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Abstract. We solve the truncated complex moment problem for measures sup-

ported on the variety K � fz 2 C : z�z = A+Bz+C�z+Dz
2
; D 6= 0g. Given

a doubly indexed �nite sequence of complex numbers 
 � 

(2n) : 
00; 
01; 
10;

: : : ; 
0;2n; 
1;2n�1; : : : ; 
2n�1;1; 
2n;0, there exists a positive Borel measure �

supported in K such that 
ij =
R

�zizj d� (0 � i+ j � 2n) if and only if the

moment matrixM(n)(
) is positive, recursively generated, with a column de-

pendence relation Z �Z = A1+BZ+C �Z+DZ
2, and card V(
) � rank M(n),

where V(
) is the variety associated to 
. The last condition may be re-

placed by the condition that there exists a complex number 
n;n+1 satisfying


n+1;n � �
n;n+1 = A
n;n�1 + B
n;n + C
n+1;n�1 + D
n;n+1. We combine

these results with a recent theorem of J. Stochel to solve the full complex mo-

ment problem for K, and we illustrate the connection between the truncated

and full moment problems for other varieties as well, including the variety

z
k = p(z; �z), deg p < k.
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1. Introduction

Given a doubly indexed �nite sequence of complex numbers

 � 


(2n) : 
00; 
01; 
10; : : : ; 
0;2n; 
1;2n�1; : : : ; 
2n�1;1; 
2n;0, with 
00 > 0 and

ji = �
ij , the truncated complex moment problem entails �nding a positive Borel
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measure � supported in the complex plane C such that


ij =

Z
�zizj d� (0 � i+ j � 2n);


 is called a truncated moment sequence (of order 2n) and � is a representing

measure for 
. In [C][CF1]-[CF7] [F1]-[F3], R.E. Curto and the author studied
conditions for the existence of representing measures expressed in terms of posi-
tivity and extension properties of the moment matrixM(n) �M(n)(
) associated
to 
. As we discuss in the sequel, if 
 has a representing measure, then M(n) is
positive semide�nite and recursively generated (see below for terminology and no-
tation). For truncated moment problems in one real variable, where the moment

matrix for a real sequence �(2n) is the Hankel matrix H(n) = (�i+j)0�i;j�n, a

representing measure for �(2n) exists if and only if H(n) is positive and recursively
generated [CF1]. By contrast, positivity and recursiveness are not suÆcent in mul-
tivariable problems: in [CF3] we exhibited a positive, invertible M(3) having no
representing measure, and M(3) is (vacuously) recursively generated.

There is a close connection between the existence of representing measures
supported in a prescribed algebraic variety and the presence of corresponding
dependence relations in the columns of M(n). For n � 2, we denote the succes-
sive columns of M(n) by 1; Z; �Z;Z2

; Z �Z; �Z2
; : : : ; Z

n
; Z

n�1 �Z; : : : ; Z �Zn�1; �Zn. For
a complex polynomial p 2 Pn, p(z; �z) =

P
0�i+j�n aij �z

i
z
j , a representing mea-

sure � is supported in Z(p) � fz 2 C : p(z; �z) = 0g if and only if there is a
dependence relation p(Z; �Z) �

P
aij

�ZiZj = 0 in CM(n) (the column space of

M(n)) [CF2, Proposition 3.1]; it follows that if � is a representing measure, then
card supp � � rank M(n) [CF2, Corollary 3.7]. Moreover, if M(n) is positive and
recursively generated, then any of the following types of dependence relations in
CM(n) implies the existence of a rank M(n)-atomic representing measure: Z = A1

(for measures concentrated at a point); �Z = A1 + BZ (measures supported on a
line) [CF3,Theorem 2.1]; Z2 = A1 + BZ + C �Z (measures on the intersections of
two hyperbolas) [CF3, Theorem 3.1]; �ZZ = A1+BZ+C �Z (measures on a circle)
[CF7, Theorem 1.1]; or Zk = p(Z; �Z) with deg p < k � [n=2] + 1 [CF3,Theorem
3.1]. In view of these results, in studying conditions for the existence of represent-
ing measures, we may assume without loss of generality that M(n) is positive and
recursively generated, and that f1; Z; �Z;Z2g is independent.

The precise relationship between the column structure ofM(n) and the exis-

tence of representing measures for 
(2n) is not well understood. The basic existence
theorem of [CF2] shows that a rank M(n)-atomic representing measure exists in
the case of 
at data, when M(n) is positive and rank M(n) = rank M(n � 1).
For the case when there is an analytic column relation, of the form Z

k = p(Z; �Z)
with p 2 Pk�1 for some k � n, an algorithm of [F2] determines whether or not
a �nitely atomic representing measure exists. In the present note we solve the
truncated moment problem for a moment matrix M(n) with a column relation

�ZZ = A1 +BZ + C �Z +DZ
2
; D 6= 0: (1.1)
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Clearly, this relation falls beyond the scope of [CF2] [CF3] [CF7] [F2]. Our main
result, which follows, gives a concrete necessary and suÆcient condition for the
existence of a �nitely atomic representing measure (necessarily supported in the
variety K � fz 2 C : z�z = A+Bz + C�z +Dz

2
; D 6= 0g).

Theorem 1.1. Let n � 2 and assume that M(n)(
) is positive and recursively

generated. Suppose that f1; Z; �Z;Z2g is independent in CM(n) and that there is a

dependence relation of the form �ZZ = A1+BZ+C �Z+DZ2
; D 6= 0. The following

are equivalent for 
 � 

(2n):

i) 
 admits a �nitely atomic representing measure;

ii) 
 has a representing measure with �nite moments up to at least order 2n+ 2;
iii) M(n) admits a positive moment matrix extension M(n+ 1);
iv) M(n) admits an extension M(n+1) satisfying rank M(n+ 1) = rank M(n);
v) 
 has a rank M(n)-atomic representing measure;

vi) There exists 
n;n+1 2 C such that


n+1;n � �
n;n+1 = A
n;n�1 +B
n;n + C
n+1;n�1 +D
n;n+1:

For n = 2, Theorem 1.1 was proved in [CF7, Theorem 1.3] as part of a so-
lution to the quartic complex moment problem. The main implication, vi) ) v),
provides a simple numerical test for the existence of a minimal �nitely atomic
representing measure (which may then be explicitly computed using the Flat Ex-
tension Theorem (Theorem 2.1 below)). This type of numerical test is new in
truncated moment problems and indicates the kind of auxiliary condition (beyond
positivity and recursiveness) that may be required to solve moment problems that
are neither 
at nor analytic (problems in which there is a column dependence
relation with more than one term of highest degree).

Let V(
) �
T

p2Pn

p(Z; �Z)=0

Z(p), the variety associated to 
(2n); [CF4, (1.7)] implies

that if � is a representing measure, then card V(
) � card supp � � rank M(n).
As we noted above, there exists a positive invertible M(3) with no represent-
ing measure, and in this example V(
)(= C) is in�nite. By contrast, in all of
the examples of [CF4] [CF7] in which a singular, positive, recursively generated
moment matrix M(n) fails to have a representing measure, it transpires that
card V (
) < rank M(n). These results suggest the following solution to the sin-
gular truncated complex moment problem.

Conjecture 1.2. Suppose M(n) is singular. 
(2n) admits a representing measure if
and only if M(n) is positive, recursively generated, and card V(
) � rank M(n).

An aÆrmation of Conjecture 1.2 would also solve the singular full complex
moment problem for 
(1). Indeed, as we discuss in Section 4, if Conjecture 1.2 is
true, then forM(1) singular, it would follow that 
(1) has a representing measure

if and only if M(1) � 0 and card V(
(1)) � rank M(1). Theorem 1.1 yields the
following result in support of Conjecture 1.2.

Theorem 1.3. Under the hypotheses of Theorem 1.1, the following are equivalent

for 
 � 

(2n):
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i) 
 admits a rank M(n)-atomic representing measure;

ii) 
 admits a representing measure;

iii) card V(
) � rank M(n).

Examples 1.7 and 1.9 (below) illustrate Theorem 1.3 in negative and, respec-
tively, positive cases. Theorem 1.3 shows that the conditions of Theorem 1.1 for a
�nitely atomic representing measure are actually equivalent to the existence of an
arbitrary representing measure. Whether the existence of a representing measure
implies the existence of a �nitely atomic representing measure in a general trun-
cated moment problem is an open question that we address in [CF8] (cf. [P3] and
Question 2.4 below). By combining Theorem 1.3 with the above-mentioned results
of [CF3] [CF7], we have the following partial aÆrmation of Conjecture 1.2.

Corollary 1.4. Suppose f1; Z; �Z;Z2
; �ZZg is dependent in CM(n). Then 


(2n) admits

a representing measure if and only if M(n) is positive, recursively generated, and

card V(
) � rank M(n).

Our earlier remarks imply that the variety condition is super
uous if f1; Z; �Z;Z2g
is dependent; with respect to the lexicographic ordering of the columns, the �ZZ
relation is the �rst case in which the variety condition is indispensible.

It is instructive to compare [CF7, Theorem 1.3] and Theorem 1.1 to results of

J. Stochel [St1] concerning the full moment problem, in which moments of all orders
are prescribed (cf. [AK] [Akh] [PV2] [ST] [SS1] [SS2]). Stochel's results for the 2-
dimensional real full moment problem are stated in terms of positivity properties of
the Riesz functional, but we may paraphrase them in the language of real moment
matricesMR(1), with columns 1; X; Y; X2

; XY; Y
2
; : : :. Paraphrasing [St1], we

say that a real polynomial p(x; y) is of type A if it satis�es the following property: a

full real moment sequence �(1) � f�ijgi;j�0 has a representing measure supported
in V(p) � f(x; y) 2 R2 : p(x; y) = 0g if and only ifMR(1)(�) � 0 and p(X;Y ) = 0
in CMR(1)(�). In particular, Stochel proved that if deg p � 2, then p is of type A
[St1, Theorem 5.4] . Using the equivalence between the 2-dimensional real moment
problem and the complex moment problem (cf. [CF7, Section 1] [SS2, Appendix]),

one may conclude that if p 2 C[z; �z] and deg p(z; �z) � 2, then 
(1) has a repre-
senting measure supported in Z(p) � fz 2 C : p(z; �z) = 0g () M(1)(
) � 0
and p(Z; �Z) = 0 in CM(1)(
). By contrast, in the truncated moment problem, an

example of [CF7] (Example 1.7 below) illustrates that for certain column relations
of degree 2, such as (1.1), additional conditions beyond positivity and recursive-
ness may be required to insure the existence of a representing measure. As we
show in Section 4, the explanation of this phenomenon is that in the full moment
problem subordinate to (1.1), positivity of M(1)(
) actually subsumes, for each
n, the recursiveness of M(n)(
) and the auxiliary condition of Theorem 1.1-vi).

In Section 4 we describe a technique for solving a full multidimensional mo-
ment problem which entails combining the solution of the corresponding trun-
cated moment problem with a recent convergence theorem of Stochel [St2] (The-
orem 4.1 below). For moment problems subordinate to K � fz 2 C : z�z =
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A + Bz + C�z +Dz
2
; D 6= 0g), this technique shows that if M(1) has a column

relation of the form (1.1), then 
(1) has a representing measure (necessarily sup-
ported in K) if and only if M(1) � 0 (Proposition 4.4). Of course, this result also
follows from [St1, Theorem 5.4] via the equivalence between theR2 and C moment
problems. In Section 4 we also illustrate the convergence technique for other types
of moment problems, including those subordinate to an analytic relation; as we
discuss in Section 4, the following result can also be derived from [SS1].

Proposition 1.5. If M(1) has a column relation of the form Z
k = p(Z; �Z),

deg p < k, then 
(1) has a representing measure if and only if M(1) � 0.

