
Computers & Fluids 110 (2015) 198–210
Contents lists available at ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/locate /compfluid
Parallel hybrid PSO with CUDA for lD heat conduction equation
http://dx.doi.org/10.1016/j.compfluid.2014.05.020
0045-7930/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: ztang@hnu.edu.cn (Z. Tang).
Aijia Ouyang a, Zhuo Tang a,⇑, Xu Zhou a, Yuming Xu a, Guo Pan a, Keqin Li a,b

a College of Information Science and Engineering, Hunan University, Changsha, Hunan 410082, China
b Department of Computer Science, State University of New York at New Paltz, New Paltz, NY 12561, USA
a r t i c l e i n f o

Article history:
Received 8 December 2013
Received in revised form 6 May 2014
Accepted 15 May 2014
Available online 28 May 2014

Keywords:
Heat conduction equation
Spline difference method
Particle swarm optimization
Conjugate gradient method
GPU
a b s t r a c t

Objectives: We propose a parallel hybrid particle swarm optimization (PHPSO) algorithm to reduce the
computation cost because solving the one-dimensional (1D) heat conduction equation requires large
computational cost which imposes a great challenge to both common hardware and software
equipments.

Background: Over the past few years, GPUs have quickly emerged as inexpensive parallel processors
due to their high computation power and low price, The CUDA library can be used by Fortran, C, C++,
and by other languages and it is easily programmed. Using GPU and CUDA can efficiently reduce the com-
putation time of solving heat conduction equation.

Methods: Firstly, a spline difference method is used to discrete 1D heat conduction equation into the
form of linear equation systems, secondly, the system of linear equations is transformed into an uncon-
strained optimization problem, finally, it is solved by using the PHPSO algorithm. The PHPSO is based on
CUDA by hybridizing the PSO and conjugate gradient method (CGM).

Results: A numerical case is given to illustrate the effectiveness and efficiency of our proposed method.
Comparison of three parallel algorithms shows that the PHPSO is competitive in terms of speedup and
standard deviation. The results also show that using PHPSO to solve the one-dimensional heat conduction
equation can outperform two parallel algorithms as well as HPSO itself.

Conclusions: It is concluded that the PHPSO is an efficient and effective approach towards the 1D heat
conduction equation, as it is shown to be with strong robustness and high speedup.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, taking advantage of graphic processing capability,
numerical simulation has become available via the utilization of
a GPU (graphics processing unit) instead of a CPU (central process-
ing unit) [1]. In its initial stage, however, the GPU cannot be made
to communicate with an API (application programming interface)
such as OpenGL and DirectX. In November 2006, NVIDIA unveiled
the industry’s first DirectX 10 GPU, the GeForce 8800 GTX. The
GeForce 8800 GTX was also the first GPU to be built with NVIDIAs
CUDA (compute unified device architecture). Over the past few
years, graphics processing units (GPUs) have quickly emerged as
inexpensive parallel processors due to their high computation
power and low price [2,3]. The CUDA library can be used by For-
tran, C, C++, and by other languages and it is easily programmed.
Graphics processing units (GPU) technique has been applied to
large-scale social networks [4], smoothed particle hydrodynamics
simulations [5], volume visualization [6], hopfield neural network
[7], particle filters [8], robotic map [9], finite difference schemes
[10,11], object recognition [12], thermal analysis [13], hydrody-
namic simulations [14], thermodynamic systems [15], solidifica-
tion process simulation [16], computational fluid dynamics
[17,18], particle simulation [19,20].

The one-dimensional heat conduction equation is a well-
known simple second order linear partial differential equation
(PDE) [21–24]. PDEs like the heat conduction equation often arise
in modeling problems in science and engineering. It is also used
in financial mathematics in the modeling of options. For
example, the Black–Scholes option pricing model’s differential
equation can be transformed into the heat conduction equation
[25,26].

Over the last few years, many physical phenomena were formu-
lated into nonlocal mathematical model. These physical phenom-
ena are modeled by nonclassical parabolic initial-boundary value
problems in one space variable which involve an integral term over
the spatial domain of a function of desired solution. This integral
term may appear in a boundary condition, which is called nonlocal,
or in the governing partial differential equation itself, which is

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2014.05.020&domain=pdf
http://dx.doi.org/10.1016/j.compfluid.2014.05.020
mailto:ztang@hnu.edu.cn
http://dx.doi.org/10.1016/j.compfluid.2014.05.020
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


A. Ouyang et al. / Computers & Fluids 110 (2015) 198–210 199
often referred to as a partial integro-differential equation, or in
both [27].

The presence of an integral term in a boundary condition can
greatly complicate the application of standard numerical tech-
niques such as finite difference procedures, finite element methods,
spectral techniques, and boundary integral equation schemes.
Therefore, it is essential that nonlocal boundary value problems
can be converted a more desirable form and to make them more
applicable to problems of practical interest.

Recently, nonlocal boundary value problems have been covered
in the literature [28–31]. For instance, Dehghan [32] presented a
new finite difference technique for solving the one-dimensional
heat conduction equation subject to the specification of mass,
but their methods are only first-order accurate. Caglar et al. [33]
developed a third degree B-spines method to solve the heat
conduction Eqs. (1)–(3) with the accuracy of Oðk2 þ h2Þ, and at
the endpoints, the approximation order is second order only. Liu
et al. [34] used a quartic spline method to solve one-dimensional
telegraphic equations, we consider the lD heat conduction equa-
tion in accordance with the above method. Tsourkas and Rubinsky
used a parallel genetic algorithm for solving heat conduction prob-
lems [35,36].

It is well-known that genetic algorithm is a classic evolution-
ary algorithm.It has been successfully applied to all kinds of real
problems, such asoptimizing system state in a cloud system
[37]. PSO is also an evolutionary algorithm and it is developed
by Dr.Eberhart and Dr. Kennedy in 1995, inspired by social behav-
ior ofbird flocking or fish schooling. PSO has an outstandingperfor-
mance in optimizing functions. Integrating the successful methods
and efficient hybrid strategies, we present a PHPSO algorithm
based on CUDA for the one-dimensional heat conduction equa-
tion. This paper has some contributions, which are described as
follows.

1. A new method for solving the one-dimensional heat conduction
equation with the nonlocal boundary value conditions is con-
structed by using quartic spline functions. It shows that the
accuracy of the presented method can reach Oðk2 þ h4Þ at the
interior nodal points.

2. We also obtain a new method to deal with the nonlocal bound-
ary conditions with the accuracy being Oðkþ h4Þ. It is much bet-
ter than the classical finite difference method with the accuracy
of Oðkþ h2Þ.

3. We design a parallel hybrid algorithm by hybridizing the PSO
and CGM with the CUDA technique. Such an algorithm can
speed up the convergence to the optimum solution.

The remainder of this paper is organized in the following way.
Section 2 gives a detailed theoretical analysis and mathematical
proof concerning the 1D heat conduction equation. Section 3
shows the process of transforming a system linear systems into
an unconstrained optimization problem. In Section 4, the serial
algorithms of PSO and CGM are presented. In Section 5, the archi-
tecture of CUDA is introduced first, and a parallel PSO algorithm, a
parallel CGM algorithm, and a parallel hybrid PSO algorithm are
proposed respectively in detail. Section 6 displays the experimen-
tal results and discussions. Finally, the paper concludes with
Section 7.
2. Method of numerical processing

2.1. Mathematical model

We consider the one-dimensional nonclassical heat conduction
equation
@u
@t
¼ a

@2u
@x2 ; 0 < x < 1; 0 < t 6 T; ð1Þ

with initial conditions

uðx;0Þ ¼ f ðxÞ; 0 6 x 6 1; ð2Þ
@u
@x

uð1; tÞ ¼ gðtÞ; 0 < t 6 T; ð3Þ

and a nonlocal conditionR b
0 uðx; tÞdx ¼ mðtÞ;

0 < t 6 T; 0 < b < 1:
ð4Þ

In this problem, f ðxÞ; gðtÞ and mðtÞ are given functions and a
and b are constants. If b ¼ 1, Eq. (4) can be differentiated as

m0ðtÞ ¼
Z 1

0
utdx ¼

Z 1

0
auxxdx ¼ auxð1; tÞ � auxð0; tÞ: ð5Þ

The derivation holds only when m and u are differentiable.

2.2. Quartic spline and interpolation error

Let P be a uniform partition of ½0;1� as follows

0 ¼ x0 < x1 < � � � < xn ¼ 1; ð6Þ

where xi ¼ ih; h ¼ 1=n.
The quartic spline space on ½0;1� is defined as

S3
4ðPÞ ¼ s 2 C3½0;1� : sj½xi�1 ;xi � 2 P4; i ¼ 1ð1Þn

n o
;

where Pd is the set of polynomials of degree at most d.
It is easy to know that dim S3

4ðPÞ ¼ nþ 4. For any s 2 S3
4ðPÞ, the

restriction of s in ½xi�1; xi� can be expressed as

sðxÞ ¼ si�1 þ hs0i�1t þ h2s00i�1
t2

12
ð6� t2Þ þ h2s00i

t4

12
þ h3s000i�1

t3

12
ð2� tÞ;

ð7Þ

where x ¼ xi�1 þ th, t 2 ½0;1�, si ¼ sðxiÞ; s0i ¼ s0ðxiÞ, s00i ¼ s00ðxiÞ;
s000i ¼ s000ðxiÞ; i ¼ 0ð1Þn.

