
SOLUTION OF THE SINGULAR QUARTIC MOMENT
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Abstract. Given complex numbers γ ≡ γ(4) : γ00, γ01, γ10, γ02, γ11, γ20,
γ03, γ12, γ21, γ30, γ04, γ13, γ22, γ31, γ40, with γij = γ̄ji, the quartic
complex moment problem for γ entails finding conditions for the existence
of a positive Borel measure µ, supported in the complex plane C , such that
γij =

R
z̄izj dµ (0 ≤ i+ j ≤ 4). In this note we obtain a complete solution to

the quartic problem in the case when the associated moment matrix M(2)(γ)
is singular. Each representing measure µ satisfies card suppµ ≥ rankM (2),
and we develop concrete necessary and sufficient conditions for the existence
and uniqueness of representing measures, particularly minimal ones. We show
that rankM (2)-atomic minimal representing measures exist in case the mo-
ment problem is subordinate to an ellipse, parabola, or non-degenerate hyper-
bola. If the quartic moment problem is subordinate to a pair of intersecting
lines, minimal representing measures sometimes require more than rankM (2)
atoms, and those problems subordinate to a general intersection of two conics
may not have any representing measure at all. As an application, we describe
in detail the minimal quadrature rules of degree 4 for arclength measure on a
parabolic arc.

1. Introduction

Given complex numbers γ ≡ γ(4) : γ00, γ01, γ10, γ02, γ11, γ20, γ03, γ12, γ21, γ30,
γ04, γ13, γ22, γ31, γ40, with γij = γ̄ji, the quartic complex moment problem for γ
entails finding conditions for the existence of a positive Borel measure µ, supported
in the complex plane C, such that

γij =
∫
z̄izj dµ (0 ≤ i+ j ≤ 4).
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In the sequel we study the case when the moment matrix associated to γ, M (2) ≡
M (2) (γ), is singular, where

M (2) =

1 Z Z̄ Z2 ZZ̄ Z̄2

γ00 γ01 γ10 γ02 γ11 γ20

γ10 γ11 γ20 γ12 γ21 γ30

γ01 γ02 γ11 γ03 γ12 γ21

γ20 γ21 γ30 γ22 γ31 γ40

γ11 γ12 γ21 γ13 γ22 γ31

γ02 γ03 γ12 γ04 γ13 γ22

.

In this context, we use positivity and extension properties of M (2) to develop
concrete necessary and sufficient conditions for the existence and uniqueness of
representing measures µ, particularly minimal representing measures, i.e., finitely
atomic representing measures with the fewest atoms possible. The singular quartic
moment problem arises quite naturally in any degree-4 quadrature problem for a
measure whose support is contained in the variety of a complex polynomial p (z, z̄)
with deg p ≤ 2. Further, to find a minimal representing measure in the quadratic
moment problem (corresponding to γ00, γ01, γ10, γ02, γ11, γ20), one necessarily
solves an associated singular quartic moment problem (cf. [CuF2, Proposition 6.4]).

The quartic moment problem is a special case (with n = 2) of the follow-
ing Truncated Complex Moment Problem for a prescribed moment sequence γ ≡
γ(2n) : γ00, γ01, γ10, . . . , γ0,2n, . . . , γ2n,0:

γij =
∫
z̄izj dµ (0 ≤ i+ j ≤ 2n),

µ ≥ 0, suppµ ⊆ C.
(TCMP)

TCMP is closely related to the Full Moment Problem [AhKr], [Akh], [Atz], [KrNu],
[ShTa], which has attracted renewed attention in the last few years [Put1], [Put2],
[PuV1], [PuV2], [Sch], [StS1], [StS2], [Vas]. Indeed, J. Stochel [Sto] has shown that
TCMP is more general than the Full Moment Problem in the following sense: a full
moment sequence γ ≡ (γij)i,j≥0 admits a representing measure if and only if each
truncation γ(2n) admits a representing measure.

In [CuF2] we initiated a study of TCMP based on positivity and extension prop-
erties of the associated moment matrix M (n) ≡ M (n) (γ). If γ(2n) admits a rep-
resenting measure µ, then M (n) is positive semidefinite (M (n) ≥ 0), recursively
generated (see below for terminology), and card suppµ ≥ rankM (n) [CuF2, Corol-
lary 3.7]. Conversely, M (n) admits a rankM (n)-atomic (minimal) representing
measure if and only if M (n) ≥ 0 admits a flat extension, i.e., an extension to a
moment matrix M (n+ 1) satisfying rankM (n+ 1) = rankM (n). Let us denote
the successive columns of M(n) lexicographically, by 1 , Z, Z̄, ..., Zn, Z̄Zn−1, ..., Z̄n.
Results of [CuF3] imply that for n ≥ 2, if M (n) ≥ 0 is recursively generated
and

{
1 , Z, Z̄, Z2

}
is dependent in CM(n) (the column space of M (n)), then M (n)

admits a flat extension M (n+ 1) (and a corresponding rankM (n)-atomic (mini-
mal) representing measure). Other concrete sufficient conditions for flat extensions
M (n+ 1) are described below (cf. [CuF4]), but a complete solution to the Flat
Extension Problem remains unknown. For the general case, γ(2n) admits a finitely
atomic representing measure if and only if, for some k ≥ 0, M (n) admits an exten-
sion M (n+ k) ≥ 0 which in turn admits a flat extension M (n+ k + 1) [CuF4].
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In [CuF2, Theorem 6.1], for n = 1, we proved that if M (1) ≥ 0, then γ(2)

admits a rankM (1)-atomic (minimal) representing measure. By contrast, for n =
3, in [CuF3, Section 4] we exhibited γ(6) for which M (3) ≥ 0, but γ(6) admits no
representing measure (cf. [Fia2]). For the intermediate case n = 2, our study of
the singular quartic moment problem commenced in [CuF4], where we established
flat extensions for M (2) ≥ 0 in certain cases where

{
1 , Z, Z̄, Z2

}
is independent

and Z̄Z ∈
〈
1 , Z, Z̄

〉
. (For an elementary overview of TCMP, the reader is referred

to [Cur].)
The aim of this note is to complete our analysis of the singular quartic moment

problem, and we next outline our main results. In view of [CuF3], we may as-
sume that M (2) is positive and that

{
1 , Z, Z̄, Z2

}
is independent in CM(2). The

remaining cases may then be organized as follows:

Case I. M (2) ≥ 0,
{

1 , Z, Z̄, Z2
}

is independent in CM(2), and Z̄Z ∈
〈
1 , Z, Z̄, Z2

〉
.

Case II. M (2) ≥ 0,
{

1 , Z, Z̄, Z2, Z̄Z
}

is independent in CM(2), and
Z̄2 ∈

〈
1 , Z, Z̄, Z2, Z̄Z

〉
.

In Section 2 we prove the following general result concerning the truncated
moment problem in which M (n) ≥ 0,

{
1 , Z, Z̄

}
is independent in CM(n), and

Z̄Z ∈
〈
1 , Z, Z̄

〉
.

Theorem 1.1. Let n > 1. If M (n) ≥ 0,
{

1 , Z, Z̄
}

is independent in CM(n), and
Z̄Z ∈

〈
1 , Z, Z̄

〉
, then M (n) admits a flat extension (and γ(2n) admits a correspond-

ing rankM (n)-atomic representing measure). Moreover, rankM (n) ≤ 2n + 1,
and if rankM (n) ≤ 2n, then γ(2n) admits a unique representing measure. If
rankM (n) = 2n+ 1, then M (n) admits infinitely many flat extensions, each cor-
responding to a distinct (2n+ 1)-atomic representing measure.

Theorem 1.1 has the following implication for Case I of the quartic moment
problem.

Theorem 1.2. Suppose M (2) ≥ 0,
{

1 , Z, Z̄, Z2
}

is independent in CM(2) and
Z̄Z ∈

〈
1 , Z, Z̄

〉
. Then Z̄Z = A1 +BZ + B̄Z̄ in CM(2) with A+ |B|2 > 0, and γ(4)

admits a rankM (2)-atomic (minimal) representing measure. Moreover, each rep-
resenting measure is supported in the circle Cγ =

{
z ∈ C :

∣∣z − B̄∣∣2 = A+ |B|2
}

. If{
1 , Z, Z̄, Z2

}
is a basis for CM(2), then there exists a unique representing measure,

which is 4-atomic. Otherwise,
{

1 , Z, Z̄, Z2, Z̄2
}

is a basis for CM(2), and there exist
infinitely many flat extensions, each corresponding to a distinct 5-atomic (minimal)
representing measure.

In Section 3 we complete Case I with the following computational test.

Theorem 1.3. Suppose M (2) ≥ 0,
{

1 , Z, Z̄, Z2
}

is independent in CM(2), and
Z̄Z = A1 +BZ + CZ̄ +DZ2, D 6= 0. The following are equivalent:

(i) γ(4) admits a finitely atomic representing measure;
(ii) γ(4) admits a 4-atomic (minimal) representing measure;
(iii) M (2) admits a flat extension M (3);
(iv) M (2) admits a recursively generated extension M (3) ≥ 0;
(v) there exists γ23 ∈ C such that

γ̄23 = Aγ21 + Bγ22 + Cγ31 +Dγ23.
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For the case |D| 6= 1, we prove in Corollary 3.4 that there always exists a 4-
atomic (minimal) representing measure. By contrast, for |D| = 1 we illustrate
cases in which there exist representing measures (Example 3.6) and also a case
in which γ(4) admits no representing measure (Example 3.8). The latter case is
the “smallest possible” example of a positive moment matrix which admits no
representing measure.

In Section 4, for Case II of M (2), we study the structure of a recursively gener-
ated moment matrix extension

M (3) ≡
(
M (2) B (3)
B (3)∗ C (3)

)
.

We show that to each γ23 ∈ C there corresponds a unique moment matrix block
B (3) ≡ B (3) [γ23] satisfying RanB (3) ⊆ RanM (2); thus there exists a matrix W
such that M (2)W = B (3). Let C = W ∗M (2)W (≡ (Cij)1≤i,j≤4). M (2) admits
a flat extension M (3) if and only if C assumes the form of a moment matrix block
C (3), i.e., C is Toeplitz.

Theorem 1.4. Suppose M (2) ≥ 0,
{

1 , Z, Z̄, Z2, Z̄Z
}

is independent in CM(2),
and Z̄2 ∈

〈
1 , Z, Z̄, Z2, Z̄Z

〉
. M (2) admits a flat extension M (3) (and γ(4) admits

a 5-atomic (minimal) representing measure) if and only if there exists γ23 ∈ C such
that C21 = C32.

In Corollary 4.11 we use computer algebra to establish the existence of a flat
extension in the case of Theorem 1.4 where Z̄2 = A1 + BZ + CZ̄ + Z2 and the
moment data are real. In Example 4.12 we use Theorem 1.4 to give a complete
description of the minimal quadrature rules of degree 4 for arclength measure on
the segment of the parabola y = x2 determined by 0 ≤ x ≤ 1. We note that
∆ := C21 − C32 can be expressed as a quadratic polynomial in γ23 and γ̄23. In
Example 4.3 we show that even in an apparently simple situation, when Z̄2 = Z2,
it is possible to have ∆ nonzero for every γ23 ∈ C.

