
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

Supplementary Material for
Lazy-Merge: A Novel Implementation for
Indexed Parallel K-way In-place Merging

Ahmad Salah, Kenli Li*, Member, IEEE, and Keqin Li, Fellow, IEEE

F

1 AN APPLICATION FOR LAZY-MERGE NON-
STANDARD MERGING FORMAT

In this section, we discuss why Lazy-Merge, a non-
standard merging format, is advantageous, in terms of
a better run-time, over the standard format. We support
this advantage using experimental results obtained from
applying our standard to a real-time application, and
later, we present its applicability to a general case.

We considered merging e-mail lists to show that Lazy-
Merge has an advantage over the standard merging for-
mat. In the merging of e-mail lists, there is a set of e-mail
lists, and we assume that each e-mail appears in only
one e-mail list. Each e-mail list contains a set of fields
for each record, i.e., first name, last name, and e-mail
address. Merging e-mail lists is a common task in which
copies of e-mail lists are merged into a single list with
respect to a certain field; we assumed the e-mail address
field is the one to consider for the merging process. The
original e-mail lists are kept untouched for further use,
whereas copies of the lists are involved in the merging
task. Thus, the final merged list is ordered by e-mail
address. k e-mail lists merging can be realized as k-way
merging, where each e-mail list is a segment. In some
cases, there is a need to analyze the merged list contents
to know the share of each list in a certain portion of the
list. For example, if sending a letter succeeded only for
the first 10% of the final merged e-mail list, then the user
might need to know how many e-mail addresses from
each e-mail list received this letter. This can be viewed
as the share of each segment for a certain portion of the
final merged list.

• Ahmad Salah, Kenli Li, and Keqin Li are with College of Information
Science and Engineering, Hunan University, Changsha, Hunan, China,
and the National Supercomputing Center in Changsha, Hunan, China.
E-mail: {ahmad, lkl}@hnu.edu.cn

• Ahmad Salah is also with Computer Science Department, College of
Computers and Informatics, Zagazig University, Zagazig, Egypt.

• Keqin Li is also with Department of Computer Science, State University
of New York, New Paltz, New York 12561, USA.
E-mail: lik@newpaltz.edu

• Corresponding author: Kenli Li

Lazy-Merge, a non-standard format, stores an extra
piece of information compared with the standard format;
Lazy-Merge stores the share of each segment to its
partition. For example, if the first partition represents
the first 10% of the total merged list, then each segment
share of the first 10% from the final merged list is known
in constant time. Using the standard merging format
to calculate the segment shares, we need to search the
original e-mail lists for each element in the first 10%
elements of the final merged list. For Lazy-Merge, if the
portion to be considered is the first 12% of the merged
list and the partition size is 10%, then only 2% should
be searched for their segment shares. These shares will
be added to the first partition segment shares. For the
standard merging format, the same situation results in
searching for each element of the first 12% elements in
the merged list.

Generally, Lazy-Merge has a better execution time
when a copy of a set of segments are merged, and the
share of each segment is queried for a certain portion
of this merged list. Thus, for the standard merging
format, determining the segment shares of certain suc-
cessive m elements out of n merged elements requires
a time complexity of O ((log n)m) because each of the
m elements should be binary searched over the entire
segment, where the total size of the entire segment is n.
For the same task using Lazy-Merge, the time complexity
is O ((log n) (m− r)), where r ≤ m ≤ n, and r = p · s,
where p is the number of partitions in m, and s is the
partition size.

A motivational example is presented in Figure 1. In
Figure 1, Lazy-Merge’s format contains two partitions;
each partition has a different color and has four ele-
ments. To answer the question of how many e-mail ad-
dresses from each list are in the first 4th e-mail addresses
of the final merged list in Figure 1, using the standard
format, we need to perform four searching operations on
the three lists. However, using Lazy-Merge’s format, the
answer is of a constant time because the first 4th e-mail
addresses are included in the first partition. In the first
partition, each sub-segment presents its corresponding
segment’s/list’s share. If we want to know the list shares

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

A set of e-mail lists(each list is treated as a segment)

List 1 List 2 List 3

a@x.x g@x.x c@x.x e@x.x f@x.x b@x.x d@x.x h@x.x

(Standard Mergeing Format)

index 0 1 2 3 4 5 6 7
e-mail a@x.x b@x.x c@x.x d@x.x e@x.x f@x.x g@x.x h@x.x

(Lazy-Merge format with 2 partitions)

index 0 1 2 3 4 5 6 7
e-mail a@x.x e@x.x b@x.x f@x.x g@x.x c@x.x d@x.x h@x.x

Rosetta Index (auxailliry look-up table for ranges)

Partition Real Index Virtual Index Cum. Virtual
Index

Cum.
Size

1

(0,0) (0,0)

(0,3) 4 (2,2) (1,1)
(5,6) (2,3)

2
(1,1) (4,4)

(4,7) 8 (3,4) (5,6)

(7,7) (7,7)

Fig. 1: A motivational example to utilize Lazy-Merge’s
format for better execution time

for the first 6th e-mail addresses of the merged list,
using Lazy-Merge’s format, we need to perform only
two binary search operations for the 5th and 6th e-mail
addresses. However, using the standard format, we need
to perform six binary search operations.

1.1 Expiremental Results
In these experiments, we evaluated the running time for
counting each e-mail list share for a certain portion of the
final merged list. We fixed the total length of the merged
lists to have 217 e-mail addresses and the number of lists
segments to be 128. We retrieved the successive elements
in the second and third quarters; this equals half of
the elements of all the merged e-mail addresses. The
standard merging format has a single retrieval time
for the aforementioned portion. In this experiment, the
average retrieval time for the standard merging format
is 3.34 seconds.