This leads to

si ¼ si�1 þ hs0i�1 þ
5

12
h2s00i�1 þ

1
12

h2s00i þ
1

12
h3s000i�1; ð8Þ

s0i ¼ s0i�1 þ
2
3

hs00i�1 þ
1
3

hs00i þ
1
6

h2s000i�1; ð9Þ

s000i ¼ �s000i�1 þ
2
h

s00i � s00i�1

� �
; ð10Þ

for i ¼ 1ð1Þn. Based on the above three equations, we can have

1
12

s00iþ1 þ
5
6

s00i þ
1

12
s00i�1 ¼

1

h2 ½siþ1 � 2si þ si�1�; i ¼ 1ð1Þn� 1: ð11Þ

Likewise, if we write the quartic spline function s in ½xi�1; xi� as
follows

sðxÞ ¼ si þ hs0it þ h2s00i
t2

12
ð6� t2Þ þ h2s00i�1

t4

12
þ h3s000i

t3

12
ð2þ tÞ;

ð12Þ

where x ¼ xi þ th; t 2 ½�1;0�. This leads to

si�1 ¼ si � hs0i þ
5

12
h2s00i þ

1
12

h2s00i�1 þ
1

12
h3s000i ; ð13Þ

s0i�1 ¼ s0i �
2
3

hs00i �
1
3

hs00i�1 þ
1
6

h2s000i ; ð14Þ

s000i�1 ¼ �s000i þ
2
h

s00i � s00i�1

� �
; ð15Þ

for i ¼ 1ð1Þn.



200 A. Ouyang et al. / Computers & Fluids 110 (2015) 198–210
Denote DisðxÞ ¼ sðiÞðxÞ. We have

si�1 ¼ si � hs0i þ
1
2

h2s00i � � � � ¼ e�hDsi: ð16Þ

Then Eq. (11) can be rewritten as

1
12
½ehD þ 10þ e�hD�s00i ¼

1

h2 ½e
hD � 2þ e�hD�si; i ¼ 1ð1Þn� 1: ð17Þ

Equivalently,

s00i ¼
12

h2

ehD � 2þ e�hD

ehD þ 10þ e�hD
si; i ¼ 1ð1Þn� 1: ð18Þ

Theorem 1. Assume that gðxÞ is sufficiently smooth in the interval
½0;1�. Let s 2 S3

4ðPÞ be the quartic spline which interpolates gðxÞ as
follows

si ¼ gðxiÞ; i ¼ 0ð1Þn; ð19Þ

s00n ¼ g00ðxnÞ;

s00 þ
h2

12
s0000 ¼ g0ðx0Þ þ

h2

12
g000ðx0Þ;

s0n �
h2

12
s000n ¼ g0ðxnÞ �

h2

12
g000ðxnÞ:

ð20Þ

Then we have

s00i ¼ g00ðxiÞ �
1

240
h4gð6ÞðxiÞ þ Oðh6Þ; i ¼ 1ð1Þn� 1; ð21Þ

g00 ¼
g1 � g0

h
� 1

12
hg001 �

5
12

hg000 �
1

12
h2g0000 þ Oðh4Þ; ð22Þ

g0n ¼
gn � gn�1

h
þ 5

12
hg00n þ

1
12

hg00n�1 þ
1

12
h2g000n þ Oðh4Þ; ð23Þ

where gi ¼ gðxiÞ; g0i ¼ g0ðxiÞ, g00i ¼ g00ðxiÞ; g000i ¼ g000ðxiÞ; i ¼ 0ð1Þn.

Proof. The proof of Eq. (21) can been seen in [38].

From Eqs. (11) and (19), we can get

ðe2Dh þ 10eDh þ 1Þs000 ¼
12

h2 ðe
2Dh � 2eDh þ 1Þg000: ð24Þ

Then, similar to the proof of Eq. (21), we can obtain the following
result

s000 ¼ g00ðx0Þ þ Oðh4Þ: ð25Þ

Then, according to Eqs. (8) and (20), we have

g00 þ
h2

12
g0000 ¼ s00 þ

h2

12
s0000 ¼

s1 � s0

h
� 1

12
hs001 �

5
12

hs000

¼ g1 � g0

h
� 1

12
hg001 �

5
12

hg000 þ Oðh4Þ: ð26Þ

Thus, Eq. (22) holds. Similarly, by using Eq. (13), we can prove Eq.
(23). h
2.3. Quartic spline method

We consider the following heat conduction Eq. (1) with the ini-
tial boundary value conditions (2) and (3) and derivative boundary
condition (5).

The domain ½0;1� � ½0; T� is divided into an n�m mesh with the
spatial step size h ¼ 1=n in x direction and the time step size
k ¼ T=m, respectively.

Grid points ðxi; tjÞ are defined by
xi ¼ ih; i ¼ 0ð1Þn; ð27Þ
tj ¼ jk; j ¼ 0ð1Þm; ð28Þ

in which n and m are integers.
Let sðxi; tjÞ and Uj

i be approximations to uðxi; tjÞ and

MiðtÞ ¼ @2sðx;tÞ
@x2

���
ðxi ;tÞ

, respectively.

Assume that uðx; tÞ is the exact solution to Eq. (1). For any fixed
t, let sðx; tÞ 2 S3

4ðPÞ be the quartic spline interpolating to uðx; tÞ as in

sðxi; tÞ ¼ uðxi; tÞ; i ¼ 0ð1Þn; ð29Þ

@2s
@x2

�����ðxn; tÞ ¼
@2u
@x2

�����ðxn; tÞ; ð30Þ

@s
@x

����ðx0; tÞ þ
1

12
h2 @

3s
@x3

�����ðx0; tÞ ¼
@u
@x

����ðx0; tÞ þ
1

12
h2 @

3u
@x3

�����ðx0; tÞ; ð31Þ

@s
@x

����ðxn; tÞ �
1

12
h2@

3s
@x3

�����ðxn; tÞ ¼
@u
@x

����ðxn; tÞ �
1

12
h2 @

3u
@x3

�����ðxn; tÞ: ð32Þ

Then it follows from Theorem 1 that

@2u
@x2 jðxi; tÞ ¼

@2s
@x2

�����ðxi; tÞ þ Oðh4Þ; i ¼ 1ð1Þn� 1: ð33Þ

For any fixed t, by using the Taylor series expansion, Eq. (1) can
be discretized at the point ðxi; tjÞ into

uðxi;tjþ1Þ�uðxi;tjÞ
k

¼1
2
a

@2sðx;tÞ
@x2

 !j

i

þ @2sðx;tÞ
@x2

 !jþ1

i

2
4

3
5þOðk2þh4Þ;

ð34Þ

where i ¼ 1ð1Þn� 1; j ¼ 0ð1Þm� 1.
Substituting (34) into spline relation (11) and using Eq. (29), we

conclude

ð1� 6arÞuðxiþ1; tjþ1Þ þ ð10þ 12arÞuðxi; tjþ1Þ
þ ð1� 6arÞuðxi�1; tjþ1Þ
¼ 1þ 6arÞuðxiþ1; tjÞ þ ð10� 12arÞuðxi; tjÞ
þ ð1þ 6arÞuðxi�1; tjÞ þ Oðk2 þ h4Þ; ð35Þ

where r ¼ a k
h2.

Neglecting the error term, we can get the following difference
scheme

ð1� 6arÞUjþ1
iþ1 þ ð10þ 12arÞUjþ1

i þ ð1� 6arÞUjþ1
i�1

¼ ð1þ 6arÞUj
iþ1 þ ð10� 12arÞUj

i þ ð1þ 6arÞUj
i�1;

i ¼ 1ð1Þn� 1; j ¼ 0ð1Þm; ð36Þ

with the accuracy being Oðk2 þ h4Þ.
It is evident that the difference scheme (36) identifies the clas-

sical fourth order compact difference scheme, which is uncondi-
tionally stable.

2.4. The difference scheme on the boundary

From the interpolation conditions (30)–(32) and Theorem 1, for
each t > 0, we have

@uðx0; tÞ
@x

¼ uðx1; tÞ � uðx0; tÞ
h

� 1
12

h
@2uðx1; tÞ

@x2 � 5
12

h
@2uðx0; tÞ

@x2

� 1
12

h2 @
3uðx0; tÞ
@x3 þ Oðh4Þ; ð37Þ



A. Ouyang et al. / Computers & Fluids 110 (2015) 198–210 201
@uðxn; tÞ
@x

¼ uðxn; tÞ � uðxn�1; tÞ
h

þ 5
12

h
@2uðxn; tÞ

@x2 þ 1
12

h

� @2uðxn�1; tÞ
@x2 þ 1

12
h2 @

3uðxn; tÞ
@x3 þ Oðh4Þ: ð38Þ

Let t ¼ tjþ1, it follows form Eqs. (1) and (37) that

uxðx0; tjþ1Þ ¼
uðx1; tjþ1Þ � uðx0; tjþ1Þ

h
� 1

12a
h

� uðx1; tjþ1Þ � uðx1; tjÞ
k

� 5
12a

h

� uðx0; tjþ1Þ � uðx0; tjÞ
k

� 1
12

h2 @
3uðx0; tjþ1Þ
@x3

þ Oðkþ h4Þ: ð39Þ

From Eqs. (1), (3) and (5), we can get

@3uð0; tÞ
@x3 ¼ 1

a
@2uð0; tÞ
@x@t

¼ 1
a2 m00ðtÞ � 1

a
g0ðtÞ: ð40Þ

Substituting (40) into (39) and neglecting the error term, we get the
fourth-order difference scheme at x ¼ x0

