
Lazy-Merge: A Novel Implementation
for Indexed ParallelK-Way In-Place Merging

Ahmad Salah, Kenli Li,Member, IEEE, and Keqin Li, Fellow, IEEE

Abstract—Merging sorted segments is a core topic of fundamental computer science that has many different applications, such as

n-body simulation. In this research, we propose Lazy-Merge, a novel implementation of sequential in-place k-way merging algorithms,

that can be utilized in their parallel counterparts. The implementation divides the k-way merging problem into t ordered and

independent smaller k-way merging tasks (partitions), but each merging task includes a set of scattered ranges to be merged by an

existing merging algorithm. The final merged list includes ranges with ordered elements, but the ranges themselves are not ordered.

Lazy-Merge utilizes a novel usage of indexes to access the entire set of merged elements in order. Its merging time complexity is

Oðk log ðn=kÞ þmergeðn=pÞÞ, where k, n, and p are the number of segments, the list size and the number of processors (partitions),

respectively. Here,mergeðn=pÞ represents the time needed to merge n=p elements by the used in-place merging algorithm. The time

complexity of accessing an element in the merged list is O log kð Þ, that time can be constant if k processors are used. The results of the

proposed work are compared with those of bitonic merge and the best time-space optimal algorithms on number of moves and

execution time. In comparison with the existing algorithms, significant speedup and reasonable reduction factor for number of moves

have been achieved.

Index Terms—In-place merging, k-way merging, lazy-merge, parallel algorithm, rosetta index

Ç

1 INTRODUCTION

MERGING sorted segments is a significant topic in
computer science. It is an imperative step in the well-

known merge-sort sorting algorithm [1], which plays a vital
role in abundant applications. Merging is also a basic step
in other applications, such as discovering proper interval
graphs [2], optimizing n-body simulations [3], managing
data cluster environments [4] and addressing Boolean
queries in information retrieval systems [5]. Throughout the
remainder of this paper, we refer to this problem as the
merging problem, and every mentioned segment in the fol-
lowing is a sorted one.

Generally, the merging algorithms have a set of three
properties, as detailed in [1]. The first property is stability;
an algorithm is stable if it maintains the relative order of
equal elements from the input segment through the sorted
output segment. The second property is that it is in-place;
the algorithm is in-place if it completes the merging using
only a constant or trivial amount of space plus the space of

the input segments; otherwise, it is out-of-place. The third
property is simplicity vs. complexity; the algorithm is sim-
ple if it is easy to understand and implement due to its sim-
ple structure; otherwise, it is complex.

k-way merge is the algorithm that considers an input of k
sorted segments. Its output is a single sorted list of all the
elements. Regarding in-place merging, most of the literature
addresses the sequential 2-way merging problem. However,
less research addresses the k-way in-place merging problem
via sequential [6] and parallel implementations [7], [8].

Intuitively, a recursive linear time and sequential 2-way
in-place merging algorithm [9] can accomplish k-way merg-
ing in O log kð Þ � nð Þ time and constant extra space, where
log kð Þ presents the number of phases to traverse a tree from
the leaves to the root. The parallelism level of this approach
is limited as the algorithm moves towards the highest level,
the root; it uses a single thread to merge the final two seg-
ments at the last level, i.e., the parallelism level is halved
each time the algorithm traverses a level higher towards the
root. These recursive calls form a bottom-up tree traversal,
as we start with k segments, the leaves, and end with a sin-
gle merged segment, the root.

Throughout the remainder of this paper, we refer to this
recursive 2-way merging process as the binary merging tree
because the k segments are merged by incremental 2-way
merging tasks, as illustrated in Fig. 1 upper part.

A better approach is to use a binary merging tree and a
parallel 2-way in-place merging algorithm [7], [8]. Thus, the
parallelism level is not affected during the upward tra-
versal. For example, merging k segments using the binary
merging treeand the algorithm proposed in [7] can be com-
pleted in O log kð Þ � n=pþ log nð Þð Þð Þ, for p � log nð Þ, where
k, n, and p are the numbers of segments, elements and pro-
cessors, respectively. A binary merging tree via a merging
network [10] is a similar attempt, but it is limited to segment

� A. Salah is with the College of Information Science and Engineering,
Hunan University, Changsha, Hunan, China, the National Supercomput-
ing Center in Changsha, Hunan, China, and the Computer Science
Department, College of Computers and Informatics, Zagazig University,
Zagazig, Egypt. E-mail: ahmad@hnu.edu.cn.

� K. Li is with the College of Information Science and Engineering, Hunan
University, Changsha, Hunan, China, and the National Supercomputing
Center in Changsha, Hunan, China. E-mail: lkl@hnu.edu.cn.

� K. Li is with the College of Information Science and Engineering, Hunan
University, Changsha, Hunan, China, the National Supercomputing
Center in Changsha, Hunan, China, and the Department of Computer
Science, State University of New York, New Paltz, NY 12561.
E-mail: lik@newpaltz.edu.

Manuscript received 25 Apr. 2014; revised 21 Aug. 2015; accepted 23 Aug.
2015. Date of publication 1 Sept. 2015; date of current version 15 June 2016.
Recommended for acceptance by J. L. Tr€aff.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2015.2475763

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 7, JULY 2016 2049

1045-9219� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:

sizes that are powers of two. The time complexity of [10], as
an example of a merging network, to merge k segments is
O log kð Þ � n=pð Þ � log nð Þð Þ.

The parallel in-place merging is a much less addressed
problem due to its impracticality to maintain the in-place
constraint on networks of computational nodes. The litera-
ture includes only a limited number of research studies
addressing parallel in-place merging.

For the sake of performance enhancement and cost cut-
ting, multicore processors with shared memory architec-
tures have become ubiquitous on computing devices, e.g.,
GPUs and SMP. Considering these new architectures, pro-
viding a practical and efficient algorithm for the merging
problem on these architectures becomes increasingly impor-
tant, particularly in the case of limited memory or shared
memory. In general, there is a demand for space- and time-
efficient parallel in-place algorithms.

In this paper, the research is motivated by the fact that
the conflict of in-place and parallel algorithms has faded
as new parallel architectures have emerged, i.e., multicore
processors with shared memory. Herein, we propose
Lazy-Merge, a novel implementation of sequential in-place
k-way merging algorithms, that can be utilized in their
parallel counterparts. Lazy-Merge utilizes indexing to
merge non-contiguous segments to minimize the number
of moves. The name “Lazy-Merge” comes from the fact
that the implementation does not complete the merging
process to the end. The final merged segment of the k input
segments is not fully ordered, which can be accessed as a
fully ordered list with the assist of an index of indirect
pointer array. Lazy-Merge reshapes the task of k-way
merging into t smaller k-way merging tasks. Each of the t
tasks is addressed independently, and all the elements of a
certain task are less than all of the elements of the follow-
ing tasks and greater than all of the elements of the previ-
ous tasks. Lazy-Merge implementation is advantageous
over the standard merging approach as shown in Section 1
of the supplemental file, available in the online supple-
mental material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2015.2475763.

In the proposed work, we combine indexing with nor-
mal merging to accelerate the in-place merging process.
Though this approach has a higher level of parallelism, it

comes at the cost of increased access time of the final
merged segment. The time complexity is, in the worst
case, O log kð Þ sequentially and constant time in parallel,
where k is the number of input segments.

The rest of the paper is organized as follows. In
Section 2, we provide a modern survey of the previous
work for both sequential and parallel merging algorithms.
Section 3 explains the proposed parallel implementation
components, accompanied by their complexity analysis.
The experimental setup and performance evaluation
of the proposed implementation are presented and dis-
cussed in Section 4. Finally, Section 5 concludes with the
contributions of this work.

2 RELATED WORK

This discussion of algorithms tackling the merging problem
is based on the three properties and lower bounds men-
tioned in Section 1. In the following, we classify the discus-
sion of these algorithms based on the utilized approach.
Throughout the text, we assume that n and m are the sizes
of the two segments to be merged, m � n, and that p is the
number of processors.