Lazy-Merge uses partitions to merge e-mail lists
segments. The number of partitions affects the retrieval
time. Thus, we varied the number of partitions from 2 to
128 as shown in Table 1. As observed in Table 1 for two
partitions, Lazy-Merge takes 3.37 seconds to retrieve the

TABLE 1: Retrieving elements of the second and third
quarters of merged list of size 217 for Lazy-Merge format

No. of partitions time in seconds
2 3.37E+0
4 1.50E-5
8 2.41E-5

16 4.91E-5
32 1.01E-4
64 1.93E-4
128 3.79E-4

e-mail addresses of the second and third quarters. This
longer running time, compared with the other values,
is obtained because the second and third quarters, the
searched elements, have zero complete partitions. The
searched quarters are partially included in the first and
second partitions. The first partition includes the first
and second quarters, and the second partition includes
the third and fourth quarters. Thus, each element of
the retrieved quarters should be used to determine its
original e-mail list/segment. On the other hand, when
Lazy-Merge has four partitions, the second quarter of the
merged list equals the second partition, and the third
quarter of the merged list equals the third partition.
Thus, counting the segment shares of the second and
third quarters is performed in constant time because the
segment shares for each partition are already known. The
same explanation holds for the remaining values of Table
1.

In Table 1, the retrieved elements are in the range 25%
to 75% of the final merged list. Thus, starting from 4
partitions, this range includes only complete partitions,
and no partial partition is included, as discussed above.
In the second experiment, we retrieved the elements
in the range 21% to 71% of the final merged list. The
standard format retrieval time in this experiment is 3.34
seconds, which is the same as the previous experiment
because in both experiments, we retrieved 50% of the
final merged list. Intuitively, for the standard merging
format, the range of starting and ending indexes has
no effect on the retrieval time. Table 2 shows a faster
retrieval time using the Lazy-Merge format compared
with the standard merging format. We selected the range
21% to 71% of the final merged list to guarantee that this
retrieved range include some complete and some partial
partitions as we vary the number of partitions. For those
partially-included partitions, their elements should be
searched one at a time. In Table 2, the retrieval time
decreases as the number of partitions increases. This
behavior is linked to the increasing partition number
and decreasing partition size. As a result, the number
of partitions completely included in the query range
increases. Thus, the retrieval time decreases in the Lazy-
Merge format. These results outline the superiority of the
Lazy-Merge format compared with the standard format
for this kind of application.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

TABLE 3: Merging Algorithms’ Execution Times

1× 107 2× 107 3× 107

Split Shuffle Split Shuffle Split Shuffle
Random 1.95 1.55 3.90 3.08 5.85 4.90

Fully interlaced 4.38 1.46 9.11 2.95 13.76 4.58
10%-interlaced 1.58 4.43 3.18 9.11 4.81 SO
20%-interlaced 1.86 SO 3.79 SO 5.77 SO
30%-interlaced 2.40 SO 4.91 SO 7.41 SO
40%-interlaced 2.66 SO 5.46 SO 8.39 SO
50%-interlaced 2.94 SO 6.04 SO 9.21 SO

TABLE 2: Retrieving elements in the range of 21% to 71%
of the merged list of size 217 for Lazy-Merge format

No. of partitions time in seconds
2 3.37
4 1.63
8 0.83
16 0.42
32 0.22
64 0.12

128 0.07

2 COMPARISON OF SEQUENTIAL IN-PLACE
MERGING ALGORITHMS

In this section, we perform a comparison between Split-
Merge and ShuffleMerge algorithms. This comparison
shows the behavior of the two algorithms under different
list sizes and contents.

For smaller list sizes, the test includes three differ-
ent contents. The first case has segments of random
elements, the second has segments of fully interlaced
elements, and the last one has partially interlaced ele-
ments. Two segments are interlaced if the final merged
list contains a range in which an element from one list
is followed by an element from the other list repeatedly.
For example, segments t = [1, 3, 5] and q = [2, 4, 6]
are considered fully interlaced segments, t = [1, 3, 5, 7]
and q = [4, 6, 8, 10] are partially interlaced segments
by 50% of the elements, and t = [1, 2, 3, 5] and q =
[11, 13, 14, 12, 15] are non-interlaced segments. The input
lists include only 2 segments.

The following tests consist of randomly generated 2-
way merging problems of different sizes. The first list
size is 1 × 107, and each subsequent list increases by
1× 107. This test includes three varied sized input lists.
Each of these lists includes two equal-sized and ordered
segments, which are the input to the 2-way in-place
merging algorithm.

There are three different tests:
1) Random test: Each segment contains randomly

generated ordered elements.
2) Fully interlaced test: The first segment contains the

even numbers from 0 to size − 2, and the second
segment contains the odd numbers from 1 to size−
1, where size is the list size.

3) Partially interlaced test: For each list, we consid-
ered five cases: the second segment interlaced with
the first segment by 10%, 20%, 30%, 40% and 50%

of the elements. Thus, we have 5 different problems
for each list.

Table 3 shows the execution times in seconds for the
three tests. The first row presents the input list size. In
general, SplitMerge outperforms the ShuffleMerge algo-
rithm. Each reported execution time is the average of
executing the algorithms three times.

The ShuffleMerge can not merge the partially interlaced
lists due to the Stack Overflow error, we denoted this
error by SO in Table 3. The reason for the Stack Over-
flow error is massive recursive calls. ShuffleMerge uses
recursive calls to merge the elements of any disordered
sub-segment; discorded sub-segment is defined as a set
of contiguous elements where the leftmost element is
larger than the rightmost element.