We begin Section 5 by establishing that whenever
{

1 , Z, Z̄, Z2, Z̄Z
}

is a basis
for CM(2), then the associated V(γ) is the zero set of a real quadratic equation
in x := Re[z] and y := Im[z]. We then proceed to reduce Case II to subcases
corresponding to the following four real conics: (i) y = x2; (ii) yx = 1; (iii) yx = 0;
and (iv) x2 +y2 = 1. This is done with the aid of Proposition 1.7 (invariance under
degree-one transformations) and Proposition 1.12, which establishes the equivalence
between TCMP and a naturally associated truncated moment problem in R2. Since
Sub-Case (iv) is discussed in detail in Section 2, we devote the rest of Section 5
to establishing the existence of representing measures for Sub-Cases (i)-(iii). Our
main result for Case II follows.

Theorem 1.5. Let γ(4) be given, and assume M(2) ≥ 0 and
{

1 , Z, Z̄, Z2, Z̄Z
}

is a basis for CM(2). Then γ(4) admits a representing measure µ. Moreover, it is
possible to find µ with card supp µ = rankM (2), except in some cases when V(γ(4))
is a pair of intersecting lines, in which cases there exist µ with card supp µ ≤ 6.

When we began to study the singular quartic moment problem in [CuF4], we
believed that a positive, singular, recursively generated moment matrix M(2) cor-
responded to a flat extension M(3) and a rank M(2)-atomic representing measure.
The results of the present paper show, perhaps surprisingly, that the singular quar-
tic moment problem actually displays the full range of pathology associated with
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multidimensional truncated moment problems. Flat extensions do exist for quartic
moment problems subordinate to a circle (Section 2), or to an ellipse, parabola, or
non-degenerate hyperbola (Sections 4 and 5). For problems subordinate to a pair
of intersecting lines, a minimal representing measure does not always correspond
to a flat extension (Section 5). For the moment problems considered in Section 3,
where the variety is typically the intersection of two conics, it may happen that
there is no representing measure at all. (In a forthcoming note [Fia3], the second-
named author extends the results of Section 3, together with those in Section 5
corresponding to the above mentioned “parabola case” (i), to arbitrary n.) After
completing the results of this paper, we received a manuscript by I.B. Jung, S.H.
Lee, W.Y. Lee and C. Li [JLLL], in which the authors independently establish the
existence of a flat extension in the case of the singular quartic moment problem
when {1 , Z, Z̄, Z2} is independent, and Z̄Z ∈

〈
1 , Z, Z̄

〉
(cf. Theorem 2.1); unlike

our proof, the proof in [JLLL] is by computer algebra. [JLLL] also contains an
example of the case when M(2) ≥ 0 fails to have a representing measure (cf. Ex-
amples 3.8 and 3.9 below), and it contains some positive results for the nonsingular
quartic moment problem.

The remainder of this section is devoted to notation and technical results con-
cerning moment matrices. Let Pn denote the complex polynomials q (z, z̄) =∑
aij z̄

izj of total degree at most n, and for q ∈ Pn, let q̂ = (aij) denote the
coefficient vector of q with respect to the basis

{
z̄izj

}
0≤i+j≤n of Pn (ordered lexi-

cographically: 1, z, z̄, z2, zz̄, z̄2, . . . , zn, . . . , z̄n). For p ∈ P2n, p (z, z̄) ≡
∑
bij z̄

izj,
let Lγ (p) :=

∑
bijγij ; Lγ is the Riesz functional associated to γ. The moment ma-

trix M (n) ≡M (n) (γ) is the unique matrix (of size (n+1)(n+2)
2 ) such that〈

M (n) f̂ , ĝ
〉

= Lγ (f ḡ) (f, g ∈ Pn).(1.1)

If we label the rows and columns of M (n) lexicographically as 1 , Z, Z̄, Z2, Z̄Z,
Z̄2, . . . , Zn, . . . , Z̄n, it follows that the row Z̄kZl, column Z̄iZj entry of M (n) is
equal to 〈

M (n) ̂̄zizj, ̂̄zkzl〉 = Lγ
(
z̄i+lzj+k

)
= γi+l,j+k.

For example, with n = 1, the Quadratic Moment Problem for γ(2) : γ00, γ01, γ10,
γ02, γ11, γ20 corresponds to

M (1) =

1 Z Z̄
1 γ00 γ01 γ10

Z

(
γ10 γ11 γ20

)
Z̄ γ01 γ02 γ11

.

If γ admits a representing measure µ, then for f ∈ Pn,
〈
M (n) f̂ , f̂

〉
= Lγ

(
|f |2

)
=∫

|f |2 dµ ≥ 0, whence M (n) ≥ 0.
Now let p ∈ P2n, p 6≡ 0, and define k by deg p = 2k or deg p = 2k − 1. There

exists a unique localizing matrix Mp (n) ≡Mp (n) (γ) (of size (n−k+1)(n−k+2)
2 ) such

that 〈
Mp (n) f̂ , ĝ

〉
= Lγ (pf ḡ) (f, g ∈ Pn−k).
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Thus, if a representing measure µ for γ is supported in Kp := {z ∈ C : p (z, z̄) ≥ 0},
then for f ∈ Pn−k,〈

Mp (n) f̂ , f̂
〉

= Lγ

(
p |f |2

)
=
∫
p |f |2 dµ ≥ 0,

whence Mp (n) ≥ 0.
For a matrix M , [M ]k denotes the compression of M to the first k rows and

columns and
〈
Z̄iZj, Z̄kZl

〉
M

denotes the entry in row Z̄kZl and column Z̄iZj.
Similarly, for a vector v, [v]k denotes the compression of v to the first k entries.
In the sequel, unless otherwise stated, we always assume that γ(2n) satisfies γ00 =
1; this amounts to rescaling the total mass, and has no effect as to existence,
uniqueness or location of representing measures.

We next recall from [CuF2] some additional necessary conditions for the existence
of representing measures. Let CM(n) denote the column space of M(n), i.e., CM(n) =
〈1 , Z, Z̄, . . . , Zn, . . . , Z̄n〉 ⊆ Cm(n). For p ∈ Pn, p ≡

∑
aij z̄

izj , we define p(Z, Z̄) ∈
CM(n) by p(Z, Z̄) :=

∑
aijZ̄

iZj ; note that if p(Z, Z̄) = 0, then p̄(Z, Z̄) = 0 [CuF2].
If µ is a representing measure for γ, then

(1.2) For p ∈ Pn, p(Z, Z̄) = 0⇔ suppµ ⊆ Z(p) := {z ∈ C : p(z, z̄) = 0}
[CuF2, Prop. 3.1].

It follows from (1.2) that

(1.3) If µ is a representing measure for γ, then card suppµ ≥ rankM (n)

[CuF2, Cor. 3.5].

The main result of [CuF2, Theorem 5.13] shows that γ admits a rankM (n)-
atomic (minimal) representing measure if and only if M (n) ≥ 0 and M (n) ad-
mits an extension to a (necessarily positive) moment matrix M (n+ 1) satisfying
rankM (n+ 1) = rankM (n); such an extension is called a flat extension.

Given γ ≡ γ(2n), for 0 ≤ i, j ≤ n we define the (i+ 1)×(j + 1) matrix Bij whose
entries are the moments of order i+ j:

Bij :=



γij γi+1,j−1 · · · γi+j,0
γi−1,j+1 γij γi+1,j−1

γi−1,j+1
...

...

γ0,j+i · · · γji


.(1.4)

It follows from equation (1.1) that M (n) (γ) admits a block decomposition
M (n) = (Bij)0≤i,j≤n.

We may also define blocks B0,n+1, . . . , Bn−1,n+1 via (1.4). Given “new moments”
of degree 2n + 1 for a prospective representing measure, let Bn,n+1 denote the
corresponding moment matrix block given by (1.4), and let

B (n+ 1) :=


B0,n+1

...
Bn−1,n+1

Bn,n+1

 .
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Given a moment matrix block C (n+ 1) of the form Bn+1,n+1 (corresponding to
“new moments” of degree 2n+ 2), we may describe the moment matrix extension
M (n+ 1) via the block decomposition

M (n+ 1) =
(

M (n) B (n+ 1)
B (n+ 1)∗ C (n+ 1)

)
.(1.5)

A theorem of Smul’jan [Smu] shows that a block matrix

M =
(
A B
B∗ C

)
(1.6)

is positive if and only if (i) A ≥ 0, (ii) there exists a matrix W such that B = AW ,
and (iii) C ≥ W ∗AW (since A = A∗, W ∗AW is independent of W provided B =
AW ). Note also that if M ≥ 0, then rankM = rankA if and only if C = W ∗AW ;
conversely, if A ≥ 0 and there exists W such that B = AW and C = W ∗AW ,
then M ≥ 0 and rankM = rankA. A block matrix M as in (1.6) is an extension
of A, and is a flat extension if rankM = rankA. A flat extension of a positive
matrix A is completely determined by a choice of block B satisfying B = AW and
C = W ∗AW for some matrix W ; we denote such a flat extension by [A ; B].

For an (n+ 1)× (n+ 2) matrix Bn,n+1, representing “new moments” of degree
2n+ 1 for a prospective representing measure of γ(2n), let

B :=


B0,n+1

...
Bn−1,n+1

Bn,n+1

 .

By Smul’jan’s theorem, M (n) ≥ 0 admits a (necessarily positive) flat extension

[M (n) ; B] =
(
M (n) B
B∗ C

)
in the form of a moment matrix M (n+ 1) (cf. (1.5)) if and only if

B = M (n)W for some W (i.e., RanB ⊆ RanM (n));
C := W ∗M (n)W is Toeplitz, i.e., has the form of a moment matrix
block Bn+1,n+1.

(1.7)

Theorem 1.6. (Flat Extension Theorem) [CuF2, Remark 3.15, Theorem 5.4, Corol-
lary 5.12, Theorem 5.13, and Corollary 5.15] [CuF3, Lemma 1.9] [Fia1] Suppose
M (n) (γ) is positive and admits a flat extension M (n+ 1), so that Zn+1 = p

(
Z, Z̄

)
in CM(n+1) for some p ∈ Pn. Then there exist unique successive flat (positive) mo-
ment matrix extensions M (n+ 2), M (n+ 3), . . . , which are determined by the
relations

Zn+k =
(
zk−1p

) (
Z, Z̄

)
∈ CM(n+k) (k ≥ 2).(1.8)

Let r := rankM (n). There exist unique scalars a0, . . . , ar−1 such that in CM(r),

Zr = a01 + · · ·+ ar−1Z
r−1.

The characteristic polynomial gγ (z) := zr −
(
a0 + · · ·+ ar−1z

r−1
)

has r distinct
roots, z0, . . . , zr−1, and γ has a rankM (n)-atomic minimal representing measure
of the form

ν = ν [M (n+ 1)] =
∑

ρiδzi ,
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where the densities ρi > 0 are determined by the Vandermonde equation

V (z0, . . . , zr−1)
(
ρ0, . . . , ρr−1

)t =
(
γ00, . . . , γ0,r−1

)t
.(1.9)

The measure ν [M (n+ 1)] is the unique representing measure for γ(2n+2), and is
also the unique representing measure for M (∞).

