
fields, achieving a 25% increase in the compression ratio of CESM-ATM data 
and a 0.15 increase in structural similarity (SSIM).

The experimental environment remains the same as that in Sect. 4.1. SCAF-
COM performs remarkably well in distributed training, leveraging the substan-
tial bandwidth of A100’s NVLink 3.0 to significantly reduce gradient synchro-
nization time by approximately 30–40%. Its half-precision communication, 
accelerated by Tensor Core, combined with unbiased quantization compres-
sion, dramatically lowers communication costs to 70% of the theoretical value. 
Block gradient compression enhances the efficiency of block gradient transmis-
sion, with a substantial reduction in single-communication latency under 32× 
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compression. The sparse computing unit (Sparse Tensor Core) of A100 can 
accelerate sparse gradient calculations, increasing the frequency of sparsity rate 
adjustment to once every two batches and reducing energy consumption to 22% 
of that of mobile devices. The detailed performance metrics for each method are 
outlined in Table 10.

Table  11 provides a comprehensive overview of the performance for each 
method. The FZ-GPU framework, employing double quantization and bit shuf-
fling, achieves a throughput of 1.2TB/s on A100, which is 4.2 times that of 
cuSZ, thanks to the asynchronous memory copy optimization of CUDA 11.3. 
SPERR benefits from A100’s fast double-precision computing, while cross-field 
prediction CNN, leveraging the JIT compilation optimization of PyTorch 1.10.1, 
shortens the iteration time for multi-field joint training to 8 minutes per epoch, 
compared to 15 minutes in the original environment.

In contemporary distributed systems, the integration of specialized accelera-
tion units is crucial for augmenting the computational efficiency of communi-
cation compression. Vector processing units (VPUs), matrix processing units 
(MPUs), and tensor processing units (TPUs) represent pivotal components 
engineered to facilitate the acceleration of parallel data processing and intricate 
manipulation tasks. VPUs parallelize vector operations, significantly reducing 
the computation time compared to traditional scalar processors; MPUs are opti-
mized for matrix operations, which are pivotal in distributed optimization and 
deep learning model compression, thereby accelerating compression workflows; 
TPUs, proficient in handling higher-dimensional tensor operations, are crucial 
for advanced deep learning applications and complex data processing, optimiz-
ing the execution of model compression tasks. The synergistic use of these units 
minimizes computation time, maximizes resource utilization, and enables the 
deployment of more sophisticated and efficient compression algorithms, leading 
to substantial performance improvements in distributed computing and large-
scale data processing scenarios across scientific and engineering domains.

In summary, while early methods of communication compression faced sig-
nificant challenges, recent advancements have provided robust solutions that bal-
ance the trade-offs between communication costs [126], accuracy, and efficiency. 
These innovations are crucial for scalable and efficient distributed machine 
learning and federated learning, especially in heterogeneous and resource-con-
strained environments.

5 � Application scenarios

The application scenarios of communication compression are primarily in areas 
such as artificial intelligence, aggregated communication, etc. Communication com-
pression addresses communication bottlenecks in various scenarios, as illustrated in 
Fig. 4, where significant challenges result in substantial communication overhead. 
These scenarios require communication compression [127] to resolve related issues 
and enhance scalability.
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5.1 � Distributed training

Reducing the communication overhead related to the gradients [128] and parameters 
sent between nodes to expedite the training process is a key challenge in the explo-
ration of large-scale distributed training systems. To tackle this issue, several past 
experiments have developed many frameworks aimed at making improvements.

There are several approaches to achieve optimal performance in remote training, 
including the use of classical techniques to minimize data transmission, such as gra-
dient clipping and delayed updating, and the use of parameter servers to centrally 
control and update model parameters. However, the centralized approach of param-
eter server architecture is prone to cause limited scalability in large-scale systems; 
if clipping and updating are necessary for each iteration, it will unavoidably have an 
impact on the model’s accuracy and rate of convergence. Compared with the above 
methods, communication compression at this time has the following comprehensive 
advantages:

1.	 High efficiency: Significantly reduces the amount of data transmitted during each 
communication while simultaneously improving bandwidth utilization;

2.	 Low latency: By reducing the volume of data, communication latency is 
decreased;

3.	 High flexibility: High flexibility can be ensured by dynamically adjusting the 
compression rate based on the network environment;

4.	 Low energy consumption: Due to the reduced amount of transmitted data, com-
munication compression can reduce the workload of network equipment, thus 
reducing energy consumption.

A compression framework for SBC [129] is proposed that as following: (1) The 
approach capitalizes on pre-existing communication delay and gradient sparsifica-
tion strategies. (2) It incorporates a novel binarization technique alongside an opti-
mized coding scheme for weight updates. When the training process occurs on a 

Fig. 4   Application scenarios
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mobile device, issues such as network latency, low throughput, and intermittent poor 
connectivity can require expensive communication bandwidth. Lin et al. [37] have 
designed to improve the compression framework. The framework highlights a deep 
gradient compression [58], which consists of four main techniques: momentum cor-
rection, local gradient trimming, momentum factor masking, and warm-up training. 
These techniques are used to maintain the accuracy of the compression process.