For fully interlaced elements, the ith elements of the
two input segments are less than (i+ 1)

th elements of
the same segment. Thus, the fully interlaced lists have no
recursive calls, because each two ith elements of the two
segments are merged, and they are locaated pervious
to the merged (i+ 1)

th elements. In contrast, merging
the partially interlaced lists result in many disordered
sub-segment which is handled by recursive calls. For
SplitMerge, the contents of the lists does not affect the
depth of the recursive stack. For example, the deepest
recursive function stack for a list with size 1 × 107 and
10% interlaced elements is 50,008 for ShuffleMerge, and
21 for SplitMerge.

To test the two algorithms under larger list sizes, we
utilized a test includes 10 lists. The smallest list size is
1× 107, and the largest list size is 1× 108; the increasing
step is 1 × 107. We utilized two kinds of tests, random
and fully interlaced tests. Table 4 shows that ShuffleMerge
outperforms SplitMerge in the fully interlaced test. For
the random test, SplitMerge starts to slightly outperforms
ShuffleMerge for the last three lists. This behavior in-
dicates that the SplitMerge’s running time increases in
smaller rates than ShuffleMerge as the lists size increases.
We did not include the partially interlaced test because
ShuffleMerge has the Stack Overflow problem, which is
indicated in the previous test.

3 THE THOROUGH COMPARISON OF LAZY-
MERGE AND GL-MERGE

The basic idea of the Lazy-Merge and the GL-Merge is to
divide the two input segments into independent smaller

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

TABLE 4: Merging Algorithms’ Execution Times in Sec-
onds

Shuffle Split
Size Rand. Interlaced Rand. Interlaced

1× 107 1.55 1.46 1.95 4.38
2× 107 3.08 2.95 3.90 9.11
3× 107 4.90 4.58 5.85 13.76
4× 107 6.61 6.37 7.99 18.81
5× 107 7.70 7.37 9.99 23.58
6× 107 9.29 9.12 11.72 28.49
7× 107 12.04 11.05 13.65 33.99
8× 107 16.78 16.12 15.62 39.02
9× 107 19.43 18.55 17.60 43.74
1× 108 20.54 20.10 19.56 48.82

sub-segments merging tasks. The GL-Merge performs a
series of steps to make the correct sub-segments con-
tiguous, which is called sub-segments re-arrangement,
and then starts the independent local merging tasks
in parallel. But these re-arrangement steps have their
own costs in terms of increasing the number of moves,
and consequentially the execution times, as illustrated in
Tables 5 and 6.

In Table 5, we can notice that when the number of
threads is one, the number of moves of GL-Merge’s
re-arrangement steps is almost the half of the num-
ber of moves required to merge the independent re-
arranged sub-segments. The number of moves of GL-
Merge’s re-arrangement steps increases as the number
of threads increase; this is linked to the overhead of
re-arranging extra sub-segments, as the number of sub-
segments increases as the number of threads increases.
For example, if we use 2 threads, then we have to
rearrange the sub-segments to have two independent
merging tasks, meanwhile if we use 128 threads, then
we have to have 128 independent merging tasks. The
numbers of moves of GL-Merge’s re-arrangement steps
and merging are almost equalized at certain number of
cores, depending on the list size. Afterward, the GL-
Merge’s re-arrangement steps number of moves becomes
more than the merging number of moves.

Table 6 lists the corresponding execution times of the
number of moves listed in Table 5. We should notice that
the GL-Merge’s re-arrangement steps utilize a massive
number of synchronization, O (n/p), as mentioned in
the paper. On the other hand, the independent merging
tasks have no synchronization at all. That justifies the
small execution times of the merging step in comparison
to the GL-Merge’s re-arrangement steps. The sequential
GL-Merge, which uses 1 thread, includes re-arrangement
steps and merging steps to have two independent merg-
ing tasks, but the entire steps are executed sequentially.

In contrast, the Lazy-Merge algorithm divides the
input segments into sub-segments through partition-
ing and then starts merging without sub-segments
re-arrangement. This replaces the overhead of sub-
segments re-arrangement with the partitioning time. The
partitioning step only finds the elements of each parti-

0.0E+00

1.0E+03

2.0E+03

3.0E+03

4.0E+03

5.0E+03

6.0E+03

2 4 8 16 32 64 128 256

N
o.

 o
f m

ov
es

No. of segements

GL-Merge

Bitonic

Lazy-Merge

Fig. 2: Number of moves for different number of seg-
ments.

tion in each input segment; these elements are expressed
as a sub-segments. Thus, the partitioning steps deliver
each partition a set of sub-segment’s boundaries. As
explained, the partitioning step includes no extra moves.
Thus, herein, we include only the execution times of
the partitioning step and the parallel and independent
merging step in Table 7. Apparently, when the number
of the threads is one, no partitioning is required, because
the entire segments are merged instead of the sub-
segments. Thus, the partitioning times in Table 7 are
denoted as Not Applicable, N/A, when the number
of threads/partitions is one. For Lazy-Merge, using 1
thread means performing a sequential binary merging
tree, and partitioning is not included.

4 THE NUMBER OF MOVES FOR DIFFERENT
NUMBER OF SEGMENTS AND THREADS

To practically validate the fact increasing the number of
segments increases the total number of moves, we run
the three algorithms using 1 thread for a list of size 256.
Figure 2 shows the total numbers of moves to merge
this list with the fixed size, and with different number
of segments. In Figure 2, The last set of columns presents
the extreme case; when each segment has only one ele-
ment, 256 segments. Because the segment number does
not represent the order of the elements; then, we still
need to order the segments, the elements, by merging.