1� 1
12r

� �
Ujþ1

1 � 1þ 5
12r

� �
Ujþ1

0 þ 1
12r

Uj
1 þ

5
12r

Uj
0

¼ huxð0; tjþ1Þ þ
1

12
h3 1

a2 m00ðtjþ1Þ �
1
a

g0ðtjþ1Þ
� �

: ð41Þ

Similarly, the difference scheme at the other end x ¼ xn is

1þ 5
12r

� �
Ujþ1

n þ �1þ 1
12r

� �
Ujþ1

n�1 �
5

12r
Uj

n þ
1

12r
Uj

n�1

¼ huxð1; tjþ1Þ �
1

12a
h3g0ðtjþ1Þ: ð42Þ
3. Derivation of objective function

The formula of a system linear systems is shown as follows:

AX ¼ B; ð43Þ

or

XN

j¼1

aijxj ¼ bi; i ¼ 1;2; . . . ;M: ð44Þ

In the above formula, A ¼ ðaijÞM�N 2 RM�N is a matrix,
X ¼ ðx1; x2; . . . ; xNÞT is a vector, B ¼ ðb1; b2; . . . ; bMÞT is also a
vector.

Set the absolute error of X and B be respectively dX and dB. So
the relative error of X can be estimated as follow:

kdXk=kXk 6 KðAÞkdBk=kBk: ð45Þ

If we obtain the L2 norm for the above formula, the condition num-
ber of matrix A is:

KðAÞ ¼ rmax=rmin: ð46Þ

In the formula, rmax and rmin is respectively the maximum
and minimum of singular value of matrix A. If KðAÞ is very large,
the formula (43) is morbid state linear equation group. The char-
acteristic of morbid state linear equation group is: even though A
and B are little changed, the solution of them will be greatly
different.

To use PSO to solve linear equation group (43), we transform
the linear equation group problem into an unconstrained optimiza-
tion problem. Obviously, the L1 norm of linear equation group (43)
is the optimal solution of the problem (47). Both of them are
completely equivalent. The formula of the problem is shown as
follows:

min E ¼ min
Xm

i¼1

XN

j¼1

jaijxj � bij: ð47Þ

Consequently, we set the fitness function as follows:

f ðxÞ ¼ min
Xm

i¼1

XN

j¼1

jaijxj � bij; ð48Þ

in formula (48), The solution vector X ¼ ðxi; x2; . . . ; xnÞ is composed
by xjðj ¼ 1;2; . . . ;NÞ. X is a real vector.

4. Serial algorithms

4.1. Particle swarm optimization

Particle swarm optimization (PSO), a swarm intelligence algo-
rithm to solve optimization problems, is initialized randomly with
a cluster of particles, after which it searches for optimal value by
means of updating generations [39]. Given that the search space
is D-dimensional, the population is composed of many particles.
Particle i refers to the i-th particle in the population, which is
denoted by D-dimensional vector Xi ¼ ðxi1; xi2; . . . ; xiDÞT . V denotes

the search velocity of particles, and Vi ¼ ðv i1;v i2; . . . ;v iDÞT reveals
the search velocity of particle i. The visited positions of particles

are denoted by P, and Pi ¼ ðpi1; pi2; . . . ; piDÞ
T reveals local best posi-

tion, and it is the best previously visited position of particle i. The
global best position is represented by G ¼ ðg1; g2; . . . ; gDÞ

T , which
shows the optimal of all local best positions among the population.
At each step, the search velocity of all particles and their local best
position will be given a value according to Eqs. (49) and (50), the
process goes repeatedly till a user-defined stopping criterion is
met.

vkþ1
id ¼ xvk

id þ c1r1 pt
id � xk

id

� �
þ c2r2 gk

id � xk
id

� �
; ð49Þ

xkþ1
id ¼ xk

id þ vkþ1
id : ð50Þ

Here, k indicates the current iterative step, i 2 f1;2; . . . ;Ng,
and d 2 f1;2; . . . ;Dg;N refers to the number of the total popula-
tions. r1 and r2 represent independently uniformly distributed
random variables with a range of ð0;1Þ; c1 and c2 denote the
acceleration constants, and x refers to the inertia weight factor
[40].

4.2. Conjugate gradient method

The CGM is one of the most popular iterative methods
dedicated to solving linear systems of equations with sparse,
symmetric and positive-definite matrix of coefficients. A version
of the CGM algorithm implemented in this study is shown in
Algorithm 1.

The main steps of CGM for an unconstrained optimization
problem are as follows:

Step 1. Set a initial point xð0Þ, and precision definition e > 0.
Step 2. If krf ðxð0ÞÞk 6 e, stop computation, the minimum point is

xð0Þ, otherwise, go to Step 3.
Step 3. Let pð0Þ ¼ �rf ðxð0ÞÞ, and set k ¼ 0.
Step 4. Use one dimensional search to solve tk, obtain

f ðxðkÞ þ tkpðkÞÞ ¼min f ðxðkÞ þ tpðkÞÞ; t P 0, let xðkþ1Þ ¼ xðkÞ

þtkpðkÞ, go to Step 5.



202 A. Ouyang et al. / Computers & Fluids 110 (2015) 198–210
Step 5. If krf ðxðkþ1ÞÞk 6 e, stop computation, the minimum point
is xðkþ1Þ, otherwise, go to Step 6.

Step 6. If kþ 1 ¼ n, let xð0Þ ¼ xðnÞ, go to Step 3, otherwise, go to
Step 7.

Step 7. Let pðkþ1Þ ¼ �rf ðxðkþ1ÞÞ þ kkpðkÞ, kk ¼ krf ðxðkþ1ÞÞk
krf ðxðkÞÞk , let k ¼ kþ 1,

go to Step 4.
Algorithm 1. Conjugate gradient method

Input: A; b;n
Output: xkþ1

1: r0 :¼ b� Ax0

2: p0 :¼ r0

3: k :¼ 1
4: while k <¼ n do

5: ak :¼ rT
k rk

PT
k APk

6: xKþ1 : xk þ akPk

7: rKþ1 : rk � akAPk

8: if rkþ1 < m then

9: bk :¼ rT
kþ1rkþ1

rT
k

rk

10: pkþ1 :¼ rkþ1 þ bkPk

11: k :¼ kþ 1
12: end if
13: end while
14: Output solution
GPU 
kernel 1

CPU 
serial code

GPU 
kernel 2

Host Device

Block
(0, 0)

Block
(0, 1)

Block
(0, 2)

Block
(1, 0)

Block
(1, 1)

Block
(1, 2)

Grid 1

R
eg

is
te

r
L

oc
al

 m
em

or
y

Sh
ar

ed
 m

em
or

y
C

on
st

an
t m

em
or

y
T

ex
tu

re
 m

em
or

y

G
lo

ba
l m

em
or

y

Grid 2

Thread
(0, 1)

Thread
(0, 2)

Thread
(1, 0)

Thread
(1, 1)

Thread
(1, 2)

Thread
(2, 0)

Thread
(2, 1)

Thread
(2, 2)

Thread
(0, 0)

Block(1, 1)

Fig. 1. The architecture of CUDA.
4.3. Hybrid particle swarm optimization

The global search ability of the basic PSO is extremely strong
while the local search ability is extremely weak, which is exactly
the opposite of the CGM. To overcome the shortcomings of the
two algorithms and utilize only their advantages, we present a
hybrid particle swarm optimization (HPSO) algorithm, in which
the CGM is incorporated into the basic PSO. In the HPSO, because
the CGM is a local algorithm, it can obtain the optimal value with
no need to calculate the derivative of fitness function; therefore,
based on the original PSO, only a decent computation cost is added.
In addition, each particle in the population is regarded as a point of
the CGM and each iteration of HPSO has two parts: the CGM part
and PSO part. In each iteration, all particles are updated, and the
elite individual generated by PSO algorithm will be replaced by
the best individual generated by CGM. In this way, the accuracy
of searching the position in each HPSO iteration is improved.
Therefore, the HPSO not only has higher precision but also helps
to obtain a faster convergent speed compared with the original
PSO and CGM.

The main steps of HPSO for an unconstrained optimization
problem are as follows:

Step 1. Initialize the parameters of population, such as, population
size, position, velocity, acceleration factor, and inertia
weight factor.