Most existing distributed training algorithms are working node-aggregator node 
hierarchy [130]. The aggregator node collects gradient updates from the working 
nodes and returns the updated weights, which can lead to a communication burden. 
At this point, the focus shifts to decentralization and hardware–algorithm co-design. 
Li et al. [131] implemented the INCEPTIONN framework, which integrates hard-
ware and algorithms, featuring a lightweight, hardware-friendly lossy compression 
method for floating-point gradient values and a decentralized training algorithm 
without aggregation nodes; the 2Direction approach by Tyurin et al. [132] addressed 
distributed convex optimization using bi-directional compressed communica-
tion and a customized error feedback mechanism, particularly effective when both 
uplink and downlink communication is costly for servers and workers; Cao et  al. 
[133] proposed combining gradient variance reduction techniques with compression 
algorithms to dynamically adjust the weights of error compensation, thereby reduc-
ing the cumulative error caused by long-tailed gradient distributions. This error 
feedback mechanism can effectively mitigate the impact of compression distortion 
on model training. For techniques that are compatible with gradient compression 
through a unified analysis framework [134], combining local update strategies under 
dynamic communication topologies and explicitly separating the compression error 
term in the theoretical derivation (while weakening the global noise assumption) can 
guide the adaptive adjustment of compression parameters. This approach helps to 
maintain communication efficiency while reducing the negative impact of distortion 
on model convergence; they introduced DC2 framework [135] mainly addressed 
the communication delay caused by the communication model updates after train-
ing iterations. Iterative communication between nodes can hinder communication 
for distributed non-convex optimization. Yi et al. [136] pointed out a combination of 
compression and communication techniques for distributed primal pair communica-
tion, which can facilitate communication between nodes.

He et al. [137] introduced a key innovation: achieving unbiased compression by 
lowering the cost for each communication, rather than reducing the number of com-
munication instances, even when compressors used by all working nodes are inde-
pendent. This is because independence allows the compression error to be effectively 
controlled, while improved analysis of the ADIANA algorithm demonstrates that 
these lower bounds are tight; Sketch-fusion SGD [138] utilized the Count-Sketch 
[139] data structure to augment the scalability and accelerate the training process of 
distributed deep learning frameworks. This method improves performance by com-
pressing gradients into Count-Sketch structures on a local server, then merging these 
compressed gradient sketches [128] in an aggregation phase, and finally recovering 
the critical elements of the gradient for model updating.

Tang et al. [140] presented two compression decentralized training frameworks, 
one is extrapolation compression (ECD-PSGD), which compresses the extrapolated 
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values between the last two local models. The other is difference compression (DCD-
PSGD), which compresses the differences of local models between successive itera-
tions. The impact on scalability is shown in Table 12; the CHOCO-SGD algorithm 
[141] is mainly a stochastic gradient descent method [142] for decentralized training 
using communication compression, and its specific role is to achieve linear accelera-
tion at arbitrarily high compression ratios. And this 3D visualization like highlights 
key performance metrics of the CHOCO-SGD algorithm. Latency increases loga-
rithmically with compression ratio (0.82 ms at 32× to 1.87 ms at 128× ), showing 
the trade-off between communication efficiency and computational overhead. From 
Figs. 5 and 6, throughput peaks at 18.9GB/s under 64× compression but declines to 
22.1GB/s at 128× due to computational saturation. The algorithm’s theoretical lim-
its are indicated by a purple performance boundary curve, with an inflection at 75× 
compression marking the transition between communication and computational bot-
tlenecks. For optimal performance, the 50--80× compression range is recommended 
to maintain sub-1.2 ms latency and throughput above 18GB/s , avoiding degradation 
beyond � = 100×.

The ScaleCom framework [40] (scalable sparsified gradient compression) is 
analyzed theoretically and demonstrated to provide favorable convergence. It is 
compatible with full gradient normalization techniques; the study optimizes at the 
system level for efficient scaling, constructing [117] a scalable system (BytePS-
Compress), which blended gradient compression utilizing a new adaptive gra-
dient technique. It also adopts a parameter server architecture and considers bi-
directional compression. This high degree of parallelization of compression and 
decompression improves the processing efficiency of the system by pipelining the 
operations and utilizing multi-threading; the DeepSpeed framework [143] inte-
grates gradient compression with a sharded optimizer, employing zero redun-
dancy (ZeRO) memory management to avoid information loss due to memory 
compression or extreme sharding in training models with hundreds of billions 
of parameters. This approach maintains the integrity of parameter computation 
and supports the convergence of large models like Turing-NLG. Compared to 

Fig. 5   Comparative analysis of latency and throughput in CHOCO-SGD algorithm across different com-
pression ratios
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traditional methods, DeepSpeed achieves a 3–5 times speedup without any loss 
of precision.