In [St1], Stochel showed that not every real polynomial of degree 3 is of
type A, and recently Powers and Scheiderer [PS] gave a criterion for solving the
full moment problem on (non-compact) semialgebraic subsets of the plane (cf.
[KM] [PV1] [PV2] [Sch] [SS1] [SS2]). In view of Theorem 1.1 and [CF3] [CF7],
to complete the theory of the truncated complex moment problem for degree 2
curves, it suÆces to consider the case whenM(n) is positive, recursively generated,
f1; Z; �Z; Z2

; Z �Zg is independent, and there is a column relation �Z2 = A1 +
BZ + C �Z +DZ

2 + EZ �Z, E 6= 0. This problem is solved in [CF7] for n = 2 and
we are currently studying the general case.

Theorem 1.1-vi) provides a concrete test for the existence of a �nitely atomic
representing measure supported in the variety K corresponding to (1.1). If jDj 6= 1,
it is elementary that the equation of Theorem 1.1-vi) always admits a unique
solution. Alternately, in Section 2 we prove the following result independently
of Theorem 1.1, using instead only the n = 2 case [CF7] and moment matrix
extension results of [CF2] [CF4].

Proposition 1.6. If 
(2n) satis�es the hypothesis of Theorem 1.1 and jDj 6= 1, then
there exists a unique �nitely atomic representing measure �, and card supp � = 4.

For jDj = 1, K admits diverse possibilities, and may be �nite or in�nite;
further, in this case there need not exist any representing measure, as the following
example of [CF7] shows.

Example 1.7. ([CF7, Example 3.8]) For f > 1, let

M(2) =

0
BBBBBB@

1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 1 0 0
0 0 1 f f � 1 f � 1
1 0 0 f � 1 f f � 1
0 1 0 f � 1 f � 1 f

1
CCCCCCA
:

M(2) is positive, recursively generated (vacuously), f1; Z; �Z;Z2g is a basis for

CM(n), and �ZZ = 1 � �Z + Z
2. Theorem 1.1-vi) requires 
23 such that �
23 =


21 � 
31 + 
23, or iIm
23 = (f � 1)=2 (> 0). Thus 
(4) admits no �nitely atomic

representing measure; moreover, since card fz : �zz = 1 � �z + z
2g = 3 < 4 =
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rank M(2), it follows from [CF4, (1.7)] that there is no representing measure

whatsoever. Note that this example also illustrates Theorem 1.3 in a case in which

Theorem 1.3-iii) fails. �

One element in the proof of Theorem 1.1 is the following description of a basis
for the column space of a recursively generated moment matrix M(n) satisfying
(1.1).

Proposition 1.8. Suppose n � 2, M(n) is positive and recursively generated,

f1; Z; �Z;Z2g is independent in CM(n), and there is a dependence relation of the

form �ZZ = A1 + BZ + C �Z + DZ
2
; D 6= 0. Then there is a unique integer q,

2 � q � n, such that a basis for CM(n) consists of f1; Z; �Z;Z2
; : : : ; Z

i
; : : : ; Z

qg.

Note that if q < n, then rank M(n) = rank M(n� 1), so the existence of a
unique �nitely atomic representing measure (which is rank M(n)-atomic) follows
immediately from [CF2, Corollary 5.14] (cf. Theorem 1.13 below). Example 1.7
(above) illustrates a case with q = n (= 2) in which there is no representing
measure. We next illustrate the existence of a representing measure in a case in
which q = n = 3 (and jDj = 1).

Example 1.9. For r > 1, let M(3) =0
BBBBBBBBBBBBBBB@

1 0 0 0 1 0 1 0 0 1
0 1 0 0 0 1 1� r r 1� r r � 1
0 0 1 1 0 0 r � 1 1� r r 1� r

0 0 1 r 1� r r � 1 1�r
2

1�r
2

3r�1
2

5(1�r)
2

1 0 0 1� r r 1� r
3r�1
2

1�r
2

1�r
2

3r�1
2

0 1 0 r � 1 1� r r
5(1�r)

2
3r�1
2

1�r
2

1�r
2

1 1� r r � 1 1�r
2

3r�1
2

5(1�r)
2 x y z w

0 r 1� r
1�r
2

1�r
2

3r�1
2 y x y z

0 1� r r
3r�1
2

1�r
2

1�r
2 z y x y

1 r � 1 1� r
5(1�r)

2
3r�1
2

1�r
2 w z y x

1
CCCCCCCCCCCCCCCA

:

Here, we choose x > (3 � 7r + 8r2)=4 to insure that M(3) is positive and that

f1; Z; �Z;Z2
; Z

3g is independent. Now �ZZ = 1+ �Z�Z2, so we have A = 1, B = 0,
C = 1, D = �1. Recursiveness requires �ZZ2 = Z + Z �Z � Z

3, which in turn

successively determines y, z, and w as y = (r + 1)=2 � x, z = 3(1 � r)=2 � y =
1�2r+x, w = (5r�3)=2�z = (9r�2x�5)=2. With these de�nitions,M(3) satis�es
the hypotheses of Theorem 1.1 and Proposition 1.8, with q = n = 3. The condition

of Theorem 1.1-vi), based on the recursive relation �ZZ3 = Z
2+Z

2 �Z �Z4, is that

there exists 
34 satisfying �
34 = 
32 + 
42 � 
34, or Re 
34 = (1 � x)=2. Thus,
corresponding to each choice of 
34 with Re 
34 = (1� x)=2, there is a distinct 5-

atomic representing measure for 
(6). We compute one such measure explicitly in

Example 2.2 (below). Alternately, the existence of a 5-atomic representing measure

follows from Theorem 1.3, since the variety associated to M(3) is the vertical line

x = �1=2, and is thus in�nite. �
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We devote the remainder of this section to some background results concern-
ing moment matrices and representing measures. In Section 2 we prove most of
the implications of Theorem 1.1, as well as Theorem 1.3 and Proposition 1.6. In
Section 3 we prove Proposition 1.8 and we complete the proof of Theorem 1.1 by
proving vi) ) iv). In Section 4 we discuss a recent theorem of J. Stochel which
connects the full and truncated moment problems; we show how to re-derive the
solution of certain one- and two-dimensional full moment problems from our pre-
vious results on the truncated moment problem in [CF1] [CF4] [CF7] [F2], or from
Theorem 1.1.

Let Pn denote the complex polynomials q(z; �z) =
P
aij �z

i
z
j of total degree at

most n, and for q 2 Pn, let q̂ � (aij) denote the coeÆcient vector of q with respect
to the basis f�zizjg0�i+j�n of Pn (ordered lexicographically: 1; z; �z; : : : ; zn; : : : ; �zn).
Note that dim Pn = m(n) � (n + 1)(n + 2)=2; for v 2 Cm(n) and 0 � k � n,
let [v]k denote the truncation of v to components indexed by basis monomials of
degree � k. For p 2 P2n, p(z; �z) =

P
bij �z

i
z
j , let �
(p) =

P
bij
ij . The moment

matrix M(n) �M(n)(
) is the unique matrix (of size m(n)) such that

hM(n)f̂ ; ĝi = �
(f�g) (f; g 2 Pn):
If we label the rows and columns of M(n) lexicographically, as
1; Z; �Z;Z2

; �ZZ; �Z2
; : : : ; Z

n
; : : : ; �Zn, it follows that the row �ZkZl, column �ZiZj

entry of M(n) is equal to hM(n)d�zizj ;d�zkzli = �
(�z
i+l
z
j+k) = 
i+l;j+k . For exam-

ple, with n = 1, the quadratic moment problem for 
(2) : 
00; 
01; 
10; 
02; 
11; 
20
corresponds to

M(1) =

0
@ 
00 
01 
10


10 
11 
20


01 
02 
11

1
A :

If 
 admits a representing measure �, then for f 2 Pn, hM(n)f̂ ; f̂i = �
(jf j2) =R
jf j2d� � 0, whence M(n) � 0.

For an arbitrary matrix A 2 Mm(n)(C), we de�ne a sesquilinear form h�; �iA
on Pn by hp; qiA = hAp̂; q̂i; the following characterization of moment matrices will
be used in the proof of Theorem 1.1.

Theorem 1.10. ([CF2, Theorem 2.1]) Let n � 1 and let A 2 Mm(n)(C). There

exists a truncated moment sequence 
 � 

(2n) such that A =M(n)(
) if and only

if the following properties hold:

i) h1; 1iA > 0;
ii) A = A

�;

iii) hp; qiA = h�q; �piA (p; q 2 Pn);
iv) hzp; qiA = hp; �zqiA (p; q 2 Pn�1).

For p 2 Pn, p(z; �z) =
P
aij �z

i
z
j , we de�ne p(Z; �Z) 2 CM(n) by p(Z; �Z) =P

aij
�ZiZj (=M(n)p̂); from [CF2, Lemma 3.10], we have

For p 2 Pn; p(Z; �Z) = 0() �p(Z; �Z) = 0: (1.2)
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If � is a representing measure for 
, then (from [CF2, Proposition 3.1])

For p 2 Pn; p(Z; �Z) = 0() supp � � Z(p) � fz 2 C : p(z; �z) = 0g: (1.3)

It follows that if � is a representing measure, p(Z; �Z) = 0, and pq 2 Pn, then
(pq)(Z; �Z) = 0. Thus, a necessary condition for representing measures is that
M(n) be recursively generated in the following sense:

p; q; pq 2 Pn; p(Z; �Z) = 0 =) (pq)(Z; �Z) = 0:

Positivity and recursiveness are the basic necessary conditions for solubility of
a truncated complex moment problem. For the analogous one dimensional real
truncated moment problem, these conditions are also suÆcient: a real sequence
�
(2n) : �0; : : : ; �2n has a representing measure supported in R if and only if the

Hankel matrix (�i+j)0�i;j�n is positive and recursively generated (with respect
to the column labeling 1; t; ; : : : ; tn) [CF1, Theorem 3.9]. By contrast, Example
1.7 (above) illustrates M(2)(
) that is positive and recursivley generated, but for
which 
 has no representing measure. The following structure theorem for positive
moment matrices provides a basic tool for constructing representing measures; it
shows that a positive moment matrix is \almost" recursively generated.

Theorem 1.11. ([CF4, Theorem 1.6]) Let M(n) � 0. If f; g; fg 2 Pn�1 and

f(Z; �Z) = 0, then (fg)(Z; �Z) = 0. Moreover, if f; g; fg 2 Pn and f(Z; �Z) = 0,
then [(fg)(Z; �Z)]n�1 = 0.

Let V(
) =
T

p2Pn

p(Z; �Z)=0

Z(p), the variety associated to 
(2n). One consequence of

(1.3) is that if � is a representing measure for 
, then card V(
) � card supp � �
rank M(n) [CF4, (1.7)]; in particular, if rank M(n) > card V(
), then 
 admits
no representing measure (cf. Example 1.7 above). The main result of [CF2], which
follows, provides the equivalence of iv) and v) in Theorem 1.1.

Theorem 1.12. ([CF2, Theorem 5.13]) 
(2n) admits a rank M(n)-atomic repre-

senting measure if and only if M(n) � 0 and M(n) admits a 
at extension, i.e.,
M(n) admits an extension to a moment matrix M(n+ 1) satisfying rank M(n+
1) = rank M(n).

In [CF2] [CF3] we established the existence of 
at extensions in the following
cases:

Theorem 1.13. ([CF2, Corollary 5.14]) If M(n) � 0 is 
at, i.e., rank M(n) =

rank M(n� 1), then 
(2n) admits a unique �nitely atomic representing measure,

which is rank M(n)-atomic.

Theorem 1.14. ([CF3, Theorem 2.1]) If M(n) is positive, recursively generated,

and �Z = A1 +BZ (B 6= 0), then M(n) admits a 
at extension (corresponding to

a rank M(n)-atomic representing measure supported on the line �z = A+Bz).

Theorem 1.15. ([CF3, Theorem 3.1]) Suppose M(n) is positive and recursively

generated. If 1 � k � [n=2] + 1 and Z
k = p(Z; �Z) for some p 2 Pk�1, then
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M(n) admits a unique 
at extension (corresponding to the unique �nitely atomic

representing measure for 
(2n)).