Step 2. Compute the fitness value of each particle.
Step 3. Find the local optimum and the global optimum.
Step 4. Update the velocity and position of each particle.
Step 5. Compute the fitness value of population.
Step 6. Update the local optimum and the global optimum.
Step 7. Execute a local search precisely by CGM for the individual

of global optimum in the population of HPSO.
Step 8. If the termination criteria are satisfied, output results and

terminate the HPSO algorithm; otherwise, go to Step 4.
Algorithm 2. Particle swarm optimization

Input: xmin; xmax;G;D;N; p; lbp; gbp; f ; lbf ; gbf ;v
Output: gbp0; gbf 0

1: Initialize parameters p; lbp, and v
2: Compute fitness f
3: Find lbp and gbp
4: for g ¼ 1 : G do
5: Update v and p
6: Evaluate fitness f
7: Update lbp and gbp
8: end for
9: Output gbp and gbf

Algorithm 3. Hybrid particle swarm optimization

Input: xmin; xmax;G;D;N; p; lbp; gbp; f ; lbf ; gbf ;v
Output: gbp0; gbf 0

1: Initialize parameters p; lbp, and v
2: Compute fitness f
3: Find lbp and gbp
4: for g ¼ 1 : G do
5: Update v and p
6: Evaluate fitness f
7: Update lbp and gbp
8: Execute local search of CGM
9: end for

10: Output gbp and gbf

5. Parallel algorithms

5.1. The architecture of CUDA

We describe in brief the CUDA architecture in this subsection; by
this means, we hope that to comprehend the design of our presented
GPU implementation can become easier. A GPU is a multi-core,
multi-threaded highly parallel processor with enormous
computing power. The NVIDIA Corporation released the CUDA
framework to help users develop software for their GPUs. The
architecture of CUDA is designed around a scalable array of multi-
processors as shown in Fig. 1, which is based on a SIMT programming



Table 1
Specifications of GPU.

Parameter GTX 465 C2050

Number of stream processors 352 448
Global memory size (GB) 1 2.62
Shared memory size (KB) 48 48
Constant memory size (KB) 64 64
Memory bus width (bits) 256 384
Memory bandwidth (GB/s) 102.6 144
Memory clock rate (MHz) 802 1536
Estimated peak performance (Gflops) 855.4 1030
GPU clock rate (MHz) 0.6 1.15
Warp Size 32 32
Maximum number of threads per MP 1024 1024
CUDA compute capability 2.0 2.0

Fig. 2. Flowchart of PPSO.

A. Ouyang et al. / Computers & Fluids 110 (2015) 198–210 203
modal. A parallel program on a GPU (also termed device) is inter-
leaved with a serial one executed on the CPU (also termed host). A
thread block has a stream of threads executed concurrently on a
multiprocessor, which has synchronized access to a shared memory.
However, threads originating from different blocks cannot be coop-
erated in this way. These threads are combined to form a grid.
Threads in a grid are enumerated and distributed to multiprocessor
when a CUDA code on the CPU calls a kernel function. All the threads
in the grid can access the same global memory. Two additional read-
only memory spaces are accessible by all the threads, the constant
memory and texture one (see Table 1).

5.2. Parallel particle swarm optimization

In this section, we would like to explain the meaning of each
kernel function in detail with its pseudo code attached. There are
five kernel functions in the PPSO algorithm, and they are imple-
mented in GPU. The flow chart of PPSO is shown in Fig. 2.

5.2.1. Kernel function dev_rnd
The purpose of dev rnd is to generate a random number

sequence of initial state. Each thread is a complex variable, which
needs to contain curand library files and curand kernel, and call the
library function curand init to generate high quality pseudo-
random number. Given the differenced between seeds,
curand init would produce different initial states and sequence.
Each thread is assigned a unique serial number.

Sequences generated with different seeds usually do not have
statistically correlated values, but some choices of seeds may result
in statistically correlated sequences. Sequences generated with the
same seed and different sequence numbers will not have statisti-
cally correlated values. For the highest quality parallel pseudo-ran-
dom number generation, each experiment should be assigned a
unique seed. Within an experiment, each thread of computation
should be assigned a unique sequence number. If an experiment
spans multiple kernel launches, it is recommended that threads
between kernel launches be given the same seed, and sequence
numbers be assigned in a monotonically increasing way. If the same
configuration of threads is launched, random state can be preserved
in global memory between launches to avoid state setup time [41].

Experiments have shown that the random function in
curand library has better quality and higher efficiency than that
generated by the rand function of CPU.

5.2.2. Kernel function init
Init is used to initialize a particle position, velocity, and the indi-

vidual best position in populations according to the formula in the
PSO. Every thread in thread blocks represents a complex variable.
Each row in the grid represents a particle. After defining xid

dimension index, index of population yid, thread (namely, each
position variable) position in the whole grid posID, we call
curand uniformðÞ to generate two random numbers stochastically
and uniformly distributed between 0.0 and 1.0, and then use them
to initialize the position and velocity respectively.

5.2.3. Kernel function Update
Update is used to modify the position, individual optimal posi-

tion and velocity of each particle in the population for each thread.
As for the parameter setting, it is the same as init. It firstly updates
the individual optimal position according to the modifying mark,
and then respectively calls curand uniform to generate two random
numbers between two 0.0 and 1.0 respectively. They are used to
generate a new particle velocity, further update particle position,
and reinitialize the numbers exceeding the limits at the same time.

5.2.4. Kernel function Findgbf
Findgbf is used to update the individual optimal position, and

find the global optimal index and global optimal fitness. A particle
is a thread. In this paper, the population numbers are set less than
512, thus a thread block is a whole population. We give full play to
the advantages of shared memorizer and registers. First, we need to
define the thread pid and shared memorizer variable s and register
variable t, and then initialize s and t in accordance with different
requirements. If the initial mark flag ¼ 0, the fitness value f should
be copied directly to individual extremum lbf, otherwise, lbf and
modifying mark g u should be modified correspondingly after com-
parison. Then we need to call device function reduceToMaxðs; pidÞ or
reduceToMinðs; pidÞ to operate and summarize according to the
maximum or minimum value for parallel reduction, in order to find
the group extremum gbf, and ultimately the global optimal index
ID. The skill is that we should set t to the maximum number of
threads that are not the group extremum gbf, otherwise t would
be the thread number of gbf. Then we should reuse shared memo-
rizer and call reduceToMinðs; pidÞ to execute the reduction then
assign the first thread to ID. If the most optimal value of this
generation is not superior to group optimal value gbf, ID would be
P, which means there is no need to update the best position gp of



204 A. Ouyang et al. / Computers & Fluids 110 (2015) 198–210
the group. Parallel reduction reduceToMax or reduceToMin. The first
thing is to perform the first-level reduction (parallel reading data),
then record them in a shared memorizer, and finally perform the
second-level reduction in the shared memorizer. Since the execu-
tion efficiency of the loop on the CPU is not high, the optimization
seems very important. The full loop unrolling, the code optimiza-
tion by a template parameter, and the unnecessary synchronization
in a warp greatly improve the reduction efficiency.

5.2.5. Kernel function Findgbp
It is required by Findgbp to find best position gbp for groups

according to the global optimal index. A thread is a complex vari-
able, and the size of dimension y of the grid is 1, which means that
if global optimal index ID is not equivalent to p, the ID line of the
position of the only particle would be copied to the best position
gbp for groups. These functions attached by detailed pseudo code.
Experiments have proved that it is very effective to combine the
particle swarm with conjugate gradient algorithm to implement
the GPU parallel, which greatly improves the search quality and
computing speed, as well as the performance of algorithm. In ker-
nel function executive parameter, we define block xsize (not more
than 512; 128 or 256 is more appropriate; at the same time, SM
usually have enough resources to perform at least two active
blocks), block ysize ¼ 1; grid ysize ¼ p, namely the number of popu-
lations, grid xsize ¼ dþ block xsize� 1Þ=block xsize, to represent
the block dimensions by this form, to ensure that the number of
blocks is an integer, and the number of threads in the whole grid
is more than the actual amount of elements to process. Accord-
ingly, in kernel, if ðxid < dÞ which can skip the redundant data is
used to calculate. If the minimum value is needed, we define better
as ‘‘<’’, and otherwise ‘‘>’’.

Algorithm 4. Parallel PSO algorithm in GPU

Input: G;D; g D; flag;N; p; lbp; gbp;h gbp; f ; lbf ; gbf ;h gbf ;v;
dsg u; ID;Grid;Block; gbfGrid; gbfBlock; gbpGrid; gbpBlock

Output: gbp; gbf
1: Initialize the parameters of device
2: Initialize the numbers of random in CUDA software:

dev_rndnGrid, Blocko(ds, time (NULL))
3: Initialize population parameters and compute fitness f:

initnGrid, Blocko(p, lbp, v, ds), h_cf(p, f, N, D)
4: Update optimum lbp and find optimum gbp:

FindgbfngbfGrid, gbfBlocko(f, lbf, gbf, g_u, ID, flag),
FindgbpngbpGrid, gbpBlocko(gbp, p, ID)
5: for g ¼ 1 to G do
6: flag ¼ 1
7: Update the velocity and position of each individual in

accordance with Eqs. (49) and (50), UpdatenGrid,
Blocko(p, lbp, gbp, v, g_u, ds)
8: Compute the fitness f: h_cf(p, f, N, D)
9: Update individual best position lbp, and find global

best individual gbp
10: end for
11: Return the global optimal position gbp and fitness gbf:
cudaMemcpy(h_gbp, gbp, D⁄sizeof(float),
cudaMemcpyDevieToHost), cudaMemcpy(h_gbf, gbf,
sizeof(float), cudaMemcpyDevieToHost)
12: printResults()
13: writedata()
14: H_Free()
15: cudaThreadExit()
Algorithm 5. Random numbers of CUDA

Kernel function: dev_rndnGrid, Blocko(ds, seed))
Define executive parameters
dim3 Block(block_xsize, block_ysize,1)
dim3 Grid(grid_xsize, grid_ysize)
Input: seed
Output: ds