Similarly, we used a list of 256 elements divided into
two segments with varied number of threads/partitions
to track the change in the total number of moves as the
number of threads/partitions varies. We excluded the
bitonic merge from this experiment, because we showed
that increasing the number of threads has no effect on
the number of moves for the bitonic merge. For Lazy-
Merge, the number of threads equals the number of
partitions. We varied the number of threads from 2 to
256 threads, in a step of multiplying by two. Figure 3
shows a decreasing number of moves as the number
of threads/partitions increases. Lazy-Merge’s number of
moves equals zero when the number of the partitions
equals 256, because we have 256 partitions. Each parti-
tion has one element; thus, no data movement is required

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

TABLE 5: The detailed # of moves for the GL-Merge algorithm using a list of size 217 with varied # of segments
and threads

Seg. Threads

Re-arrangement steps

1 2 4 8 16 32 64 128
2 262296 262051 278451 285066 288426 289868 285368 280125
4 524009 524484 556556 569908 577578 577312 568336 558467
8 785939 785765 835095 855177 865257 866049 851816 833467
16 1048088 1047646 1112557 1141044 1154516 1153992 1139185 1106121
32 1309462 1309828 1391361 1426521 1442622 1439123 1418773 1382561
64 1571721 1571294 1669211 1711896 1728589 1726911 1694350 1661385

128 1833929 1833128 1946072 1997281 2017107 2013744 1978604 1922605

Merging

2 491787 490534 424159 343001 271338 196278 118194 45960
4 980575 979844 842086 683800 535655 384827 221082 82167
8 1470960 1468400 1260360 1022290 802319 571245 314069 116793
16 1956620 1959050 1677360 1377440 1070070 744346 426291 134694
32 2434700 2439760 2090710 1705460 1332370 913932 492141 164231
64 2918860 2915430 2494110 2038130 1569840 1082390 565628 185316

128 3383350 3382100 2895910 2351320 1823250 1241760 631472 174152

TABLE 6: The detailed execution times for the GL-Merge algorithm using a list of size 217 with varied # of segments
and threads

Seg. Threads

Re-arrangement steps

1 2 4 8 16 32 64 128
2 4.20082 4.91249 5.32203 3.01683 1.79967 3.27 3.31521 2.8945
4 6.72141 6.26772 7.22957 4.47931 2.51571 6.08506 6.00539 5.51756
8 7.5181 6.74095 7.83568 4.6688 3.00261 8.30078 8.84059 7.38648

16 6.99998 7.35459 8.21013 4.87807 4.6679 10.4961 11.6374 11.8204
32 6.72221 8.58589 8.66431 5.22026 4.79726 13.7319 14.0462 13.0874
64 6.73216 9.00018 8.45555 5.10194 4.15231 15.1776 16.828 16.8955
128 8.29334 8.25366 8.70909 5.38584 4.56368 17.4021 18.1878 21.4714

Merging

2 0.015965 0.0159869 0.0139761 0.0116019 0.00960207 0.00772905 0.00756502 0.00649405
4 0.045315 0.0324259 0.0282631 0.0236449 0.0198591 0.0268109 0.0168288 0.0212479
8 0.0794172 0.0495369 0.0435638 0.03706 0.0322161 0.0408468 0.0356798 0.0437551

16 0.138774 0.06879 0.0610678 0.0539856 0.0490179 0.0597777 0.0798814 0.0923746
32 0.222887 0.0898805 0.0815363 0.0751507 0.0731456 0.11358 0.120752 0.157171
64 0.386073 0.116134 0.109431 0.107623 0.111247 0.161132 0.194456 0.295337
128 0.715808 0.15293 0.148364 0.15509 0.179821 0.244591 0.306948 0.530356

TABLE 7: The detailed execution times for the Lazy-Merge algorithm using a list of size 217 with varied # of
segments and threads

Seg. Threads (Partitions)
1 2 4 8 16 32 64 128

Partitioning

2 N/A 5.71012E-4 6.07967E-4 8.37088E-4 0.00428391 0.00279093 0.00745511 0.011143
4 N/A 5.7292E-4 6.47068E-4 7.16925E-4 0.00189996 0.00331998 0.00626206 0.00917602
8 N/A 6.02961E-4 6.83069E-4 8.23021E-4 0.00295496 0.00312304 0.00639892 0.0101981
16 N/A 6.46114E-4 8.39949E-4 0.00116801 0.00270295 0.00328207 0.00825 0.013571
32 N/A 0.00116801 0.00181389 0.00335503 0.00492597 0.00487399 0.011029 0.0167949
64 N/A 0.00232792 0.00401998 0.00415492 0.00826192 0.0116849 0.014621 0.022568

128 N/A 0.00688696 0.010922 0.016428 0.0113029 0.016248 0.0271809 0.04706

Merging

2 0.0235901 0.020659 0.011682 0.00520301 0.00497103 0.00369191 0.00322008 0.00428605
4 0.037282 0.0395501 0.0176101 0.00747705 0.00880909 0.00709701 0.00362301 0.0041399
8 0.064183 0.0620639 0.029789 0.015058 0.01299 0.00684309 0.00880504 0.0082829
16 0.0991631 0.0840099 0.0394461 0.019644 0.014147 0.01068 0.00998807 0.00893092
32 0.23418 0.126 0.0628099 0.0350969 0.02474 0.020402 0.0139351 0.011059
64 0.501214 0.188002 0.0998361 0.059267 0.0367539 0.02755 0.021539 0.018539

128 1.35768 0.296346 0.174599 0.110669 0.069736 0.051661 0.037102 0.0354331

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

2 4 8 16 32 64 128 256

lo
g

sc
al

e
fo

r t
he

 n
o.

 o
f m

ov
es

No. of threads

GL-Merge

Lazy-Merge

Fig. 3: Number of moves for different number of
threads(partitions).

since the partitions array maintains the order. In other
words, to access element i, one can access partition i
directly.