Minimizing the communication burden associated with gradient and parameter 
exchanges among nodes is a critical issue in large-scale distributed training. To 
address this, researchers have investigated a wide range of innovative compres-
sion techniques and strategies aimed at speeding up the training process. These 
approaches encompass communication delay techniques, gradient sparsifica-
tion methods, binarization schemes, and optimized coding for weight updates, all 
of which are fine-tuned at the system level to ensure efficient scaling [144]. For 
instance, the SBC framework proposed by Sattler et  al. [129] and the deep gradi-
ent compression (DGC) technique developed by Lin et  al. [37] demonstrate how 
to effectively preserve the accuracy of the compression process while significantly 
reducing communication needs in resource-limited environments. Moreover, the 
INCEPTIONN framework enables decentralized training and achieves efficient 
compression of floating-point gradient values through a co-design of hardware and 
algorithms. Specific decentralization strategies include extrapolation compression 
and difference compression methods, as well as the LayerFusion algorithm, which 
reduces communication frequency by employing multilayer fusion techniques. 
These methods collectively aim to enhance scalability and efficiency by minimiz-
ing the volume of data transmitted. In summary, through advanced communication 
compression [145] and decentralized training techniques, researchers can substan-
tially reduce communication overhead while maintaining model performance, which 
is essential for effective data transfer management in large-scale distributed systems.

5.2 � Federated learning

In federated learning [146], multiple devices or nodes collaborate to train a 
global model while avoiding the sharing of sensitive data held by each device. 
In this learning paradigm, data retention is localized, while model updates are 
transmitted to a centralized server for consolidation, subsequently facilitating the 
update of the overarching global model [63]. However, because federated learn-
ing involves communication across networks, the data upload process can become 

Fig. 6   Impact of high compression ratios on CHOCO-SGD algorithm performance
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a bottleneck, especially in bandwidth-constrained and latency-sensitive applica-
tion scenarios. Therefore, communication compression techniques are crucial for 
reducing the latency and bandwidth consumption of federated learning systems.

We always face the following two dilemmas under federated learning:

1.	 Communication and computational burden: FL places a heavy communication 
and computing load on participating devices since it requires ongoing local 
training in addition to periodic global synchronization, especially for battery-
constrained mobile devices.

2.	 Heterogeneous environment adaptation: A flexible compression control method 
is required to adjust to these heterogeneous settings while maintaining energy 
efficiency and model accuracy because the processing and communication capaci-
ties of the various participating devices vary.

Reducing communication overhead is a key issue in federated learning. Many 
experiments use more efficient communication protocols and routing algorithms 
by optimizing network topology. This approach requires costly and difficult modi-
fications to the existing network. In contrast, communication compression directly 
reduces the amount of data transmitted without altering the network structure, 
offering higher operability.

The use of dedicated hardware to accelerate the model training and inference 
process can also reduce the communication requirements, but hardware-acceler-
ated devices are costly and require specific programming and optimization skills, 
limiting the scope of application. Communication compression can be imple-
mented on general-purpose hardware without additional hardware investment and 
is compatible with existing hardware acceleration techniques, further improve 
efficiency.

Distributed computing frameworks optimize task allocation and data transfer, 
but they require integration and configuration of existing systems, increasing sys-
tem complexity. Communication compression can be implemented on existing 
distributed computing frameworks, complementing the optimization strategies 
of these frameworks and improving overall performance. Opting for communica-
tion compression techniques to mitigate the communication overhead in federated 
learning enhances efficiency, broadens the scope of applicability, and augments 
the flexibility of the system.

The most notable challenge in federated learning is its high communication 
costs and the imbalance between efficiency and privacy. The primary solutions 
involve performing gradient compression and optimization. Li et  al. [147] sug-
gest that the core of SoteriaFL integrates generic compression operators and 
local differential privacy (LDP) to form a versatile private FL framework. The 
key technique is employing shift compression to optimize communication with-
out compromising accuracy; remote learners and parameter servers (PSs) pre-
sent a key challenge for the current communication constraints. Model updates 
must be compressed in order to reduce accuracy loss brought on by communi-
cation limitations. Liu et  al. [148] efficiently compressed the gradient using a 
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rate distortion-inspired method to reduce the communication overhead of model 
updates while maintaining the accuracy of model training, which is referred to as 
M-amplitude-weighted L2 distortion, as shown in Table 13.

In terms of client selection and communication period adjustment, Wu et  al. 
[149] highlighted a cooperative optimization strategy to reduce the FedAvg algo-
rithm’s error-runtime convergence. To hasten the model’s convergence, they cre-
ated an adaptive control method that can dynamically choose the number of clients 
and communication duration during FL training; the devices share updates over the 
network because the FL system is distributed, which could impede communication. 
The main concerns of Shahid et al. [150] are bandwidth and data privacy, and they 
explore decentralized training and peer-to-peer learning; parameter interactions 
during federated learning (FL) tend to lead to frequent parameter communication. 
This has an additional impact on communication and learning efficiency when cou-
pled with the constrained bandwidth of IoT and edge devices. This methodology 
enhanced communication efficiency and simultaneously optimizes the performance 
of the shared global model by prioritizing parameter selection based on their max-
imal contribution to the global model and their local significance. The geometric 
median of each layer serves as a benchmark for selecting salient filters within the 
local model, facilitating subsequent parameter interaction with other nodes to opti-
mize communication efficiency [151]; the team [153] integrated relevant theoretical 
knowledge for federated learning communication, such as the main communication 
environments, and proposes resource allocation and common methods.