We note in connection with (1.8) that due to the structure of moment matrix
blocks Bij , an extension M (n+ 1) is completely determined from M (n) once col-
umn Zn+1 is specified.

We also recall from [CuF2] and [Fia1] that M (n) ≥ 0 is recursively generated if
the following property holds:

p, q, pq ∈ Pn, p
(
Z, Z̄

)
= 0 =⇒ (pq)

(
Z, Z̄

)
= 0.(RG)

If M (n) ≥ 0 admits a flat extension M (n+ 1), then M (n+ 1), and all of its
successive flat extensions M (n+ 1 + d) (described by Theorem 1.6), are recursively
generated [CuF2, Remark 3.15-ii)]. More generally, if γ(2n) admits a representing
measure, then M (n) is recursively generated [CuF2, Corollary 3.4].

We conclude this section with some results that will allow us to convert a given
moment problem into a simpler, equivalent, moment problem. For a, b, c ∈ C,
|b| 6= |c|, let ϕ(z) := a + bz + cz̄ (z ∈ C). Given γ(2n), define γ̃(2n) by γ̃ij :=
Lγ(ϕ̄iϕj) (0 ≤ i+ j ≤ 2n), where Lγ denotes the Riesz functional associated with

γ. It is straightforward to verify that if Φ (z, z̄) :=
(
ϕ (z) , ϕ (z)

)
, then Lγ̃(p) =

Lγ (p ◦ Φ) for every p ∈ Pn. (Note that for p (z, z̄) ≡
∑
aij z̄

izj, (p ◦Φ) (z, z̄) =

p
(
ϕ (z) , ϕ (z)

)
≡
∑
aijϕ (z)

i
ϕ (z)j .)

Proposition 1.7. (Invariance under degree-one transformations.) Let M(n) and
M̃(n) be the moment matrices associated with γ and γ̃, and let Jp̂ := p̂ ◦ Φ (p ∈ Pn).

(i) M̃(n) = J∗M(n)J .
(ii) J is invertible.
(iii) M̃(n) ≥ 0⇔M(n) ≥ 0.
(iv) rank M̃(n) = rankM(n).
(v) The formula µ = µ̃ ◦ Φ establishes a one-to-one correspondence between the

sets of representing measures for γ and γ̃, which preserves measure class and
cardinality of the support; moreover, ϕ(suppµ) = supp µ̃.

(vi) M (n) admits a flat extension if and only if M̃ (n) admits a flat extension.
(vii) For p ∈ Pn, p

(
Z̃, ˜̄Z

)
= J∗

(
(p ◦ Φ)

(
Z, Z̄

))
.

Proof. It is clear that (iii) and (iv) follow from (i) and (ii). Note that ϕ−1 (w) =
(b̄w − cw̄ + āc − ab̄)/(|b|2 − |c|2), so ϕ−1 is also a degree-one map. To prove (v),
assume µ̃ is a representing measure for γ̃, and observe that

γij = Lγ
(
z̄izj

)
= Lγ

(
ϕ−1 ◦ ϕ i

(
ϕ−1 ◦ ϕ

)j)
= Lγ̃

(
ϕ−1

i (
ϕ−1

)j)
=
∫
ϕ−1(w)

i (
ϕ−1(w)

)j
dµ̃(w, w̄) =

∫
z̄izj dµ̃(Φ(z, z̄)) =

∫
z̄izj dµ(z, z̄),

which shows that µ is a representing measure for γ. Conversely, it follows as above
that if µ is a representing measure for γ, then µ̃ := µ ◦Ω is a representing measure
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for γ̃ (where Ω (w) :=
(
ϕ−1 (w) , ϕ−1 (w)

)
). The rest of (v) is straightforward.

We now establish (i). First, recall that 〈M(n)p̂, q̂〉 = Lγ(pq̄) (p, q ∈ Pn). Thus,

〈J∗M(n)Jp̂, q̂〉 = 〈M(n)Jp̂, Jq̂〉 =
〈
M(n)p̂ ◦ Φ, q̂ ◦ Φ

〉
= Lγ((p ◦ Φ)(q ◦ Φ)) = Lγ((pq̄) ◦ Φ) = Lγ̃(pq̄) =

〈
M̃(n)p̂, q̂

〉
.

For (ii),

Jp̂ = 0 =⇒ p̂ ◦ Φ = 0 =⇒ p ◦ Φ = 0.

Therefore,

p
(
ϕ (z) , ϕ (z)

)
= 0 for all z ∈ C,

whence

p (w, w̄) = p
(
ϕ
[
ϕ−1 (w)

]
, ϕ [ϕ−1 (w)]

)
= 0 for all w ∈ C.

It readily follows (e.g., using partial derivatives) that p ≡ 0, whence p̂ = 0, which
proves that J is invertible.

For (vi), supposeM (n) admits a flat extension. ThenM (n) admits a rankM (n)-
atomic representing measure, so (v) implies that M̃ (n) admits a rankM (n)-atomic
representing measure µ̃. Now (iv) implies that µ̃ is rank M̃ (n)-atomic, and it follows
that M̃ (n) admits a flat extension. The converse is entirely similar.

Finally, to prove (vii), observe that

p
(
Z̃, ˜̄Z

)
= M̃ (n) p̂ = J∗M (n)Jp̂ (by(i))

= J∗M (n) p̂ ◦ Φ

= J∗
[
(p ◦ Φ)

(
Z, Z̄

)]
.

Corollary 1.8. The following are equivalent:

(i) γ̃ has a representing measure supported in Z (p);
(ii) γ̃ has a representing measure and p

(
Z̃, ˜̄Z

)
= 0;

(iii) γ has a representing measure and p (ϕ, ϕ̄)
(
Z, Z̄

)
= 0;

(iv) γ has a representing measure supported in Z (p ◦ Φ).

Corollary 1.9. Given a family γ ≡ γ(2n) with γ00 = 1 and γ11 > |γ01|
2, for the

purposes of solving TCMP, we can always additionally assume that γ01 = 0 and
γ11 = 1.

Proof. For a, b ∈ C, b 6= 0, let ϕ(z) := z−a
b (z ∈ C). Using Proposition 1.7, we

observe that

γ̃00 = Lγ (1) = γ00 = 1,

γ̃01 = Lγ(ϕ) = Lγ

(
z − a
b

)
=
γ01 − aγ00

b
=
γ01 − a

b
,
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and

γ̃11 = Lγ(ϕ̄ϕ) = Lγ

(
z̄z − az̄ − āz + |a|2

|b|2

)

=
γ11 − aγ10 − āγ01 + |a|2 γ00

|b|2
=
γ11 − aγ10 − āγ01 + |a|2

|b|2
.

It is now clear that choosing a = γ01 and b =
√
γ11 − |γ01|

2, we obtain γ̃01 = 0
and γ̃11 = 1, as desired.

The following consequence of Proposition 1.7 is also a mild extension of [CuF6,
Lemma 2.1].

Proposition 1.10. Let M (n) be the moment matrix for γ ≡ γ(2n). For 0 6= λ ∈ C,
let Jλ ∈ Mm(n) be the diagonal matrix whose entry in row Z̄iZj, column Z̄iZj is
λ̄
i
λj (0 ≤ i+ j ≤ n). Then M̃ (n) = J∗λM (n)Jλ satisfies the following properties:

(i) M̃ (n) is the moment matrix associated with γ̃(2n), where γ̃ij = λ̄
i
λjγij (0 ≤

i+ j ≤ 2n);
(ii) M̃ (n) ≥ 0 if and only if M (n) ≥ 0;
(iii) there exist scalars αrs such that Z̄iZj =

∑
r,s αrsZ̄

rZs in CM(n) if and only

if ˜̄ZiZ̃j =
∑

r,s

(
λ̄
i−r

λj−sαrs

)
˜̄ZrZ̃s in CM̃(n);

(iv)
{
Z̄iZj

}
(i,j)∈I is a basis for CM(n) if and only if

{
˜̄ZiZ̃j

}
(i,j)∈I

is a basis for

CM̃(n);
(v) rank M̃ (n) = rankM (n);
(vi) γ admits a finitely atomic representing measure µ ≡

∑
ρkδzk if and only if γ̃

admits a finitely atomic representing measure µ̃ ≡
∑
ρkδz̃k , where z̃k = λzk.

In brief, γ(2n) and γ̃(2n) give rise to equivalent truncated moment problems, whose
representing measures satisfy the relation supp µ̃ = λ suppµ.

Proof. (i), (ii), (v), and (vi) are contained in [CuF6, Lemma 2.1], and also fol-
low from Proposition 1.7 using ϕ (z) = λz (i.e., a = 0, b = 1/λ). Since (iii) ⇒
(iv) is clear, it suffices to prove (iii). Suppose Z̄iZj =

∑
r,s αrsZ̄

rZs; then for
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0 ≤ k + l ≤ n,〈
˜̄ZiZ̃j , ˜̄ZkZ̃l

〉
M̃(n)

= γ̃i+l,j+k

= λ̄
i+l
λj+kγi+l,j+k

= λ̄
i+l
λj+k

〈
Z̄iZj , Z̄kZl

〉
M(n)

= λ̄
i+l
λj+k

〈∑
r,s

αrsZ̄
rZs, Z̄kZl

〉
M(n)

= λ̄
i+l
λj+k

∑
r,s

αrsγr+l,s+k

=
∑
r,s

(
λ̄
i−r

λj−sαrs
)
λ̄
r+l

λs+kγr+l,s+k

=
∑
r,s

(
λ̄
i−r

λj−sαrs

)
γ̃r+l,s+k

=

〈∑
r,s

(
λ̄
i−r

λj−sαrs
)

˜̄ZrZ̃s, ˜̄ZkZ̃l
〉
M̃(n)

.

Thus ˜̄ZiZ̃j =
∑

r,s

(
λ̄
i−r

λj−sαrs
)

˜̄ZrZ̃s, and the converse implication is proved
similarly.

Corollary 1.11. Let M (n) be the moment matrix for γ(2n), with γ01 6= 0, and
define λ = γ10/ |γ01| and γ̃ij = λ̄

i
λjγij (0 ≤ i + j ≤ 2n). Then the equivalent

family γ̃(2n) satisfies γ̃01 > 0 and γ̃ii = γii (0 ≤ i ≤ n).

By virtue of Proposition 1.10(iv) and Corollary 1.11, whenever we analyze a
quartic moment problem for which CM(2) has a particular basis, we may further
assume that γ01 ≥ 0. This extra assumption reduces the algebraic complexity of
certain calculations that can sometimes be used to solve the moment problem via
computer algebra. This approach was successful in our original proof of the rank-4
case of Theorem 1.2; an earlier attempt to prove this case by computer algebra,
with γ01 complex, failed due to memory overflow.