5 EXECUTION TIMES OF PARALLEL IN-PLACE
MERGING ALGORITHMS

To fully understand the behavior of the Lazy-Merge,
Bitonic merge, and GL-Merge, we listed here in Tables 8
to 12 the execution times for the entire lists of dataset-1
and dataset-2.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

TABLE 8: Lazy-Mege dataset-1 execution times

Size Seg. Threads(Partitions)
1 2 4 8 16 32 64 128

2ˆ13

2 0.00173 0.00268 0.00463 0.00268 0.01934 0.02721 0.01773 0.03903
4 0.02402 0.00743 0.00527 0.01207 0.00760 0.00729 0.00829 0.02147
8 0.03781 0.01623 0.00888 0.00648 0.00792 0.00907 0.01174 0.04911
16 0.07532 0.02540 0.01790 0.01306 0.01156 0.01092 0.01259 0.02284
32 0.13592 0.04309 0.02779 0.02195 0.01860 0.01662 0.01890 0.04419
64 0.22780 0.06138 0.04604 0.03135 0.02608 0.02392 0.02408 0.02705

128 0.37026 0.08419 0.06190 0.04665 0.03828 0.03646 0.03619 0.04753

2ˆ14

2 0.00885 0.00612 0.00290 0.00252 0.00643 0.00527 0.01104 0.02049
4 0.01687 0.01265 0.01010 0.00475 0.00812 0.00667 0.01294 0.02035
8 0.03238 0.01668 0.00949 0.00796 0.01041 0.00674 0.01299 0.02225
16 0.06396 0.03128 0.01900 0.01464 0.01321 0.01115 0.01231 0.02120
32 0.17287 0.05256 0.03405 0.02463 0.02428 0.02030 0.02043 0.03378
64 0.33030 0.08548 0.05617 0.04135 0.03675 0.03300 0.03413 0.04028

128 0.61137 0.12873 0.08593 0.06394 0.05052 0.04646 0.04469 0.06115

2ˆ15

2 0.01071 0.00867 0.00687 0.00428 0.00992 0.00610 0.01204 0.01865
4 0.02507 0.01496 0.01191 0.00573 0.00704 0.00760 0.01334 0.01711
8 0.05133 0.02870 0.01510 0.01101 0.01010 0.01040 0.01389 0.01852
16 0.07495 0.04269 0.02190 0.01602 0.01468 0.01411 0.01397 0.02406
32 0.19041 0.06679 0.04249 0.03016 0.02506 0.02107 0.02349 0.03163
64 0.41009 0.11247 0.07296 0.05082 0.04217 0.03861 0.04046 0.04267

128 0.91262 0.18113 0.11740 0.08345 0.06408 0.05822 0.06085 0.07111

2ˆ16

2 0.01605 0.01401 0.01052 0.00644 0.00759 0.00725 0.01119 0.02244
4 0.02773 0.02410 0.01291 0.00650 0.01026 0.00821 0.01195 0.01778
8 0.04147 0.03349 0.02081 0.01293 0.01053 0.01015 0.01627 0.01961
16 0.08684 0.05360 0.03228 0.01588 0.01961 0.01424 0.02222 0.02232
32 0.20228 0.08707 0.04773 0.03212 0.04918 0.02060 0.02550 0.03233
64 0.46281 0.14859 0.09080 0.06097 0.04667 0.03938 0.04401 0.04247

128 1.19868 0.24312 0.14909 0.10508 0.07502 0.06277 0.06608 0.07645

2ˆ17

2 0.02367 0.02092 0.01186 0.00676 0.00900 0.00783 0.01153 0.02073
4 0.04173 0.03900 0.01815 0.01917 0.01318 0.01064 0.01210 0.02041
8 0.05660 0.05983 0.03083 0.01596 0.01615 0.01033 0.01585 0.02325
16 0.08937 0.08150 0.03956 0.02275 0.02149 0.01682 0.01873 0.02732
32 0.21175 0.12230 0.06430 0.04116 0.02876 0.02169 0.02334 0.03153
64 0.48623 0.19461 0.10169 0.06585 0.05007 0.04105 0.04158 0.04440

128 1.33534 0.30817 0.17867 0.11754 0.08395 0.06840 0.07442 0.08176

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

TABLE 9: Lazy-Mege dataset-2 execution times

Size Seg. Threads(Partitions)
1 2 4 8 16 32 64 128

2ˆ20

2 0.00173 0.00268 0.00463 0.00268 0.01934 0.02721 0.01773 0.03903
4 0.231301 0.251 0.115 0.054 0.031 0.020 0.019 0.017499
8 0.273406 0.379 0.171 0.083 0.052 0.038 0.034 0.031
16 0.310612 0.514 0.225 0.103 0.070 0.053 0.041 0.033
32 0.455035 0.652 0.303 0.136 0.080 0.070 0.054 0.070
64 0.694905 0.841 0.377 0.273 0.114 0.081 0.070 0.061

128 1.5936 1.052 0.492 0.235 0.134 0.122 0.118 0.114

2ˆ21

2 0.290331 0.263 0.121 0.061 0.043 0.032 0.036 0.035
4 0.452292 0.501 0.232 0.114 0.069 0.056 0.046 0.045
8 0.523433 0.758 0.339 0.148 0.092 0.075 0.061 0.051
16 0.563906 1.003 0.452 0.203 0.093 0.083 0.141 0.050
32 0.952583 1.268 0.564 0.254 0.124 0.108 0.090 0.067
64 0.9747 1.571 0.708 0.308 0.202 0.131 0.105 0.079