In [CF2, Theorem 6.1] we proved that if M(1) � 0, then M(1) admits a 
at
extension. In view of Theorems 1.14 and 1.15, if n � 2,M(n) is positive and recur-
sively generated, and f1; Z; �Z;Z2g is dependent in CM(n), thenM(n) admits a 
at
extension. Further, in [CF7] we proved that a 
at extension exists if M(n) � 0 is
recursively generated, f1; Z; �Zg is independent and �ZZ 2 h1; Z; �Zi. The preceding
results motivated our interest in (1.1) and the hypothesis of Theorem 1.1.

2. Moment matrices, extensions, and representing measures

In this section we recall some additional terminology and results concerning mo-
ment matrices and extensions. We use these results to present the �rst part of the
proof of Theorem 1.1 and proofs of Theorem 1.3 and Proposition 1.6.

Given 
 � 

(2n), for 0 � i; j � n we de�ne the (i + 1) � (j + 1) matrix Bij

whose entries are the moments of order i+ j:

Bij =

0
BBBBBBB@


ij 
i+1;j�1 : : : 
i+j;0


i�1;j+1 
ij 
i+1;j�1


i�1;j+1

...
...


0;j+i : : : 
ji

1
CCCCCCCA
: (2.1)

It follows from the de�nition of M(n)(
) that it admits a block decomposition
M(n) = (Bij)0�i;j�n.

We may also de�ne auxiliary blocks B0;n+1; : : : ; Bn�1;n+1 via (2.1). Given
\new moments" of degree 2n+1 for a prospective representing measure, let Bn;n+1

denote the corresponding moment matrix block given by (2.1), and let

B(n+ 1) =

0
BBB@

B0;n+1

...
Bn�1;n+1

Bn;n+1

1
CCCA : (2.2)

Given a moment matrix block C(n + 1) of the form Bn+1;n+1 (corresponding to
\new moments" of degree 2n + 2), we may de�ne the moment matrix extension

M(n+ 1) via the block decomposition

M(n+ 1) =

�
M(n) B(n+ 1)

B(n+ 1)� C(n+ 1)

�
: (2.3)

Note that M(n+ 1) is completely determined once column Zn+1 is speci�ed.
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A result of Smul'jan [Smu] shows that a block matrix

M =

�
A B

B
�

C

�
(2.4)

is positive semide�nite if and only if i) A � 0, ii) there exists a matrix W such
that B = AW , and iii) C � W

�
AW (since A = A

�, W �
AW is independent of W

satisfying B = AW ). Note also that if M � 0, then rank M = rank A if and only
if C = W

�
AW ; conversely, if A � 0 and there exists W such that B = AW and

C = W
�
AW , then M � 0 and rank M = rank A. A block matrix M as in (2.4)

is an extension of A, and is a 
at extension if rank M = rank A. A 
at extension
of a positive matrix A is completely determined by a choice of block B satisfying
B = AW for some matrix W , and by setting C = W

�
AW ; we denote such a 
at

extension by [A;B].
For a moment matrix block Bn;n+1, representing \new moments" of order

2n + 1 for a prospective representing measure for 
(2n), let B = B(n + 1) (as in
(2.2)). It follows that M(n) � 0 admits a (necessarily positive) 
at extension

[M(n);B] =

�
M(n) B

B
�

C

�
in the form of a moment matrix M(n+ 1) if and only if

B =M(n)W for some W (i:e:; Ran B � Ran M(n));

C :=W
�
M(n)W is Toeplitz; i:e:; has the form of a block Bn+1;n+1: (2.5)

The following result is our main tool for constructing �nitely atomic repre-
senting measures.

Theorem 2.1. (Flat Extension Theorem, [CF2, Remark 3.15, Theorem 5.4, Corol-

lary 5.12, Theorem 5.13, Corollary 5.15] [CF3, Lemma 1.9] [F1]) SupposeM(n)(
)
is positive and admits a 
at extensionM(n+1), so that Zn+1 = p(Z; �Z) 2 CM(n+1)

for some p 2 Pn. Then there exist unique successive 
at (positive) moment matrix

extensions M(n+ 2), M(n+ 3),: : :, which are determined by the relations

Z
n+k = (zk�1p)(Z; �Z) 2 CM(n+k) (k � 2): (2.6)

Let r = rank M(n). There exist unique scalars a0; : : : ; ar�1 such that in CM(r),

Z
r = a01 + � � �+ ar�1Z

r�1
:

The characteristic polynomial g
(z) := z
r � (a0 + � � � + ar�1z

r�1) has r distinct

roots, z0; : : : ; zr�1, and 
 has a rank M(n)-atomic minimal representing measure

of the form

�[M(n+ 1)] =
X

�iÆzi ;

where the densities �i are determined by the Vandermonde equation

V (z0; : : : ; zr�1)(�0; : : : ; �r�1)
t = (
00; : : : ; 
0;r�1)

t
: (2.7)

The measure � � �[M(n + 1)] is the unique �nitely atomic representing measure

for 
(2n+2), and is also the unique representing measure for M(1)[�].
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It is clear from (2.6) that under the hypothesis of Theorem 2.1,M(n+1) has
unique successive recursively generated extensions (which are also 
at and posi-
tive). We next use the Flat Extension Theorem to explicitly construct a particular
representing measure corresponding to the 
at extensions of Example 1.9.

Example 2.2. We previously used Theorem 1.1 to show that M(3) in Example 1.9

has a 
at extensionM(4) corresponding to each choice 
34 with Re 
34 = (1�x)=2.
Let 
34 = (1 � x)=2. Since CM(3) has basis f1; Z; �Z;Z2

; Z
3g, to determine the

characteristic polynomial g
 in Theorem 2.1, we seek a purely analytic column

relation in the 
at extension M(5) determined by (2.6). A calculation shows that

in CM(4) we have Z
4 = a01 + a1Z + b1

�Z + a2Z
2 + a3Z

3, where a0 = 1 � r,

a1 = (3� r)=2, b1 = (�3+ 2r� r2 +2x)=(2r� 2), a2 = (1� x)=(r � 1), a3 = �2.
ThusM(5) is determined by Z5 = a0Z+a1Z

2+b1 �ZZ+a2Z
3+a3Z

4 = a0Z+a1Z
2+

b1A1+ b1BZ+C(Z4�a01�a1Z�a2Z2�a3Z3)+ b1DZ
2+a2Z

3+a3Z
4 � r(Z).

Let r(z) denote the polynomial corresponding to r(Z); a calculation shows that the

characteristic polynomial, g
(z) � z
5 � r(z), factors as g
(z) =

�1
2r�2 (z � 1)q(z),

where q(z) = (1� 2r+3r2� 2x)+2(r�x)z+2(1�x)z2+4(1� r)z3+2(1� r)z4.
Let Æ = (�2+6r�9r2+6r3+4x�6rx+x2)1=2, �1 = x�r�Æ, �2 = x�r+Æ, �1 =
((�2+2r)2�4(�2+2r)�1)

1=2, �2 = ((�2+2r)2�4(�2+2r)�2)
1=2; the �ve distinct

roots of g
 (guaranteed by Theorem 2.1) are z0 = 1, z1 = (2� 2r � �1)=(4r � 4),
z2 = (2�2r+�1)=(4r�4), z3 = (2�2r��2)=(4r�4), z4 = (2�2r+�2)=(4r�4). With

r = 2; x = 6, we have z1 =
1
4 (�2�i

q
�4 + 8(4�

p
10)) � 0:5�0:410927i, z2 = �z1,

z3 =
1
4 (�2 � i

q
�4 + 8(4 +

p
10)) � �0:5� 1:82514i, z4 = �z3; the corresponding

densities given by (2.7) are �0 = 1=3, �1 = �2 = 1
60 (10 + 2

p
10) � 0:272076,

�3 = �4 =
1
60 (10� 2

p
10) � 0:0612574. �

We now turn to the proofs of the main results.
Proof of Theorem 1.1. Part 1. We will prove the implications iv) , v) )

i) ) ii) ) iii) ) vi): We have iv) , v) by Theorem 1.12. The implications

v)) i)) ii) are clear. If ii) holds, let � be a representing measure for 
(2n) with
�nite moments up to order 2n + 2; then M(n + 1)[�] is a positive extension of
M(n), so iii) holds. For iii) ) vi), assume that M(n+ 1) is a positive extension
of M(n). Since �ZZ = A1 + BZ + C �Z +DZ

2
; D 6= 0, Theorem 1.11 (applied to

M(n+1)) implies [ �ZZn]n = [AZn�1]n+[BZn]n+[C �ZZn�1]n+[DZn+1]n, whence
vi) follows by specialization to row Z

n. �
To complete the proof of Theorem 1.1, it suÆces to prove vi) ) iv); the proof is
given in Section 3.

Proof of Proposition 1.6. We are assuming jDj 6= 1. The conclusion that 


has a unique �nitely atomic representing measure, which is 4 atomic, is proved in
[CF7, Theorem 1.3] for n = 2. We may thus assume n > 2 and we view M(3) as
an extension of M(2), i.e.,

M(3) =

�
M(2) B(3)
B(3)� C(3)

�
:
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Now the relation

�ZZ2 = AZ +BZ
2 + C �ZZ +DZ

3 (2.8)

and moment matrix structure show that 
23 completely determines block B23, i.e.,

14 = (1=D)(
23�A
12�B
13�C
22) and 
05 = (1=D)(
14�A
03�B
04�C
13).
Moreover, since jDj 6= 1, the equation �
23 = A
21 + B
22 + C
31 +D
23 admits
a unique solution 
23; thus B(3) is uniquely determined. Again, since jDj 6= 1, it
follows that 
33 and 
24 are uniquely determined by the equations 
42 = A
31 +
B
32+C
41+D
33 and 
33 = A
22+B
23+C
32+D�
42. Since 
33 and 
42 in turn
uniquely determine C(3) via (2.8), it follows that M(3) is the unique recursively
generated moment matrix extension of M(2). Since [CF7, Corollary 3.4] shows
that M(2) has a unique 
at extension M(3), which is recursively generated by
[CF3, Lemma 1.9], we conclude thatM(3) is a 
at extension of M(2). Since M(n)
is recursively generated, Theorem 2.1 and the remarks following it now imply that
M(n) is 
at, i.e., rank M(n) = rank M(n � 1) = � � � = rank M(2) = 4, whence
it follows from Theorem 1.12 that M(n) has a unique �nitely atomic representing
measure, which is rank M(n)-atomic. Since rank M(n) = rank M(2) = 4, the
result follows. �

We conclude this section with a discussion of Conjecture 1.2 and a proof of
Theorem 1.3. In [CF3, Section 4], we exhibited a positive invertible M(3) having
no representing measure. Since this M(3) is invertible, it is recursively generated,
and V(
) = C, whence card V(
) > rank M(3). On the other hand, in all of
the examples of [CF4], whenever M(n)(
) is positive, recursively generated and
singular, it turns out that if 
 admits no �nitely atomic representing measure,
then card V(
) < rank M(n), so 
 admits no representing measure whatsoever.
These observations suggest the following questions related to Conjecture 1.2.

Question 2.3. If M(n) is positive and recursively generated, and card V(
) �
rank M(n), does 
(2n) admit a representing measure?

Question 2.4. If 
(2n) admits a representing measure, does it admit a �nitely
atomic representing measure?

Positive answers to these questions would aÆrm Conjecture 1.2 and would
reduce the truncated complex moment problem to standard issues in linear algebra
and algebraic curve theory. Indeed, positivity, recursiveness, and calculation of
rank M(n) entail standard linear algebra, while card V(
) can be estimated (at
least in principle) by techniques from algebraic geometry. Concerning Question

2.4, a result of M. Putinar [P3] implies that if 
(2n) has a representing measure
� with �nite moments up to order at least 2n + 2, then there exists a �nitely
atomic representing measure. (In [CF8] we show that the same conclusion holds if
� merely has �nite moments up to order 2n+ 1.)

We next prove Theorem 1.3 (which we restate for convenience); this appears
to be the �rst result in the literature directly addressing Question 2.3 or Conjecture
1.2.
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Theorem 2.5. Suppose M(n) is positive and recursively generated, f1; Z; �Z; Z2g
is independent, and there is a column relation Z �Z = A1+BZ+C �Z+DZ2, D 6= 0.
The following are equivalent for 
(2n).

i) 
 admits a rank M(n)-atomic representing measure;

ii) 
 admits a representing measure;

iii) card V(
) � rank M(n).