Consider now a given collection γ ≡ γ(2n) and its associated real collection β(2n),
where β(2n)

ij := Lγ(yixj), with x := z+z̄
2 and y := z−z̄

2i . Since Lγ clearly maps real

polynomials to real numbers, β(2n)
ij ∈ R, for all i, j. We can then build an associated

moment matrix MR(n)(β) := (MR[i, j](β))ni,j=0, where

MR[i, j](β) :=


β0,i+j β1,i+j−1 · · · βj,i
β1,i+j−1 β2,i+j−2 · · · βj+1,i−1

...
...

. . .
...

βi,j βi+1,j−1 · · · βi+j,0

 .

We denote the successive rows and columns of MR(n)(β) by 1 , X, Y,X2, Y X, Y 2, ...,
Xn, ..., Y n; observe that each block MR[i, j](β) is of Hankel type. Conversely, given
a collection β ≡ β(2n) of real numbers, with β(2n)

00 > 0, we can let γ(2n)
ij := Lβ(z̄izj),

where z := x + iy and z̄ := x − iy. Clearly γ
(2n)
ji = Lβ(z̄jzi) = Lβ(z̄izj) = γ

(2n)
ij ,
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and γ
(2n)
00 = β

(2n)
00 > 0. There is, therefore, a one-to-one correspondence between

TCMP’s and TRMP’s, at least at the Riesz functional level. The two matrices
M ≡ M(n)(γ) and MR ≡ MR(n)(β) give rise to inner products 〈p, q〉M := (Mp̂, q̂)
(p, q ∈ Pn) and 〈r, s〉MR := (MRr̃, s̃) (r, s ∈ R[x, y]n). (Herêand˜denote coor-
dinates relative to the canonical bases 1, z, z̄, z2, z̄z, z̄2, ... and 1, x, y, x2, yx, y2, ...,
respectively. ) The matrix MR has properties analogous to those enjoyed by M
(cf. [CuF2, Theorem 2.1]), which we omit, since we will not need them here. We
are more interested, instead, in the transition matrix L which intertwines M and
MR, that is M = L∗MRL. To describe L, let ψ(x, y) := z ≡ x + iy and let
Ψ(x, y) := (z, z̄). Exactly as in the paragraph preceding Proposition 1.7, we have
Lγ(p) = Lβ(p ◦ Ψ), so that Lp̂ := p̃ ◦Ψ. The matrix L admits a direct sum de-
composition

⊕n
k=0 Lk, where Lk acts on monomials of total degree k. For instance,

L0 = (1), L1 =
(

1 1
i −i

)
,

L2 =

 1 1 1
2i 0 −2i
−1 1 −1

 , and L3 =


1 1 1 1
3i i −i −3i
−3 1 1 −3
−i i −i i

 .

We now have the following analogue of Proposition 1.7.

Proposition 1.12. (Equivalence of TCMP with TRMP) Let M(n) and MR(n)
be the moment matrices associated with γ and β, and define L by Lp̂ := p̃ ◦Ψ
(p ∈ Pn).

(i) M(n) = L∗MR(n)L.
(ii) L is invertible.
(iii) M(n) ≥ 0⇔MR(n) ≥ 0.
(iv) rankM(n) = rankMR(n).
(v) The formula µR = µ ◦Ψ establishes a one-to-one correspondence between the

sets of representing measures for β and γ, which preserves measure class and
cardinality of the support; moreover, ψ(suppµR) = suppµ.

(vi) M (n) admits a flat extension if and only if MR(n) admits a flat extension.
(vii) For p ∈ Pn, p

(
Z, Z̄

)
= L∗((p ◦Ψ) (X,Y )).

Example 1.13. Consider the moment matrix

M(2) :=


1 1 + i 1− i −1 5 −1

1− i 5 −1 4 + 9i 4− 9i 4 + 9i
1 + i −1 5 4− 9i 4 + 9i 4− 9i
−1 4− 9i 4 + 9i 37 −19 37
5 4 + 9i 4− 9i −19 37 −19
−1 4− 9i 4 + 9i 37 −19 37

 .

A straightforward application of the formula M(2) = L∗MR(2)L shows that

MR(2) =


1 1 1 2 0 3
1 2 0 4 0 0
1 0 3 0 0 9
2 4 0 9 0 0
0 0 0 0 0 0
3 0 9 0 0 28

 .
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Observe that rankM(2) = rankMR(2) = 5, and that Z
2

= Z2 in CM(2), while
Y X = 0 in CMR(2); also, V(γ) = {z ∈ C : (z + z̄)(z − z̄) = 0} and V(β) = {(x, y) ∈
R : yx = 0}, so as subsets of two-dimensional real space V(γ)(= V(β)) is the pair
of coordinate axes. Proposition 1.12 says that M(2) admits a representing measure
if and only if MR(2) does. In Example 4.3, we use Theorem 4.1 to show that M(2)
admits no flat extension. In Example 5.6 we provide an alternative test to show
that MR(2) does not admit a 5-atomic representing measure, while at the same
time we use Proposition 5.5. to establish that MR(2) does admit infinitely many
6-atomic representing measures.

Acknowledgment. Many of the examples, and portions of the proofs of some
results in this paper were obtained using calculations with the software tool Math-
ematica [Wol].

2. The case Z̄Z = A1 +BZ + CZ̄

In this section we analyze TCMP for the case when M (n) ≥ 0,
{

1 , Z, Z̄
}

is
independent in CM(n), and there exist scalars A, B, C such that

Z̄Z = A1 +BZ + CZ̄.(2.1)

The main result of this section is Theorem 1.1, which we restate for convenience.

Theorem 2.1. Let n > 1. If M (n) ≥ 0,
{

1 , Z, Z̄
}

is independent in CM(n), and
Z̄Z ∈

〈
1 , Z, Z̄

〉
, then M (n) admits a flat extension (and γ(2n) admits a correspond-

ing rankM (n)-atomic representing measure). Moreover, rankM (n) ≤ 2n + 1,
and if rankM (n) ≤ 2n, then γ(2n) admits a unique representing measure. If
rankM (n) = 2n+ 1, then M (n) admits infinitely many flat extensions, each cor-
responding to a distinct (2n+ 1)-atomic representing measure.

We first observe that conjugation of (2.1) leads to Z̄Z = Ā ·1 + B̄Z̄+ C̄Z, so the
linear independence of

{
1 , Z, Z̄

}
implies that A ∈ R and C = B̄. We now apply

Proposition 1.7 with a := − B̄√
A+|B|2

and b := 1√
A+|B|2

. In fact, the first row of

(2.1) states that

γ11 = Aγ00 +Bγ01 + B̄γ10 = A+ 2 Re (Bγ01) ;(2.2)

since M (n) ≥ 0 and {1 , Z} is independent, then

0 < det [M (n)]2 = γ11 − |γ01|
2

≤ γ11 − |γ01|
2 +

∣∣B̄ − γ01

∣∣2
= A+ 2 Re (Bγ01)− |γ01|

2 + |B|2 − 2 Re (Bγ01) + |γ01|
2 (by (2.2))

= A+ |B|2 ,

showing that b is a well-defined positive number. Thus the equation z̄z = A +
Bz + B̄z̄ defines a nondegenerate circle Cγ :=

{
z ∈ C :

∣∣z − B̄∣∣2 = A+ |B|2
}

. Let
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p (z, z̄) = 1− z̄z. Now

(p ◦ Φ) = 1− ϕ (z)ϕ (z)

=
1
b2

(
b2 − |a|2 + āz + az̄ − z̄z

)
=

1

A+ |B|2
(
A+Bz + B̄z̄ − z̄z

)
,

whence (p ◦ Φ)
(
Z, Z̄

)
= 0 in CM(2). It follows from Proposition 1.7(vii) that ˜̄ZZ̃ =

1̃ in CM̃(n). In view of Proposition 1.7(vi), M (n) admits a flat extension if and only
if M̃ (n) admits a flat extension. It thus follows from Proposition 1.7 and Corollary
1.8 that to prove Theorem 2.1 we may assume in the sequel that M (n) ≥ 0 and
Z̄Z = 1 in CM(n). To complete the proof we require two auxiliary results.

For a sequence β(2n) : β−2n, . . . , β0, . . . , β2n with β0 > 0, consider the truncated
trigonometric moment problem

βj =
∫
tj dν (−2n ≤ j ≤ 2n), ν ≥ 0, supp ν ⊂ T (unit circle).

Let T (2n) ≡ T (2n) (β) denote the Toeplitz matrix
(
βj−i

)
0≤i,j≤2n

. Observe that

T (2n) is a (2n+ 1)× (2n+ 1) matrix. It is well-known that β(2n) admits a repre-
senting measure (supported in T) if and only if T (2n) ≥ 0 [AhKr, Theorem I.I.12],
[Ioh, p. 211]:

Proposition 2.2. (cf. [CuF1, Theorem 6.12]) The following are equivalent for
β ≡ β(2n):

(i) β has a representing measure;
(ii) β admits a rankT (2n)-atomic (minimal) representing measure;
(iii) T (2n) (β) ≥ 0.

Note that a representing measure ν for β(2n) is also a representing measure (for
TCMP) associated with γ(2n) defined by γij := βj−i; indeed, since supp ν ⊆ T,∫

z̄izj dν =
∫
zj−i dν = βj−i = γij .

Conversely, if Z̄Z = 1 in CM(n), or equivalently, if γij = γi+1,j+1 (0 ≤ i + j ≤
2n−2), then a representing measure for γ(2n) (necessarily supported in T) is also a
representing measure for the trigonometric problem for β(2n) defined by βk := γ0,k

(−2n ≤ k ≤ 2n). Since βj−i = γ0,j−i = γ0+i,j−i+i = γij , it follows that γ(2n) and
β(2n) have the same representing measures.

Proposition 2.3. (cf. [Fia1, Proposition 4.1]) Let n > 1 and suppose there is a
sequence β−2n, . . . , β0, . . . , β2n such that γ(2n) satisfies γij = βj−i
(0 ≤ i+ j ≤ 2n). Then M (n) ≥ 0 if and only if T (2n) ≥ 0, in which case
rankM (n) = rankT (2n).
(The equality of rank is not part of the statement of [Fia1, Proposition 4.1], but a
careful examination of the proof of [Fia1, Proposition 4.1] readily yields this
conclusion.)

Proof of Theorem 2.1. From the earlier discussion, we may assume M (n) ≥ 0 and
Z̄Z = 1 . It follows from Propositions 2.2 and 2.3 (and the remarks immediately
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preceding Proposition 2.3) that M (n) admits a flat extension. Proposition 2.3
implies rankM (n) = rankT (2n) (≤ 2n + 1), so rankM (n) ≤ 2n if and only if
T (2n) is singular. In this case, [CuF1, Remark 6.13] implies that β(2n) has a
unique representing measure, so γ(2n) has a unique representing measure, which
is rankM (n)-atomic. Conversely, rankM (n) = 2n + 1 implies that T (2n) is in-
vertible, so T (2n) admits infinitely many positive and singular Toeplitz extensions
T (2n+ 1), parameterized by a choice of β2n+1 in an appropriate circle. Each such
(flat) extension corresponds to a rankT (2n)-atomic representing measure for β(2n)

and thus also corresponds to a rankM (n)-atomic representing measure for γ(2n);
thus M (n) admits infinitely many distinct flat extensions.