Table 13   Keywords for communication compression methods in federated learning

Method Keywords Reference

SoteriaFL Generic compression,
Local differential privacy (LDP),
Private FL framework

[147]

M-amplitude-weighted L2 distortion Rate distortion,
Gradient compression,
Communication overhead reduction

[148]

Adaptive control algorithm Adaptive control,
Joint optimization,
Error runtime convergence,
FedAvg

[149]

Decentralized training and peer-to-peer learning Decentralized training,
Peer-to-peer learning,
Bandwidth optimization,
Data privacy

[150]

Geometric median-based selection Geometric median,
Filter selection,
Efficient communication

[151]

Model sparsification and perturbed compression Model sparsification,
Weight sharing,
Perturbed compression,
Privacy protection

[152]
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To further reduce model size and protect model privacy without significantly sac-
rificing accuracy, Zhu et al. [152] have pointed out an FL framework that integrates 
model sparsification, weight sharing, and perturbed model compression. In the field 
of federated learning, where communication compression techniques have become a 
prominent research topic, the goal is to ensure effective model training and accuracy 
while protecting data privacy and reducing communication costs. Future research 
could concentrate on creating more efficient compression algorithms, improving 
privacy-preserving strategies, and optimizing system designs to improve the perfor-
mance and scalability of federated learning systems.

In the federated learning (FL) paradigm, a multitude of devices or nodes engage 
in the collaborative training of a global model, safeguarding the privacy of sensi-
tive data by transmitting model updates in lieu of raw data to a central server for 
aggregation. However, federated learning involves communication across networks, 
resulting in a data upload process that can be a performance bottleneck, especially 
in bandwidth-constrained and latency-sensitive scenarios. Therefore, communica-
tion compression techniques are essential in federated learning to effectively reduce 
latency and bandwidth usage.

5.3 � Collective communication systems

Unlike the introduction to communication compression framework design in 
Sect. 5.1, our focus here shifts to collective communication. We compare the effi-
ciency of traditional collective communication methods with communication com-
pression, emphasizing that communication compression is a superior approach for 
improving training efficiency.

By employing advanced communication compression techniques, these systems 
can maintain or improve training quality while reducing bandwidth and time con-
sumption [154]. Below are several major communication compression methods and 
frameworks, each optimizing data transmission in distributed training through dif-
ferent strategies.

Large message sizes in MPI collective communication are of particular concern, 
as they can significantly degrade overall parallel performance. Existing research 
[155] has only applied off-the-shelf fixed-rate loss compressors to MPI collective 
communication, resulting in poor performance, limited generality, and uncontrolled 
errors. The C-Coll method [156] utilized bounded error loss compression to signifi-
cantly reduce message sizes, thereby drastically reducing the communication cost; 
a customized ultra-fast bounded error loss compressor, SZx [157], is developed to 
satisfy the specific needs of collective communication; the characteristics are shown 
in Table 14.

To improve the efficiency of sparse data processing and speed up the training of 
large-scale deep learning models, OmniReduce [158] combined a block-based gra-
dient compression technique with an efficient streaming aggregation system. By ran-
domly picking the most significant blocks based on the blocks’ gradient paradigm, 
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this method minimizes the quantity of data supplied while preserving training 
quality.

Tang et al. [159] described a large-scale training algorithm called 1-bit Efficient 
Communication via Adam, which first uses uncompressed Adam for warm-up at 
the initial stage. It switches to the compression stage after the variance stabilizes, 
and achieves up to a 5-fold reduction in communication by transmitting only 1-bit 
of compressed momentum during the compression stage. This approach also sig-
nificantly improves the communication efficiency of training, especially in environ-
ments with limited network bandwidth.

The gzccl framework which aims to accelerate collective communication on GPU 
clusters through compression to address the major bottleneck caused by the rapid 
increase in GPU computing power in modern computing platforms scenario pro-
vided some efficient and flexible solutions [160], through compression-accelerated 
and algorithmic optimization, to solve some of the details of the communication while 
significantly improving the performance of the collective communication; to address 
underutilized GPU devices and uncontrollable data distortions, the GPU-LCC frame-
work [161]: depicts a general approach for compression-accelerated collective com-
munication in GPU clusters. This framework seeks to achieve high-performance and 
high-quality communication by lowering the amount of communication data through 
compression, thereby lowering communication costs while ensuring data accuracy. The 
framework [155] aimed to reduce the amount of communication data through compres-
sion, thereby reducing communication costs while ensuring data accuracy.

These techniques and frameworks show great potential in dealing with the commu-
nication challenges of large-scale distributed training [162]. As computing architec-
tures evolve and data volumes grow, future research will likely focus on further enhanc-
ing the efficiency and flexibility of communication compression techniques to better 

Table 14   Keywords for communication compression methods of collective communication

Method Keywords Reference

C-Coll Bounded error loss compression,
Message size reduction,
Communication cost reduction

[156]

SZx Ultra-fast bounded error loss compression,
Collective communication

[157]

OmniReduce Block-based gradient compression,
Streaming aggregation,
Data transmission reduction

[158]

1-bit Efficient communication via 
Adam

1-bit compression,
Momentum compression,
Communication reduction

[159]

gzccl Framework GPU clusters,
Compression optimization,
Collective communication acceleration

[160]

GPU-LCC Framework GPU clusters,
Compression-accelerated communication,
Data accuracy

[161]
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support the demands of distributed machine learning. This involves developing new 
compression algorithms, improving error control strategies [163], and optimizing the 
co-design of hardware and algorithms.