1: Define the parameters: dimension index xid, population
index yid, thread position posID
2: if xid < d then
3: Invoke curand initðseed; posID;0;&ds½posID�Þ to
generate random numbers in CUDA
4: end if
Algorithm 6. Initialize population with CUDA

kernel function: initnGrid, Blocko(p, lp, v, ds)
Input: ds
Output: p; lbp;v ,

1: Define the dimension index xid, group index yid, the
thread position in the grid posID
2: if xid < d then
3: Load the sequence of the initialization status of the
random number ds from global memory and also assign it
to the register variable ls
4: Invoke curand uniformð&lsÞ to generate the random
number r1 and r2 between 0.0 and 1.0
5: Store the ls back into the global memory variable ds
6: Generate register variable x and vel based on the
velocity and position equation
7: Copy x back into p and lbp; copy vel back into v
8: end if
Algorithm 7. Update of velocity and position

Kernel function: UpdatenGrid, Blocko(p, lbp, gbp, v, g_u, ds)
Input: p; lbp; gbp;v; g u; ds
Output: p0; lbp0;v 0

1: Define the dimension index xid, group index yid, the
thread position in the grid posID
2: if xid < d then
3: Load p; lbp; gbp;v ; g u, and ds from the global memory

and also assign them to register variables pos, lb; gb;vel;u
and ls
4: Invoke curand uniform(&ls) to generate the random

number r1 and r2 between 0.0 and 1.0
5: Store the ls back into the global memory variable ds
6: if u ¼¼ 1 then
7: Assign pos to lb and lbp
8: end if
9: Update the velocity based on Eq. (49) and copy it back

to v
10: Update the particle position based on Eq. (50) and
copy it back to p
11: end if



Fig. 3. Flowchart of PCGM.

A. Ouyang et al. / Computers & Fluids 110 (2015) 198–210 205
Algorithm 8. Update of local and global optimum

Kernel function: FindgbfngbfGrid, gbfBlocko(f, lbf, gbf, g_u,
ID, flag)
Define executive parameters
dim3 gbfGridð1;1Þ
dim3 gbfBlockðdev_P;1;1Þ
Input: f ; lbf ; gbp;v ; g u; ds; flag
Output: f 0; lbf 0; gbf ; g u0; ID

1: Define the thread or particle index tid

2: Initialize the shared memory vector s and register
variable bf. To get the maximum value, it will be valued as
0. To get the minimum value, it will be valued as 1E�20
3: if tid < N then
4: Load f from global memory and assign it to s and bf
5: Synchronization
6: if flag ¼¼ 0 then
7: Copy the bf to the individual best fitness lbf
8: else
9: Load lbf from global memory and assign it to the

register variable bf 1
10: Assign the ‘‘bf better bf 1’’ to register variable
update and copy it back to g u
11: if update ¼¼ 1 then
12: Replace the individual optimum using new
fitness
13: end if
14: end if
15: if MAXIMIZE then
16: reduceToMax < dev N > ðs; tidÞ
17: else
18: reduceToMin < dev N > ðs; t idÞ
19: end if
20: if flag ¼¼ 0jjðflag ¼¼ 1&&s½0�better � gbf Þ then
21: if t id ¼¼ 0 then
22: Assign the best fitness to the global best value
23: end if
24: Assign thread index of the best value to the bf, or
the bf valued as dev N; Assign the bf to the shared memory
variable s
25: reduceToMin < dev N > ðs; t idÞ
26: Copy the best value index s½0� back into the ID
27: else
28: ID ¼ N
29: end if
30: end if

Algorithm 9. Search global optimal position

Kernel function: FindgbpngbpGrid, gbpBlocko(gbp, p, ID)
Define executive parameters
dim3 gbpBlockðblock xsize;1;1Þ
dim3 gbpGridðgrid xsize;1Þ
Input: p; ID; d
Output: gbp

1: Define the dimension index xid

2: if xid < D && ID! ¼ N then
3: Assign the solution of the No. ID particle in the p to the
global best position gbp
4: end if
5.3. Parallel conjugate gradient method

Conjugate gradient is a method which lies between the
steepest descent method and Newton method. It only needs
first derivative information and overcomes the slow conver-
gence of steepest descent method. Moreover, it does not need
to store and calculate Hesse matrix and inverse of Newton
method. The characters including the fast convergence speed
and quadratic termination make it one of the most efficient
algorithms to solve large linear equations. It needs small storage
capacity, has step convergence, high stability, and does not
require any external parameters. To realize GPU of conjugate
gradient requires CUBLAS library, that is, the header file needs
to contain cublas.h. Assume that we use it to obtain the solu-
tion of linear equations Ax ¼ b, the pseudo code is shown as
Algorithm 10.

All operations are completed in the GPU. In the first place,
the distribution of the temporary variables is conducted in the
video memory of GPU, so cublasAlloc() and cublasFree() are used
to replace malloc() and free() in standard C library. And all the
vector and matrix operations adopt the functions in CUBLAS
library. The role of each function is explained as follows. Cubla-
sAlloc is to allocate the video memory space; CublasFree is to
release the video memory space; This function of cublasScopy
copies the vector x into the vector y; whist the function of
cublasSdot: computes the dot product of vectors x and y;
cublasSgemv is to performs the matrix–vector multiplication;
the function of cublasSaxpy multiplies the vector x by the scalar
and adds it to the vector y overwriting the latest vector with
the result; with regards to the function of cublasSscal, it mainly
scales the vector x by the scalar and overwrites it with the
result (see Fig. 3).



206 A. Ouyang et al. / Computers & Fluids 110 (2015) 198–210
Algorithm 10. Parallel conjugate gradient method
Fig. 4. Flowchart of PHPSO.
Input: n;m;A; b; x
Output: X

1: Define variables a; b; e; r2 temporary vectors p, r, AP.
Invoke the instruction cublasAlloc to distribute storage
2: Invoke cublasScopy to achieve the first step: r :¼ b� Ax
3: Invoke cublasScopy(n, r, 1, p, 10), cublasSdot(n, r,

1, emphr, 1) to achieve the second step: p :¼ r
4: for k ¼ 1 to n do do
5: Assign the value of e to r2
6: Invoke cublasSgemv(‘n’, n, 1.0f, A, n, p, 1, 0.0f, Ap, 1);
7: Solve the value of a;a ¼ r2=cublasSdot;
8: Invoke cublasSaxpy(n, a, p, 1, x, 1) to achieve the sixth

step and update x
9: Invoke cublasSaxpy(n, �a, Ap, 1, r, 1) to achieve the

seventh step and update r
10: if e ¼ cublasSdot < m then
11: break;
12: end if
13: Achieve the ninth step, obtain b; b ¼ e=r2
14: Invoke cublasSscal(n, b, p, 1) and cublasSaxpy(n, 1.0f, r,
1, p, 1) to achieve the tenth step and update p.
15: end for
16: Invoke the instruction cublasFree to free the memory of
p, r and Ap
17: Realize the thirteenth step and obtain x.
5.4. Parallel hybrid particle swarm optimization

Both PSO and CGM have strong parallelism. Operating the com-
bination of them on GPU can improve the search quality and effi-
ciency. GPU program needs to take into consideration algorithm,
parallel partition, instruction stream throughput, memory band-
width and many other factors. First, we need to confirm the serial
and parallel part of the task. In the PHPSO algorithm, all the steps
in the process can be implemented on GPU. Then we need to ini-
tialize the device and prepare data. We store all vectors in the glo-
bal memorizer and constants in a constant cache memorizer to
optimize the memory and meet the need of merger access. We
have to make sure that the first visiting address starts from 16 inte-
ger times, and the word length of data read each time in every
thread is 32 bit. Finally, each step is mapped to a kernel function
suiting CUDA two parallel layers model and an instruction stream
would be optimized. If only a small amount of thread is needed, an
approach similar to ‘‘if thread < N’’ could be used to avoid the long
time cost or incorrect results caused by the multiple threads run-
ning simultaneously. To speed up, quick instructions that adopt
CUDA arithmetic instruction to centralize could be used. Using
#unroll could let the compiler develop loops effectively. We should
try to avoid bank conflict, balance the resources, and adjust the
usage of shared memory and the register. We can regard particles,
that is, individuals as threads, or the complex variables as threads.
Therefore, we can use a complex variable as a thread to initialize
and update the population to improve parallelism. CUDA runtime
API or CUDA driver API can be used to manage GPU resources, allo-
cate the memory and start the kernel function on GPU. In this
paper, we use the runtime API to implement operations, such as
equipment management, context management, and executive con-
trol. The detailed processing flow is shown as Fig. 4.
Algorithm 11. Parallel hybrid PSO algorithm in GPU

Input:
x min; x max;G;D; g D;N; flag; ds; p; lbp;v ; f ; lbf ; g u; gbp;
gbf ; ID;A; b; x;n;m;Grid;Block; gbfGrid; gbfBlock; gbpGrid;
gbpBlock

Output: gbp; gbf
1: Initialize the parameters of device
2: Initialize the number of random in CUDA:

dev_rndnGrid, Blocko(ds, seed)
3: Initialize population parameters and compute fitness f:

initnGrid, Blocko(p, lbp, v, ds), h_cf(p, f, N, D)
4: Update optimum lbp and find optimum gbp:

FindgbfngbfGrid, gbfBlocko(f, lbf, gbf, g_u, ID, flag),
FindgbpngbpGrid, gbpBlocko(gbp, p, ID)
5: for g ¼ 1 to G do
6: flag ¼ 1
7: Update the velocity and position of each individual in

accordance with Eqs. (49) and (50), UpdatenGrid,
Blocko(p, lbp, gbp, v, g_u, ds)
8: Compute the fitness f: h_cf(p, f, N, D)
9: FindgbfngbfGrid, gbfBlocko(f, lbf, gbf, g_u, ID, flag);

10: end for
11: Return the global optimal position gbp and fitness gbf:
cudaMemcpy(h_gbp, gbp, D⁄sizeof(float),
cudaMemcpyDevieToHost), cudaMemcpy(h_gbf, gbf,
sizeof(float), cudaMemcpyDevieToHost)
12: printResults()
13: writedata()
14: H_Free()
15: cudaThreadExit()



Table 2
Relative errors at various step.