Proof. The implications i) ) ii) ) iii) are clear, so it suÆces to prove
iii) ) i). If jDj 6= 1, Proposition 1.6 (and its proof) imply that there exists a
unique �nitely atomic representing measure �, and that card V(
) � card supp � =
4 = rank M(n). In the sequel we may thus assume jDj = 1. We next reduce to
the case D = 1. Let us write relation (1.1) in the form

Z �Z = �001 + �01Z + �10
�Z + �02Z

2
; (2.9)

where �02 = e
i , 0 �  < 2�. Let � =  =2 and set � = e

i�. Following [CF7],
let J� 2 Mm(n) denote the invertible diagonal matrix whose entry in row �ZiZj ,

column �ZiZj is ��i�j (0 � i + j � n); [CF7, Prop. 1.10-(i)] implies that ~M(n) �
J
�

�
M(n)J� is the moment matrix corresponding to ~
(2n), where ~
ij = ��i�j
ij

(0 � i + j � 2n). [CF7, Prop. 1.7] shows that 
 admits a representing measure
� if and only if ~
 admits a representing measure ~�, where supp ~� = �supp �. In
particular,M(n) is positive if and only if ~M(n) is positive; further, corresponding
to a relation �ZiZj =

P
rs
�rs

�ZrZs in CM(n), there is a relation in C ~M(n) of the

form
�~Zi ~Zj =

X
rs

(��i�r�j�s�rs)
�~Zr ~Zs (2.10)

[CF7, Prop. 1.10-(iii)]. Thus, corresponding to (2.9), there is a relation ~�Z ~Z =

�00
~1+���01 ~Z+��10

�~Z+����1�02 ~Z
2, and since ����1�02 = 1, in the sequel we may

assume D = 1.
We now have Z �Z = A1 + BZ + C �Z + Z

2, so V(
) � K � fz : z�z =
A1+Bz+C�z+z2g. Write z = x+ iy, A = A1+ iA2, B = B1+ iB2, C = C1+ iC2.
Then K = fx + iy : re(x; y) = im(x; y) = 0g, where re(x; y) = 2y2 + (B2 �
C2)y � (B1 + C1)x � A1 and im(x; y) = 2xy + (B2 + C2)x + (B1 � C1)y + A2.

If B1 + C1 6= 0, then re(x; y) = 0 corresponds to a \horizontal" parabola of the
form x = p(y) � Ey

2 + Fy +G, and thus, substituting x = p(y), im(x; y) can be
expressed as a cubic in y, whence card K � 3 < rank M(n).

We may now assume B1+C1 = 0, whence re(x; y) = 2y2+(B2�C2)y�A1;
thus re(x; y) = 0 corresponds to 0, 1, or 2 horizontal lines, depending on the value

of the discriminant Æ � (B2 � C2)
2 + 8A1. If Æ < 0, then clearly K = ;.

We next consider the case Æ = 0, which corresponds to A1 = �(B2�C2)
2
=8.

In this case, re(x; y) = 0 is the line y = (C2 � B2)=4, and thus, in K, we have
im(x; y) = (3C2 + B2)x + 2A2 + B1(C2 � B2). If B2 + 3C2 6= 0, then im(x; y) =
0 uniquely determines x, whence card V(
) � card K = 1 < rank M(n). If
B2 + 3C2 = 0, then 2A2 + B1(C2 � B2) = (2=3)(3A2 � 2B1B2); if, in addition,
3A2 � 2B1B2 6= 0, then clearly K = ;.
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To conclude with Æ = 0, we show that the case B2 + 3C2 = 0 and 3A2 �
2B1B2 = 0 cannot arise under the hypotheses thatM(n) is positive and f1; Z; �Zg is
independent, which hypotheses imply det M(1)(
) > 0. Indeed, let 
01 = a1+ ia2,

11 = b, 
02 = c1 + ic2. Since 
11 = A
00 + B
01 + C
10 + 
02, we have c1 = b�
(A1+B1a1�B2a2+C1a1+C2a2) and c2 = �A2�B1a2�B2a1�C2a1+C1a2. Using
C1 = �B1, A1 = �(B2 � C2)

2
=8, C2 = �B2=3, A2 = (2=3)B1B2, a calculation

shows that det M(1)(
) = (�4=81)(3a2+B2)
2�, where � = 9b+18a1B1+9B2

1 +

6a2B2+B
2
2 . NowM(n) � 0 and f1; Zg is independent, so det

�
1 
01


10 
11

�
> 0,

whence b > a
2
1+a

2
2. Thus � > 9(a1+B1)

2+(3a2+B2)
2 � 0, whence det M(1)(
) �

0, a contradiction.

We next consider the case of B1 + C1 = 0 where Æ > 0, so re(x; y) = 0

corresponds to two horizontal lines, y = y1 � (1=4)(C2 � B2 + Æ
1=2) and y =

y2 � (1=4)(C2 � B2 � Æ
1=2). Now im(x; y) = 2xy + (B2 + C2)x + 2B1y + A2,

so im(x; y) = 0 represents either a proper hyperbola or a degenerate hyperbola
consisting of intersecting lines. In the hyperbola case, for y = y1, im(x; y) = 0
corresponds to (2y1 + B2 + C2)x = �A2 + 2B1y1, and since this relation comes
from a proper hyperbola, 2y1 + B2 + C2 and �A2 + 2B1y1 cannot both equal 0;
thus there is at most one value of x such that (x; y1) 2 K. A similar argument
holds for y = y2, so card K � 2.

Finally, we consider the case when im(x; y) = 0 corresponds to a degenerate
hyperbola (intersecting lines), which occurs precisely when A2 = B1(B2 + C2).
In this case, im(x; y) = 0 is equivalent to (x + B1)(y + (B2 + C2)=2) = 0. Since
re(x; y) = 0 consists of the distinct lines y = y1 and y = y2, it follows that
card K � rank M(n) � 4 if and only if y+(B2+C2)=2 = 0 coincides with y = y1

or with y = y2. A calculation shows that this occurs if and only if A1 = C2(B2+C2)
(in which case K includes a horizontal line).

To complete the proof, we will show that the conditions B1 +C1 = 0, Æ > 0,
A2 = B1(B2+C2), A1 = C2(B2+C2) imply that Theorem 1.1-vi) is satis�ed. We
note for future reference that the preceding relations imply that R � A1B1�C2A2,
S � A1+B

2
1+B1C1�B2C2�C2

2 , T � A2�B1B2+C1C2 satisfy R = S = T = 0.

Theorem 1.1-vi) is equivalent to the real system

Im
n;n+1 = �(1=2)(�A1Im
n�1;n +A2Re
n�1;n

+B2
n;n + C2Re
n�1;n+1 � C1Im
n�1;n+1) (2.11)

and

0 = (A1Re
n�1;n+A2Im
n�1;n+B1
n;n+C1Re
n�1;n+1+C2Im
n�1;n+1) (2.12)

(2.11) merely shows how to de�ne Im
n;n+1, so to complete the proof it remains
to show that (2.12) holds (in which case a free choice for Re
n;n+1 determines
in�ntely many distinct 
at extensions M(n+ 1)).

From the relation �ZZ = A1+BZ+C �Z+Z2, recursiveness implies �ZZn�1 =
AZ

n�2 + BZ
n�1 + C �ZZn�2 + Z

n. Thus h �ZZn�1; Zn�1 �Zi = AhZn�2; Zn�1 �Zi +
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BhZn�1; Zn�1 �Zi + Ch �ZZn�2; Zn�1 �Zi + hZn; Zn�1 �Zi, or 
n;n = A
n�1;n�1 +
B
n�1;n + C
n;n�1 + 
n�1;n+1. The last relation is equivalent to the real system


n;n = A1
n�1;n�1 +B1Re
n�1;n �B2Im
n�1;n

+ C1Re
n�1;n + C2Im
n�1;n +Re
n�1;n+1 (2.13)

and

0 = A2
n�1;n�1 +B2Re
n�1;n +B1Im
n�1;n

+ C2Re
n�1;n � C1Im
n�1;n + Im
n�1;n+1 (2.14)

Substituting in (2.12) for 
n;n (from (2,13)) and for Im
n�1;n+1 (from (2.14)), we
see that (2.12) is equivalent to R
n�1;n�1 + S Re
n�1;n + T Im
n�1;n = 0, and
since R = S = T = 0, the proof is now complete. �.

3. Existence of representing measures

In this section we complete the proof of Theorem 1.1 by proving that vi) ) iv).
In the sequel, n � 2, M(n) is positive and recursively generated, f1; Z; �Z;Z2g
is independent in CM(n), and there is a dependence relation of the form �ZZ =

A1 +BZ + C �Z +DZ
2
; D 6= 0. We will use the hypothesis of Theorem 1.1-vi) to

prove that M(n) admits a 
at extension M(n+ 1).

We begin with a proof of Proposition 1.8. Recall that f1; Z; �Z;Z2g is inde-
pendent in CM(n). Let q be the largest integer, 2 � q � n, such that B � Bq =
f1; Z; �Z;Z2

; : : : ; Z
i
; : : : ; Z

qg is independent; if q < n, there exist unique scalars
�0; �1; �1; �2; : : : ; �q such that Zq+1 = �01+�1Z+�1 �Z+�2Z

2+ � � �+�qZq. For
0 � j � n � 1, let hBi

j
denote the subspace of CM(n) spanned by elements of B

having degree � j.

Lemma 3.1. If 0 � j � n� 1 and V 2 hBi
j
, then ZV 2 hBi

j+1.

Proof. The result is obvious for j = 0. If V 2 hBi1, then V = a01+a1Z+b1 �Z,

so ZV = a0Z+a1Z
2+b1Z �Z = b1A1+(a0+b1B)Z+b1C �Z+(a1+b1D)Z2 2 hBi2.

Let V 2 hBi
j
, j � 2, V = a01 + a1Z + b1

�Z + a2Z
2 + � � � + ajZ

j (where, if

j > q, aq+1 = � � � = aj = 0). Then ZV = a0Z + a1Z
2 + b1(A1 + BZ + C �Z +

DZ
2)+a2Z

3+ � � �+ajZj+1. If j+1 � q, then clearly ZV 2 hBi
j+1. If q � j, then

V = a01+a1Z+b1 �Z+a2Z
2+ � � �+aq�1Zq�1+aqZq, so ZV = a0Z+a1Z

2+b1(A+
BZ+C �Z+DZ2)+a2Z

3+ � � �+aq�1Zq+aq(�01+�1Z+�1 �Z+�2Z
2+ � � ��qZq) 2

hBi
q
� hBi

j
.�

The following result implies Proposition 1.8.

Proposition 3.2. B is a basis for CM(n); each non-B column vector of degree p is

in hBi
p
, 0 � p � n.

Proof. The proof is by induction on p; the result is vacuous for p = 0; 1 and
is true for p = 2 since Z �Z = A1 + BZ + C �Z +DZ

2 and �Z2 = (1= �D)(A1 +BZ +
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C �Z+DZ2� ( �A1+ �B �Z+ �CZ)). Assume the result is true for p = 0; 1; 2; : : : ; k� 1,
2 � k � 1 � n� 1, and let V � �ZiZj be a non-B vector with i+ j = k. Suppose
�rst that i > 1. Then W � �Zi�1Zj has degree k � 1 (� 2), and since i � 1 > 0,
W =2 B. By induction, W 2 hBi

k�1, so W has the form W = a01 + a1Z + b1
�Z +

a2Z
2 + � � � + ak�1Z

k�1 (where, if q < k � 1, then aq+1 = � � � = ak�1 = 0).