As computing architectures evolve and data volumes grow, the development of 
more efficient and flexible aggregated communication techniques will be an important 
direction for future research. These techniques and frameworks show great potential in 
addressing the communication challenges of large-scale distributed training.

5.4 � IoT systems

With the exponential growth in data volume in today’s mobile systems, new techniques 
are needed to increase transmission speed, resilience, and security. In the face of the 
massive presence of IoT devices and multimodal, high-dimensional data, traditional 
communication paradigms are no longer sufficient to address these challenges [164]. 
New communication paradigms are needed that move from the pursuit of accuracy or 
fidelity to semantic extraction and goal completion. Traditional communication sys-
tems focus mainly on the technical aspects and ignore the semantics and validity of the 
information. Goal-oriented communication improves resource utilization efficiency by 
considering the end use of the transmitted information.

Target-oriented communication methods particularly applied in Internet of Things 
(IoT) data compression; this thesis focuses on the application of quantization, which 
is a fundamental component of data compression systems [165]. In traditional meth-
ods, quantization requires adaptation to quantize the input signal. However, for general 
objective functions, quantization rules for general objective functions must consider the 
regularity and smoothness of the objective and decision functions; there are also intent-
based semantic communication methods, which combine machine learning and reason-
ing tools by introducing neuro-symbolic artificial intelligence (NeSy AI) to improve the 
communication efficiency and to reduce the unnecessary data transmission [166].

However, existing compression methods have limitations. Many existing com-
pression methods are only applicable to specific types of data and cannot be broadly 
applied to data generated by all IoT devices [167], and they cannot ensure the accuracy 
of recovered data while maintaining the data compression ratio.

5.5 � Scientific computing

Communication compression is a critical technique in scientific computing, espe-
cially in high-performance computing (HPC) environments where large-scale simu-
lations and data-intensive applications generate vast amounts of data. The quantity 
of data that must be sent between computing nodes can be greatly decreased with 
effective communication compression, improving system performance overall, cut-
ting latency, and conserving bandwidth.

Li et al. [123] devised SPERR (SPEck with ERRor bounding), a lossy scientific 
data compression method for high-performance computing (HPC) environments 
that provides maximum point-wise error (PWE) tolerance. Based on the SPECK 
algorithm [169], which uses wavelet transform coefficients for encoding, SPERR 
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progressively narrows down the range of significant coefficients by partitioning the 
data into subsets and performing coefficient significance tests. This method effi-
ciently encodes significant coefficients, ensuring PWE-guaranteed data compres-
sion suitable for scientific applications that require high accuracy and efficient stor-
age. The study [124] introduced HLRcompress, a high-performance spatial data 
compression algorithm combining hierarchical low-rank (HLR) approximation and 
binary compression. By partitioning the 2D data matrix into hierarchical chunks and 
performing low-rank approximation for each chunk, neighboring low-rank matrices 
are merged and further compressed. The merged matrix is retained if its low-rank 
representation requires less memory than the total memory of the sub-blocks; oth-
erwise, the original sub-blocks are preserved. The ZFP algorithm is used for binary 
compression to ensure optimal memory representation with user-defined preci-
sion. HLRcompress efficiently compresses scientific simulation data, significantly 
improving I/O performance without losing data accuracy.

Fast high-ratio error-limiting lossy compressor FZ-GPU [122] is intended for use 
in scientific computing applications using GPUs. The approach focuses on achiev-
ing high compression ratios and high throughput by exploiting a compression flow 
including fully parallel quantization, bit shuffling, and a newly designed fast lossless 
encoding method; it reduces unnecessary data movement between global and shared 
memory by fusing bit shuffling and encoding operations, and avoids data conflicts 
in bit operations through warp-level optimization and maximizing the utilization of 
shared memory. The thesis [168] combined several compression techniques, such as 
wavelet transforms and dictionary-based methods, to take advantage of the strengths 
of each technique, as can be seen in Table  15. The hybrid compression approach 
aims to optimize the compression ratio and computational efficiency.

CFD simulations require large amounts of flow field data to transfer between 
compute nodes, compression reduces communication overheads and allows more 
complex simulations to finish in a reasonable amount of time [170]; climate simula-
tions [171] generate large amounts of data. By lowering the quantity of data sent 
between compute nodes, communication compression can improve the efficiency of 
simulations and expedite analysis and visualization. Communication compression 
ensures compression quality while delivering performance gains in scientific com-
puting applications that require high accuracy and efficient storage.

5.6 � Multi‑model collaboration systems

When multiple AI models collaborate on different devices or locations to solve prob-
lems (e.g., multi-robot collaboration, partitioning of information resources, etc.), the 
communication between models may require compression to enhance collaboration 
efficiency. With the evolution of big data technology, different types of compres-
sion for AI are becoming increasingly necessary. Chen et  al. [172] implemented 
data compression techniques for managing petabytes of data, particularly to improve 
I/O access speed; Liu et al. [173] developed a multi-model pruning and distillation 
approach for multilayer convolutional neural networks, which are widely used nowa-
days. On heterogeneous devices, network pruning, vector quantization, distillation, 



Balancing communication overhead and accuracy in compression… Page 47 of 63    964 

and other compression techniques [174] are primarily applied to accelerate multi-
model reasoning even under resource constraints.