2.1 Naive Approach

The basic sequential algorithm for merging ordered seg-
ments is stable, simple, but not-in-place. In case the input
are two segments of n and m lengths, the output is placed
in a new segment of length n þ m. This method’s time
and space complexity are both linear. Thus, it is space
inefficient for merging huge segments. The maximum
numbers of comparisons and moves are nþm� 1ð Þ and
nþmð Þ, respectively.
The intuitive parallel approach of the basic method has

O n=pð Þ � log nð Þð Þ operations and O nþmð Þ space complex-
ity. The intuitive solution realizes the merging problem
input segments as a set of blocks each of length n=p; for
each element of these blocks a binary search, that costs
O log nð Þð Þ, is performed in the two segments to find its rank,
and finally forward to its corresponding location in the out-
put list, which has a size of nþm elements.

2.2 Internal Buffer Approach

2.2.1 Sequential Methods

To overcome the space inefficiency of the basic in-place
merging algorithms, the first attempt was proposed by
Kronrod in [11] using a predefined constant extra memory
space. Kronrod coined and used the ideas of internal
buffer and block rearrangement which yielded a linear
time complexity, unstable, in-place, and complex algo-
rithm. It is based on dividing segments of lengths n into k

blocks of length almost k, where k equals
ffiffiffi
n

p
. The internal

buffer concept is based on using some blocks as a work-
place to merge the input segments. Several variations were
presented to improve Kronrod’s algorithm. One of these
algorithms is the one presented by Salowe and Steiger
[12]. It is impractical due to its complex structure and
non-linear time complexity, albeit it is stable. Another
algorithm was presented by Tridgell and Brent [13]. They
proposed an unstable, in-place and simpler algorithm.

Fig. 1. Binary merging tree versus Lazy-Merge.

2050 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 7, JULY 2016

http://doi.ieeecomputersociety.org/10.1109/TPDS.2015.2475763
http://doi.ieeecomputersociety.org/10.1109/TPDS.2015.2475763

Huang and Langston proposed a stable, in-place, and sim-
ple algorithm [9]. They reported 1:5nþ oðnÞ as the maxi-
mum number of comparisons and 16:5nþ oðnÞ as the
maximum number of assignments.

Mannila and Ukkonen relaxed the block size of
Kronrod’s algorithm to be of variable-length in their pro-
posed algorithm [14]. This algorithm is unstable, in-place,
complex, and with optimal number of comparisons. As one
advantage of this algorithm, it takes benefit of the sortedness
of the original segments to improve the execution time. If
the entire elements are less than or equal to the first element
in the second segment, e.g., the two segments need to be
concatenated, then the algorithm runs in a sublinear time
equal to Oð ffiffiffi

n
p Þ. As a variant based on [14], Symvonis pro-

duced a stable, in-place and simple algorithm [15]. This
algorithm is linear in time, but non-optimal regarding the
number of comparisons.

A further step to enhance [14] was accomplished by Gef-
fert et al. [16], then enhanced by Chen [17], [18]. Geffert
et al. proposed a stable, in-place, and complex algorithm
with 5nþ 12mþ oðmÞ maximum number of assignments,
and mðtþ 1Þ þ n=2t þ oðmÞ as the maximum number of

comparisons, where t ¼ log ðnmÞ
� �

. Chen [17] simplified the

algorithm of Geffert et al. but increased the constant of pro-
portionality to be 6nþ 7mþ oðnþmÞ maximum number of
assignments and mðtþ 1Þ þ n=2t þ oðnþmÞ as the maxi-
mum number of comparisons, using the same assumptions
for t, n, and m as Geffert et al. algorithm. In [18] Chen
reported the implementation and results of his simplified
algorithm; these results indicate a poor performance of this
approach.

To the best knowledge of the authors, the most practi-
cal algorithms based on the internal buffer approach was
introduced by Kim and Kutzner in [19] and [20]. The for-
mer algorithm is stable, in-place, and complex; it also per-
forms optimal number of comparisons and assignments,
but it is not optimal regarding the memory space. The lat-
ter algorithm has the same properties of the former, but
with simpler structure that is reflected in a better perfor-
mance regarding the execution time as the experimental
results shown in [20]. The former algorithm is based
on [14] and the internal buffer approach; meanwhile the
latter uses the ratio value of the input segment lengths to
simplify the algorithm.

2.2.2 Parallel Methods

Guan and Langston extended the sequential algorithm pro-
posed in [9] and proposed the first time-space optimal par-
allel in-place algorithm in [7]. They defined the time-space
optimality as the ability of the algorithm to achieve optimal
speedup and used a constant amount of extra space per pro-
cessor, regardless of the number of processors. The pro-
posed algorithm has time complexity of O n

p þ log nð Þ
� �

and
fixed space complexity per processor , accumulating to O pð Þ
for p processors, where p � n

logn. They also explained how to

modify the proposed algorithm to make it stable, which
makes the algorithm more complicated and increases the
constants of proportionality. Throughout the remainder of
this paper, we refer to this algorithm as GL-Merge algo-
rithm, for Guan and Langston.

Katajainen et al. proposed the second time-space optimal
parallel algorithm in [8]. The proposed algorithm is in-place
and complex, and has performance of Oðnp þ log nð ÞÞ on
EREW PRAM and Oðnp þ log ðlog ðmÞÞÞ on CREW PRAM,

using p processors.

2.3 Splitting Approach

Dudzinski and Dydek’s algorithm, introduced in [21], is the
first practical algorithm not based on the internal buffer
approach. They used the divide and conquer and block
exchanging techniques to merge the input segments. This
algorithm is the seed for the merge_without_buffer function
included in the C++ Standard Template Libraries (STL), as
reported in [19]. Dudzinski and Dydek’s algorithm is stable,
in-place, and simple. Its number of comparisons is O m�ð
log n=mþ 1ð ÞÞ, and the number of assignments is bounded
by O ðmþ nÞ � log mð Þð Þ in the worst case, and O log mð Þð Þ
for the extra space.

Kim and Kutzner [22] introduced a stable, in-place and
simple algorithm. It performs optimally regarding the maxi-
mum number of comparisons, but it is not optimal regard-
ing the number of assignments. Another advantage of this
algorithm is that, similar to [14], it can reduce the bound of
the maximum number of comparisons to O log mþ nð Þð Þ.
The algorithm is based on the rotation and the principle of
symmetric comparisons. Kim and Kutzner [23] introduced
a similar algorithm based on the principle of symmetric
splits in addition to rotation instead of symmetric compari-
sons. It is a stable, in-place, and simple algorithm. It per-
forms optimally regarding the number of comparisons and
is bounded by O ðmþ nÞ � log mð Þð Þ regarding the number
of assignments. Despite its higher time complexity com-
pared with the former algorithm, the reported execution
time of [23] is less than [22]; the authors attributed this con-
flict to the simpler structure of [23].

2.4 Shuffling Approach

Ellis and Markov proposed a new approach to tackle the
2-way merging problem. They realized the problem as a
perfect shuffle permutation. In [24], Ellis and Markov pro-
posed a stable, in-place, and simple algorithm that per-
forms with time complexity O n� log log mð Þð Þð Þ on
average and performs linearly for balanced inputs. Dal-
kilic et al. proposed another shuffle-based algorithm that
is stable, in-place, and simple. In that work, the authors
did not provide any analysis regarding the time complex-
ity and the lower bounds, but the experimental results
exhibited a better execution time compared with that of
the algorithm proposed in [24].

2.5 Merging Network

A merging network is a mathematical model of a net-
work. This network consists of wires and comparator
modules. Each comparator can access two elements and
perform the merging, through a binary comparator, by
sending the element with the smaller value to one output
wire and the larger to the other. It performs the merging,
or sorting, task in-place.

Bitonic merge is a merging network that is used in
merging bitonic sequences. A sequence is bitonic if it

SALAH ETAL.: LAZY-MERGE: A NOVEL IMPLEMENTATION FOR INDEXED PARALLELK-WAY IN-PLACE MERGING 2051

monotonically increases, and then monotonically decreases.
In other words, it has two sub-sequences each of opposite
order direction. This network was proposed by Batcher
in [10]. The main idea is to use the comparison tree model
of parallel computation. Given a bitonic sequence, the
two sub-sequences can be merged in r levels, where the

sequence length equals 2r. In each level, there are 2r�1 com-

parisons and 2r�1 moves, in the worst case.
Though the model is designed for parallel environments,

its time complexity is as high as O n=pð Þlog nð Þð Þ when the
number of processors is less than the size of the input lists.
Thus, the time complexity is higher than the linear time
complexity reported in [7], [8]; however, merging networks
require a level-wise synchronization, rather than the ele-
ment-wise synchronization required by [7]. The bitonic
merge network is restricted to lists whose sizes are powers
of two. Herein, level-wise synchronization means that the
processors are synchronized only at the beginning of each
level; while, element-wise synchronization means that the
processors are synchronized after each data movement, i.e.,
elements swamping.