Step 0.0500 0.0250 0.0100 0.0050 0.0025 0.0010

[32] 9.6E�3 2.5E�3 3.9E�4 9.6E�5 2.5E�5 4.3E�6
[42] 9.1E�3 2.3E�3 3.8E�4 9.4E�5 2.3E�5 4.1E�6
[43] 9.9E�2 3.0E�2 4.9E�3 1.2E�3 3.1E�4 5.0E�5
[44] 9.4E�2 2.4E�2 4.1E�3 1.0E�3 2.5E�4 4.0E�5
[45] 9.8E�2 3.7E�2 6.1E�3 1.5E�3 3.5E�4 6.0E�5
CGM 1.2E�4 3.0E�5 4.4E�6 1.1E�6 2.8E�7 4.5E�8
PSO 4.3E�2 8.9E�3 5.1E�3 2.1E�3 3.3E�4 2.6E�5
HPSO 1.0E�4 1.3E�5 2.1E�6 1.0E�6 1.4E�7 2.0E�8

Table 3
The Maximum absolute errors at various step h and k.

Steps [33] CGM PSO HPSO

h ¼ k ¼ 1=20 6.2E�3 2.8E�4 5.3E�2 1.5E�4
h ¼ k ¼ 1=40 1.6E�3 6.2E�5 1.4E�2 3.4E�5
h ¼ 1=40; k ¼ 1=60 9.6E�4 3.6E�5 3.3E�3 1.3E�5

A. Ouyang et al. / Computers & Fluids 110 (2015) 198–210 207
6. Experimental results and discuss

6.1. Example of application

In this section, our new method is tested on the following
problems selected the literature [32]. Absolute errors of numerical
solutions are calculated and compared with those obtained by
using the three degree B-spline method [33].

In this example, we consider the following heat conduction
equation

f ðxÞ ¼ cos
p
2

x
	 


; 0 < x < 1; ð51Þ

gðtÞ ¼ � exp �p2

4
t

� �
; 0 < x < 1; ð52Þ

mðtÞ ¼ 4
p2 exp �p2

4
t

� �
; 0 < x < 1; ð53Þ

with

uðx; tÞ ¼ exp �p2

4
t

� �
cos

p
2

x
	 


; ð54Þ

as its analytical solution.

6.2. Parameter setting

All the experiments are carried out on an eight-core 2.3 GHz
AMD Opteron 6134 machine with 8 GB main memory, using the
GCC compiler under Linux. The parameter setting of PHPSO in
terms of population size and stopping criteria is the same as PSO,
HPSO and PPSO to ensure fairness of comparison. The population
size of the five evolutionary algorithms is set as to 16, and each
of the evolutionary algorithms is stopped after 1000 generations.
The other parameters of PSO, HPSO, PPSO and PHPSO are set as
follows: the maximum velocity Vmax ¼ 1:5, acceleration factor
C1 ¼ C2 ¼ 1:2, inertia weight factor x ¼ 0:9. Therefore, in these
experiments, all the methods are run on the same computer con-
figuration for one-dimensional heat conduction equation. Twenty
independent runs with different methods are performed for differ-
ent years and the average values are recorded in the corresponding
tables, with the best solution marked in bold.

6.3. Performance of HPSO

At first, the results with h ¼ k ¼ 0:05; h ¼ k ¼ 0:025,
h ¼ k ¼ 0:01; h ¼ k ¼ 0:005, h ¼ k ¼ 0:0025; h ¼ k ¼ 0:001, using
HPSO discussed in Sections 3 and 4, are shown in Table 2. We pres-
ent the relative error absðUj

i � uðxi; tjÞÞ=absðuðxi; tjÞÞ for uð0:5;0:1Þ
using HPSO. The numerical results are compared with those results
obtained by the methods in [42–45], see Table 2. It can be seen
from Table 2 that the numerical results of the proposed HPSO are
much better than that in [42–45]. In [32], Dehghan solved the
example by using the Saulyev I’s technique with the accuracy being
first-order with respect to the space and time variables, and the
numerical integration trapezoidal rule is used to approximate the
integral condition in (4). However, in this paper, we present a
new method to deal with the nonlocal boundary conditions by
using quartic splines [38], and the method is very easier than the
numerical integration trapezoidal rule [32].

Secondly, for different steps h ¼ k ¼ 1=20; h ¼ k ¼ 1=40 and
h ¼ 1=40; k ¼ 1=60, the example is solved by using HPSO. The
maximum absolutes errors of the numerical solutions are calcu-
lated and compared with those results obtained by the method
in [33], see Table 3. In [33], Caglar et al. developed a numerical
method by using third degree B-splines functions, but the accuracy
of the third degree B-splines approximation method is only second
order, and the approximation order at the end points is third order.

6.4. Performance of PHPSO

Parallelization is a very important strategy for reducing the
computing time for corresponding sequential algorithms. In this
experiment, we evaluate our algorithm on multi-core CPU and
GPU systems to accelerate the computing speed of HPSO.

6.4.1. Experimental platform setup
In this paper, apart from the proposed GPU implementation, we

also implement the algorithm on multi-core CPU system with
shared memory architectures (using OpenMP as programming
model), so as to compare the performance of two GPU versions
with one multi-core CPU version.

A series of experiments are carried out on a dual-processor
eight-core 2.3 GHz AMD Opteron 6134 machine with 8 GB main
memory. Two different NVIDIA graphics cards GTX 465 and Tesla
C2050 are used to check the scalability of our approach as follows:

� The GTX 465 has 11 multiprocessors, 352 CUDA cores, 48 kB of
shared memory per block, 607 MHz processor clock, 1 GB
GDDR5 RAM, 102.6 GB/s memory bandwidth, and 802 MHz
memory clock.
� The Tesla C2050 has 14 multiprocessors, 448 CUDA cores, 48 kB

of shared memory per block, 1.15 GHz processor clock, 3 GB
GDDR5 RAM, 144 GB/s memory bandwidth, and 1.5 GHz mem-
ory clock.

For these two cards, the maximum number of resident blocks
per multiprocessor is 8, the maximum number of threads per block
is 1024, the maximum number of resident threads per multipro-
cessor is 1536, and the total number of registers available per block
is 32,768.

In software, the testing system is built on top of the Linux
(Ubuntu 10.10) operating system, the NVIDIA CUDA Driver version
4.2, and GCC version 4.4.5.

6.4.2. Result analyses of PHPSO
For each test, we first run the sequential algorithm on a single

core of the CPU and obtain the computational time. Secondly, we
run the parallel algorithm on 16 cores of the CPU with 16 concur-
rent threads. Finally, we run the parallel algorithm on the GTX 465
GPU and Tesla C2050 GPU, respectively. To avoid system jitter,



Table 4
The speedup of PCGM with GTX465.

Step CGM (ms) PCGM (ms) Speedup CGM (std) PCGM (std)

0.0500 3701.24 1075.94 3.44 8.2E�01 7.8E�01
0.0250 7809.62 1743.22 4.48 3.8E�01 3.4E�01
0.0100 18899.27 3405.27 5.55 4.8E�02 5.9E�02
0.0050 36853.58 4600.95 8.01 2.5E�02 5.4E�02
0.0025 76655.45 8172.22 9.38 3.1E�02 2.3E�02
0.0010 200070.71 17262.36 11.59 1.2E�02 1.9E�02

Table 5
The speedup of PPSO with GTX465.

Step PSO (ms) PPSO (ms) Speedup PSO (std) PPSO (std)

0.0500 2635.14 1365.36 1.93 8.6E�02 4.5E�04
0.0250 6547.86 2762.81 2.37 8.5E�03 7.8E�05
0.0100 15484.62 4931.41 3.14 9.2E�03 8.6E�05
0.0050 30018.98 6791.62 4.42 5.7E�03 3.2E�05
0.0025 68975.27 11515.07 5.99 6.3E�04 2.9E�05
0.0010 162562.02 22640.95 7.18 4.0E�04 1.7E�05

Table 6
The speedup of PHPSO with GTX465.

Step HPSO (ms) PHPSO (ms) Speedup HPSO (std) PHPSO (std)

0.0500 3845.23 852.60 4.51 8.9E�03 5.5E�08
0.0250 7925.46 1096.19 7.23 5.3E�04 3.2E�08
0.0100 19965.25 2112.72 9.45 7.7E�04 5.1E�09
0.0050 38014.85 2830.59 13.43 7.1E�05 4.5E�09
0.0025 78987.26 4766.88 16.57 5.9E�05 3.2E�09
0.0010 230415.22 10692.12 21.55 4.4E�06 2.2E�10

Table 7
The speedup of PCGM with Tesla C2050.