128 1.8809 1.916 0.881 0.397 0.225 0.185 0.157 0.139

2ˆ22

2 0.576097 0.709 0.243 0.115 0.083 0.059 0.051 0.045
4 0.862919 0.990 0.445 0.200 0.102 0.081 0.075 0.056
8 1.03319 1.488 0.661 0.284 0.152 0.116 0.093 0.063
16 1.10895 1.986 1.091 0.378 0.229 0.145 0.117 0.080
32 1.24266 2.485 1.100 0.474 0.211 0.181 0.142 0.098
64 1.52409 3.067 1.345 0.575 0.250 0.236 0.172 0.130

128 2.40463 3.640 1.614 0.707 0.344 0.305 0.231 0.186

2ˆ23

2 1.14544 1.013 0.466 0.222 0.138 0.104 0.081 0.067
4 1.7367 1.990 0.881 0.385 0.189 0.178 0.124 0.090
8 2.02693 2.960 1.311 0.562 0.263 0.215 0.161 0.122
16 2.17695 3.949 1.755 0.764 0.326 0.281 0.196 0.131
32 2.29904 4.950 2.166 0.920 0.418 0.348 0.251 0.158
64 2.59058 6.001 2.641 1.130 0.496 0.409 0.316 0.205

128 3.50215 7.125 3.121 1.350 0.586 0.513 0.388 0.274

2ˆ24

2 2.30956 2.029 0.908 0.411 0.230 0.178 0.142 0.110
4 3.49231 3.924 1.766 0.756 0.444 0.297 0.227 0.147
8 4.04084 5.935 2.628 1.118 0.521 0.447 0.311 0.211
16 4.34247 7.902 3.465 1.470 0.648 0.542 0.384 0.244
32 4.51227 9.848 4.333 1.824 0.779 0.665 0.467 0.282
64 4.79873 11.937 5.205 2.205 0.923 0.784 0.564 0.331

128 5.73426 13.952 6.148 2.592 1.105 0.954 0.685 0.432

2ˆ25

2 4.62103 3.990 1.813 0.811 0.404 0.342 0.263 0.196
4 6.91763 7.924 3.498 1.528 0.711 0.589 0.452 0.295
8 8.09311 11.804 5.242 2.219 0.967 0.832 0.592 0.367
16 8.67834 15.667 6.925 2.916 1.256 1.036 0.765 0.451
32 9.21115 19.739 8.663 3.624 1.519 1.341 0.901 0.579
64 9.34976 23.658 10.395 4.417 1.859 1.498 1.098 0.624

128 10.2511 27.979 12.173 5.116 2.154 1.795 1.287 0.752

2ˆ26

2 9.29309 8.064607 3.644211 1.629595 0.795218 0.679 0.573028 0.392922
4 13.9213 15.91247 7.077147 3.071405 1.392382 1.090109 0.827013 0.540885
8 16.1947 23.62802 10.38358 4.424005 1.995061 1.580916 1.13425 0.70331
16 17.4497 31.43381 13.76856 5.872153 2.529965 2.121168 1.47453 0.85689
32 18.079 39.29527 17.33116 7.291348 3.085752 2.505566 1.796528 1.085969
64 18.9419 47.07522 20.65363 8.719883 3.603543 3.058697 2.103843 1.219487

128 19.9409 55.78 24.24843 10.20485 4.193857 3.4925 2.447138 1.427551

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

TABLE 10: Bitonic merge dataset-1 execution times

Size Seg. Threads)
1 2 4 8 16 32 64 128

2ˆ13

2 0.003026 0.003119 0.002509 0.004491 0.021386 0.019271 0.020524 0.028936
4 0.005935 0.009721 0.004968 0.002958 0.062351 0.012063 0.02488 0.05392
8 0.008415 0.010944 0.006012 0.004551 0.043651 0.039813 0.058277 0.112794
16 0.010891 0.008224 0.009501 0.006637 0.065063 0.07249 0.10603 0.247666
32 0.013183 0.014727 0.006621 0.005763 0.526707 0.09941 0.204597 0.396252
64 0.01979 0.011591 0.011989 0.010067 0.930199 0.554165 0.266472 0.61227

128 0.017345 0.017063 0.012889 0.011046 0.131489 0.455939 0.680843 1.27835

2ˆ14

2 0.006396 0.009873 0.005173 0.003106 0.023398 0.006665 0.009846 0.018717
4 0.012391 0.013718 0.010052 0.004417 0.007866 0.014502 0.026504 0.047061
8 0.018 0.016591 0.009896 0.008698 0.150749 0.02411 0.048824 0.081676
16 0.023449 0.016016 0.014148 0.011237 0.250146 0.058017 0.113703 0.193689
32 0.028095 0.019337 0.014291 0.010798 0.059588 0.121163 0.212152 0.440568
64 0.032809 0.031469 0.01726 0.014156 1.02937 0.154788 0.60708 1.40351

128 0.03705 0.030589 0.017888 0.017812 0.191754 0.378606 0.692479 1.25286

2ˆ15

2 0.013688 0.012983 0.010211 0.004424 0.004188 0.010253 0.015402 0.020068
4 0.026458 0.021324 0.011346 0.010065 0.077322 0.023287 0.03008 0.048515
8 0.038405 0.025972 0.016524 0.011431 0.022648 0.044598 0.069564 0.114303
16 0.0496 0.041392 0.020925 0.012818 0.012308 0.061465 0.119558 0.206535
32 0.060067 0.043191 0.023621 0.018589 0.16041 0.129389 0.233279 0.391162
64 0.069846 0.047758 0.030965 0.026271 0.03788 0.235406 0.421247 0.73166