Now V = �ZiZj = �ZW = a0
�Z + a1

�ZZ + b1
�Z2 + a2

�ZZ2 + � � � + ak�1
�ZZk�1 =

X + a2Z( �ZZ) + � � �+ ak�1Z( �ZZ
k�2), where, clearly, X � a0

�Z + a1
�ZZ + b1

�Z2 2
hBi2 � hBi

k
. For 1 � r � k � 2, �ZZr is a non-B vector of degree r + 1 (� k � 1),

so by induction, �ZZr 2 hBi
r+1. Since r + 1 � k � 1 � n � 1, Lemma 3.1 implies

�ZZr+1 = Z( �ZZr) 2 hBi
r+2 � hBi

k
, 1 � r � k � 2, so it follows that V 2 hBi

k
.

For the case when i = 1, we have j � 2 and V = �ZZj = Z( �ZZj�1). Since �ZZj�1

is a non-B vector of degree j (= k � 1), the result follows by induction and by an
application of Lemma 3.1. �

As discussed in Section 1, if q < n in Proposition 1.8, then M(n) is 
at, so
the existence of a 
at extension follows from Theorem 1.13. In the sequel we may
thus assume that q = n and that J � f1; Z; �Z;Z2

; :::; Z
i
; :::; Z

ng is a basis for
CM(n); this considerably simpli�es the proof at one point that we note below.

To prove Theorem 1.1 vi) iv), our �rst goal is to de�ne columns

Z
n+1 � (
0;n+1; 
1;n+1; 
0;n+2; : : : ; 
i;n+1; : : : ; 
0;n+i+1; : : : ; 
n;n+1; : : : ; 
0;2n+1)

t
;

�ZZn � (
1;n; 
2;n; 
1;n+1; : : : ; 
i+1;n; : : : ; 
1;n+i; : : : ; 
n+1;n; : : : ; 
1;2n)
t

for block B � B(n + 1) of a recursively generated extension M(n + 1) of M(n).
Since M(n + 1) is to be recursively generated, (1.1) implies that in CM(n+1), the

column space of M(n+ 1), we must have

�ZZn = AZ
n�1 +BZ

n + C �ZZn�1 +DZ
n+1

: (3.1)

In particular, in the column space of B we require

[ �ZZn]n = A[Zn�1]n +B[Zn]n + C[ �ZZn�1]n +D[Zn+1]n: (3.2)

Now M(n) is recursively generated, so we already have

[ �ZZn]n�1 = A[Zn�1]n�1 +B[Zn]n�1 + C[ �ZZn�1]n�1 +D[Zn+1]n�1

(i.e., the moment relations implicit in this equation can be established from the
relation �ZZn�1 = AZ

n�2+BZn�1+C �ZZn�2+DZn in CM(n)). To establish (3.2)
we must thus de�ne certain new moments of degree 2n+ 1,


n+1;n; 
n;n+1; 
n�1;n+2; :::; 
i;2n+1�i; :::; 
0;2n+1;

with 
n+1;n � �
n;n+1, such that


i+1;2n�i = A
i;2n�i�1+B
i;2n�i+C
i+1;2n�i�1+D
i;2n�i+1 (0 � i � n): (3.3)

The hypothesis of Theorem 1.1-vi) is that (3.3) holds for i = n, i.e., there
exists 
n;n+1 2 C such that


n+1;n � �
n;n+1 = A
n;n�1 +B
n;n + C
n+1;n�1 +D
n;n+1: (3.4)
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We now use (3.3) and (3.4) to de�ne the remaining 
i;2n�i+1 successively:


i;2n�i+1 = (1=D)(
i+1;2n�i �A
i;2n�i�1 � B
i;2n�i � C
i+1;2n�i�1);

i = n� 1; n� 2; :::; 0: (3.5)

The new moments (together with certain \old" moment data from M(n))
de�ne B-block columns Zn+1 and �ZZn which satisfy (3.2). Our next goal is to
show that these columns belong to Ran M(n), as required for columns in the
B-block of a positive extension M(n + 1) (cf. (2.5)). Note that the compression
of M(n) to rows and columns indexed by the elements of J is positive and in-
vertible. Let [v]J denote the compression of a column of M(n) or a column of
B to components indexed by the elements of J ; [v]J consists of the components
of v in rows 1; Z; �Z;Z2

; :::; Z
i
; :::; Z

n. It follows that there exist unique scalars,
a0; a1; b1; a2; a3; :::; an, such that

[ �ZZn]J = a0[1]J + a1[Z]J + b1[ �Z]J + a2[Z
2]J + � � �+ an[Z

n]J ; (3.6)

or, equivalently,

for each F 2 J ;
h �ZZn; F i = a0h1; F i+ a1hZ; F i+ b1h �Z; F i+ a2hZ2

; F i+ � � �+ anhZn; F i: (3.7)

We next show that �ZZn (as de�ned above) satis�es �ZZn 2 Ran M(n).

Lemma 3.3. In the column space of
�
M(n) B

�
, �ZZn = a01 + a1Z + b1

�Z +

a2Z
2 + � � �+ anZ

n.

Proof. In terms of inner products, what we seek to prove may be expressed
as follows:

For 0 � i+ j � n; h �ZZn; �ZiZji = a0h1; �ZiZji+ a1hZ; �ZiZji+ b1h �Z; �ZiZji
+ a2hZ2

; �ZiZji+ � � �+ anhZn; �ZiZji: (3.8)

The proof of (3.8) is by induction on the level number p � i+ j, 0 � p � n.
Since 1; Z; �Z 2 J , it follows from (3.6) that (3.8) holds for p = 0 and p = 1. We
assume that 1 � k � 1 � n� 1 and that (3.8) holds for p = 0; 1; : : : k � 1, and we
next prove that (3.8) holds for p = k; this is equivalent to the following:

For each r; 0 � r � k; 
k�r+1;n+r (= h �ZZn; �ZrZk�ri)
= a0h1; �ZrZk�ri+ a1hZ; �ZrZk�ri+ b1h �Z; �ZrZk�ri

+ a2hZ2
; �ZrZk�ri+ � � �+ anhZn; �ZrZk�ri: (3.9)

To prove (3.9), we introduce some notation; for 0 � r � k, let F (k; r) =
a0
k�r;r+a1
k�r;r+1+b1
k�r+1;r+a2
k�r;r+2+� � �+an
k�r;r+n; F (k; r) coincides
with the right hand side of the equation in (3.9); thus (3.9) is equivalent to showing
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that F (k; r) = 
k�r+1;n+r; 0 � r � k. The moments appearing in F (k; r) are

components of column Zr �Zk�r; indeed, we have

F (k; r) = a0hZr �Zk�r; 1i+ a1hZr �Zk�r; �Zi+ b1hZr �Zk�r; Zi
+ a2hZr �Zk�r; �Z2i+ � � �+ anhZr �Zk�r; �Zni: (3.10)

We also require an identity which follows from recursiveness:

For 1 � r < k;

Z
r �Zk�r = Z

r�1 �Zk�r�1(Z �Z) = Z
r�1 �Zk�r�1(A1 +BZ + C �Z +DZ

2)

= AZ
r�1 �Zk�r�1 +BZ

r �Zk�r�1 + CZ
r�1 �Zk�r +DZ

r+1 �Zk�r�1 (3.11)

Further, since �ZZn = AZ
n�1 + BZ

n + C �ZZn+1 +DZ
n+1, then, for 0 � r � k,


k�r+1;n+r = h �ZZn; Zk�r �Zri
= A
k�r;n+r�1 +B
k�r;n+r + C
k�r+1;n+r�1 +D
k�r;n+r+1 (3.12)

The proof of (3.9) is by induction on r, 0 � r � k. It follows from (3.7) (with
F = Z

k) that (3.9) holds for r = 0. (It is at this point that we are using the fact
that q = n in Proposition 1.7, which guarantees that Zk 2 J ; in the case q < n,
we would require a separate argument for the base case r = 0.) The induction on
r is organized as follows. We �rst show that

For 1 � r � k�1; F (k; r+1)�
k�r;n+r+1 = (1=D)(F (k; r)�
k�r+1;n+r): (3.13)

Thus, (3.13) reduces the induction to the case r = 1, i.e., to showing that F (k; 1) =

k;n+1; this utilizes the base case r = 0 and will be the last step of the proof.

We now procede to prove (3.13). From (3.10) and (3.11) we have

F (k; r) = a0hZr �Zk�r; 1i+ a1hZr �Zk�r; �Zi+ b1hZr �Zk�r; Zi
+ a2hZr �Zk�r; �Z2i+ � � �+ anhZr �Zk�r; �Zni

= a0hAZr�1 �Zk�r�1 +BZ
r �Zk�r�1 + CZ

r�1 �Zk�r +DZ
r+1 �Zk�r�1; 1i

+ a1hAZr�1 �Zk�r�1 +BZ
r �Zk�r�1 + CZ

r�1 �Zk�r +DZ
r+1 �Zk�r�1; �Zi

+ b1hAZr�1 �Zk�r�1 +BZ
r �Zk�r�1 + CZ

r�1 �Zk�r +DZ
r+1 �Zk�r�1; Zi

+ a2hAZr�1 �Zk�r�1 +BZ
r �Zk�r�1 + CZ

r�1 �Zk�r +DZ
r+1 �Zk�r�1; �Z2i

+ � � �+ anhAZr�1 �Zk�r�1 +BZ
r �Zk�r�1 + CZ

r�1 �Zk�r +DZ
r+1 �Zk�r�1; �Zni

= A(a0
k�r�1;r�1+a1
k�r�1;r+b1
k�r;r�1+a2
k�r�1;r+1+� � �+an
k�r�1;r+n�1)
+B(a0
k�r�1;r + a1
k�r�1;r+1 + b1
k�r;r + a2
k�r�1;r+2 + � � �+ an
k�r�1;r+n)

+ C(a0
k�r;r�1 + a1
k�r;r + b1
k�r+1;r�1 + a2
k�r;r+1 + � � �+ an
k�r;r+n�1)

+D(a0
k�r�1;r+1 + a1
k�r�1;r+2 + b1
k�r;r+1

+ a2
k�r�1;r+3 + � � �+ an
k�r�1;r+n+1):
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Thus, F (k; r) = AF (k� 2; r� 1)+BF (k� 1; r)+CF (k� 1; r� 1)+DF (k; r+1):
By induction on k, and using (3.12), it follows that F (k; r + 1) � 
k�r;r+n+1 =
(1=D)(F (k; r)� (A
k�r;n+r�1 +B
k�r;n+r +C
k�r+1;n+r�1 +D
k�r;n+r+1)) =
(1=D)(F (k; r)� 
k�r+1;n+r); thus (3.13) holds.