Proof of Theorem 1.2. As in the proof of Theorem 2.1, Z̄Z ∈
〈
1 , Z, Z̄

〉
and

{
1 , Z, Z̄

}
independent imply that there exist scalars A and B such that

Z̄Z = A1 +BZ + B̄Z̄ and A+ |B|2 > 0.(2.3)

Theorem 2.1 implies that M (2) admits a flat extension, so γ(4) admits a rankM (2)-
atomic representing measure, and (2.3) and (1.2) imply that the support of each
representing measure is contained in Cγ . If

{
1 , Z, Z̄, Z2

}
is a basis for CM(2), then

4 = rankM (2) = 2n, so Theorem 2.1 implies that γ(4) admits a unique representing
measure, which is 4-atomic. In the remaining case,

{
1 , Z, Z̄, Z2, Z̄2

}
is a basis for

CM(2), so Theorem 2.1 implies that M (2) admits infinitely many flat extensions,
each corresponding to a distinct 5-atomic (minimal) representing measure.

To visualize how Proposition 1.7 interacts with Theorem 1.2, we present an
example which illustrates the case of Theorem 1.2 when

{
1 , Z, Z̄, Z2

}
is a basis for

CM(2). First, we pause to parameterize the matrices M (2) under consideration. By
virtue of Proposition 1.7 and Corollary 1.9, we may assume γ00 = 1, γ01 = 0, and
γ11 = 1; thus M (1) assumes the form1 0 0

0 1 c− id
0 c+ id 1

 .

To ensure M (1) > 0, we require c2 + d2 < 1. Next let γ12 = u + iv, γ03 = x+ iy,
and γ04 = r + is with u, v, x, y, r, s ∈ R; then M (2) assumes the form

M (2) =


1 0 0 c+ id 1 c− id
0 1 c− id u+ iv u− iv x− iy
0 c+ id 1 x+ iy u+ iv u− iv

c− id u− iv x− iy γ22 γ31 r − is
1 u+ iv u− iv γ13 γ22 γ31

c+ id x+ iy u+ iv r + is γ13 γ22

 .

Choose u and v arbitrarily. Since M (1) > 0 and Z̄Z ∈
〈
1 , Z, Z̄

〉
, it follows that

γ22 =
(
1 u+ iv u− iv

)
M (1)−1 (1 u− iv u+ iv

)t
,(2.4)

and

γ13 =
(
c+ id x+ iy u+ iv

)
M (1)−1 (1 u− iv u+ iv

)t
.(2.5)

Thus γ22 is determined by c, d, u, v and γ13 is determined by c, d, u, v, x, y. Finally,
appropriate choices of x and y guarantee that [M (2)]4 > 0, and appropriate choices
of r and s ensure that M (2) ≥ 0 and rankM (2) = 4.
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Example 2.4. Set c := 0, d := 1
2 , u := 1, and v := 0. By (2.4),

γ22 :=
(
1 1 1

)
M (1)−1 (1 1 1

)t =
11
3
.

To ensure [M (2)]4 > 0, we must choose x, y such that x2 +
(
y − 1

2

)2
< 29

16 , e.g.,
x = 0, y = 1

2 . Thus γ03 = i
2 and by (2.5),

γ13 :=
(
i
2

i
2 1

)
M (1)−1 (1 1 1

)t = 1 +
i

2
.

Finally, to guarantee that M (2) ≥ 0 and rankM (2) = 4, we require
(
r + 1

4

)2 +(
s− 1

2

)2 =
(

29
12

)2; for instance, take r = 13
6 , s = 1

2 . The associated moment matrix
is

M (2) =



1 0 0 i
2 1 − i

2

0 1 − i
2 1 1 − i

2

0 i
2 1 i

2 1 1

− i
2 1 − i

2
11
3 1− i

2
13
6 −

i
2

1 1 1 1 + i
2

11
3 1− i

2

i
2

i
2 1 13

6 + i
2 1 + i

2
11
3


,

{
1 , Z, Z̄, Z2

}
is a basis for CM(2), and (2.1) is satisfied with A = 1, B = 4

3 +
2
3 i, and C = B̄. Letting a := − B̄√

A+|B|2
= −4+2i√

29
and b := 1√

A+|B|2
= 3√

29
,

Proposition 1.7 shows that M (2) is equivalent to M̃ (2) with ˜̄ZZ̃ = 1̃ . M̃ (2)
gives rise to an equivalent trigonometric moment problem with Toeplitz matrix
T (4) :=

(
β̃j−i

)
0≤i,j≤4

, where β̃k := γ̃0,k (0 ≤ k ≤ 4) and γ̃00 = 1, γ̃01 = a+bγ01 =

a, γ̃02 = a2 + 2abγ01 + b2γ02 = a2 + b2γ02, γ̃03 = a3 + 3ab2γ02 + b3γ03 and
γ̃04 = a4 + 6a2b2γ02 + 4ab3γ03 + b4γ04. Concretely,

T (4) =



1 −4+2i√
29

24−23i
58

√
29(−86+95i)

1682
775−471i

1682

−4−2i√
29

1 −4+2i√
29

24−23i
58

√
29(−86+95i)

1682

24+23i
58

−4−2i√
29

1 −4+2i√
29

24−23i
58

√
29(−86−95i)

1682
24+23i

58
−4−2i√

29
1 −4+2i√

29

775+471i
1682

√
29(−86−95i)

1682
24+23i

58
−4−2i√

29
1


,

with columns denoted by 1 , Z, Z2, Z3, Z4. As expected from Theorem 2.1, T (4) ≥
0, rankT (4) = 4, and the last column of T (4) is a linear combination of the first
four columns. This readily leads to the characteristic function

gβ̃ (z) := z4 −
(

1 +
5 + 4i√

29
z + iz2 +

−5 + 4i√
29

z3

)
,
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whose roots (all belonging to the unit circle) are

z̃0
∼= −0.527794− 0.849373i,

z̃1
∼= −0.328834 + 0.944388i,

z̃2
∼= −0.975577 + 0.219659i,

z̃3
∼= 0.903728 + 0.428107i.

Using the associated Vandermonde matrix and the moments β̃0, β̃1, β̃2, β̃3, we
obtain the densities ρ0

∼= 0.0370864, ρ1
∼= 0.256356, ρ2

∼= 0.679743 and ρ3
∼=

0.0268143. If we now use Proposition 1.7(v) to translate and rotate/dilate the
atoms {z̃i}3i=0, we see that the unique representing measure for M (2) is given by
µ :=

∑3
i=0 ρiδzi , where zi := bz̃i + a, that is,

z0
∼= 0.385914− 2.19134i,

z1
∼= 0.743058 + 1.02856i,

z2
∼= −0.41788− 0.272367i,

z3
∼= 2.95557 + 0.101809i.

3. The case Z̄Z = A1 +BZ + CZ̄ + DZ2

In this section we analyze the quartic moment problem for the case when M (2) ≥
0,
{

1 , Z, Z̄, Z2
}

is independent in CM(2), and

Z̄Z = A1 +BZ + CZ̄ +DZ2, D 6= 0.(3.1)

In Theorem 3.1 we provide a concrete test for the existence of a representing mea-
sure, or, equivalently, for the existence of a 4-atomic (minimal) representing mea-
sure. This test is satisfied whenever |D| 6= 1 (Lemma 3.2). For |D| = 1, Example
3.6 illustrates a case in which a measure exists, while Example 3.8 illustrates a case
in which no representing measure exists.

Our first goal is to study conditions for the existence of a recursively generated
moment matrix extension

M (3) ≡
(
M (2) B (3)
B (3)∗ C (3)

)
,(3.2)

where

B (3) =

Z3 Z2Z̄ ZZ̄2 Z̄3

γ03 γ12 γ21 γ30

γ13 γ22 γ31 γ40

γ04 γ13 γ22 γ31

γ23 γ32 γ41 γ50

γ14 γ23 γ32 γ41

γ05 γ14 γ23 γ32

and

C (3) =

Z3 Z2Z̄ ZZ̄2 Z̄3

γ33 γ42 γ51 γ60

γ24 γ33 γ42 γ51

γ15 γ24 γ33 γ42


γ06 γ15 γ24 γ33

.
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To begin, we derive certain column relations that hold in CM(2), or would necessarily
hold in CM(3).

Recall from [CuF2, Lemma 3.10],

p ∈ Pn, p
(
Z, Z̄

)
= 0 in CM(n) =⇒ p̄

(
Z, Z̄

)
= 0 in CM(n).(3.3)

From (3.1) and (3.3), in CM(2) we have

Z̄Z = Ā1 + B̄Z̄ + C̄Z + D̄Z̄2,(3.4)

whence (3.1) implies

Z̄2 =
1
D̄

((
A− Ā

)
1 +

(
B − C̄

)
Z +

(
C − B̄

)
Z̄ +DZ2

)
.(3.5)

Thus
{

1 , Z, Z̄, Z2
}

is a basis for CM(2), and rankM (2) = 4. It follows from (3.1),
(3.3), and (3.4) that in any recursively generated extension M (3), the following
column relations must hold:

Z̄Z2 = AZ +BZ2 + CZ̄Z +DZ3,(3.6)

Z̄2Z = ĀZ̄ + B̄Z̄2 + C̄Z̄Z + D̄Z̄3,(3.7)

Z̄Z2 = ĀZ + B̄Z̄Z + C̄Z2 + D̄Z̄2Z,(3.8)

Z̄2Z = AZ̄ +BZ̄Z + CZ̄2 +DZ̄Z2.(3.9)

From the form of
(
M (2) B (3)

)
in (3.2), note the following consequence of (3.6):

There exists γ23 ∈ C such that

γ̄23 = Aγ21 + Bγ22 + Cγ31 +Dγ23.(3.10)

Our main result for this section, which follows, shows that (3.10) is actually equiv-
alent to the existence of a representing measure.

Theorem 3.1. Suppose M (2) ≥ 0,
{

1 , Z, Z̄, Z2
}

is independent in CM(2), and
Z̄Z = A1 +BZ + CZ̄ +DZ2, D 6= 0. The following are equivalent:

(i) γ(4) has a finitely atomic representing measure;
(ii) γ(4) admits a 4-atomic (minimal) representing measure;
(iii) M (2) admits a flat extension;
(iv) M (2) admits a recursively generated extension M (3) ≥ 0;
(v) there exists γ23 ∈ C such that

γ32 ≡ γ̄23 = Aγ21 +Bγ22 + Cγ31 +Dγ23.

We defer the proof of Theorem 3.1 to consider some illustrative examples. We
begin with the case |D| 6= 1.

Lemma 3.2. If |D| 6= 1, there exists a unique γ23 ∈ C satisfying

Aγ21 +Bγ22 + Cγ31 +Dγ23 = γ̄23.(3.11)

Proof. Write γ23 ≡ x + iy and let D ≡ d1 + id2, with x, y, d1, d2 ∈ R. (3.11) is
equivalent to the real system(

d1 − 1 −d2

d2 d1 + 1

)(
x
y

)
=
(
−Re (Aγ21 +Bγ22 + Cγ31)
− Im (Aγ21 +Bγ22 + Cγ31)

)
.