Step CGM (ms) PCGM (ms) Speedup CGM (std) PCGM (std)

0.0500 3701.24 1025.27 3.61 6.7E�01 5.6E�01
0.0250 7809.62 1701.44 4.59 2.2E�01 2.7E�01
0.0100 18899.27 3247.30 5.82 7.1E�02 6.3E�02
0.0050 36853.58 4477.96 8.23 5.5E�02 3.9E�02
0.0025 76655.45 8035.16 9.54 3.9E�02 2.4E�02
0.0010 200070.71 16955.15 11.80 2.8E�02 1.4E�02

Table 8
The speedup of PPSO with Tesla C2050.

Step PSO (ms) PPSO (ms) Speedup PSO (std) PPSO (std)

0.0500 2635.14 1273.01 2.07 5.0E�02 2.2E�04
0.0250 6547.86 2305.58 2.84 8.6E�02 8.4E�05
0.0100 15484.62 3785.97 4.09 7.2E�03 6.7E�05
0.0050 30018.98 5528.36 5.43 5.4E�03 4.6E�05
0.0025 68975.27 10828.14 6.37 3.7E�03 3.6E�05
0.0010 162562.02 21617.29 7.52 2.4E�04 2.0E�05

Table 9
The speedup of PHPSO with Tesla C2050.

Step HPSO (ms) PHPSO (ms) Speedup HPSO (std) PHPSO (std)

0.0500 3845.23 767.51 5.01 6.8E�04 4.4E�08
0.0250 7925.46 1045.58 7.58 5.4E�05 2.6E�08
0.0100 19965.25 1959.30 10.19 3.4E�05 3.4E�08
0.0050 38014.85 2621.71 14.50 5.9E�05 5.9E�09
0.0025 78987.26 4400.40 17.95 2.8E�06 2.8E�09
0.0010 230415.22 9970.37 23.11 2.0E�07 2.0E�10

208 A. Ouyang et al. / Computers & Fluids 110 (2015) 198–210
each experiment is repeated 30 times and the average value is con-
sidered. In terms of execution time, we only report the running
time for the three stages of the algorithm, and do not report the
time for other operations. Remarkably, the time associated with
the data transfer between CPU and GPU is included in the execu-
tion time for the GPU implementation. Traditionally, the speedup
is defined as sequential execution time over parallel execution
time.

Moreover, to achieve the most effective and robust performance
for the GPU implementation, we should select the optimum num-
bers of threads per block (TPB) to keep the GPU multiprocessors as
active as possible. Therefore, we first conduct our preliminary
speedup performance tests on the Tesla C2050 GPU using six dif-
ferent sizes of TPB (respectively, 32, 64, 128, 256, 512, and 1024).
The NVIDIA GPUs used here only allow the CUDA kernel to launch
a maximum of 1024 TPB.

The computational experiments focus on two aspects of perfor-
mance: speedup comparison and the robustness comparison. Then
results are reported below. The aim of the first set of experiments
is to evaluate which part of the proposed PHPSO algorithm
improves over its corresponding CPU implementation. A real case
of heat conduction equation is selected to process this investiga-
tion. Tables 6 and 9 present the comparison of computation times
between the PHPSO and the CPU implementation of the same algo-
rithm. Currently, both implementations have used single precision
floating numbers, as it meets the precision requirements for the
objective function and provides much better performance in speed
than double precision floating numbers on a current GPU [46].

We can see that: the average speedup of PHPSO is 12.12 over
HPSO with GPU GTX465 in Table 6; the average speedup of PHPSO
is 13.06 over HPSO with GPU GTX465 in Table 9. These data indi-
cate that the speedup of PHPSO is ideal for the one-dimensional
heat conduction equation. In all the tables, the ‘‘std’’ denotes the
standard deviation of statistical data. The standard deviation of
PHPSO on GPU is much smaller than that of HPSO. It indicates that
the robustness of PHPSO is stronger than HPSO. The random num-
ber generated by GPU is better than that of CPU, consequently, the
quality of PHPSO is better than that of HPSO. We can conclude that
the parallel implementation of HPSO is very significant.

After comparing the speedups of three parallel methods
between Tables 4–9, we can find that the speedups of three meth-
ods on GTX465 is a little smaller than those of on Tesla C2050. The
average speedup of PCGM at various steps (spatial step is equal to
time step) with GTX465 and Tesla C2050 is respectively 7.08, 7.27;
The average speedup of PPSO at various steps (spatial step is equal
to time step) with GTX465 and Tesla C2050 is respectively 4.17,
Fig. 5. The speedups of three methods on GTX465.



Fig. 6. The speedups of three methods on Tesla C2050.

A. Ouyang et al. / Computers & Fluids 110 (2015) 198–210 209
4.72. However, the average speedup of PHPSO at various step (spa-
tial step is equal to time step) with GTX465 and Tesla C2050 is
respectively 12.12, 13.06. Obviously, Figs. 5 and 6 show that the
speedup of PHPSO is much higher than that of PCGM and PPSO.
Consequently, the parallel implementation of CGM-only or PSO-
only is not so ideal and it is necessary for the parallel implementa-
tion to hybridize PSO and CGM.

We can see that the standard deviation of PHPSO at various
steps is smaller than that of PPSO and much smaller than that of
PCGM. Consequently, the robustness of PHPSO is stronger than that
of PCGM and PPSO. It is completely obvious that the hybrid imple-
mentation of CGM and PSO (PHPSO) is very significant.

7. Conclusion

One-dimensional heat conduction equation is highly common
in the science research field and engineering application. We adopt
quartic spline and difference scheme to transform the heat conduc-
tion equation into a system of linear equations. In order to employ
PSO and HPSO to solve it, a system of linear equations is success-
fully transformed into an unconstrained optimization problem. A
parallel hybrid PSO (PHPSO) algorithm is designed to solve a real
case of one-dimensional heat conduction equation. We therefore
implement the PHPSO in CUDA for use on GPUs and verify its per-
formance. The relative error and abstract error of calculation
results for the PHPSO is the same as the HPSO and the standard
deviation of PHPSO is much smaller than the PHPSO. The speedups
of PHPSO on two different GPUs are up to an average of 12.12 and
13.06 times faster, respectively, for different time and spatial steps.

The programs of PPSO, PCGM and PHPSO are implemented on
two various GPUs, the speedups and standard deviations of three
algorithms are displayed in this study. Comparison of three parallel
algorithms shows that the PHPSO is competitive in terms of
speedup and standard deviation. The results also show that using
PHPSO to solve the one-dimensional heat conduction equation
can outperform two parallel algorithms as well as HPSO itself.
Thus, the PHPSO is an efficient and effective approach towards
the heat conduction equation, as it is shown to be with strong
robustness and high speedup.

Acknowledgements

This paper is partially funded by the National Natural
Science Foundation of China (Grant Nos. 61070057, 61133005,
61370095, 61103047, 61202109), the Project Supported by Scien-
tific Research Fund of Hunan Provincial Education Department
(Nos. 13C333, 08D092), the Project Supported by the Science and
Technology Research Foundation of Hunan Province (Grant Nos.
2013GK3082, 2014GK3043)
References

[1] Satake S, Yoshimori H, Suzuki T. Optimizations of a GPU accelerated heat
conduction equation by a programming of CUDA Fortran from an analysis of a
PTX file. Comput Phys Commun 2012;183(11):2376–85.

[2] Shi L, Chen H, Sun J, Li K. vCUDA: GPU-accelerated high-performance
computing in virtual machines. IEEE Trans Comput 2012;61(6):804–16.

[3] Chen H, Shi L, Sun J, Li K, He L. A fast RPC system for virtual machines. IEEE
Trans Parallel Distrib Syst 2013;24(7):1267–76.

[4] Liu X, Li M, Li S, Peng S, Liao X, Lu X, et al. IMGPU: GPU accelerated influence
maximization in large-scale social networks. IEEE Trans Parallel Distrib Syst
2014;25(1):136–45.

[5] Rustico E, Bilotta G, Herault A, Del Negro C, Gallo G. Advances in multi-GPU
smoothed particle hydrodynamics simulations. IEEE Trans Parallel Distrib Syst
2014;25(1):43–52.

[6] Nelson B, Kirby RM, Haimes R. GPU-based volume visualization from high-
order finite element fields. IEEE Trans Visual Comput Graph 2014;20(1):70–83.

[7] Mei S, He M, Shen Z. Optimizing hopfield neural network for spectral mixture
unmixing on GPU platform. IEEE Geosci Remote Sens Lett 2014;11(4):818–22.

[8] Chitchian M, Simonetto A, van Amesfoort A, Keviczky T. Distributed
computation particle filters on GPU architectures for real-time control
applications. IEEE Trans Control Syst Technol 2013;21(6):2224–38.

[9] Rodriguez-Losada D, San Segundo P, Hernando M, de la Puente P, Valero-
Gomez A. GPU-mapping: robotic map building with graphical multiprocessors.
IEEE Robot Autom Mag 2013;20(2):40–51.

[10] Richter C, Schops S, Clemens M. GPU acceleration of finite difference schemes
used in coupled electromagnetic/thermal field simulations. IEEE Trans Magn
2013;49(5):1649–52.

[11] Fu Z, Lewis TJ, Kirby RM, Whitaker RT. Architecting the finite element method
pipeline for the GPU. J Comput Appl Math 2014;257:195–211.