To complete the proof of (3.9), it now remains to prove that (3.9) holds for r =
1, i.e., F (k; 1) = 
k;n+1. We have F (k; 1) = a0
k�1;1+a1
k�1;2+b1
k;1+a2
k�1;3+

� � �+an
k�1;n+1, so the moments in F (k; 1) all appear in Z �Zk�1. By recursiveness,

this column may be expressed as Z �Zk�1 = �Zk�2Z �Z = �Zk�2( �A1+ �B �Z+ �CZ+ �D �Z2)
= �A �Zk�2 + �B �Zk�1 + �CZ �Zk�2 + �D �Zk. Thus,

F (k; 1) = a0hZ �Zk�1; 1i+ a1hZ �Zk�1; �Zi+ b1hZ �Zk�1; Zi
+ a2hZ �Zk�1; �Z2i+ � � �+ anhZ �Zk�1; �Zni

= a0h �A �Zk�2 + �B �Zk�1 + �CZ �Zk�2 + �D �Zk; 1i
+ a1h �A �Zk�2 + �B �Zk�1 + �CZ �Zk�2 + �D �Zk; �Zi
+ b1h �A �Zk�2 + �B �Zk�1 + �CZ �Zk�2 + �D �Zk; Zi
+ a2h �A �Zk�2 + �B �Zk�1 + �CZ �Zk�2 + �D �Zk; �Z2i

+ � � �+ anh �A �Zk�2 + �B �Zk�1 + �CZ �Zk�2 + �D �Zk; �Zni
= a0( �A
k�2;0 + �B
k�1;0 + �C
k�2;1 + �D
k;0)

+ a1( �A
k�2;1 + �B
k�1;1 + �C
k�2;2 + �D
k;1)

+ b1( �A
k�1;0 + �B
k;0 + �C
k�1;1 + �D
k+1;0)

+ a2( �A
k�2;2 + �B
k�1;2 + �C
k�2;3 + �D
k;2)

+ � � �+ an( �A
k�2;n + �B
k�1;n + �C
k�2;n+1 + �D
k;n)

= �A(a0
k�2;0 + a1
k�2;1 + b1
k�1;0 + a2
k�2;2 + � � �+ an
k�2;n)

+ �B(a0
k�1;0 + a1
k�1;1 + b1
k;0 + a2
k�1;2 + � � �+ an
k�1;n)

+ �C(a0
k�2;1 + a1
k�2;2 + b1
k�1;1 + a2
k�2;3 + � � �+ an
k�2;n+1)

+ �D(a0
k;0 + a1
k;1 + b1
k+1;0 + a2
k;2 + � � �+ an
k;n)

= �AF (k � 2; 0) + �BF (k � 1; 0) + �CF (k � 1; 1) + �DF (k; 0):

By induction on k, and using the base case of k when r = 0, the last expression
coincides with G � �A
k�1;n + �B
k;n + �C
k�1;n+1 + �D
k+1;n:

To show that G = 
k;n+1, we �rst consider the case k < n. By recursiveness,

Z
2 �Zk�1 = Z �Zk�2(Z �Z) = Z �Zk�2( �A1+ �B �Z+ �CZ+ �D �Z2) = �AZ �Zk�2+ �BZ �Zk�1+
�CZ2 �Zk�2 + �DZ �Zk, so 
k;n+1 = hZ2 �Zk�1; Z �Zn�1i = h �AZ �Zk�2 + �BZ �Zk�1 +
�CZ2 �Zk�2 + �DZ �Zk; Z �Zn�1i = G: Thus F (k; 1) = 
k;n+1 when k < n. In the
case k = n, we have F (n; 1) = G = �A
n�1;n + �B
n;n + �C
n�1;n+1 + �D
n+1;n, so
(3.4) immediately implies that F (n; 1) = 
n;n+1. The proof of Lemma 3.3 is now
complete. �
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In view of Lemma 3.3 and (3.1), we now have columns Zn+1, �ZZn

2 Ran M(n). We may thus successively de�ne the remaining columns for block B
by utilizing (1.1) and recursiveness:

�Z2
Z
n�1 = A �ZZn�2 +B �ZZn�1 + C �Z2

Z
n�2 +D �ZZn;

�Z3
Z
n�2 = A �Z2

Z
n�3 +B �Z2

Z
n�2 + C �Z3

Z
n�3 +D �Z2

Z
n�1

; � � �
� � � ; �ZnZ = A �Zn�1 +B �Zn�1Z + C �Zn +D �Zn�1Z2

;

and
�Zn+1 = (1= �D)( �ZnZ � �A �Zn�1 � �B �Zn � �C �Zn�1Z);

Since Zn+1, �ZZn 2 Ran M(n), it follows that �ZkZl 2 Ran M(n); (k+ l = n+1):

Having de�ned columns of order n+ 1 as above, which de�ne a block B, we
must show that B has the structure of a moment matrix block B(n + 1). Since
M(n) is recursively generated, the de�ning column relations for B given above
readily imply that B has the form

B =

0
BBBBB@

B0;n+1

B1;n+1

...
Bn�1;n+1

B[n; n+ 1]

1
CCCCCA ;

where, for 0 � j � n�1, Bj;n+1 is a moment matrix block consisting of \old data"
of order j+n+1. To show that B is of the form B(n+1), it thus suÆces to verify
that B[n; n+ 1] has the following form of a moment matrix block Bn;n+1:

Z
n+1 �ZZn �Z2

Z
n�1

: : : �Zn+10
BBBBB@


n;n+1 
n+1;n 
n+2;n�1 : : : 
2n+1;0


n�1;n+2 
n;n+1 
n+1;n : : : 
2n;1


n�2;n+3 
n�1;n+2 
n;n+1 : : : 
2n�1;2

...
...


0;2n+1 
1;2n 
2;2n�1 : : : 
n+1;n

1
CCCCCA ;

where 
ji = �
ji To establish that B has the required form, we will prove the
following two properties:


n+i;n+1�i � hZn+1�i �Zi; Zni = hZn+1
; Z

n�i+1 �Zi�1i�;
i:e:; 
n+i;n+1�i = �
n+1�i;n+i; 1 � i � n+ 1 (3.14)

B[n; n+ 1] is constant on diagonals: (3.15)

Lemma 3.4. hZn+1�i �Zi; Zni = hZn+1
; Z

n�i+1 �Zi�1i�,
i.e., 
n+i;n+1�i = �
n+1�i;n+i; 1 � i � n+ 1.
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Proof. The proof is by induction on i. The identity holds for i = 1 by (3.4).
We assume the identity holds for i = 1; : : : ; j� 1 < n and we next establish (3.14)
for i = j. (We treat the case i = n+ 1 separately at the end.) We have

�ZjZn+1�j = A �Zj�1Zn�j +B �Zj�1Zn�j+1 + C �ZjZn�j +D �Zj�1Zn�j+2
;

whence (by considering level Zn)


j+n;n+1�j = A
n+j�1;n�j +B
n+j�1;n�j+1 + C
n+j;n�j +D
n+j�1;n�j+2:

(3.16)
Our �rst goal is to provide identities for the terms on the right hand side of (3.16).
By recursiveness and conjugation in CM(n) (cf. (1.2)),

�Zn = (1= �D)( �Zn�1Z � �A �Zn�2 � �B �Zn�1 � �C �Zn�2Z;

whence


n+j�1;n�j = h �Zn; �Zn�jZj�1i
= (1= �D)(
n+j�2;n�j+1 � �A
n+j�3;n�j � �B
n+j�2;n�j � �C
n+j�3;n�j+1);

(3.17)


n+j�1;n�j+1 = h �Zn; �Zn�j+1
Z
j�1i

= (1= �D)(
n+j�2;n�j+2 � �A
n+j�3;n�j+1 � �B
n+j�2;n�j+1 � �C
n+j�3;n�j+2);
(3.18)

and


n+j;n�j = h �Zn; �Zn�jZji
= (1= �D)(
n+j�1;n�j+1 � �A
n+j�2;n�j � �B
n+j�1;n�j � �C
n+j�2;n�j+1):

(3.19)

Substituting (3.17)-(3.19) into (3.16) yields


j+n;n+1�j = D
n+j�1;n�j+2

+ (A= �D)(
n+j�2;n�j+1 � �A
n+j�3;n�j � �B
n+j�2;n�j � �C
n+j�3;n�j+1)

+ (B= �D)(
n+j�2;n�j+2 � �A
n+j�3;n�j+1 � �B
n+j�2;n�j+1 � �C
n+j�3;n�j+2)

+ (C= �D)(
n+j�1;n�j+1 � �A
n+j�2;n�j � �B
n+j�1;n�j � �C
n+j�2;n�j+1)

= D
n+j�1;n�j+2 + (1= �D)(A
n+j�2;n�j+1 +B
n+j�2;n�j+2 + C
n+j�1;n�j+1)

� ( �A= �D)(A
n+j�3;n�j +B
n+j�3;n�j+1 + C
n+j�2;n�j)

� ( �B= �D)(A
n+j�2;n�j +B
n+j�2;n�j+1 + C
n+j�1;n�j)

� ( �C= �D)(A
n+j�3;n�j+1 + B
n+j�3;n�j+2 + C
n+j�2;n�j+1):
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In order to simplify the preceding expression, we require several further identities.
Note that, by recursiveness,

for 2 � j � n; �Zj�1Zn�j+1 = �Zj�2Zn�j( �ZZ)

= A �Zj�2Zn�j +B �Zj�2Zn�j+1 + C �Zj�1Zn�j +D �Zj�2Zn�j+2
; (3.20)

so, for 2 � j � n,


n+j�2;n+1�j = h �Zj�1Zn�j+1
; Z

n�1i
= A
n+j�3;n�j +B
n+j�3;n�j+1 + C
n+j�2;n�j +D
n+j�3;n�j+2; (3.21)


n+j�1;n+1�j = h �Zj�1Zn�j+1
; Z

ni
= A
n+j�2;n�j +B
n+j�2;n�j+1 + C
n+j�1;n�j +D
n+j�2;n�j+2) (3.22)

and


n+j�2;n�j+2 = h �Zj�1Zn�j+1
; �ZZn�1i

= A
n+j�3;n�j+1 + B
n+j�3;n�j+2 + C
n+j�2;n�j+1 +D
n+j�3;n�j+3):
(3.23)

Further, since

�ZjZn+1�j = ( �ZZ)( �Zj�1Zn�j)

= A �Zj�1Zn�j +B �Zj�1Zn�j+1 + C �ZjZn�j +D �Zj�1Zn�j+2
;

then


n+j�1;n�j+2 = h �ZjZn+1�j
; �ZZn�1i

= A
n+j�2;n�j+1 +B
n+j�2;n�j+2 + C
n+j�1;n�j+1 +D
n+j�2;n�j+3: (3.24)

It follows from (3.21)-(3.24) that the expression for 
j+n;n+1�j that we derived
above (following (3.19)) can be re-expressed as


j+n;n+1�j = D
n+j�1;n�j+2 + (1= �D)(
n+j�1;n+2�j �D
n+j�2;n+3�j)

�( �A= �D)(
n+j�2;n+1�j�D
n+j�3;n+2�j)�( �B= �D)(
n+j�1;n+1�j�D
n+j�2;n+2�j)

� ( �C= �D)(
n+j�2;n+2�j �D
n+j�3;n+3�j)

= D
n+j�1;n�j+2 + (1= �D)(
n+j�1;n�j+2 � �A
n+j�2;n�j+1

� �B
n+j�1;n�j+1 � �C
n+j�2;n�j+2)

�D(1= �D)(
n+j�2;n�j+3 � �A
n+j�3;n�j+2� �B
n+j�2;n�j+2� �C
n+j�3;n�j+3):

To further simplify the last expression, we employ recursiveness again:

For 1 � j � n; �Zn�j+1
Z
j =

�Zn�jZj�1( �ZZ) = A �Zn�jZj�1 +B �Zn�jZj + C �Zn�j+1
Z
j�1 +D �Zn�jZj+1

:

(3.25)
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Thus


n�j+2;n+j�1 = h �Zn+1�j
Z
j
; �Zn�1Zi

= A
n�j+1;n+j�2 +B
n�j+1;n+j�1 + C
n�j+2;n+j�2 +D
n�j+1;n+j); (3.26)

whence, by induction (the case of j � 1),


n+j�1;n+2�j = �
n�j+2;n+j�1

= �A
n+j�2;n�j+1 + �B
n+j�1;n�j+1 + �C
n+j�2;n�j+2 + �D�
n+1�j;n+j : (3.27)

Similarly,


n�j+3;n+j�2 = h �Zn+1�j
Z
j
; �Zn�2Z2i

= A
n�j+2;n+j�3 + B
n�j+2;n+j�2 + C
n�j+3;n+j�3 +D
n�j+2;n+j�1);
(3.28)

whence, by induction with j � 2 and using (3.28),


n+j�2;n�j+3 = �
n�j+3;n+j�2

= �A
n+j�3;n�j+2 + �B
n+j�2;n�j+2 + �C
n+j�3;n�j+3 + �D
n+j�1;n�j+2: (3.29)

Substituting (3.27) and (3.29) into our last equation for 
j+n;n+1�j , we obtain the
desired conclusion, 
j+n;n+1�j = �
n+1�j;n+j .