Since (d1 − 1) (d1 + 1) + d2
2 = |D|2 − 1 6= 0, there is a unique solution, x, y, so we

may define γ23 := x+ iy.
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Lemma 3.3. Corresponding to γ23 satisfying (3.10), there exist unique γ14, γ05 ∈
C such that

Z3 ≡


γ03

γ13

γ04

γ23

γ14

γ05

(3.12)

and

Z̄Z2 ≡


γ12

γ22

γ13

γ̄23

γ23

γ14

(3.13)

satisfy

Z̄Z2 = AZ +BZ2 + CZ̄Z +DZ3.(3.14)

Proof. Since Z̄Z = A1 + BZ + CZ̄ + DZ2 in CM(2), it follows immediately that[
Z̄Z2

]
3

=
[
AZ +BZ2 + CZ̄Z +DZ3

]
3
, e.g., γ13 = Aγ02 +Bγ03 +Cγ12 +Dγ04 is

inherent in (3.1). Suppose γ23 ∈ C satisfies γ32 ≡ γ̄23 = Aγ21+Bγ22+Cγ31+Dγ23.
It follows that (3.14) holds if and only if we set

γ14 :=
1
D

(γ23 − (Aγ12 +Bγ13 + Cγ22))(3.15)

and

γ05 :=
1
D

(γ14 − (Aγ03 +Bγ04 + Cγ13)) .(3.16)

Corollary 3.4. Suppose M (2) ≥ 0,
{

1 , Z, Z̄, Z2
}

is independent, and Z̄Z = A1 +
BZ + CZ̄ + DZ2, with D 6= 0. If |D| 6= 1, then γ(4) admits a unique 4-atomic
(minimal) representing measure.

Proof. Theorem 3.1 and Lemma 3.2 imply that M (2) admits a flat extension M (3),
and any such flat extension is recursively generated (by [CuF2]) and is uniquely
determined by B (3). Lemmas 3.2 and 3.3 imply that B (3) is itself uniquely deter-
mined, so it follows that M (2) admits a unique flat extension and that γ(4) admits
a unique 4-atomic (minimal) representing measure [CuF2, Corollary 5.14].
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Example 3.5. Consider the moment matrix

M (2) =



1 0 0 0 1 0

0 1 0 −i i − 3i
2

0 0 1 3i
2 −i i

0 i − 3i
2

10
3 − 8

3
37
12

1 −i i − 8
3

10
3 − 8

3

0 3i
2 −i 37

12 − 8
3

10
3


.

In CM(2), Z̄Z = 1 − iZ + 2iZ̄ − 2Z2, so the hypotheses of Corollary 3.4 are sat-
isfied with D = −2. It follows that the associated γ(4) admits a unique 4-atomic
(minimal) representing measure. In fact, (3.10), (3.15), and (3.16) determine a
unique flat extension corresponding to the choices γ23 = − 23

3 i, γ14 = 8i and
γ05 = − 179

24 i. A calculation using the Flat Extension Theorem shows that the
characteristic polynomial is

g (z) ≡ z4 +
5i
2
z3 − z2

6
− 3i

2
z +

2
3
,

with roots z0 = − 3+
√

5
2 i, z1 = − 3−

√
5

2 i, z2 = 3i−
√

87
12 and z3 = 3i+

√
87

12 . An
application of the Vandermonde equation (1.9) yields densities ρ0

∼= 0.063, ρ1
∼=

0.109, ρ2 = ρ3
∼= 0.414.

We next illustrate cases with |D| = 1.

Example 3.6. For r, s ∈ R with r > s2 = 1, consider

M (2) =


1 0 0 0 1 0
0 1 0 0 0 s
0 0 1 s 0 0
0 0 s r 1− r r − 1
1 0 0 1− r r 1− r
0 s 0 r − 1 1− r r

 .

Note that in CM(2), Z̄Z = 1 +sZ̄−Z2, so the hypothesis of Theorem 3.1 is satisfied
with A = 1, B = 0, C = s, D = −1. Theorem 3.1(v) entails

γ̄23 = s (1− r) − γ23,

or Re γ23 = s (1− r) /2. A calculation shows that with γ23 = s (1− r) /2, there
is a unique flat extension M (3), corresponding to Z2Z̄ = Z + sZ̄Z − Z3. Indeed,
M (3) is determined (via Lemma 3.3)) by γ14 = s (3r − 1) /2, γ05 = 5s (1− r) /2,
and by Z3 = s1 + (1− r)Z +

(
r + 1

2

)
Z̄ − 3

2sZ
2 in CM(3).

A calculation using the Flat Extension Theorem yields the characteristic poly-
nomial

g (z) ≡ 1
2

(1− 2r)− rsz − 2 (1− r) z2 +
1
2
sz3 + z4.

In the specific case of r = 2, s = 1, we obtain z0 = − 1
2 , z1 = 1, z2 = 1

2

(
−1 +

√
11i
)

and z3 = 1
2

(
−1−

√
11i
)
, with corresponding densities ρ0 = 16

33 , ρ1 = 1
3 , ρ2 = ρ3 =

1
11 .
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Example 3.7. Let

M (2) :=


1 0 0 0 1 0
0 1 0 0 0 i
0 0 1 −i 0 0
0 0 i 2 1 1
1 0 0 1 2 1
0 −i 0 1 1 2

 .

In this case, Z̄Z = 1 + iZ̄ + Z2, so A = 1, B = 0, C = i and D = 1 in Theorem
3.1. Let J ≡ J−i be the diagonal matrix defined in Proposition 1.10. Observe that

J∗M (2)J =


1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 1 0 0
0 0 1 2 −1 1
1 0 0 −1 2 −1
0 1 0 1 −1 2

 ,

which is the moment matrix of Example 3.6 with r = 2, s = 1. For the latter prob-
lem we have already obtained a representing measure µ ≡

∑3
i=0 ρiδzi . Proposition

1.10(vi) thus implies that M (2) admits a representing measure µ̃ ≡
∑3

i=0 ρiδz̃i ,
where z̃i := −izi (i = 0, 1, 2, 3); concretely, z̃0 = i

2 , z̃1 = −i, z̃2 = 1
2

(√
11 + i

)
and

z̃3 = 1
2

(
−
√

11 + i
)
.

Example 3.8. For f > 1, let

M (2) =


1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 1 0 0
0 0 1 f f − 1 f − 1
1 0 0 f − 1 f f − 1
0 1 0 f − 1 f − 1 f

 .

It is straightforward to verify that M (2) is positive,
{

1 , Z, Z̄, Z2
}

is a basis for
CM(2), and

Z̄Z = 1 − Z̄ + Z2;(3.17)

thus A = 1, B = 0, C = −1, D = 1. Theorem 3.1(v) entails

γ̄23 = γ21 − γ31 + γ23,

or i Imγ23 = (f − 1) /2 (> 0). It follows from Theorem 3.1 that γ(4) admits no
finitely atomic representing measure. Alternately, the nonexistence of a represent-
ing measure follows from (3.17) and the fact that card

{
z : z̄z = 1− z̄ + z2

}
= 3 <

4 = rankM (2) ([CuF2, Corollary 3.7]).

Example 3.9. For f > 1, consider the moment matrix

M (2) =


1 0 0 0 1 0
0 1 0 0 0 i
0 0 1 −i 0 0
0 0 i f 1− f −1 + f
1 0 0 1− f f 1− f
0 −i 0 −1 + f 1− f f

 .
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A calculation shows that A = 1, B = 0, C = −i and D = −1 in this case. Moreover,
J∗−iM (2)J−i is the moment matrix in Example 3.8. Since that matrix admits no
representing measure, Proposition 1.10 readily implies that the same is true for
M (2). Thus, γ(4) admits no representing measure.

We now begin the proof of Theorem 3.1 (v) ⇒ (iii).
Let γ23 be a solution to (3.10); Lemma 3.3 implies that the B-block of a recur-

sively generated extension M (3) is uniquely determined by (3.12)–(3.16). In order
that M (3) ≥ 0, we require RanB (3) ⊆ RanM (2). Thus it is necessary that there
exist α, β, γ, δ ∈ C such that in CM(2),[

Z̄Z2
]
6

= α1 + βZ + γZ̄ + δZ2.(3.18)

Since M ≡ [M (2)]4 > 0, α, β, γ, δ are uniquely determined by

(α, β, γ, δ)t = M−1 (γ12, γ22, γ13, γ̄23)t .(3.19)

To establish Z̄Z2 ∈ RanM (2), it thus suffices to verify that (3.19) implies (3.18),
i.e.,

γ23 = αγ11 + βγ12 + γγ21 + δγ13(3.20)

and

γ14 = αγ02 + βγ03 + γγ12 + δγ04.(3.21)

To establish these relations we first write out (3.19) in detail:

γ12 = αγ00 + βγ01 + γγ10 + δγ02,

γ22 = αγ10 + βγ11 + γγ20 + δγ12,

γ13 = αγ01 + βγ02 + γγ11 + δγ03,

γ32 = αγ20 + βγ21 + γγ30 + δγ22.

(3.22)

Lemma 3.10. γ23 = αγ11 + βγ12 + γγ21 + δγ13.

Proof. From (3.10) and (3.22),

γ23 = Āγ12 + B̄γ22 + C̄γ13 + D̄γ32

= Ā (αγ00 + βγ01 + γγ10 + δγ02)

+ B̄ (αγ10 + βγ11 + γγ20 + δγ12)

+ C̄ (αγ01 + βγ02 + γγ11 + δγ03)

+ D̄ (αγ20 + βγ21 + γγ30 + δγ22)

= α [Aγ00 +Bγ01 + Cγ10 +Dγ02]− + β [Aγ10 +Bγ11 + Cγ20 +Dγ12]−

+ γ [Aγ01 +Bγ02 + Cγ11 +Dγ03]− + δ [Aγ20 +Bγ21 + Cγ30 +Dγ22]−

= αγ11 + βγ12 + γγ21 + δγ13 (from (3.1)).

Lemma 3.11. γ14 = αγ02 + βγ03 + γγ12 + δγ04.
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Proof. From (3.15) and Lemma 3.10,

γ14 =
1
D

(γ23 − (Aγ12 +Bγ13 + Cγ22))

=
1
D

(αγ11 + βγ12 + γγ21 + δγ13 − (Aγ12 +Bγ13 + Cγ22))

=
1
D

(αγ11 + βγ12 + γγ21 + δ13

− A (αγ00 + βγ01 + γγ10 + δγ02)

− B (αγ01 + βγ02 + γγ11 + δγ03)

− C (αγ10 + βγ11 + γγ20 + δγ12)) (by (3.22))

=
1
D

(α (γ11 − (Aγ00 +Bγ01 + Cγ10))

+ β (γ12 − (Aγ01 +Bγ02 + Cγ11))

+ γ (γ21 − (Aγ10 +Bγ11 + Cγ20))

+ δ (γ13 − (Aγ02 +Bγ03 + Cγ12))

= αγ02 + βγ03 + γγ12 + δγ04 (by (3.1)).