[12] Orchard G, Martin J, Vogelstein R, Etienne-Cummings R. Fast neuromimetic
object recognition using FPGA outperforms GPU implementations. IEEE Trans
Neural Networks Learn Syst 2013;24(8):1239–52.

[13] Feng Z, Li P. Fast thermal analysis on GPU for 3D ICs with integrated
microchannel cooling. IEEE Trans Very Large Scale Integr (VLSI) Syst
2013;21(8):1526–39.

[14] Westphal E, Singh S, Huang C-C, Gompper G, Winkler R. Multiparticle collision
dynamics: GPU accelerated particle-based mesoscale hydrodynamic
simulations. Comput Phys Commun 2014;185(2):495–503.

[15] Tuttafesta M, DAngola A, Laricchiuta A, Minelli P, Capitelli M, Colonna G. GPU
and multi-core based reaction ensemble Monte Carlo method for non-ideal
thermodynamic systems. Comput Phys Commun 2014;185(2):540–9.

[16] Jie L, Li K, Shi L, Liu R, Mei J. Accelerating solidification process simulation for
large-sized system of liquid metal atoms using GPU with CUDA. J Comput Phys
2014;257, Part A:521–35.

[17] Ye Y, Li K. Entropic lattice Boltzmann method based high Reynolds number
flow simulation using CUDA on GPU. Comput Fluids 2013;88:241–9.

[18] Leskinen J, Priaux J. Distributed evolutionary optimization using Nash games
and GPUs-applications to CFD design problems. Comput Fluids
2013;80:190–201.

[19] Hashimoto T, Tanno I, Tanaka Y, Morinishi K, Satofuka N. Simulation of doubly
periodic shear layers using kinetically reduced local Navier–Stokes equations
on a GPU. Comput Fluids 2013;88:715–8.

[20] Hu Q, Gumerov NA, Duraiswami R. GPU accelerated fast multipole methods for
vortex particle simulation. Comput Fluids 2013;88:857–65.

[21] Qi H-T, Xu H-Y, Guo X-W. The Cattaneo-type time fractional heat conduction
equation for laser heating. Comput Math Appl 2013;66(5):824–31.

[22] Hosseini S, Shahmorad S, Masoumi H. Extension of the operational tau method
for solving 1-d nonlinear transient heat conduction equations. J King Saud
Univ – Sci 2013;25(4):283–8.

[23] Yılmazer A, Kocar C. Exact solution of the heat conduction equation in
eccentric spherical annuli. Int J Therm Sci 2013;68:158–72.

[24] Liu J, Zheng Z. A dimension by dimension splitting immersed interface method
for heat conduction equation with interfaces. J Comput Appl Math
2014;261:221–31.

[25] Liu L-B, Liu H-W, Chen Y. Polynomial spline approach for solving second-order
boundary-value problems with Neumann conditions. Appl Math Comput
2011;217(16):6872–82.

[26] Liu L-B, Liu H-W. A new fourth-order difference scheme for solving an n-
carrier system with Neumann boundary conditions. Int J Comput Math
2011;88(16):3553–64.

[27] Cao H-H, Liu L-B, Zhang Y, Fu S-m. A fourth-order method of the convection–
diffusion equations with Neumann boundary conditions. Appl Math Comput
2011;217(22):9133–41.

[28] Bougoffa L, Rach RC, Wazwaz A-M. Solving nonlocal initial-boundary value
problems for the Lotkac–von Foerster model. Appl Math Comput
2013;225:7–15.

[29] Bougoffa L, Rach RC. Solving nonlocal initial-boundary value problems for
linear and nonlinear parabolic and hyperbolic partial differential equations by
the Adomian decomposition method. Appl Math Comput 2013;225:50–61.

http://refhub.elsevier.com/S0045-7930(14)00218-7/h0005
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0005
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0005
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0010
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0010
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0015
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0015
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0020
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0020
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0020
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0025
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0025
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0025
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0030
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0030
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0035
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0035
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0040
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0040
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0040
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0045
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0045
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0045
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0050
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0050
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0050
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0055
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0055
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0060
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0060
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0060
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0065
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0065
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0065
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0070
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0070
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0070
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0075
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0075
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0075
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0080
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0080
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0080
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0085
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0085
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0090
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0090
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0090
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0095
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0095
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0095
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0100
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0100
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0105
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0105
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0110
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0110
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0110
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0115
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0115
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0115
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0120
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0120
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0120
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0125
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0125
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0125
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0130
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0130
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0130
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0135
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0135
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0135
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0140
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0140
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0140
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0145
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0145
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0145


210 A. Ouyang et al. / Computers & Fluids 110 (2015) 198–210
[30] Jankowski T. Nonnegative solutions to nonlocal boundary value problems for
systems of second-order differential equations dependent on the first-order
derivatives. Nonlinear Anal: Theory Methods Appl 2013;87:83–101.

[31] Asanova AT, Dzhumabaev DS. Well-posedness of nonlocal boundary value
problems with integral condition for the system of hyperbolic equations. J
Math Anal Appl 2013;402(1):167–78.

[32] Dehghan M. The one-dimensional heat equation subject to a boundary integral
specification. Chaos Solitons Fract 2007;32(2):661–75.

[33] Caglar H, Ozer M, caglar N. The numerical solution of the one-dimensional heat
equation by using third degree b-spline functions. Chaos Solitons Fract
2008;38(4):1197–201.

[34] Liu L-B, Liu H-W. Quartic spline methods for solving one-dimensional
telegraphic equations. Appl Math Comput 2010;216(3):951–8.

[35] Tsourkas P, Rubinsky B. A parallel genetic algorithm for heat conduction
problems. Numer Heat Transfer Part B 2005;47(2):97–110.

[36] Gosselin L, Tye-Gingras M, Mathieu-Potvin F. Review of utilization of genetic
algorithms in heat transfer problems. Int J Heat Mass Transfer 2009;52(9-
10):2169–88.

[37] He L, Zou D, Zhang Z, Chen C, Jin H, Jarvis SA. Developing resource
consolidation frameworks for moldable virtualmachines in clouds. Future
Gener Comp Syst 2014;32:69–81.

[38] Liu H-W, Liu L-B, Chen Y. A semi-discretization method based on quartic
splines for solving one-space-dimensional hyperbolic equations. Appl Math
Comput 2009;210(2):508–14.
[39] Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of IEEE
international conference on neural networks, vol. 4. Piscataway, NJ, USA: IEEE
Press; 1995. p. 1942–8.

[40] Ouyang A, Tang Z, Li K, Sallam A, Sha E. Estimating parameters of Muskingum
model using an adaptive hybrid PSO algorithm. Int J Pattern Recognit Artif
Intell 2014;28(1):1–29.

[41] Mussi L, Daolio F, Cagnoni S. Evaluation of parallel particle swarm
optimization algorithms within the CUDA architecture. Inform Sci
2011;181(20):4642–57.

[42] Cannon JR, Esteva SP, Hoek JVD. A Galerkin procedure for the diffusion
equation subject to the specification of mass. SIAM J Numer Anal
1987;24(3):499–515.

[43] Cannon JR, Matheson AL. A numerical procedure for diffusion subject to the
specification of mass. Int J Eng Sci 1993;31(3):347–55.

[44] Ewing RE, Lin T. A class of parameter estimation techniques for fluid flow in
porous media. Adv Water Resour 1991;14(2):89–97.

[45] Wang Y, Liu L, Wu Y. Positive solutions for singular semipositone
boundary value problems on infinite intervals. Appl Math Comput
2014;227:256–73.

[46] Zhu W. Nonlinear optimization with a massively parallel evolution strategy–
pattern search algorithm on graphics hardware. Appl Soft Comput
2011;11(2):1770–81.

http://refhub.elsevier.com/S0045-7930(14)00218-7/h0150
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0150
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0150
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0155
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0155
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0155
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0160
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0160
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0165
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0165
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0165
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0170
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0170
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0175
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0175
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0180
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0180
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0180
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0185
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0185
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0185
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0190
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0190
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0190
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0195
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0195
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0195
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0200
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0200
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0200
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0205
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0205
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0205
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0210
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0210
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0210
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0215
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0215
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0220
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0220
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0225
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0225
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0225
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0230
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0230
http://refhub.elsevier.com/S0045-7930(14)00218-7/h0230

	Parallel hybrid PSO with CUDA for lD heat conduction equation
	1 Introduction
	2 Method of numerical processing
	2.1 Mathematical model
	2.2 Quartic spline and interpolation error
	2.3 Quartic spline method
	2.4 The difference scheme on the boundary

	3 Derivation of objective function
	4 Serial algorithms
	4.1 Particle swarm optimization
	4.2 Conjugate gradient method
	4.3 Hybrid particle swarm optimization

	5 Parallel algorithms
	5.1 The architecture of CUDA
	5.2 Parallel particle swarm optimization
	5.2.1 Kernel function dev_rnd
	5.2.2 Kernel function init
	5.2.3 Kernel function Update
	5.2.4 Kernel function Findgbf
	5.2.5 Kernel function Findgbp

	5.3 Parallel conjugate gradient method
	5.4 Parallel hybrid particle swarm optimization

	6 Experimental results and discuss
	6.1 Example of application
	6.2 Parameter setting
	6.3 Performance of HPSO
	6.4 Performance of PHPSO
	6.4.1 Experimental platform setup
	6.4.2 Result analyses of PHPSO


	7 Conclusion
	Acknowledgements
	References