2.6 Summary

To summarize, the literature has very limited contributions
on the parallel 2-way in-place merging task, possibly
because it is less advantageous over a network of nodes.
However, the spread of multicore CPUs, GPUs and SIMD
architectures increases the need for such algorithms. More-
over, the ease of using recursive 2-way merging to merge k
lists may allow parallel k-way merging to be seen in a less
positive light.

To the best of the authors’ knowledge, the literature
contains two parallel 2-way in-place merging algorithms,
presented in [7] and [8], in addition to the bitonic
merge [10].

3 LAZY-MERGE: THE PROPOSED IMPLEMENTATION

The proposed implementation consists of three parts. The
first part describes the process and purpose of the input seg-
ments partitioning; this part redefines the original k-way
merge into exact size t smaller k-way merge, where t is the
number of partitions. The second part describes the process
of merging non-contiguous segments. The final part is an
algorithm to access the non-fully merged segment in the
correct order.

In the following discussion, we need to differentiate two
terms, segment and partition. A segment presents a list of
contiguous elements within a certain range, where the ini-
tial input for the k-way merging is k ordered segments.
A partition is presented by a set of sub-segments; each seg-
ment contributes at most one sub-segment. Thus, the parti-
tion elements are in ranges, i.e., sub-segments, and these
ranges are scattered, i.e., non-contiguous, over the k seg-
ments. In the lower part of Fig. 1, we can observe that we
have a six-way merging task. Thus, the number of seg-
ments is 6; each segment has three sub-segments in differ-
ent colors. These colors present the partitions; each
partition has a different color, i.e., red, white and black.
The elements of each partition are divided over scatted
ranges, i.e., sub-segments.

3.1 Overview

Lazy-Merge proposes a novel implementation for the
sequential in-place merging of k ordered lists. The imple-
mentation is based on virtually merging non-contiguous
segments as though they are physically contiguous. This in-
place merging task can be accomplished using an indirect
pointer array to avoid complex data movement required to
make the merge segments contiguous. Lazy-Merge can be
used to speed up range-partitioning schemes for parallel in-
place merging.

Lazy-Merge splits the ordinary binary merging tree, i.e.,
it divides the binary merging tree into t equal-sized smaller
binary merging trees to reduce the number of moves. The t
equal-sized smaller binary merging trees can use a known
in-place algorithm, whether sequential or parallel, to
achieve the k-way merging task, excluding bitonic merge.
In Lazy-Merge, the partition contains sub-segments of arbi-
trary sizes when the total number of these sub-segments is
known. Thus, bitonic merge cannot be used in Lazy-Merge
due to the arbitrary size of its sub-segments.

Fig. 1 shows the merging sequence of the binary merging
tree of in-place merging at the upper part, and depicts the
Lazy-Merge merging sequence at the lower part.

In the binary merging tree with the sequential 2-way
merging algorithm, the number of parallel merging tasks is
halved after each level traversal. At the bottom level of the
tree, there are three independent merging tasks, and at the
top level, the root, there is only one merging task. In con-
trast, the Lazy-Merge algorithm divides each segment into
three partitions. Thus, in the bottom level, the number of
independent merging tasks is 9, and the number of tasks at
the top level is three. As the number of partitions increases,
the number of independent merges of the binary merging
trees increases. Fig. 1 shows the merging path for only the
second partition, which contains six sub-segments. It is
noteworthy that the partitions are of equal size and that
each partition merges the sub-segment on-distance in its
location (by on-distance we mean that Lazy-Merge does not
swap the sub-segments in such a way that each partition’s
sub-segments become contiguous).

3.2 Part I: Load Balanced Partitioning

The first step to realize the initial k-way merging problem
as t smaller k-way merging tasks is the partitioning. The
partitions should be of equal sizes. In Lazy-Merge, this
task is accomplished by the algorithm proposed in [25].
The algorithm selects the mth smallest element of a set of
k ordered segments which is a variation of the one pro-
posed in [26]. This algorithm presents a partition as a vec-
tor of indexes; each component of this vector shows the
index of where this partition ends for each segment.
Though each partition maintains only the ending indexes
of the k segments, the starting indexes can be obtained
from the previous partition. Thus, the maximum size of
this vector, which represents the partition, is k; in the
case where the partition elements are spread over the k
segments, and the minimum size is 1, the entire set of ele-
ments exist in one segment.

To form one partition out of the k segments, the time com-
plexity is O k log f n=kð Þð Þð Þ, where f , 0 < f � 1, is a fraction
that determines the length of a partition, and n is the sum of

2052 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 7, JULY 2016

the lengths of the input segments. For example, when divid-
ing three segments with a total length of n into 4 partitions,
the first partition should include the smallest fnd e elements,
where f ¼ 0:25. Similarly, the second partition should
include the smallest 0:5nd e elements.

This algorithm is implemented as part of [27] MCSTL, a
multicore version of STL. In this vein, another algorithm is
proposed [28] that has almost the same time complexity.
The algorithms’ performance is almost the same, but we use
the latter for its simple structure. The intuitive consequen-
tial step is to perform a block rearrangement to make the
sub-segments of the partition contiguous, but Lazy-Merge
starts the merging process as a non-contiguous sub-
segment; thus, it is called Lazy-Merge.

Definition 1. Let set L ¼ fL1; L2; . . . ; Lkg represent the k input
segments, where Li is a sorted segment. Let set P ¼ fP1;
P2; . . . ; Ptg represent the t partitions, and Pi ¼ fL1ðui;viÞ;
L2ðui;viÞ; . . . ; Lkðui;viÞg, where Ljðui;viÞ represents a sub-segment

of segment j, this sub-segment belongs to partition i, and this
sub-segment’s starting and ending indexes are ui and vi,
respectively.

From Definition 1, we can conclude that all elements of Pi

are less than all elements of Pðiþ1Þ. Lazy-Merge assumes that

each Pi is an independent merging task, where L1ðui;viÞ;
L2ðui;viÞ; ::::; Lkðui;viÞ are non-contiguous sub-segments of the

k input segments.

3.2.1 Analysis of Number of Moves in The Binary

Merging Tree

Without loss of generality, we consider the k segments to be
of exact size. In the following, we use the term number of
moves to represent the number of swaps, i.e., exchanges,
because the in-place merging algorithm’s data movement is
performed as a sequence of swaps. Additionally, for k seg-
ments, the binary merging tree consists of dlog ke levels. At
the top of the tree, level 1, there is a single merge of two seg-
ments each with size n=2, and at the bottom of the tree, i.e.,
level dlog ke, there are bk=2c pair merges. Thus, the dlog ke
levels have k� 1 pair merges. Intuitively, as the number of
segments k increases, the number of moves increases. Lazy-
Merge traverses a complete level of the binary merging tree
before starting the next level, level-by-level approach.

3.3 Part II: Indexing Non-Contiguous Sub-Segments

Generally, for merging algorithms, it is required to provide
four inputs, the starting and ending indexes of the first and
second segments. We denote these four variables in this dis-
cussion as start1, last1, start2, and last2, respectively. Of
note, if the two segments are contiguous, then the value of
start2 equals that of last1þ 1. Definition 1 outlines that the
merging task includes non-contiguous sub-segments. Thus,
the direct usage of any in-place merging algorithm is incor-
rect because all previous in-place merging algorithms
assume contiguous segments to be merged, as discussed in
Section 2.

Definition 2. Let Pi ¼ fL1ðui;viÞ; L2ðui;viÞ; . . . ; Lkðui;viÞg, repre-
sent a partition’s start and end indexes of the sub-segments
composing this partition. Let Set Vi ¼ fð0; sizeðL1ðui;uiÞÞÞ;

ðP1
r¼1 sizeðLrðui;uiÞÞ þ 1; ðP2

r¼1 sizeðLrðui;uiÞÞÞ; ð
P2

r¼1 size

ðLrðui;uiÞÞ þ 1; ðP3
r¼1 sizeðLrðui;uiÞÞÞ; ::::; ð

Pk�1
r¼1 size ðLrðui;uiÞÞ

þ1; ðPk
r¼1 sizeðLrðui;uiÞÞÞg represent the virtual contiguous

indexes for the sub-segments of partition Pi, where the first
index is zero, and size indicates the sub-segment size.