128 0.079019 0.050877 0.03553 0.025585 0.036811 0.455289 0.761092 1.35702

2ˆ16

2 0.028999 0.021317 0.013747 0.010202 0.014952 0.013249 0.017034 0.023021
4 0.056268 0.03855 0.019046 0.012678 0.044537 0.034048 0.035173 0.054782
8 0.08184 0.05104 0.031262 0.021595 0.016846 0.065513 0.077749 0.113349
16 0.106377 0.067875 0.040203 0.030332 0.0194 0.352458 0.133729 0.466724
32 0.128257 0.074081 0.047833 0.040265 0.528754 0.15875 0.254369 0.382972
64 0.150211 0.090155 0.055298 0.036464 0.448115 0.418235 0.467293 0.70762

128 0.16946 0.09941 0.066378 0.048791 0.089417 0.500808 0.840808 1.29519

2ˆ17

2 0.061428 0.041 0.023375 0.01505 0.016404 0.021973 0.022106 0.023701
4 0.119388 0.077006 0.041097 0.030098 0.040749 0.048274 0.048182 0.061482
8 0.174318 0.104946 0.058407 0.038348 0.029709 0.078133 0.088474 0.130991
16 0.225643 0.130169 0.079374 0.052237 0.047527 0.114968 0.167395 0.243745
32 0.274941 0.158488 0.095956 0.062726 0.115968 0.192337 0.281449 0.462084
64 0.321073 0.184362 0.106973 0.074048 0.160839 0.343249 0.506209 0.879565

128 0.360311 0.208943 0.126713 0.085043 0.169821 0.577214 0.909951 1.63609

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

TABLE 11: Bitonic merge dataset-2 execution times

Size Seg. Threads
1 2 4 8 16 32 64 128

2ˆ20

2 0.530379 0.289815 0.146971 0.0808611 0.0527129 0.050909 0.0588059 0.0603189
4 1.02951 0.554924 0.286694 0.150069 0.119057 0.110455 0.117873 0.143954
8 1.50511 0.825544 0.418468 0.230514 0.112545 0.18067 0.20654 0.27376
16 1.9502 1.05654 0.556505 0.278181 0.147663 0.2823 0.342982 0.4728
32 2.37064 1.27426 0.660433 0.342218 0.216223 0.417626 0.580195 0.80421
64 2.76814 1.49416 0.769618 0.395358 0.230574 0.60105 0.933845 1.46111

128 3.14366 1.70042 0.871982 0.458781 0.255045 0.893153 1.70759 2.58598

2ˆ21

2 1.15381 0.603792 0.304433 0.170095 0.0910089 0.0942941 0.098412 0.107145
4 2.18719 1.17025 0.603255 0.306635 0.173421 0.186729 0.199561 0.221292
8 3.1899 1.71528 0.86673 0.448596 0.231169 0.314047 0.330841 0.386573
16 4.15617 2.22094 1.13973 0.577289 0.298726 0.454959 0.486711 0.616549
32 5.0254 2.70289 1.38443 0.716032 0.374323 0.661594 0.777752 1.04483
64 5.88323 3.16268 1.61913 0.8217 0.554818 0.939112 1.22862 1.64547

128 6.68731 3.58625 1.82695 0.950184 0.779068 1.36943 2.03626 3.63264

2ˆ22

2 2.38025 1.26801 0.646844 0.342684 0.181121 0.182265 0.230462 0.193364
4 4.59936 2.4872 1.26849 0.645177 0.344675 0.571556 0.371668 0.390661
8 6.7948 3.62067 1.82728 0.94369 0.512787 0.558698 0.581171 0.625736
16 8.76227 4.6981 2.36938 1.21369 0.644627 0.779506 0.823294 0.927595
32 10.6585 5.72882 2.91076 1.47908 0.796092 1.08838 1.17911 1.4109
64 12.4717 6.65782 3.39648 1.74106 0.926141 1.49168 1.75508 2.25288

128 14.2355 7.562 3.85073 1.98998 1.05188 2.15824 2.61576 3.48325

2ˆ23

2 4.98569 2.66911 1.36081 0.697759 0.374413 0.426991 0.380582 0.37384
4 9.81977 5.20972 2.63331 1.35812 0.693739 0.740388 0.732336 0.754243
8 14.268 7.60978 3.85321 1.94817 1.01829 1.08575 1.09483 1.15234
16 18.3728 9.889 5.02586 2.56305 1.35648 1.47371 1.514 1.61212
32 22.6014 11.9952 6.14353 3.13807 1.64302 1.95669 2.02646 2.23454
64 26.2131 14.1119 7.16279 3.73471 2.19366 2.52488 2.6904 3.25362

128 29.8904 15.9749 8.13616 4.14404 2.14276 3.36863 3.85911 4.94073

2ˆ24

2 10.3457 5.57976 2.86842 1.4576 0.781857 0.871748 0.807713 0.764204
4 20.3801 10.8867 5.58817 2.84928 1.4658 1.59912 1.54078 1.49633
8 30.1627 16.1116 8.17715 4.18914 2.14912 2.46351 2.27403 2.26676
16 39.2578 20.8601 10.6201 5.40377 2.77843 3.13641 3.0211 3.04683
32 47.4148 25.4232 12.8714 6.57466 3.37483 3.91321 3.86888 4.00653
64 55.7521 29.4641 15.0988 7.70675 3.96902 4.78684 4.86655 5.34117