Multi-model architectures have smaller memory and computational resource 
requirements due to their flexibility and lightweight nature compared to a single 
large model. Designing relevant parallel architectures can enhance their perfor-
mance and save memory and computational resources.

5.7 � Model deployment

Model compression is required when distributing trained models to edge devices 
(such as mobile phones, IoT devices, etc.) because of these devices’ constrained 
storage, processing capacity, and network bandwidth.

For distributed deep learning inference for the Internet of Things (IoT), Bhardwaj 
et  al. [175] investigated a memory and communication-aware model compression 
technique known as network of networks (NoNN). It enables the compression of 
huge teacher models into several independent, highly compressed student networks 
that each learn certain aspects of the teacher function, resulting in a highly paral-
lel architecture that enhances accuracy while reducing communication costs. For 
deploying these model compression and communication compression approaches 
[176] on edge devices, it is essential to maintain a high level of accuracy while 
significantly reducing model memory and computation requirements, addressing 
the challenge of deploying complex deep learning models in resource-constrained 
environments.

Table 15   Communication compression methods in scientific computing

Method Keywords Reference

SPERR (SPEck with ERRor bounding) Error bounded, waveform transformation, 
SPECK coding

[123]

HLRcompress Hierarchical low-rank approximation, binary 
compression

[124]

FZ-GPU Fast, high ratio, GPU, error bounded [122]
Enhanced prediction algorithms Spatial correlation, temporal correlation, 

accuracy
[168]

Error-bounded compression Maximum error threshold, controlled precision [168]
Adaptive quantization Local variance, dynamic quantization, high 

compression
[168]

Hybrid compression techniques Wavelet transforms, dictionary-based methods, 
optimization

[168]

Parallelization and scalability optimization Multi-threading, parallel execution, modern 
architectures

[168]

Adaptability to diverse data types Structured grids, unstructured meshes, point 
clouds

[168]
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5.8 � Model update and maintenance

In the case of online learning or continuous deployment of models, model param-
eters need periodic updates, where compression of model parameters can reduce the 
communication load required for updates [177]. As the number of artificial intel-
ligence (AI) applications increases, more and more DNNs must be run on edge 
devices. Following deployment, the DNN model on the edge device must be updated 
for a variety of practical reasons (for example, model refinement, conceptual drift, or 
major changes in the learning goal). Chen et al. [178] developed an update compres-
sion approach for DNNs on edge devices. The main concept is to optimize the few 
extra parameters needed to recreate the model on edge devices while maintaining 
the current model’s existing knowledge. By using only half the update size of previ-
ous approaches, this method usually achieves the same accuracy when compared to 
similar techniques employed in federated learning.

6 � Libraries

Modern distributed deep learning relies heavily on optimized communication librar-
ies to efficiently coordinate computation across multiple devices. This section exam-
ines three pivotal technologies that address these challenges: NCCL, a GPU-opti-
mized collective communication library; Gloo, a flexible CPU/GPU communication 
framework; and Horovod, a distributed training framework leveraging efficient all-
reduce algorithms. Each solution incorporates unique optimization strategies while 
supporting communication compression techniques to mitigate bandwidth con-
straints in large-scale deployments. The detailed exposition for each technology will 
begin with the key information from Fig.  7. These libraries collectively form the 
backbone of contemporary distributed training systems, enabling scalable and effi-
cient parallel computation across diverse hardware configurations.

6.1 � NCCL

NCCL (NVIDIA Collective Communications Library) is a high-performance com-
munications library developed by NVIDIA to accelerate and optimize the process 
of exchanging data in a multi-GPU environment [179]. Designed for deep learning 
and high-performance computing (HPC) applications, the library enables efficient 
data synchronization across multiple GPUs [180], supporting a variety of multi-
GPU configurations including NVIDIA GPU clusters. NCCL provides a range of 
CUDA-based APIs that enable developers to easily parallelize data processing and 
communication across different GPU devices, thus accelerating the overall comput-
ing process.

NCCL incorporates optimization strategies like DMA for minimal CPU over-
head, and smart network topology adaptation to enhance communication efficiency. 
Although it prioritizes bandwidth utilization and latency reduction, it pairs syner-
gistically with communication compression techniques to manage data volume in 
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bandwidth-constrained scenarios, such as gradient sparsification and quantization. 
This hybrid approach not only boosts performance but also simplifies parallel pro-
gramming and offers economic benefits by reducing the need for expensive hard-
ware upgrades and lowering energy use. Overall, NCCL, supplemented by commu-
nication compression, is a formidable solution for efficient multi-GPU computation, 
propelling advancements in high-performance computing tasks.

6.2 � Gloo

Gloo [181] is an open-source aggregate communication library designed for distrib-
uted machine learning and deep learning tasks to efficiently synchronize data across 
multiple compute nodes. Developed and sustained by Facebook’s Artificial Intel-
ligence Research Group (FAIR), as referenced in [182] and [183], Gloo is designed 
to optimize and accelerate communication efficiency during large-scale distrib-
uted training [184]. Unique to other aggregate communication libraries such as 
NVIDIA’s NCCL, Gloo is optimized for CPU environments but also supports GPU 
environments, providing a flexible and efficient way to handle cross-device data 
communication.