The proposed solution for this conflict is to maintain
indexes for each partition, as shown in Definition 2. The
approach is to define a set of virtual contiguous ranges.
Thus, each sub-segment range belonging to Pi has a corre-
sponding virtual range in set Vi, where set Vi contains
contiguous ranges that start from zero. Fig. 2 contrives a
simple example to illustrate the idea. The figure contains
two segments in different colors; each is divided into two
partitions. Fig. 2 shows the segments before merging, the
segments after merging and illustrates both the real and
virtual indexes in look-up table form. This auxiliary look-
up table is used to access the not fully ordered final
mergered list as a fully ordered list. In the following, we
refer to this look-up table as rosetta index. In Fig. 2, Pi is
represented by the “Real Index” column, and Vi is repre-
sented by the “Virtual Index” column.

3.3.1 The Algorithm

Algorithm 1 uses the following variables:

1) An integer n; it is the size of the k input lists.
2) A look-up table similar to the last table of Fig. 2.

VðpartitionIDÞ and PðpartitionIDÞ are retrieved from this

table.
3) An integer virtualIndex; it represents the virtual

index that should be converted to the real one.
4) An integer t; it represents the number of partitions

used by Lazy-Merge.
To convert a virtual index into a real one, the algorithm

should address two pieces of information, the partition
number and the sub-segment number of this partition, Pi,
from Definitions 1 and 2.

The calculation of the partition number is straightfor-
ward. Without loss of generality, the partition number of
any virtual index can be calculated by rounding down the
result of dividing this index by the partition size, because
the partitions have equal sizes. For example, as in Fig. 2, to
obtain the partition of virtual index 7, we can calculate

Fig. 2. Real and virtual indexes.

SALAH ETAL.: LAZY-MERGE: A NOVEL IMPLEMENTATION FOR INDEXED PARALLELK-WAY IN-PLACE MERGING 2053

b7=4c, where 4 is the partition size, to yield 1 for partition
number 1, where the partition numbering starts from zero.

Consequently, the partition virtual index vector Vi

should be searched to locate the correct virtual range.
Because vector Vi has at most k ordered ranges, refer to the
third column as the “virtual index” in Fig. 2, then, the search
can be performed by a binary search algorithm. Finally, the
real index can be found by accessing the corresponding
range in Pi using the look-up table.

3.3.2 Complexity Analysis

From Algorithm 1, Step 1 is a constant time operation. Step 2
is a binary search task; the size of the array to be searched is
at most k, where k is the number of segments. Thus, this step
is of O log kð Þð Þ time complexity. Additionally, Step 3 is of
constant time because it is an assignment step. The steps of
Algorithm 1 have cumulative time complexity ofO log kð Þð Þ.

Algorithm 1. convertVirtualIndexToReal

int convertVirtualIndexToReal(n, virtualIndex)
(1) partitionID = virtualIndex=bn=tc;
(2) subsegmentID = binarySearch(V(partitionID), virtualIndex)
(3) realIndex = (virtualIndex - V(partitionID)[subsegmentID].

start) + P(partitionID)[subsegmentID].start
(4) return realIndex

Theoretically, Algorithm 1’s time complexity can be
reduced to constant time; if we have k ranges in set Vi and k
available processors, then the binary search can be replaced
by assigning one range of Vi to one processor and checking
the entire ranges at once. Then, only one processor can find
the correct range because the searched virtual index is
located only in one virtual range. Under this assumption,
Algorithm 1 can be completed in constant time. Practically,
merging the segments is done once, but accessing the
merged segments is a frequent event. Thus, using the paral-
lel binary search is accepted to merge segments; meanwhile,
for accessing elements of the merged segment, parallel
binary search should be used when the number of cores/
processors is larger than the number of segments, i.e., when
using GPU devices.

On the other hand, accessing m successive elements of
the merged list resulted from Lazy-Merge requires time
complexity of O mð Þ, which exactly equals the standard
merging format. In order to access m successive elements,
Lazy-Merge needs to locate the partition, and then the range
of the first element of the m elements, and the partition and
range of the last element of the m elements. Then, the
remainingm� 2 elements are located in the ranges between
these starting and ending ranges. Thus, the cost of accessing
m successive elements includes two elements each with
access time of cost O log kð Þ, and accessing the remaining
m� 2 elements at cost of O 1ð Þ for each element. That sums
up to O mð Þ which is essentially the same as the ordinary
merging algorithms. A detailed example is presented as the
last example of Section 4.3.1.

3.4 Part III: Merging Non-Contiguous Segments

The final part of Lazy-Merge is to merge non-contiguous
segments, which are actually sub-segments. Referring to
Fig. 2, the used in-place merging algorithm can work on the

contiguous virtual ranges from column 3 as input. The only
required modification is to replace any access of the list ele-
ments in the algorithm with a call for a routine that converts
the virtual index to the real one; this routine should be the
implementation of Algorithm 1.

To further clarify this idea, a modification of a sequential
in-place merging algorithm is presented in Algorithm 2. We
select the simplest merging algorithm, SplitMerge proposed
in [23]. Algorithm 2 shows the modified sequential version
of SplitMerge. Comparing the original and the modified
algorithms, one can notice that line 6 is the only modified
line because this line accesses the array a;thus, instead of
using the simple comparison a½m� � a½m0�, we modify the
two indexes m and m0 by mapping the virtual index, which
is contiguous, to the real index.

Algorithm 2.Modified SplitMerge

SplitMerge(a, f1, f2, last)
u is in a½f1 : f2� distance�, v is in a½f2 : last� 1�
(1) If f1 � f2 or f2 � last Then Return
(2) l ¼ f1; r ¼ f2; l0 ¼ f2; r0 ¼ last
(3) Repeat
(4) If l < r Thenm ¼ ðlþ rÞ=2
(5) If l0 < r0 Thenm0 ¼ ðlþ rÞ=2
(6) If a½convertVirtualIndexToRealðm; a:sizeÞ� �

a½ðconvertVirtualIndexToRealðm0; a:sizeÞ�
Then l ¼ mþ 1; r0 ¼ m0

(7) Else l0 ¼ m0 þ 1; r ¼ m
(8) Until l � r and l0 � r0

(9) rotate(a, r, f2, l0)
(10) SplitMerge(a, f1; r; rþ r0 � f2)
(11) SplitMerge(a, lþ l0 � f2; l0; last)

A note on stability. Lazy-Merge’s stability depends on the
utilized partitioning algorithm and an in-place merging
algorithm. The current Lazy-Merge implementation is
unstable due to the partitioning algorithm. The methods
proposed in [25] and [28] establish partitions without con-
sidering the stability property. In the case where there is
another partitioning algorithm that establishes partitions
that maintain stability, Lazy-Merge is able to retain the sta-
bility property of the used merging algorithm.

3.5 Complexity Analysis

In addition to the number of input segments and the num-
ber of partitions, Lazy-Merge includes the number of used
threads/processors p. Thus, the analysis of Lazy-Merge
includes k input segments, t partitions representing t inde-
pendent merging tasks, and p threads. Lazy-Merge consists
of two steps, partitioning the k input segments and merging
the t partitions.

To form one partition of the k segments, the time com-
plexity is O k log f n=kð Þð Þð Þ, where f , 0 < f � 1, is a fraction
that determines the length of a partition and n is the sum of
the lengths of the input segments. Lazy-Merge partitions

the input segments with f ¼ 1
t ;

2
t ; . . . ;

t�1
t ; tt

� �
. Thus, the par-

titioning time of f ¼ 1 has the longest time, then the parti-
tioning time complexity of O k log n=kð Þð Þ. Moreover, each
partition has to maintain a vector of at most k components
(refer to Section 3.2), and thus the total space complexity for
t partitions is O tkð Þ. Of note, when f equals 1, this means

2054 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 7, JULY 2016

there is one partition which containing k ranges. Each range
of this partition represents an entire segment. Thus, while f
equals 1 means there is no need to run the partitioning algo-
rithm, but if the algorithm runs for f ¼ 1, then it consumes
the longest time.