128 63.0387 33.689 17.1417 8.76231 4.50987 6.09361 6.34223 7.34898

2ˆ25

2 21.8325 11.6461 5.96139 3.03649 1.58052 1.71782 1.65808 1.59025
4 43.0069 22.7023 11.6318 5.95512 3.08726 3.40704 3.24569 3.08817
8 62.5671 33.6928 17.1653 8.78648 4.62458 4.96235 4.68549 4.56001
16 81.5473 43.581 22.2394 11.3716 5.88324 6.35786 6.26329 6.06883
32 98.8698 53.256 27.0484 13.7618 7.13093 7.75572 7.63245 7.67448
64 116.686 61.9364 31.6271 16.1574 8.32849 9.35978 9.23292 9.52069

128 132.668 70.7723 36.1321 18.4582 9.54111 11.0335 11.2624 12.1516

2ˆ26

2 45.5754 24.3838 12.4156 6.31149 3.23358 3.4642 3.29328 3.22585
4 88.4876 47.7154 24.3177 12.3868 6.40725 6.80664 6.57861 6.35742
8 129.901 69.9481 35.6011 18.1892 9.48298 10.1185 9.7781 9.37132
16 170.838 90.6113 46.5311 23.7862 12.3843 13.2334 12.7904 12.3207
32 208.154 110.735 56.8244 28.9646 15.1 16.0723 15.6094 15.3171
64 245.15 130.345 66.2734 33.7909 18.8942 20.0685 19.3006 18.772

128 280.191 147.902 75.5019 38.5034 20.0534 22.1714 21.8548 22.2225

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

TABLE 12: GL-Merge dataset-1 execution times

Size Seg. Threads
1 2 4 8 16 32 64 128

2ˆ13

2 0.0116479 0.023541 0.017709 0.017446 0.895488 0.20291 0.163682 0.224494
4 0.0285029 0.0486791 0.0339499 0.0463872 0.447414 0.360091 0.40701 0.460085
8 0.052285 0.059947 0.048625 0.0456669 0.0759649 0.520523 0.612043 1.22744
16 0.0825241 0.0759611 0.0631709 0.0553598 0.383106 1.49558 0.722774 0.989299
32 0.131654 0.100581 0.084775 0.079036 0.532404 0.848781 0.992609 1.60817
64 0.178745 0.115139 0.105167 0.105633 0.883399 1.13928 1.47087 2.49524

128 0.227794 0.137308 0.131136 0.136863 0.835084 1.57041 2.32384 3.16011

2ˆ14

2 0.0678711 0.0625069 0.0437679 0.0315399 0.557248 0.353857 0.375603 0.336956
4 0.0925739 0.123754 0.0881791 0.0629611 0.281276 0.631735 0.697454 0.694736
8 0.120564 0.159482 0.115188 0.114036 0.922094 0.909339 1.09182 1.16544
16 0.146531 0.187845 0.146362 0.123602 0.301242 1.26815 1.29451 1.62787
32 0.231791 0.225364 0.171522 0.155619 0.430792 1.59894 1.78336 2.34696
64 0.322872 0.279249 0.205701 0.197386 0.440347 1.97403 2.38364 3.55752

128 0.429894 0.306991 0.264874 0.242735 1.48167 2.58049 3.27182 5.49015

2ˆ15

2 0.215268 0.25394 0.150071 0.095324 0.096662 0.653382 0.68402 0.587151
4 0.343804 0.313266 0.258704 0.165916 0.407001 1.21791 1.23755 1.29258
8 0.402808 0.369857 0.350981 0.260443 0.385174 1.71791 1.91056 1.92488
16 0.454102 0.522634 0.356999 0.261687 0.394964 2.42146 2.40717 2.85744
32 0.478917 0.647129 0.427664 0.363969 4.20934 3.5704 3.61953 4.69114
64 0.649176 0.716007 0.495788 0.399583 5.37294 5.62134 4.1525 7.44274

128 0.842961 0.659578 0.547299 0.435283 2.78745 6.03055 5.39717 7.47952

2ˆ16

2 0.853915 1.10566 1.0034 0.652439 0.809943 1.99576 1.43109 1.30309
4 1.2069 1.04231 1.3196 0.814233 0.575781 2.5022 2.49704 2.36701
8 1.58309 1.84311 1.50349 0.930292 1.20365 4.37739 3.7481 3.64966
16 1.65045 1.87609 1.56287 1.02404 1.9493 4.76394 5.26946 5.40294
32 1.8884 2.15 1.85351 1.20107 1.02514 6.07527 6.27328 7.1342
64 1.77461 2.11004 1.84567 1.1952 2.11504 7.19184 7.82537 8.60078

128 2.20972 2.24928 1.96266 1.37303 1.40513 8.75955 9.64546 11.3362

2ˆ17

2 4.86082 4.43371 5.22183 3.10343 1.77739 3.46354 3.19592 3.0359
4 6.21939 6.17272 7.25232 4.36912 2.79991 5.97192 5.87838 5.30618
8 7.65141 8.02727 7.79437 4.76759 3.13657 8.33931 8.50056 8.13996
16 7.26409 8.06726 8.32731 5.21259 4.98227 10.3355 10.6589 10.3065
32 8.12765 8.39038 8.29709 5.01117 4.3283 12.8568 13.0687 13.6048
64 8.23442 8.26955 8.5726 5.22282 4.3323 14.7554 15.59 16.4759

128 8.05692 9.46181 8.73264 5.40208 5.52466 21.9058 21.3764 21.3636