We now have Z̄Z2, Z3 ∈ RanM (2).
We next define the remaining columns of B (3) and show that they belong to

RanM (2).
Define

Z̄2Z :=


γ21

γ31

γ22

γ41

γ32

γ23

 , where γ32 := γ̄23 and γ41 := γ̄14.(3.23)

Lemma 3.12. If R,S, T, U ∈ C satisfy Z̄Z2 = R1 + SZ + T Z̄ + UZ2 in CM(2),
then Z̄2Z = R̄1 + S̄Z̄ + T̄Z + Ū Z̄2 in CM(2), whence Z̄2Z ∈ RanM (2).

Proof. The relation Z̄Z2 = R1 + SZ + T Z̄ + UZ2 is equivalent to

γ12 = Rγ00 + Sγ01 + Tγ10 + Uγ02,

γ22 = Rγ10 + Sγ11 + Tγ20 + Uγ12,

γ13 = Rγ01 + Sγ02 + Tγ11 + Uγ03,

γ32 = Rγ20 + Sγ21 + Tγ30 + Uγ22,

γ23 = Rγ11 + Sγ12 + Tγ21 + Uγ13,

γ14 = Rγ02 + Sγ03 + Tγ12 + Uγ04.

By conjugating these relations we immediately obtain Z̄2Z = R̄1 + S̄Z̄ + T̄Z +
ŪZ̄2.
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Now define

Z̄3 :=


γ30

γ40

γ31

γ50

γ41

γ32

 , where γ50 := γ̄05.(3.24)

Lemma 3.13. Z̄2Z = ĀZ̄ + B̄Z̄2 + C̄Z̄Z + D̄Z̄3, whence

Z̄3 =
1
D̄

(
Z̄2Z − ĀZ − B̄Z̄2 − C̄Z̄Z

)
.

In particular, if Z̄2Z ∈ RanM (2), then Z̄3 ∈ RanM (2).

Proof. From Lemma 3.3 (3.14), we have Z̄Z2 = AZ +BZ2 + CZ̄Z + DZ3, which
entails 

γ12 = Aγ01 +Bγ02 + Cγ11 +Dγ03,

γ22 = Aγ11 +Bγ12 + Cγ21 +Dγ13,

γ13 = Aγ02 +Bγ03 + Cγ12 +Dγ04,

γ32 = Aγ21 +Bγ22 + Cγ31 +Dγ23,

γ23 = Aγ12 +Bγ13 + Cγ22 +Dγ14,

γ14 = Aγ03 +Bγ04 + Cγ13 +Dγ05.

(3.25)

By conjugating these relations, we immediately obtain Z̄2Z = ĀZ̄+ B̄Z̄2 + C̄Z̄Z+
D̄Z̄3.

By combining Lemmas 3.3, 3.10–3.13 we see that (3.10) implies the existence of
a unique moment matrix block B (3) satisfying RanB (3) ⊆ RanM (2). Our next
goal is to show that B (3) determines a unique flat extension M (3). We require the
following result.

Lemma 3.14. In C(M(2) B(3) ),

Z̄2Z = AZ̄ +BZ̄Z + CZ̄2 +DZ̄Z2.(3.26)

Proof. Since Z̄Z = A1 +BZ + CZ̄ +DZ2 in CM(2), relation (3.26) holds through
the first three rows by virtue of moment matrix structure (cf. [CuF2, Proposition
2.3]). It thus remains to establish (3.26) in the last three rows, i.e.,


γ41 = Aγ30 +Bγ31 + Cγ40 +Dγ32

γ32 = Aγ21 +Bγ22 + Cγ31 +Dγ23

γ23 = Aγ12 +Bγ13 + Cγ22 +Dγ14.

(3.27)
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The latter two identities follow immediately from (3.14). To prove (3.27), we will
establish the conjugate identity γ14 = Āγ03 + B̄γ13 + C̄γ04 + D̄γ23. From (3.25),

Āγ03 + B̄γ13 + C̄γ04 + D̄γ23

= Ā
1
D

(γ12 − (Aγ01 +Bγ02 + Cγ11))

+ B̄
1
D

(γ22 − (Aγ11 +Bγ12 + Cγ21))

+ C̄
1
D

(γ13 − (Aγ02 +Bγ03 + Cγ12))

+ D̄
1
D

(γ32 − (Aγ21 +Bγ22 + Cγ31))

=
Ā

D
(αγ00 + βγ01 + γγ10 + δγ02 − (Aγ01 +Bγ02 + Cγ11))

+
B̄

D
(αγ10 + βγ11 + γγ20 + δγ12 − (Aγ11 +Bγ12 + Cγ21))

+
C̄

D
(αγ01 + βγ02 + γγ11 + δγ03 − (Aγ02 +Bγ03 + Cγ12))

+
D̄

D
(αγ20 + βγ21 + γγ30 + δγ22 − (Aγ21 +Bγ22 + Cγ31)) (by (3.22))

=
1
D

[α
(
Āγ00 + B̄γ10 + C̄γ01 + D̄γ20

)
+ β

(
Āγ01 + B̄γ11 + C̄γ02 + D̄γ21

)
+ γ

(
Āγ10 + B̄γ20 + C̄γ11 + D̄γ30

)
+ δ

(
Āγ02 + B̄γ12 + C̄γ03 + D̄γ22

)
−A

(
Āγ01 + B̄γ11 + C̄γ02 + D̄γ21

)
−B

(
Āγ02 + B̄γ12 + C̄γ03 + D̄γ22

)
− C

(
Āγ11 + B̄γ21 + C̄γ12 + D̄γ31

)
]

=
1
D

[αγ11 + βγ12 + γγ21 + δγ13]− 1
D

[Aγ12 +Bγ13 + Cγ22] (by (3.1))

=
1
D

[γ23 − (γ23 −Dγ14)]

= γ14 (by (3.22) and (3.14)).

Lemma 3.15. Suppose M ≡
(
A B
B∗ C

)
∈ Mm(n+1) is a flat extension of the

positive matrix A ∈ Mm(n). If
∑

0≤i+j≤n aij
[
Z̄iZj

]
n

+
∑

i+j=n+1 bij
[
Z̄iZj

]
n

= 0
in C(A B ), then

∑
0≤i+j≤n aijZ̄

iZj +
∑
i+j=n+1 bijZ̄

iZj = 0 in CM .

Proof. Since M ≥ 0, RanB ⊆ RanA, so for i+j = n+1, there exists pij ∈ Pn such
that

[
Z̄iZj

]
n

= pij
(
Z, Z̄

)
. Since M ≥ 0 and

∑
aij
[
Z̄iZj

]
n

+
∑
bijpij

(
Z, Z̄

)
= 0

in CA, the Extension Principle [Fia1, Proposition 2.4] implies that
∑
aijZ̄

iZj +∑
bijpij

(
Z, Z̄

)
= 0 in CM . Since M is a flat extension of A, for i + j = n + 1,

pij
(
Z, Z̄

)
= Z̄iZj in CM , and the result follows.

Lemma 3.16. Assume M (2) ≥ 0 admits a moment matrix extension block B (3)
such that

B (3) = M (2)W for some matrix W.

Assume also that there exist scalars A, B, C, D such that in C(M(2) B(3) ),
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(i) Z̄Z2 = AZ +BZ2 + CZ̄Z +DZ3, and
(ii) Z̄2Z = AZ̄ +BZ̄Z + CZ̄2 +DZ̄Z2.

Then C ≡ C (3) = W ∗M (2)W is Toeplitz.

Proof. From [CuF4], it suffices to prove that in M ≡
(
M (2) B (3)
B (3)∗ C (3)

)
we have〈

Z̄Z2, Z̄2Z
〉
M

=
〈
Z̄2Z, Z̄3

〉
M

(3.28)

and 〈
Z3, Z3

〉
M

=
〈
Z̄Z2, Z̄Z2

〉
M
.(3.29)

We first establish (3.28). Lemma 3.15 and (i) imply that Z̄Z2 = AZ + BZ2 +
CZ̄Z +DZ3 in CM , so

〈
Z̄Z2, Z̄2Z

〉
M

=
〈
AZ +BZ2 + CZ̄Z +DZ3, Z̄2Z

〉
M

(3.30)

= A
〈
Z, Z̄2Z

〉
M

+B
〈
Z2, Z̄2Z

〉
M

+ C
〈
Z̄Z, Z̄2Z

〉
M

+D
〈
Z3, Z̄2Z

〉
M
.

Since B (3)∗ is a moment matrix block,
〈
Z, Z̄2Z

〉
M

=
〈
Z̄, Z̄3

〉
M

,
〈
Z2, Z̄2Z

〉
M

=〈
Z̄Z, Z̄3

〉
M

, and
〈
Z̄Z, Z̄2Z

〉
M

=
〈
Z̄2, Z̄3

〉
M

. Further, [CuF2, Theorem 2.1(4)]
implies that

〈
Z3, Z̄2Z

〉
M

=
〈
Z̄Z2, Z̄3

〉
M

; thus (3.30) implies
〈
Z̄Z2, Z̄2Z

〉
M

=〈
AZ̄ +BZ̄Z + CZ̄2 +DZ̄Z2, Z̄3

〉
M

=
〈
Z̄2Z, Z̄3

〉
M

, since, by Lemma 3.15 and (ii),

Z̄2Z = AZ̄ +BZ̄Z + CZ̄2 +DZ̄Z2 in CM .(3.31)

Next, to establish (3.29), Lemma 3.15 and (i) imply that

〈
Z3, Z3

〉
M

=
1
D

〈
Z̄Z2, Z3

〉
M
− A

D

〈
Z,Z3

〉
M
− B

D

〈
Z2, Z3

〉
M
− C

D

〈
Z̄Z, Z3

〉
M
.

(3.32)

Since C = C∗, it follows from [CuF2, Proposition 2.3] and (3.28) that
〈
Z̄Z2, Z3

〉
M

=〈
Z̄2Z, Z̄Z2

〉
M

. Thus (3.32) and the moment matrix structure of B (3)∗ imply that〈
Z3, Z3

〉
M

=
1
D

〈
Z̄2Z, Z̄Z2

〉
M
− A

D

〈
Z̄, Z̄Z2

〉
M
− B

D

〈
Z̄Z, Z̄Z2

〉
M
− C

D

〈
Z̄2, Z̄Z2

〉
M

=
〈

1
D

(
Z̄2Z −AZ̄ −BZ̄Z − CZ̄2

)
, Z̄Z2

〉
M

=
〈
Z̄Z2, Z̄Z2

〉
M

(by (3.31)).

Proof of Theorem 3.1. (v) ⇒ (iii). Given γ23 satisfying (3.10), Lemmas 3.3, 3.10,
3.11, 3.12 and 3.13 establish the existence of a unique moment matrix block B (3) for
a recursively generated extension M (3) ≥ 0, and RanB (3) ⊆ RanM (2). Lemma
3.16 shows that B (3) corresponds to a flat extension M (3), so from [CuF2], γ(4)

admits a 4-atomic representing measure, which is minimal since rankM (2) = 4.
(iii) ⇒ (iv). This follows from [CuF2, Theorem 5.4], [CuF4, Theorem 1.6], and

the Extension Principle [Fia1, Proposition 2.4].
(iv) ⇒ (v). This follows from (3.6) (or (3.10)).
(iii) ⇔ (ii). This follows from [CuF2] since rankM (2) = 4.
(i) ⇒ (iv) ⇒ (v) ⇒ (iii) ⇒ (ii) ⇒ (i). (i) ⇒ (iv) follows from [CuF2] and the

remaining implications follow as above.
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4. The case Z̄2 = A1 +BZ + CZ̄ +DZ2 + EZ̄Z

In this section we analyze the quartic moment problem for Case II, when M(2) ≥
0 and {1 , Z, Z̄, Z2, Z̄Z} is a basis for CM(2). In the sequel we show that the existence
of a flat extension M(3) (with a corresponding 5-atomic (minimal) representing
measure) is equivalent to the solubility of a single quadratic equation developed
from the moment data. In the following section, we then characterize solubility of
this equation and establish the existence of representing measures in Case II.