In the second step, Lazy-Merge merges each partition,
independently, using the partition information provided in
the first step. The merging step’s time and space complexi-
ties depend on the used in-place merging algorithm. Thus,
if we consider the time complexity of the in-place merging
algorithm to be merge nð Þ, then Lazy-Merge’s time complex-
ity should be Oððt=pÞmergeðn=tÞÞ. The term t=pð Þ presents
the number of partitions that will be handled by a single
thread because Lazy-Merge divides the main merging task
into t independent merging tasks, which can be addressed
in parallel using p processors/threads. The used in-place
merging algorithm should have a constant extra memory
usage, so this latter step, in-place merging, has nothing to
add to the space complexity. For example, the algorithm
proposed in [7] has O nð Þ time complexity, and its space
complexity is O 1ð Þ. Using Lazy-Merge, the time complexity
becomes O ðt=pÞ n=tþ log n=tð Þð Þð Þ, and the space complexity
becomes O tkð Þ for rosetta index. Intuitively, each thread
should maintain O t=pð Þkð Þ extra memory or O kð Þ extra
memory, when t ¼ p.

Lazy-Merge’s rosetta index is constructed for each parti-
tion, thread. Each partition has up to 2k ranges; k virtual
ranges, and their corresponding k real ranges. Thus, the
exact size of the rosetta index is 4 � k � typesize � t bytes,
where 4 is for the boundaries of the virtual and real ranges
of each sub-segment, the typesize represents the number of
bytes used for the number describes a single boundary
value, and t represents the number of partitions, threads.

The bitonic merge and the GL-Merge use an auxiliary list
of size p for the swapping purpose; each processor/threads
use O 1ð Þ extra space. The algorithm is in-place when the

used extra space is no more than O log 2 nð Þ	

bits [1] (Chap-

ter 5, Section 5, Exercise 3), and as proposed in [23] and [24].

Thus, Lazy-Merge is in-place as k � log 2 nð Þ per processor,
where n is the sum of the lengths of the k input segments
and t ¼ p.

Finally, because the merged elements are not in the
standard format, accessing an element requires a binary
search within the corresponding partition’s k ranges. Thus,
the access time of an element of the final merged list is
O log kð Þð Þ; that time can be constant if k processors/threads
are used, as detailed in Section 3.3.2. In Section 1 of the
supplemental file, available in the online supplemental
material, we explained an application that gains a better
execution time as it benefits from this non-standard format
of Lazy-Merge’s output.

To summarize, Lazy-Merge’s time complexity is
O k log n=kð ÞÞ þ t=pð Þmerge n=tð Þð Þ, and its space complexity
is O tkð Þ. Without loss of generality, if we consider the num-
ber of threads to be equal to the number of partitions, t ¼ p,
then Lazy-Merge’s time and space complexities are
O k log n=kð ÞÞ þmerge n=pð Þð Þ and O pkð Þ, respectively. Each
thread maintains a vector of ranges of size O kð Þ, so the
access time of the final merged list is O log kð Þð Þ using one
processor, that time can be constant if k processors/threads
are used.

In the following, for the bitonic merge and the GL-Merge
algorithms, we will use the term thread. For Lazy-Merge,
we will use the terms thread and partition interchangeably,
because we assume that the number of partitions equals the
number of threads.

4 PERFORMANCE EVALUATION

4.1 Experimental Setup

The experiments are performed on a computer with two 2.3
GHz AMD Opteron 6134 processors, each containing 8
cores, and 8 GB of RAM. The OS utilized is 64-bit Linux. All
algorithms are written in the C++ programming language.
We used the standard OpenMP threads library [29].

We proposed using two different datasets of normally
distributed integer numbers. Because the bitonic merge net-
work is restricted to lists whose sizes are powers of two, the
input list total size should be power of two. The first dataset
list sizes are in the tens of thousands. It has five input lists;
they vary from 213 to 217, and we call it dataset-1. The other
dataset list sizes are in millions. It has has seven input lists;
they vary from 220 to 226, and we call it dataset-2.

For each dataset, each list is tested with different k val-
ues, where k ¼ 2r and 1 � r � 7. Each variation of each list
is tested using a different number of partitions t, where
t ¼ 2u and 0 � u � 7; for the entire suite of tests, we sup-
posed that the number of partitions, t, was equal to the
number of threads, p. Thus, each list belonging to the two
datasets will be tested 7� 8 times, where 7 and 8 represent
the number of segments and threads, respectively.

4.2 Selecting the Merging Algorithm

Section 2 shows that there are four approaches for sequen-
tial in-place merging. To test the proposed algorithm, we
need to select a sequential algorithm for the 2-way merging.
We excluded the internal buffer-based approach due to its
high number of moves, as discussed in Section 2. Addition-
ally, we excluded the bitonic merge due to the powers of 2
size restriction and the fact that Lazy-Merge divides the seg-
ments into arbitrary sized sub-segments. We compared the
remaining two approaches to select the one with better per-
formance. We have compared the ShuffleMerge algorithm in
[24] as a shuffle-based algorithm and the SplitMerge algo-
rithm in [23] as a split-based algorithm, which is considered
the fastest in-place merging algorithm, as reported in [23].

To enhance the execution time of the ShuffleMerge algo-
rithm, we replaced the original shuffling algorithm with a
new faster shuffling algorithm that is proposed in [30]. The
comparison experiments are presented in Section 2 of the
supplemental file, available online. The experimental results
show that the SplitMerge algorithm has an overall better per-
formance than ShuffleMerge, especially for large list sizes
and partially interlaced lists.

4.3 Implementation Details

To evaluate the proposed algorithm, we used SplitMerge
[23] as a sequential merging routine of Lazy-Merge. Addi-
tionally, we selected the bitonic merge and the GL-Merge
algorithm [7], because the former is representative of merg-
ing networks and the latter is the most recent parallel space-
time optimal in-place merging algorithm. We considered

SALAH ETAL.: LAZY-MERGE: A NOVEL IMPLEMENTATION FOR INDEXED PARALLELK-WAY IN-PLACE MERGING 2055

the size restriction of the bitonic merge for the entire utilized
datasets. In the GL-Merge algorithm, we used SplitMerge as
the merging routine instead of [9], which is used in the
original GL-Merge algorithm. We did so to make the merg-
ing routines uniform for both the Lazy-Merge and the
GL-Merge algorithms. In the following, we discuss the
implementation details of the algorithms under comparison.

4.3.1 Lazy-Merge

For Lazy-Merge, the algorithm assigns a single core/thread
to merge the ranges of one partition, t ¼ p. Thus, each
thread performs a 2-way merging binary tree for the non-
contiguous sub-segments of the corresponding partition. It
handles different smaller binary merging trees.

Using a binary merging tree with 2-way in-place merg-
ing, the results in the final merged list can be accessed in
constant time because the final merged list is in the standard
format. In contrast, Lazy-Merge handles non-contiguous
segments; it has a higher cache miss ratio because the binary
merging tree accesses contiguous elements. A larger CPU
cache results in better Lazy-Merge performance. In the fol-
lowing, we discuss two code optimization techniques to
speed up the element retrieval. These techniques can be
used after the partitioning step because the indexes table is
data dependent and known only at run time. The techni-
ques are used to merge the non-contiguous ranges, and
after Lazy-Merge completes the merging task, to retrieve
the merged elements, which are in the non-standard merg-
ing format.

Lazy-Merge has a O log kð Þð Þ access time, where k is the
number of segments. To enhance Lazy-Merge’s perfor-
mance, we suggest using a cache structure for the range
indexes, not the elements. Thus, instead of converting the
virtual index to the real index for each element access, we
store the virtual and real ranges of the last accessed vir-
tual index; these ranges are used for the next retrieval.
For the next retrieval, the virtual index is checked against
the fetched range; if it belongs to the fetched range, then
the access time is constant; otherwise, it costs O log kð Þð Þ.
This process can be extended to fetch a number of succes-
sive and preceding ranges, which should reduce the
search space of the original one, particularly for large
numbers of segments. In our implementation, we use a
cache of size 1, storing one virtual range and its corre-
sponding real range.

We elaborate on the concept through the following exam-
ple. We are given the indexes table with virtual ranges
V ¼ 1; 5ð Þ; 6; 7ð Þ; 8; 13ð Þ; 14; 16ð Þf g and its corresponding
real ranges R ¼ 12; 16ð Þ; 7; 8ð Þ; 9; 11ð Þ; 1; 6ð Þf g. We use the
cache structure technique and iterate through a loop that
accesses elements with virtual indexes from 5 to 8. Because
index 5 is the first element, the cache is empty, and a binary
search in the indexes table is performed to find the virtual
range 1; 5ð Þ and the real range 12; 16ð Þ. For the next index 6,
the cached range is not the corresponding one, then another
fetch operation is performed. For the next index 6, the cache
already has the corresponding ranges, and the access time
is constant. For index 8, its corresponding ranges are not in
the cache; thus, a final fetch operation is performed.