The library’s optimization strategies encompass intelligent selection of communi-
cation modes like Ring, Tree, and Flat to suit specific network topologies, enhancing 
memory efficiency and supporting asynchronous communication for simultaneous 
computation and data transfer. While Gloo is adept at handling various hardware 
and is optimized for communication, it also addresses potential multi-node perfor-
mance bottlenecks by integrating communication compression techniques, which 
reduce data volume and ease network bandwidth constraints.

Fig. 7   Summary of NCCL, Gloo, and Horovod: key features and optimization strategies for distributed 
deep learning
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Gloo’s commitment to the open-source community and its continuous evolution 
alongside technological advancements solidify its position as a pivotal asset in the 
realm of distributed computing. It is anticipated to further expand its utility and 
optimization in high-performance computing applications, contributing significantly 
to the progress of the industry.

6.3 � Horovod

Horovod [185], an open-source framework for distributed deep learning train-
ing, was developed by Uber’s technical team and released to the public domain in 
2017, as documented in [186]. It works based on data parallelism and aims to make 
deep learning model training in multi-GPU and multi-node environments simpler 
and more efficient. Horovod’s design philosophy is to increase the speed of model 
training on multi-GPUs and multi-nodes through a set of highly efficient distributed 
training strategies while minimizing modifications to the original model code.

Designed with an efficient communication strategy leveraging the Ring All-
Reduce algorithm, Horovod ensures high performance in data synchronization with 
low latency, making it particularly adept at handling large-scale datasets and com-
plex models. Its fine-grained GPU resource management and task scheduling further 
optimize computational resource utilization, significantly reducing model training 
times and enabling faster iteration and improvement in models in applications like 
image recognition and natural language processing.

Despite challenges including network bandwidth and latency in large-scale clus-
ters, Horovod addresses these through communication compression, enhancing 
scalability and mitigating performance bottlenecks. As it continues to advance with 
community contributions, Horovod remains a vital tool for the acceleration of deep 
learning research and applications, supporting the industry’s growing computational 
demands and driving innovation forward.

7 � Future directions and conclusion

7.1 � Future directions

Communication compression reduces communication overheads while incurring 
additional computational overheads due to methods such as quantization, spar-
sification, and compressive coding, as well as degradation of accuracy due to 
the inevitable loss of detailed information during compression. Although we are 
analyzing these two bottlenecks separately here, they often arise simultaneously, 
as highlighted in several of the mentioned papers. For example, in a distributed 
training environment, nodes need to frequently exchange gradient information. If 
we focus only on reducing communication overhead while ignoring the effects of 
increased computational overhead and information loss, it may lead to a degrada-
tion of overall system performance.
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Adaptive compression for  advanced interconnects  New interconnect technologies 
such as NVLink, CXL (Compute Express Link) and UALink (Unified Accelerator 
Link) are rapidly evolving in modern HPC systems. These interconnects provide 
higher bandwidth and lower latency, making it possible to investigate new meth-
ods of communication compression to improve overall system performance fur-
ther. NVLink is a high-bandwidth, low-latency interconnect primarily used to con-
nect NVIDIA GPUs to other processing units. New communication compression 
methods based on it can take full advantage of its high bandwidth. For instance, 
the amount of data transported across GPUs can be decreased, increasing the effec-
tiveness of distributed training, by compressing intermediate data and model param-
eters. In addition, real-time compression and decompression are made possible by 
NVLink’s reduced latency, creating further opportunities for future data transfer 
performance optimization.

Bandwidth‑optimized compression in AI training clusters  In high-density AI training 
clusters, which integrate multiple GPUs or AI accelerators, high-bandwidth inter-
connects, and require high throughput, researching communication compression 
methods oriented toward high bandwidth and high throughput is crucial.

1.	 For the communication characteristics of high-density AI training clusters, adap-
tive compression algorithms are an important research direction. These algo-
rithms can dynamically adjust the compression ratio and method based on cur-
rent network bandwidth, data transfer volume, and computational resources. For 
instance, when network bandwidth is abundant, one can opt for a low compression 
ratio or lossless compression, whereas when bandwidth is limited, one can utilize 
a high compression ratio or implement lossy compression techniques to diminish 
the volume of data transmitted.

2.	 Utilizing multi-level compression strategies allows for data compression at dif-
ferent levels. For example, in communications between accelerators, lightweight 
and fast compression algorithms can be used, while in communications between 
servers, more efficient deep compression algorithms can be applied. This tiered 
compression strategy can maximize the utilization of the system’s computational 
resources and network bandwidth, reducing communication overhead.

3.	 Against the backdrop of high throughput demands, parallel and pipeline compres-
sion methods can significantly improve data transfer efficiency. By parallelizing 
compression and decompression operations, or processing them in a pipeline 
during data transmission, the total communication time can be reduced, enhanc-
ing training speed.