This completes the proof of Lemma 3.4 for 1 � i � n. Using this result, we
next establish the result for i = n+ 1, i.e., �
0;2n+1 = 
2n+1;0. Since

�Zn+1 = (1= �D)( �ZnZ � �A �Zn�1 � �B �Zn � �C �Zn�1Z);

it follows that


2n+1;0 � h �Zn+1
; Z

ni = (1= �D)(
2n;1 � �A
2n�1;0 � �B
2n;0 � �C
2n�1;1): (3.30)

Further, since �ZZn = AZ
n�1+BZn+C �ZZn�1+DZn+1, then 
1;2n = h �ZZn; �Zni

= A
0;2n�1 + B
0;2n + C
1;2n�1 + D
0;2n+1, whence 
0;2n+1 = (1=D)(
1;2n �
(A
0;2n�1+B
0;2n+C
1;2n�1)). The case i = n implies �
1;2n = 
2n;1, so it follows
that �
0;2n+1 = (1= �D)(
2n;1 � �A
2n�1;0 � �B
2n;0� �C
2n�1;1) = 
2n+1;0. The proof
of Lemma 3.4 is now complete. �

To show that block B has the structure of a moment matrix block B2n+1, it
now suÆces to show that B is constant on diagonals.

Lemma 3.5. B is constant on diagonals.

Proof. We �rst show that B is constant on diagonals formed by excluding
elements from column �Zn+1, i.e.,

For i+ j = n+1; k+ l = n; l � 1; j � 2; h �ZiZj ; �ZkZli = h �Zi+1
Z
j�1

; �Zk+1
Z
l�1i

(3.31)
We number the 2n+1 diagonals of B of this type from the lower left toward the up-
per right; the corresponding diagonal numbers d are d = n; n�1; : : : ; 0;�1; : : : ;�n:
The proof of (3.31) is by (downward) induction on d; (3.31) holds trivially for
d = n and d = �n and holds for d = n � 1 by the de�nitions of Zn+1 and �ZZn
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(cf. (3.5)). We �rst assume (3.31) holds for some diagonal d > �n + 1 and show
that it also holds for diagonal d � 1. For i + j = n � 1, j � 1, l + k = n, l � 1,
let h �Zi+1

Z
j+1

; �ZkZli denote an element of diagonal d� 1 of block B, not on the
bottom row or in the rightmost 2 columns; we seek to show that

h �Zi+1
Z
j+1

; �ZkZli = h �Zi+2
Z
j
; �Zk+1

Z
l�1i (3.32)

Now, from (1.1) and recursiveness,

�Zi+1
Z
j+1 = A �ZiZj +B �ZiZj+1 + C �Zi+1

Z
j +D �ZiZj+2

;

so

h �Zi+1
Z
j+1

; �ZkZli = Ah �ZiZj ; �ZkZli+Bh �ZiZj+1
; �ZkZli

+ Ch �Zi+1
Z
j
; �ZkZli+Dh �ZiZj+2

; �ZkZli
= Ah �Zi+1

Z
j�1

; �Zk+1
Z
l�1i+ Bh �Zi+1

Z
j
; �Zk+1

Z
l�1i

+ Ch �Zi+2
Z
j�1

; �Zk+1
Z
l�1i+Dh �Zi+1

Z
j+1

; �Zk+1
Z
l�1i

(applying moment matrix structure in the �rst three terms (which refer toM(n)),
and applying induction to the fourth term, since h �ZiZj+2

; �ZkZli belongs to diag-
onal d, for which (3.31) holds.) Now, by the recursive de�nition of �Zi+2

Z
j , the

last sum coincides with h �Zi+2
Z
j
; �Zk+1

Z
l�1i: This completes the proof of (3.31).

To complete the proof that B is constant on diagonals, it suÆces to prove that
this is true in moving from column �ZnZ to column �Zn+1, i.e.,

for k + l = n; with n > k � 0; h �ZnZ; �ZkZli = h �Zn+1
; �Zk+1

Z
l�1i: (3.33)

Now h �Zn+1
; �Zk+1

Z
l�1i = (1= �D)h �ZnZ � �A �Zn�1 � �B �Zn � �C �Zn�1Z; �Zk+1

Z
l�1i;

= (1= �D)h �Zn�1Z2 � �A �Zn�2Z � �B �Zn�1Z � �C �Zn�2Z2
; �ZkZli; (by (3.32) (for the

�rst term on the left hand side of the inner product), and by moment matrix
structure in M(n) (for the last three terms)). It now suÆces to prove that

(1= �D)( �Zn�1Z2 � �A �Zn�2Z � �B �Zn�1Z � �C �Zn�2Z2) = �Zn (3.34)

Recall that

�Z2
Z
n�1 = A �ZZn�2 +B �ZZn�1 + C �Z2

Z
n�2 +D �ZZn:

From Lemma 3.2 and what we have proved above, the sub-block ~B of block B

formed by deleting column �Zn+1 obeys moment matrix structure. Since the pre-
ceding column relation does not involve Zn+1 or �Zn+1, it follows exactly as in the
proof of [CF2, Lemma 3.10] that this relation may be conjugated in the column

space of M(n) ~B), yielding (3.34), whence (3.33) follows. The proof of Lemma 3.5
is complete. �

From Lemmas 3.3-3.5, block B[n; n+1] is of the form Bn;n+1, block B is of the
form B(n+1), and and Ran B(n+1) � Ran M(n). Thus, to complete the proof
of Theorem 1.1, it remains to prove that the C-block of M � [M(n);B(n+ 1)] is

Toeplitz, i.e., constant on diagonals.

Lemma 3.6. The C block of [M(n);B(n+ 1)] is constant on diagonals.
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Proof. Since C � (Ci;j)0�i;j�n+1 is self-adjoint, it suÆces to consider the
main diagonal and the diagonals below it. These we index by d = n; n� 1; : : : ; 0,
beginning with the 2-element diagonal cn;1; cn+1;2. That cn;1 = cn+1;2 follows
from the structure of [M(n);B(n + 1)] [CF2, Proposition 2.3]: each diagonal of
C is symmetric with respect to its midpoint. Assume, by induction, that each of
the diagonals indexed by n; n� 1; : : : ; d (> 0) is constant. We seek to prove that
diagonal d�1 is also constant. We �rst consider an element of this diagonal that is
not in the leftmost column, the rightmost two columns, or in the bottom row, and
we denote this element by � � h �Zi+1

Z
j+1

; �ZkZli, where i+ j +2 = k + l = n+1
and l; j > 0. We must prove that

h �Zi+1
Z
j+1

; �ZkZli = h �Zi+2
Z
j
; �Zk+1

Z
l�1i:

Now [CF7, Lemma 3.15] shows that in M � [M(n);B(n + 1)], dependence
relations which de�ne the columns of block B � B(n+1) extend to the full columns
of M (and hence de�ne the columns of block C). Thus, in the column space of
(B(n+ 1)� C) we have

�Zi+1
Z
j+1 = A �ZiZj +B �ZiZj+1 + C �Zi+1

Z
j +D �ZiZj+2 (i+ j = n� 1); (3.35)

whence, by moment matrix structure in B(n+ 1)�,

� = h �Zi+1
Z
j+1

; �ZkZli
= Ah �ZiZj ; �ZkZli+Bh �ZiZj+1

; �ZkZli+ Ch �Zi+1
Z
j
; �ZkZli+Dh �ZiZj+2

; �ZkZli
= Ah �Zi+1

Z
j�1

; �Zk+1
Z
l�1i+ Bh �Zi+1

Z
j
; �Zk+1

Z
l�1i

+ Ch �Zi+2
Z
j�1

; �Zk+1
Z
l�1i+Dh �ZiZj+2

; �ZkZli:

Now h �ZiZj+2
; �ZkZli is on diagonal d, so by induction,

h �ZiZj+2
; �ZkZli = h �Zi+1

Z
j+1

; �Zk+1
Z
l�1i:

Thus, by (3.35),

� = hA �Zi+1
Z
j�1 +B �Zi+1

Z
j + C �Zi+2

Z
j�1 +D �Zi+1

Z
j+1

; �Zk+1
Z
l�1i

= h �Zi+2
Z
j
; �Zk+1

Z
l�1i:

Since we are working on or below the main diagonal, and the diagonal is sym-
metric with respect to its midpoint, at this point we may conclude that the entire
diagonal is constant, except perhaps in the case of d = 0, where it suÆces to prove
that h �ZnZ; �ZnZi = h �Zn+1

; �Zn+1i, or, equivalently, hZn+1
; Z

n+1i = h �ZZn; �ZZni.
Now

Z
n+1 = (1=D)( �ZZn �AZ

n�1 �BZ
n � C �ZZn�1);
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so

hZn+1
; Z

n+1i
= (1=D)(h �ZZn; Zn+1i �AhZn�1; Zn+1i
�BhZn; Zn+1i � Ch �ZZn�1; Zn+1i)

= (1=D)(h �ZZn; Zn+1i �Ah �ZZn�2; �ZZni
�Bh �ZZn�1; �ZZni � Ch �Z2

Z
n�2

; �ZZni) (3.36)

(by the moment matrix structure of block B(n+ 1)�). Since C = C
�,

h �ZZn; Zn+1i = hZn+1
; �ZZni� = h �ZZn; �Z2

Z
n�1i�

(by induction, since hZn+1
; �ZZni is on the �rst subdiagonal). Thus h �ZZn; Zn+1i =

h �Z2
Z
n�1

; �ZZni, whence (3.36) and recursiveness imply

hZn+1
; Z

n+1i
= (1=D)h �Z2

Z
n�1 �A �ZZn�2 �B �ZZn�1 � C �Z2

Z
n�2

; �ZZni) = h �ZZn; �ZZni:
The proof of Lemma 3.6 is complete. �

Lemmas 3.3-3.6 together complete the proof of Theorem 1.1 vi)) iv).

4. Solving full moment problems via truncated moment problems

In this section we show how to apply a recent theorem of J. Stochel [St2] which
provides a link between the full and truncated multidimensional moment problems.
Although Stochel's result applies to moment problems in any number of real or
complex variables, we paraphrase it here only for one complex variable.

Theorem 4.1. (cf. Stochel [St2]) Let K be a closed subset of C. A full sequence



(1) � (
ij)i;j�0 has a representing measure supported in K if and only if, for

each n � 1, 
(2n) has a representing measure supported in K.

The following result permits us to implement Stochel's theorem in concrete
situations.

Proposition 4.2. If M(1) � 0, then M(n) is positive and recursively generated

for each n � 1. In this case, for p 2 C[z; �z], p(Z; �Z) = 0 in CM(1) if and only if

p(Z; �Z) = 0 in CM(n) for some (respectively, for all) n � deg p.

Proof. Fix n � 1 and let f; g; fg 2 Pn, with f(Z; �Z) = 0 in CM(n). We seek to

show that (fg)(Z; �Z) = 0 in CM(n). SinceM(n+1) � 0, the Extension Principle for

positive matrices [F1] implies that f(Z; �Z) = 0 in CM(n+1). Theorem 1.11, applied

to M(n+ 1), now implies the desired conclusion that [(fg)(Z; �Z)]n = 0.

Suppose M(1) is positive and p 2 C[z; �z] satis�es p(Z; �Z) = 0 in CM(n) for
some n � deg p. Since M(k) � 0 for all k � n, the Extension Principle implies
p(Z; �Z) = 0 in CM(k) for all k � n, whence p(Z; �Z) = 0 in CM(1): �
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Before proceding to applications of Theorem 4.1, we consider connections
between Theorem 4.1 and Conjecture 1.2. In the full moment problem for 
(1),
withM(1) singular, we may de�ne the variety V(
(1)) by analogy with V(
(2n)).
It follows exactly as in the trucated moment problem (using [CF2,Proposition 3.1

and Lemma 4.1] ) that if 
(1) admits a representing measure, then M(1) � 0

and card V(
(1)) � rank M(1). If Conjecture 1.2 is true, it would follow that
these conditions are also suÆcient for the existence of a representing measure.
Indeed, if M(1) � 0, then Proposition 4.2 implies that for each n, M(n) is
positive and recursively generated. Moreover, the variety hypothesis implies that
card V(
(2n)) � card V(
(1)) � rank M(1) � rank M(n). If Conjecture 1.2 is

true, it would then follow that there exists a representing measure �n for 
(2n),
whence the existence of a representing measure for 
(1) would follow from Theo-
rem 4.1.