Another technique is to convert the loops of virtual
indexes to loops of real indexes. The merging process

contains many loops. Intuitively, these loops access contigu-
ous elements. This should be faster because the mapping
from virtual to real index is done for ranges rather than
individual elements.

The following example illustrates this technique with
the assistance of the aforementioned example. If we need
to convert the virtual indexes in a loop starting from
index 7 to 14, then we need to find the virtual ranges in
this loop rather than converting each element in the loop.
This can be done by searching only the first and last
indexes of the loop. Thus, we first binary search for the
first virtual index, 7, to find the virtual sub-range 7; 7ð Þ in
the range 6; 7ð Þ. Afterward, we binary search for the last
virtual index, 14, to find it in the sub-range 14; 14ð Þ in the
range 14; 16ð Þ. Finding the corresponding real ranges
requires constant time because the rank of the virtual
range in vector V is the same as the rank of the real range
in vector R. Thus, looping from virtual index 8 to 14 is
accomplished by looping through the corresponding real
ranges 8; 8ð Þ; 9; 11ð Þ; 1; 1ð Þ.

Fig. 3 depicts the execution times for the two techniques
against the unoptimized Lazy-Merge, converting each vir-
tual index access to the real one. The running times in Fig. 3
are the average running times for the lists of dataset-2 using
128 partitions. This figure shows better execution times for
the last mentioned technique. That will be used for the
entirety of the following experiments.

4.3.2 Bitonic Merge

There are two variations of bitonic merge, the level-
by-level emulation and the perfect shuffle-based variation
[31]. The latter has longer running time because it
includes extra time to complete the perfect shuffle effect,
as discussed in [32]. The shuffle-based variation of bitonic
merge should be more efficient on a shuffle network, but
it has an extra overhead on multi-core/many-core archi-
tecture, i.e., multi-core CPUs.

Given bitonic sequences, bitonic merge sorts the two
equal input segments by the recursive construction of a
comparator network that merges any bitonic sequence.
Bitonic merge completes the merging in log nð Þ levels; each
level divides the subject segments into two equal sub-
segments, and it then performs the comparison and
exchange effect and recursively calls the bitonic merge for
each of the two halves that belong to the same segment.

Generally, recursive functions are expensive, although
some compilers optimize tail recursion (not all do so). Thus,
we implemented the bitonic merge as an iterative function.
Moreover, we parallelized the loops for comparing and con-
ditionally exchanging elements to speed up the execution

Fig. 3. Lazy-Merge’s implementation techniques exec. times.

2056 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 7, JULY 2016

time of bitonic merge. Herein, in Figs. 4 and 5, we provide a
comparison between the three implementations, the original
recursive algorithm, our optimized iterative version, and
the shuffle-based variation. The shuffle-based bitonic imple-
mentation uses the in-place perfect shuffle algorithm which
is proposed in [30]. We implemented a parallel version of
this shuffling algorithm; we parallelized the second step,
right cyclic shift by a certain distance. Additionally, we con-
vert the recursive version to an iterative one.

We used a logarithmic scale to depict the execution
times in Fig. 4, for the first list in dataset-2, and we used
a two segments for the entire test. In Fig. 4, the recursive
implementation execution time increases as the number
of threads increases. This is because each recursive call
has to start and manage new p threads. In contrast, our
iterative implementation start and manage the p threads
logn times, once for each level. Finally, the shuffle-based
bitonic implementation has a slight performance enhance-
ment as the number of threads increases due to the shuf-
fle overhead. The shuffle algorithm has a single parallel
step while the remaining steps still sequential. Thus, the
iterative implementation of bitonic merge scales better
than the other two implementations as the number of
threads increases.

Similarly, Fig. 5 depicts the number of moves for lists of
dataset-2 with two segments, changing the number of
threads has no effect on the number of moves for bitonic
merge. The bitonic recursive and iterative implementations
have the same number of moves. Thus, we include the itera-
tive version only in Fig. 5. Fig. 5 shows a massive number of
moves difference. The huge number of moves of the shuffle-
based bitonic merge is due to adding the moves which are
used by the in-place perfect shuffle algorithm.

4.3.3 GL-Merge

Algorithm 3 lists the main steps of the GL-Merge algorithm.
Using a list of two segments and a total size of n, Step 1
divides the n elements into p equal-sized blocks, where p
represents the number of threads. Step 2 sorts the tails list of
size p, using bitonic sort; this sorting determines the destina-
tion block for the current blocks. Step 3 forwards an element
from each block at a time to another block; thread i iterates
block i elements. Step 3 has a loop of n=p, block size, itera-
tions and an auxiliary list of size p, one element for one
block. In each iteration, two synchronized cycles are uti-
lized. In the first cycle, thread i writes the current element
to location i of the auxiliary list. In the second cycle, thread i
reads the element j from the auxiliary list, where j repre-
sents the block index that should replace block i, where
block i elements may reside in block j or any other block

depending on the sorting result. In Step 4, each thread i
searches block i for an element greater than the tail of block
i� 1. This step can be done using binary search. In Step 5,
each block calculates how many element will be replaced by
elements from the other blocks. Similar to Step 3, the p
blocks exchanges elements using two synchronization
cycles for each iteration in Step 6. The results of Step 6 are
re-arranged blocks; each contains a range of ordered non-
displaced elements and another range for the new received
elements; each block independently merges these two
ranges in Step 7.

Algorithm 3. GL-Merge Algorithm

1) Divide the input list into p blocks; each of size n=p.
2) Sort the blocks tails s.t. each block knows its destination

block.
3) Re-arrange the blocks such that their tails are in order.
4) In each block, find an element with a value greater than

the previous block tail value, the breaker.
5) Using breakers, calculate the displacement table.
6) Move blocks elements according to the displacement

table.
7) Each block independently merges the range of the non-

displaced elements and the range of the received ele-
ments from the other blocks.

The most expensive steps of the GL-Merge algorithm are
Steps 3 and 6, which include the data movement of elements
between blocks. The number of synchronization is O n=pð Þ
that should result in poor performance. The number of syn-
chronization can be reduced by techniques like Lazy syn-
chronization, but that come at the cost of more space. Thus,
reducing the synchronization number is contraindicating
with the in-place condition.

The Parallel Random Access Machine (PRAM) model
neglects the synchronization and communication cost. It
consists of p synchronous processors while most of the new
parallel architectures contain asynchronous multiproces-
sors. Thus, the PRAM model, while fruitful from a theoreti-
cal perspective, is proved unrealistic [33], [34]. For example,
arbitrary, sparse graphs problems have abundant theoreti-
cally optimal parallel PRAM algorithms; from practical
perspective, few parallel implementations outperform
the best sequential implementations [35]. Similarly, for the
GL-Merge algorithm, the massive number of required syn-
chronization makes it impractical for real parallel architec-
tures, like CPUs and GPUs, while it is theoretically optimal
for the PRAM model. A thorough comparison between

Fig. 4. Bitonic merge different implementations exec. times.

Fig. 5. Bitonic merge no. of moves for different implementations.

SALAH ETAL.: LAZY-MERGE: A NOVEL IMPLEMENTATION FOR INDEXED PARALLELK-WAY IN-PLACE MERGING 2057

Lazy-Merge and GL-Merge is presented in Section 3 of the
supplemental file, available online.

4.4 Experimental Results and Discussion

4.4.1 Evaluating the Number of Moves

Fig. 6 shows the total number of moves required to merge
the largest input list of dataset-1 and dataset-2 using 128
threads (smaller lists behave similarly) under a varied
number of segments. The figure shows that Lazy-Merge
outperforms the other two algorithms. The GL-Merge
algorithm and Bitonic merge have a close total number of
moves in dataset-1, thus, their lines appear very close to
each other.

Additionally, it should be noted that the numbers of used
segments and threads do affect the number of moves. In
Section 4 of the supplemental file, available online, we pro-
vide a detailed experimental study of the effect of the num-
ber of segments and threads on the total number of moves
for the three algorithms.