4.	 Considering the hardware characteristics of high-density AI training clusters, 
research can be conducted on hardware-accelerated compression methods, for 
example leveraging the parallel computing capabilities of GPUs to achieve rapid 
data compression, or using dedicated compression hardware accelerators (such as 
hardware compression modules in TPUs) to reduce the computational overhead 
of compression and decompression.
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To verify these methods, experiments can be conducted on actual high-den-
sity AI training clusters. For example, they are deploying the aforementioned 
compression algorithms and strategies on NVIDIA’s DGX systems or Huawei’s 
Ascend training servers, combining the algorithms, and measuring their impact 
on training speed, communication overhead, and system resource utilization. 
Through experimental data, these compression methods can be further optimized 
and improved to adapt to different training tasks and system configurations.

Distributed compression for cloud‑edge‑device network  Within the intricate network 
ecosystem of cloud-edge devices, the challenge of communication compression in 
distributed training and inference emerges as a pivotal area of research. Distributed 
training and inference pertain to the delegation of training or inference operations to 
a multitude of computational nodes. This approach capitalizes on the robust com-
putational resources of cloud infrastructure, the geographical propinquity of edge 
devices, and the real-time responsiveness of terminal devices. This environment 
involves multiple computing nodes, including cloud servers, edge devices, and ter-
minal devices, which collaborate through different network connections. Typically, 
in scenarios such as autonomous driving, intelligent surveillance, or industrial Inter-
net of Things, communication compression technology can improve their perfor-
mance and reliability. Looking ahead, it is imperative to concentrate on the devel-
opment of technologies capable of dynamically adjusting compression strategies in 
response to network conditions and task-specific demands. Future research should 
delve into more efficacious methods for compressing deep learning models without 
compromising their performance. Additionally, there is a need to investigate unified 
compression methodologies applicable to diverse data types, including images, text, 
and audio. Addressing the challenges of communication compression in distributed 
training and inference within the intricate cloud-edge-device network environment 
is essential for effective solutions.

Quantum computing reconfigures communications compression  Quantum comput-
ing is reshaping communication compression via its unique properties. Quantum 
superposition allows a single qubit to encode exponential-scale information (e.g., 
n qubits representing 2n states, based on quantum information density theory [187], 
and quantum autoencoders achieving a compression ratio of 90% [188]), while 
quantum entanglement realizes “superdense coding” through nonlocal correlations 
[189], providing a new paradigm for lossless compression. Meanwhile, quantum 
parallelism accelerates traditional compression algorithms; for example, federated 
quantum compression frameworks reduce pattern-matching complexity to O(logN) 
[190]. In the dimension of efficiency improvement, quantum compression signifi-
cantly reduces resource consumption: pre-transmission quantum state compression 
can reduce the quantum channel load by over 50% [191], while hybrid protocols 
enhance the efficiency of classical-to-quantum data conversion [192]. In terms of 
security, quantum error-correcting codes [193] suppress noise through redundant 
quantum state encoding, increasing communication fault tolerance by 3–5 orders of 
magnitude.
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In application scenarios, the quantum internet relies on compression technology 
to reduce teleportation bandwidth requirements [194]. Distributed quantum comput-
ing leverages compression of intermediate states (e.g., results of quantum gate oper-
ations) to reduce cross-node communication by 80% [195, 196]. Quantum sensor 
networks use real-time compression algorithms to process petabyte-scale quantum 
data streams, with real-time quantum compression algorithms increasing LIGO’s 
data throughput by tenfold [197]. Despite challenges such as the fragility of quantum 
states limiting lossy compression, cutting-edge research focuses on quantum rein-
forcement learning-driven dynamic compression frameworks [198] and co-design of 
photonic–superconducting quantum hardware for compression [199]. In the future, 
quantum compression will break through the entropy limits of classical information 
theory, propelling communication technologies from the “Shannon era” into a new 
era of “quantum–classical symbiosis.”

Future development trends in communication compression can be analyzed from 
innovative application scenarios. Effective compression technology can lower the 
cost of data transmission and storage and boost data processing efficiency when 
combined with machine learning training and communication. In high real-time 
requirements scenarios such as the Internet of Things, unmanned driving, and intel-
ligent manufacturing, real-time data processing is essential. It is crucial to optimize 
communication and computation overhead to ensure that compression technology 
meets the needs of real-time processing.

For optimizing computational overhead, the design of lightweight compression 
methods, combined with hardware accelerators, can reduce computational energy 
consumption. To improve accuracy, research and development should focus on 
retaining important features of the data under high compression ratios, ensuring that 
the compressed data still maintains high accuracy after decompression. Addition-
ally, introducing an error compensation mechanism during the compression process 
can correct errors generated during compression, thereby improving accuracy.

7.2 � Conclusion

In the field of distributed machine learning and optimization, communication com-
pression algorithms play a pivotal role in minimizing communication bottlenecks by 
decreasing the amount of data that needs to be shared among nodes. But because of 
the extra compression and decompression steps, there are a computational overhead 
and a chance of errors because of the compression procedures. The development of 
more efficient compression algorithms is emerging as a promising trend, aiming to 
achieve more effective communication compression in the future while maintaining 
model performance through approaches such as optimization algorithms, hardware 
acceleration, hybrid strategies, and accuracy recovery.
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