Question 4.3. Suppose M(1) is singular. If M(1) � 0 and card V(
(1)) �
rank M(1), does 
(1) admit a representing measure?

We noted in Section 1 results of Stochel [St1] concerning the existence of a

sequence 
(1) and a polynomial p of degree 3, with M(1) � 0 and p(Z; �Z) = 0

in CM(1), such that 
(1) has no representing measure. As a test for Question

4.3 (and Conjecture 1.2), it would be helpful to be able to construct a concrete

example of such a sequence 
(1) and to compute card V(
(1)) and rank M(1).

We next convert some terminolgy of [St1] [SS2] for the 2-dimensional full real
moment problem into the language of the full complex moment problem. Let 
 �


(1) and let �
 denote the Riesz functional on C[z; �z] de�ned by �
(

P
aij �z

i
z
j) =P

aij
ij ; thus �
(p�q) = hM(1)(
)p̂; q̂i (p; q 2 C[z; �z]). Let
P2

denote the set
of �nite sums of complex squares jpj2 (p 2 C[z; �z]). �
 is said to be positive

de�nite if �
(q) � 0 for each q 2
P2

. Positive de�niteness is a necessary (but in
general, not suÆcient) condition for the existence of a representing measure for 
;
note that �
 is positive de�nite if and only if M(
)(1) is positive semide�nite.
A necessary condition for the existence of a representing measure supported in
Z(p) is the following property (AC): �
(p�q) = 0 for each q 2 C[z; �z]. (This is
just a complexi�ed version of Stochel's property (A) for the full real moment
problem.) Thus, in order for there to exist a representing measure for 
 supported
in Z(p), it is necessary that �
 be positive de�nite and satisfy property (AC). If
these conditions are suÆcient to imply the existence of a measure, p is said to be
of type AC (p satis�es the complexi�ed version of Stochel's type A for p(x; y)).

Now �
(p�q) = hM(1)p̂; q̂i = hp(Z; �Z); q̂i. Thus Proposition 4.2 shows that �
 is
positive de�nite and satis�es (AC) () M(1) � 0 and p(Z; �Z) = 0 in CM(1).

As a �rst application of Proposition 4.2, we solve the full complex moment
problem subordinate to a column relation in CM(1) of the form Z �Z = A1+BZ+

C �Z +DZ
2. (Note that we do not assume D 6= 0 as in (1.1)).
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Proposition 4.4. 
(1) has a representing measure supported in K � fz : z�z =
A+Bz +C�z +Dz

2g if and only if M(1) � 0 and Z �Z = A1 +BZ + C �Z +DZ
2

in CM(1).

Proof. The necessity of the conditions is clear. For suÆciency, sinceM(1) �
0, Proposition 4.2 implies that for each n, M(n) is positive and recursively gener-
ated. For n � 2, we have Z �Z = A1+BZ+C �Z+DZ2 in CM(n). Since M(1) � 0,

the Extension Principle [F1] implies that f1; Z; �Z; Z2g is dependent in CM(1) if

and only if f1; Z; �Z; Z2g is dependent in CM(n) for some n � 2 (equivalently, for

each n � 2). If f1; Z; �Z; Z2g is dependent, then [CF3, Theorems 2.1 and 3.1] imply

that there exists a representing measure �n for 

(2n) with supp �n � V(
(2n)) � K.

If f1; Z; �Z; Z2g is independent, then the existence of a representing measure �n
for 
(2n) (necessarily supported in K) follows from [CF7, Theorem 1.1] if D = 0,
and from Theorem 1.1-iii) if D 6= 0 (since M(n+ 1) � 0). The result now follows
from Theorem 4.1. �

Remark 4.5. As we noted in the Introduction, Proposition 4.4 also follows from
[St1, Theorem 5.4]. In the case when f1; Z; �Z; Z2g is independent and D = 0,
K is a circle, and Proposition 4.4 is equivalent to the solution of the classical full
trigonometric moment problem (cf. [Akh] [CF7]).

The preceding results show that each polynomial of the form A+Bz+C�z+
Dz

2 + Ez�z satis�es (AC). We next identify a class of type (AC) polynomials of
arbitarily large degree; the following result proves Proposition 1.5.

Proposition 4.6. If p(z; �z) = z
k � q(z; �z), with deg q < k, then p is of type (AC).

Proof. Suppose M(1) � 0 and p(Z; �Z) = 0 in CM(1). For n > 2k, M(n) is

positive and recursively generated (Proposition 4.2), and p(Z; �Z) = 0 in CM(n).

Since k � [n=2], it follows from Theorem 1.15 that 
(2n) has a representing measure
supported in Z(p). The result now follows from Theorem 4.1. �

Remark 4.7. The referee has kindly pointed out that Proposition 4.6 also follows
directly from [SS1, Theorem 4] (since p(z; �z) has a dominating coeÆcient), or,
indirectly, from [Cas, Theorem 6]. The referee further notes that [SS1, Remark 2]
implies that Z(p) is bounded; indeed, in [CF8] we showed that card Z(p) � k

2.
Since Z(p) is compact, Proposition 4.6 can also be deduced from Schm�udgen's
solution to the K-moment problem for compact semi-algebraic sets [Sch].

As we noted earlier, Stochel's convergence theorem applies to moment prob-
lems in any number of real or complex variables. We conclude by using the conver-
gence theorem to re-prove two classical theorems concerning the one-dimensional
real full moment problem. For a real sequence �(2n) : �0; : : : ; �2n, let H(n) denote
the Hankel matrix (�i+j)0�i;j�n; with columns labelled 1; t; : : : ; tn, H(n) is the
analogue of M(n) appropriate for truncated moment problems on R. Similarly, to

a full sequence �(1), we associate H(1). We also consider L(n) = (�i+j+1)0�i;j�n
and L(1).
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Proposition 4.8. (Stieltjes (cf. [Akh])) �(1) has a representing measure supported

in [0;+1) if and only if H � H(1) � 0 and L � L(1) � 0.

Proof. Necessity of the conditions is straightforward: for a representing mea-

sure � supported in [0;+1), and for f 2 C[t], hHf̂; f̂i =
R
jf j2 d�(t) � 0 and

hLf̂; f̂i =
R
tjf(t)j2 d�(t) � 0. For suÆciency, the hypothesis implies that for each

n, H(n) � 0 and L(n) � 0. In particular, [Smu] implies that L(n � 1) � 0 and
(�n+1; : : : ; �2n)

t 2 Ran L(n� 1) (cf. the remarks following (2.4)). [CF1, Theorem

5.3] now implies that there exists a representing measure �n for �
(2n) supported in

[0;+1), so the result follows from the analogue of Theorem 4.1 for the R moment
problem. �

Proposition 4.9. (Hamburger (cf. [Akh])) �(1) has a representing measure sup-

ported in R if and only if H � H(1) � 0.

Proof. As in the previous result, necessity is clear. For suÆciency, sinceH � 0,
Proposition 4.2 (or, more precisely, its analogue for Hankel matrices) implies that
for each n, H(n) is positive and recursively generated. [CF1, Theorem 3.9] thus

implies that �(2n) admits a representing measure supported in R, so the result
follows from the R analogue of Theorem 4.1. �

Remark 4.10. For the case when H > 0, a similar proof of Hamburger's Theo-
rem is sketched in [Lan], although apparently without a proof of the convergence
argument that Stochel has recently formalized in [St2].
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de polynômes �a plusieurs variables, J. Func. Anal. 58 (1984), 254-266.

[Cu] R. Curto, An operator-theoretic approach to moment problems, in

Linear Operators, Banach Center Publ. 38 1997, 75-104.

[CF1] R. Curto and L. Fialkow, Recursiveness, positivity, and truncated

moment problems, Houston J. Math. 17 (1991), 603-635.

[CF2] R. Curto and L. Fialkow, Solution of the truncated complex moment

problem with 
at data, Mem. Amer. Math. Soc. no. 568, Amer. Math. Soc.,

Providence, 1996.

[CF3] R. Curto and L. Fialkow, Flat extensions of positive moment matrices:

Relations in analytic or conjugate terms, Operator Thy.: Adv. Appl.

104 (1998), 59-82.

[CF4] R. Curto and L. Fialkow, Flat extensions of positive moment matrices:

Recursively generated relations, Mem. Amer. Math. Soc. no. 648,

Amer. Math. Soc., Providence, 1998.

[CF5] R. Curto and L. Fialkow, The truncated complex K-moment problem,



30 Lawrence A. Fialkow IEOT

Trans. Amer. Math. Soc. 352 (2000), 2825-2855.

[CF6] R. Curto and L. Fialkow, The quadratic moment problem for the unit

circle and unit disk, Integr. Equ. Oper. Theory 38 (2000), 377-409.

[CF7] R. Curto and L. Fialkow, Solution of the singular quartic moment

problem, J. Operator Theory, to appear.

[CF8] R. Curto and L. Fialkow, A duality proof of Tchakalo�'s theorem

J. Math. Anal. Appl., to appear.

[F1] L. Fialkow, Positivity, extensions and the truncated complex moment

problem, Contemporary Math. 185(1995), 133-150.

[F2] L. Fialkow, Minimal representing measures arising from rank-increasing

moment matrix extensions, J. Operator Theory 42(1999), 425-436.

[KN] M.G. Krein and A.A. Nudel'man, The Markov Moment Problem and

Extremal Problems, Transl. Math. Monographs, vol. 50, Amer. Math. Soc., 1977

[KM] S. Kuhlmann and M. Marshall, Positivity, sums of squares and the

multi-dimensional moment problem, preprint, 2000.

[Lan] H. Landau, Classical background of the moment problem, in Moments in

in Mathematics, Proc. Symposia Appl. Math., 37(1987), 1-15, Amer. Math. Soc.,

Providence.

[PS] V. Powers and C. Scheiderer, The moment problem for non-compact

semialgebraic sets, preprint, 2000.

[P1] M. Putinar, A two-dimensional moment problem, J. Funct. Anal. 80(1988), 1-8.

[P2] M. Putinar, Positive polynomials on compact semi-algebraic sets,

Indiana University Math. J. 42(1993), 969-984.

[P3] M. Putinar, A note on Tchakalo�'s theorem, Proc. Amer. Math. Soc.

125(1997), 2409-2414.

[P4] M. Putinar, A dilation theory approach to cubature formulas,

Expo. Math. 15(1997).

[PV1] M. Putinar and F.-H. Vasilescu, Probleme des moments sur les compacts

semi-algebraiques, C.R. Acad. Sci. Paris Ser. I Math. 323(1996), 789-791.

[PV2] M. Putinar and F.-H. Vasilescu, Solving moment problems by dimensional

analysis, Ann. of Math. (2) 149(1999), no. 3, 1087-1107.

[Sch] K. Schm�udgen, The K-moment problem for semi-algebraic sets,

Math. Ann. 289(1991), 203-206.

[ST] J.A. Shohat and J.D. Tamarkin, The Problem of Moments,

in Math. Surveys I, Amer. Math. Soc., Providence, 1943.

[Smu] J.L. Smul'jan, An operator Hellinger integral (Russian), Mat. Sb. 91(1959),

381-430.

[St1] J. Stochel, Moment functions on real algebraic sets, Arkiv for Matematik

30(1992), 133-148.

[St2] J. Stochel, Solving the truncated moment problem solves the full moment

problem, Glasgow Math. J., to appear.

[SS1] J. Stochel and F.H. Szafraniec, Algebraic operators and moments on

algebraic sets, Portugal. Math. 51(1994), 25-45.

[SS2] J. Stochel and F.H. Szafraniec, The complex moment problem and sub-

normality: A polar decomposition approach, J. Funct. Anal. 159(1998), 432-491.

[Wol] Wolfram Research Inc., Mathematica, Version 3.0, Wolfram Research,

Inc., Champaign, IL, 1996.



Vol. 0 (2002) Moment problems with a �zz relation 31

Acknowledgment

The examples in this paper were obtained using calculations with the software tool
Mathematica [Wol].

Lawrence A. Fialkow

Department of Computer Science, State University of New York, New Paltz, NY 12561

E-mail: fialkowl@newpaltz.edu