4.4.2 Evaluating the Number of Moves Reduction

The bitonic merge performs n=2 comparisons at each level
of the logn levels. Thus, increasing the number of threads
has no effect on the number of moves. In contrast, for the
Lazy-Merge and GL-Merge algorithms, both divide the list
of size n into smaller independent merging problem; that
should lead to a reduction in the total number of moves.
Thus, we exclude the bitonic merge from this evaluation.

Figs. 7 and 8 show the number of moves reduction fac-
tors for dataset-1 for Lazy-Merge and GL-Merge, respec-
tively. Fig. 9 depicts the number of moves reduction factors
for dataset-2 for Lazy-Merge only; the GL-Merge is exclu-
ded from the tests of dataset-2 due to its massive running
time. Generally, we can notice that the reduction factor of
the total number of moves decreases as the input list sizes

increases. Meanwhile, increasing the number of threads/
partitions increases the reduction factor.

4.4.3 Evaluating the Merging Running Times

Fig. 10 shows the running times, in seconds, of the partition-
ing algorithm for dataset-2. We used lists with fixed 128 seg-
ments for this experiment. The running times of this figure
represent the partitioning time for f ¼ 1, which takes the
longest time because the partitioning time increases as f
increases. The figure shows an expected increase in the par-
titioning time as the number of segments and/or the input
list size increases.

Fig. 11 depicts the execution times for the largest list of
dataset-1. This input list is a representative list, because
including the entire lists of dataset-1 will make the figure
complex. Fig. 11 shows a similar behavior for the three algo-
rithms. The three algorithms’ execution times decrease till
reaching a certain number of threads; afterward, the execu-
tion times start to increase, because the overhead of the
larger number of threads is more than the reduced merging
task assigned to each thread. Section 5 of the supplemental
file, available online, includes the full list of execution times
for the entire experiments of the three algorithms.

Fig. 12 depicts the execution times for the largest list of
dataset-2. The larger sizes of the dataset-2 lists allow the
two algorithms to scale well.

Figs. 13 and 14 show the speedups of Lazy-Merge against
a binary merging tree with 2-way in-place merging tasks
using the SplitMerge algorithm. We can notice that the aver-
age speedups for the series “128 partitions” in Fig. 14 is
higher than the corresponding average speedups in Fig. 13,
while series “8 partitions” has the opposite behavior.

Generally, the execution time of Lazy-Merge varies
depending on three factors, the total size of the input seg-
ments, the number of segments, and the number of parti-
tions/threads. We relate this decline of speedups of some

Fig. 6. Number of moves for different number of segments for the largest
list of dataset-1 and dataset-2.

Fig. 7. Lazy-Merge no. of moves reduction factor for dataset-1.

Fig. 8. GL-Merge no. of moves reduction factor for dataset-1.

Fig. 9. Lazy-Merge no. of moves reduction factor for dataset-2.

2058 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 7, JULY 2016

series, i.e., “8 partitions”, to the overhead of converting the
virtual index to real index. Apparently, as the partition size
increases the conversion overhead increases. Thus, the
number of partitions should be relative to input lists size.

Despite this decline of the speedups, in dataset-2, Lazy-
Merge outperforms the bitonic merge, regardless the num-
ber of segments or the number of partitions/threads. For
example, under a list of size 226 with two segments and
using two and 128 threads/partitions, Lazy-Merge is faster
than bitonic merge by 3.02 and 8.28 times, respectively.
Using the same list with 128 segments and two and 128
threads/partitions, Lazy-Merge is faster than bitonic merge
by 2.65 and 15.54 times, respectively.

For the entire execution times, Lazy-Merge outperforms
the bitonic merge and GL-Merge algorithms. For example,
for the largest list of dataset-2 and under 128 threads, Lazy-
Merge outperforms bitonic merge by an order of magni-
tude. For the largest list of datatset-1, Lazy-Merge is faster

than GL-Merge by at least two order of magnitude using
two or more threads, regardless the number of segments.

4.4.4 Evaluating Elements Access Time

To evaluate the access time, we test both access types dis-
cussed in Section 3.3.2. The experiments include accessing
a random element from the largest list of dataset-1 with
varied number of segments, 2 to 128, and single thread to
access the element(s). This process is repeated 1,000
times, and the reported times are the average times. For
single element access, the bitonic merge has an average
access time of 2:5�8 second, regardless the number of seg-
ments. For Lazy-Merge, the single element access time for

two merged segments is 5:2�7 second; this access time

slightly increases till it reaches 6:4�7 second for 128
merged segments. Because the single element access time

Fig. 10. Data partitioning timing for dataset-2.

Fig. 11. Execution times for dataset-1.

Fig. 12. Execution times for dataset-2.

Fig. 13. Lazy-Merge’s speedups for dataset-1.

Fig. 14. Lazy-Merge’s speedups for dataset-2.

SALAH ETAL.: LAZY-MERGE: A NOVEL IMPLEMENTATION FOR INDEXED PARALLELK-WAY IN-PLACE MERGING 2059

of Lazy-Merge is O log kð Þ, the access time increases as the
number of segments increases.

For accessing a set of successive elements, we used the
elements in the first 30 percent of the final merged list. The
reported times are the average of running the experiments

three times. The average access times are 1:5�3 second and

1:9�3 second for bitonic merge and Lazy-Merge, respec-
tively. While the bitonic merge and Lazy-Merge have the
same time complexity O mð Þ to access m successive ele-
ments, the bitonic merge slightly has better access time due
to the cache locality. Bitonic merge accesses physically suc-
cessive elements while Lazy-Merge accesses discrete ranges,
virtually successive and physically discrete.

4.4.5 Evaluating Rosetta Index Size

Lazy-Merge utilizes rosetta index to map the virtual
indexes into real indexes. Its size depends on the number
of the segments and partitions, as discussed in Section
3.5. In rosetta index for each segment, each partition has
two ranges, one real and one virtual. Each range bound-
ary requires 4 bytes, integer data type size. Thus, one
range costs 8 bytes, and two ranges need 16 bytes, regard-
less the number of elements of the input segment. Thus,
the size of rosetta index for the largest input list of dataset-
1, or dataset-2, equals 16 bytes multiplied by the number
of segments per each partition.

5 CONCLUSIONS

In this paper, we consider the topic of parallel in-place
merging due to its limited literature and its raised impor-
tance due to the emergence of new parallel architectures.
We propose Lazy-Merge, a novel implementation for paral-
lel k-way in-place merging algorithms. Lazy-Merge parti-
tions the input list into t independent merging tasks;
afterward, each partition merges non-contiguous ranges,
with assist of an auxiliary look-up table, rosetta index.

Through numerous experiments, we compare Lazy-
Merge with the existing algorithms on the total number of
moves reduction, execution time, and extra used memory.
The results indicate that the Lazy-Merge implementation
outperforms the existing algorithms in the former two
issues while it consumes more extra memory. Lazy-Merge’s
performance varies depending on three factors, the total
size of the input segments, the number of segments and the
number of partitions/threads. A further research could
shed more light on this relationship of these factors and
Lazy-Merge’s performance.

To the best of our knowledge, Lazy-Merge is the fastest
parallel k-way in-place merging implementation to the date.
Additionally, Lazy-Merge is the first technique proposes
the conception of merging non-contiguous elements; this
conception can be mimicked to other computing operations
where the cost of data movement is high.

ACKNOWLEDGMENTS

The authors acknowledge the three anonymous reviewers
for their detailed and helpful comments to the work, and
they are thankful for Professor Peter Sanders, Karlsruhe
Institute of Technology, for his discussion of the proposed

algorithm. The research was partially funded by the Key
Program of National Natural Science Foundation of China
(Grant Nos. 61133005, 61432005), the International Science
& Technology Cooperation Program of China (Grant
No. 2015DFA11240), the National Natural Science Founda-
tion of China (Grant Nos. 61370095, 61472124), and the
Egyptian Ministry of Higher Education. Kenli Li is the
corresponding author.

REFERENCES

[1] D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and
Searching, vol. 28, no. 128. Reading, MA, USA: Addison-Wesley,
1973

[2] J. r. Bang-Jensen, J. Huang, and L. Ibarra, “Recognizing and repre-
senting proper interval graphs in parallel using merging and
sorting,” Discrete Appl. Math., vol. 155, no. 4, pp. 442–456, 2006.

[3] M. Hofmann, G. Runger, P. Gibbon, and R. Speck, “Parallel sort-
ing algorithms for optimizing particle simulations,” in IEEE Inter-
national Conf. Cluster Comput. Workshops Posters, pp. 1–8, 2010.

[4] T. White, Hadoop: The Definitive Guide, 1st ed. Sebastopol, CA,
USA: O’Reilly Media, Inc., 2009.

[5] G. Salton, Automatic Text Processing: The Transformation, Analysis,
and Retrieval of Information by Computer. Reading, MA, USA: Addi-
son-Wesley, 1989.

[6] V. Geffert and J. Gajdo�s, “Multiway in-place merging,” in Funda-
mentals of Computation Theory. New York, NY, USA: Springer,
2009, pp. 133–144.

[7] X. Guan and M. S. Langston, “Time-space optimal parallel merg-
ing and sorting,” IEEE Trans. Comput., vol. 40, no. 5, pp. 596–602,
May 1991.

[8] J. Katajainen, C. Levcopoulos, and O. Petersson, “Space-efficient
parallel merging,” in Proc. 4th Int. PARLE Conf. Parallel Archit. Lan-
guages Eur., 1992, vol. 605, pp. 37–49.

[9] B.-C. Huang and M. A. Langston, “Practical in-place merging,”
Commun. ACM, vol. 31, no. 3, pp. 348–352, Mar. 1988.

[10] K. E. Batcher, “Sorting networks and their applications,” in Proc.
Spring Joint Comput. Conf., 1968, pp. 307–314.

[11] M. A. Kronrod, “An optimal ordering algorithm without a field of
operation,” Soviet Math, vol. 10, pp. 744–746, 1969.

[12] J. Salowe and W. Steiger, “Simplified stable merging tasks,”
J. Algorithms, vol. 8, no. 4, pp. 557–571, Dec. 1987.

[13] A. Tridgell and R. P. Brent, “A general-purpose parallel sorting
algorithm,” Int. J. High Speed Comput., vol. 7, no. 2, pp. 285–301,
1995.

[14] H. Mannila and E. Ukkonen, “A simple linear-time algorithm for
in situ merging,” Inf. Process. Lett., vol. 18, no. 4, pp. 203–208, May
1984.

[15] A. Symvonis, “Optimal stable merging,” Comput. J., vol. 38, no. 8,
pp. 681–690, 1995.

[16] V. Geffert, J. Katajainen, and T. Pasanen, “Asymptotically efficient
in-place merging,” Theor. Comput. Sci., vol. 237, no. 1-2, pp. 159–
181, Apr. 2000.

[17] J.-C. Chen, “Optimizing stable in-place merging,” Theor. Comput.
Sci., vol. 302, no. 1-3, pp. 191–210, Jun. 2003.

[18] J. Chen, “A simple algorithm for in-place merging,” Inf. Process.
Lett., vol. 98, no. 1, pp. 34–40, Apr. 2006.

[19] P.-S. Kim and A. Kutzner, “On optimal and efficient in place
merging,” in Proc. SOFSEM: 32nd Conf. Current Trends Theory Prac-
tice Comput. Sci., vol. 3831, pp. 350–359, 2006.

[20] P. Kim and A. Kutzner, “Ratio based stable in-place merging,” in
Proc. 5th Int. Conf. Theory Appl. Models Comput., 2008, pp. 246–257.

[21] K. Dudzinski and A. Dydek, “On a stable minimum storage merg-
ing algorithm,” Inf. Process. Lett., vol. 12, no. 1, pp. 5–8, 1981.

[22] P.-S. Kim and A. Kutzner, “Stable minimum storage merging by
symmetric comparisons,” in Proc. 12th Annu. Eur. Symp., 2004,
pp. 714–723.

[23] P. Kim and A. Kutzner, “A simple algorithm for stable minimum
storage merging,” in Proc. SOFSEM: 33rd Conf. Current Trends The-
ory Practice Comput. Sci., 2007, pp. 347–356.

[24] J. Ellis and M. Markov, “In situ, stable merging by way of the per-
fect shuffle,” Comput. J., vol. 43, no. 1, pp. 40–53, 2000.

[25] P. J. Varman, S. D. Scheufler, B. R. Iyer, and G. R. Ricard,
“Merging multiple lists on hierarchical-memory multiproc-
essors,” J. Parallel Distrib. Comput., vol. 12, no. 2, pp. 171–177, 1991.

2060 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 7, JULY 2016

[26] G. N. Frederickson and D. B. Johnson, “The complexity of selec-
tion and ranking in x+y and matrices with sorted columns,”
J. Comput. Syst. Sci., vol. 24, no. 2, pp. 197–208, 1982.

[27] J. Singler, P. Sanders, and F. Putze, “MCSTL: The multi-core stan-
dard template library,” in Proc. 13th Int. Euro-Par Conf. Parallel Pro-
cess., 2007, pp. 682–694.

[28] R. Francis, I. Mathieson, and L. Pannan, “A fast, simple algorithm
to balance a parallel multiway merge,” in Proc. 5th Int. PARLE
Conf. Parallel Archit. Languages Eur., 1993, pp. 570–581.

[29] L. Dagum and R. Menon, “OpenMP: An industry standard API
for shared-memory programming,” IEEE Comput. Sci. Eng., vol. 5,
no. 1, pp. 46–55, Jan.–Mar. 1998.

[30] P. Jain, “A simple in-place algorithm for in-shuffle,” CoRR,
vol. abs/0805.1, 2008.

[31] H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE
Trans. Comput., vol. C-20, no. 2, pp. 153–161, Feb. 1971.

[32] J.-D. Lee and K. E. Batcher, “Minimizing communication in the
bitonic sort,” IEEE Trans. Parallel Distrib. Syst.,vol. 11, no. 5,
pp. 459–474, May 2000.

[33] R. Dorrigiv, A. L�opez-Ortiz, and A. Salinger, “Optimal speedup
on a low-degree multi-core parallel architecture (LoPRAM),” in
Proc. 20th Annu. Symp. Parallelism Algorithms Archit., 2008,
pp. 185–187.

[34] D. Ajwani and H. Meyerhenke, “Realistic computer models,” in
Algorithm Engineering. New York, NY, USA: Springer, 2010,
pp. 194–236.

[35] G. Cong and D. A. Bader, “Techniques for designing efficient
parallel graph algorithms for SMPs and multicore processors,”
in Proc. 5th Int. Symp. Parallel Distrib. Process. Appl., 2007,
pp. 137–147.

Ahmad Salah received the master’s degree in
CS from Ain-shams University, Cairo, Egypt, and
the PhD degree in computer science from Hunan
University, China. His current research interests
include parallel computing, computational biol-
ogy, and algorithms.

Kenli Li received the PhD degree in computer
science from Huazhong University of Science
and Technology, China, in 2003. He was a visiting
scholar at the University of Illinois at Urbana-
Champaign from 2004 to 2005. He is currently a
full professor of computer science and technol-
ogy at Hunan University and the deputy director
in the National Supercomputing Center in Chang-
sha. His major research areas include parallel
computing, high-performance computing, and
grid and cloud computing. He has published

more than 130 research papers in international conferences and jour-
nals such as IEEE Transactions on Computers, IEEE Transactions on
Parallel and Distributed Systems, Journal of Parallel and Distributed
Computing, ICPP, CCGrid. He is an outstanding member of CCF. He is a
member of the IEEE and serves on the editorial board of the IEEE Trans-
actions on Computers.

Keqin Li is a SUNY distinguished professor of
computer science. His current research interests
include parallel computing and high-performance
computing, distributed computing, energy-effi-
cient computing and communication, heteroge-
neous computing systems, cloud computing, big
data computing, CPU-GPU hybrid and coopera-
tive computing, multicore computing, storage and
file systems, wireless communication networks,
sensor networks, peer-to-peer file sharing sys-
tems, mobile computing, service computing,

Internet of things and cyber-physical systems. He has published more
than 360 journal articles, book chapters, and refereed conference
papers, and has received several best paper awards. He is currently or
has served on the editorial boards of IEEE Transactions on Parallel and
Distributed Systems, IEEE Transactions on Computers, IEEE Transac-
tions on Cloud Computing, Journal of Parallel and Distributed Comput-
ing. He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SALAH ETAL.: LAZY-MERGE: A NOVEL IMPLEMENTATION FOR INDEXED PARALLELK-WAY IN-PLACE MERGING 2061

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