Our hypothesis implies that there exist unique scalars A, B, C, D, E such that
in CM(2) there is a column relation:

Z̄2 = A1 +BZ + CZ̄ +DZ2 + EZ̄Z.(4.1)

If D = 0, then [CuF2, Lemma 3.10] implies that Z2 = Ā1 + B̄Z̄ + C̄Z + ĒZ̄Z,
which contradicts the basis hypothesis; we may thus assume D 6= 0. [CuF2, Lemma
3.10] now implies that

Z̄2 = − Ā
D̄

1 − C̄

D̄
Z − B̄

D̄
Z̄ +

1
D̄
Z2 − Ē

D̄
Z̄Z,

whence (4.1) implies

A = −Ā/D̄, B = −C̄/D̄, C = −B̄/D̄, D = 1/D̄, E = −Ē/D̄.(4.2)

In particular, |D| = 1. Fix λ ∈ C such that λ4D = 1, and let W := λ̄Z; observe
that |λ| = 1. Equation (4.1) then becomes

λ̄
2
W̄ 2 = A 1 + λBW + λ̄CW̄ + λ2DW 2 + EW̄W.(4.3)

Multiplication by λ2 in (4.3) leads to

W̄ 2 = λ2A 1 + λ3BW + λCW̄ +W 2 + λ2EW̄W

It follows that, without loss of generality, we can always assume D = 1 in (4.1) (cf.
Proposition 1.10). Observe that (4.2) then implies that A,E ∈ iR, and C = −B̄.
We shall use these facts in the proof of Theorem 1.5 (see Lemma 5.1).

Consider now a recursively generated moment matrix extension

M(3) =
(

M(2) B(3)
B(3)∗ C(3)

)
(4.4)

(with B(3) and C(3) as in (3.2)). Relation (4.1) and recursiveness imply that in
CB(3) we must have

Z̄2Z = AZ +BZ2 + CZ̄Z + DZ3 + EZ̄Z2(4.5)

and

Z̄3 = AZ̄ +BZ̄Z + CZ̄2 +DZ̄Z2 + EZ̄2Z.(4.6)

From the form of B(3) (cf. (3.2)), we see that (4.5) entails a choice of γ23, γ14, γ05

such that

γ41 ≡ γ̄14 = Aγ21 +Bγ22 + Cγ31 +Dγ23 + Eγ32(4.7)

(where γ32 = γ̄23),

γ32 = Aγ12 +Bγ13 + Cγ22 +Dγ14 + Eγ23,(4.8)

and

γ23 = Aγ03 +Bγ04 + Cγ13 +Dγ05 + Eγ14.(4.9)
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We will show in the sequel that to each γ23 ∈ C, there correspond unique γ14, γ05

satisfying (4.7)–(4.9), and a unique moment matrix block B(3) ≡ B(3)[γ23] satis-
fying RanB(3) ⊆ RanM(2).

Theorem 4.1. Suppose M (2) ≥ 0 and
{

1 , Z, Z̄, Z2, Z̄Z
}

is a basis for CM(2).
γ(4) admits a 5-atomic (minimal) representing measure if and only if there exists
γ23 ∈ C such that the C-block of [M(2) ; B(3)[γ23]] satisfies C21 = C32.

Before proving Theorem 4.1, we illustrate it with two examples.

Example 4.2. For d > 1,

let M(2) =


1 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 d 0 −d
1 0 0 0 d 0
0 0 0 −d 0 d

 .

It is straightforward to verify that M(2) ≥ 0, {1 , Z, Z̄, Z2, Z̄Z} is independent, and
Z̄2 = −Z2 in CM(2), so (4.5)–(4.6) entail Z̄2Z = −Z3, Z̄3 = −Z2Z. It follows from
(4.7)–(4.9) that for x = γ23, there is a unique moment matrix block

B(3) ≡


0 0 0 0
0 d 0 −d
−d 0 d 0
x x̄ −x −x̄
−x̄ x x̄ −x
−x −x̄ x x̄


satisfying (4.5)–(4.6). To see that RanB(3) ⊆ RanM(2), note that in C(M(2) B(3) ),

Z3 =
x̄

d− 1
1 − dZ̄ +

x

d
Z2 − x̄

d− 1
Z̄Z(4.10)

and

Z̄Z2 = − x

d− 1
1 + dZ +

x̄

d
Z2 +

x

d− 1
Z̄Z.(4.11)

Thus Z3, Z̄Z2 ∈ RanM(2), and conjugation implies Z̄3, Z̄2Z ∈ RanM(2). A
calculation of the C-block of [M(2) ; B(3)] shows that

C21 =
x2

d
− x̄2

d− 1
and C32 =

−x̄2

d
+

x2

d− 1
.

Thus, x corresponds to a flat extension M(3) if and only if x̄2 = −x2, or Im γ23 =
±Re γ23. For example, with x = 0, we compute the 5-atomic representing measure
by using the Flat Extension Theorem (Theorem 1.6). In the unique flat extension
M(5) we have a column relation Z5 = −d2Z. The 5-atomic representing measure
corresponding to x = 0 has atoms z0 = 0 and z1, z2, z3, z4 equal to the 4th roots
of −d2. The weights are ρ0 = d−1

d and ρi = 1/ (4d) (1 ≤ i ≤ 4).

Example 4.3. (Example 1.13 revisited) For M(2) as in Example 1.13, a straight-
forward verification shows that C21 − C32 = −4i. By Theorem 4.1, M(2) admits
no flat extension M(3), and γ(4) admits no 5-atomic representing measure. In Ex-
ample 5.6 we shall find yet another way to establish this, while at the same time
showing that γ(4) does admit a 6-atomic representing measure.
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We begin the proof of Theorem 4.1 by solving (4.7)–(4.9). For γ23 ∈ C, define
γ41 via (4.7) and let γ14 = γ̄41. We claim that (4.8) holds. Indeed, (4.7) implies

−Dγ23 = Aγ21 +Bγ22 + Cγ31 − γ41 + Eγ32,

whence (4.2) yields

γ23 = Āγ21 + C̄γ22 + B̄γ31 + D̄γ41 + Ēγ32,

which is equivalent to (4.8). Now, let

γ05 =
1
D

(γ23 −Aγ03 −Bγ04 − Cγ13 − Eγ14),

so that (4.9) holds. Corresponding to γ23 we may thus construct a unique moment
matrix block B(3) satisfying (4.5). Our next goal is to prove that Ran B(3) ⊆
RanM(2).

Since M ≡ [M(2)]5 is positive and invertible, there exist unique scalars α, β, γ,
δ, ε such that

[Z3]5 ≡ (γ03, γ13, γ04, γ23, γ14)t = M(α, β, γ, δ, ε)t,(4.12)

i.e.,

[Z3]5 = α[1 ]5 + β[Z]5 + γ[Z̄]5 + δ[Z2]5 + ε[Z̄Z]5.

Thus, Z3 ∈ RanM(2) if and only if, in C(M(2) B(3) ),

Z3 = α1 + βZ + γZ̄ + δZ2 + εZ̄Z,

or, equivalently,

γ05 = αγ02 + βγ03 + γγ12 + δγ04 + εγ13.

Lemma 4.4.

γ05 = αγ02 + βγ03 + γγ12 + δγ04 + εγ13.

Proof.

ᾱγ20 + β̄γ30 + γ̄γ21 + δ̄γ40 + ε̄γ31 = ᾱ(Aγ00 +Bγ01 + Cγ10 +Dγ02 + Eγ11)

+ β̄(Aγ10 +Bγ11 + Cγ20 +Dγ12 + Eγ21)

+ γ̄(Aγ01 +Bγ02 + Cγ11 + Dγ03 + Eγ12)

+ δ̄(Aγ20 +Bγ21 + Cγ30 +Dγ22 + Eγ31)

+ ε̄(Aγ11 +Bγ12 + Cγ21 +Dγ13 + Eγ22)

= A(αγ00 + βγ01 + γγ10 + δγ02 + εγ11)−

+B(αγ10 + βγ11 + γγ20 + δγ12 + εγ21)−

+ C(αγ01 + βγ02 + γγ11 + δγ03 + εγ12)−

+D(αγ20 + βγ21 + γγ30 + δγ22 + εγ31)−

+ E(αγ11 + βγ12 + γγ21 + δγ13 + εγ22)−

= Aγ30 +Bγ31 + Cγ40 +Dγ32 + Eγ41 (from (4.12))

= γ50 (from (4.2) and (4.9)).
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Next, to show Z̄Z2 ∈ RanM(2), we write

[Z̄Z2]5 ≡ (γ12, γ22, γ13, γ32, γ23)t = M(r, s, t, u, v)t,

and we must verify that

Z̄Z2 = r1 + sZ + tZ̄ + uZ2 + vZ̄Z,

i.e.,

γ14 = rγ02 + sγ03 + tγ12 + uγ04 + vγ13.

Lemma 4.5.

γ14 = rγ02 + sγ03 + tγ12 + uγ04 + vγ13.

Proof.

r̄γ20 + s̄γ30 + t̄γ21 + ūγ40 + v̄γ31 = r̄(Aγ00 +Bγ01 + Cγ10 +Dγ02 + Eγ11)

+ s̄(Aγ10 +Bγ11 + Cγ20 +Dγ12 + Eγ21)

+ t̄(Aγ01 +Bγ02 + Cγ11 +Dγ03 + Eγ12)

+ ū(Aγ20 +Bγ21 + Cγ30 +Dγ22 + Eγ31)

+ v̄(Aγ11 +Bγ12 +Dγ21 +Dγ13 + Eγ22)

= A(rγ00 + sγ01 + tγ10 + uγ02 + vγ11)−

+B(rγ10 + sγ11 + tγ20 + uγ12 + vγ21)−

+ C(rγ01 + sγ02 + tγ11 + uγ03 + vγ12)−

+D(rγ20 + sγ21 + tγ30 + uγ22 + vγ31)−

+ E(rγ11 + sγ12 + tγ21 + uγ13 + vγ22)−

= Aγ21 +Bγ22 + Cγ31 +Dγ23 + Eγ32

= γ41 (by (4.7)).

Since Z3, Z̄Z2 ∈ RanM(2) (by Lemmas 4.4–4.5), it follows from (4.5) that
Z̄2Z ∈ RanM(2). Moreover, the relation Z3 = α1 +βZ+ γZ̄ + δZ2 + εZ̄Z readily
implies Z̄3 = ᾱ1 + β̄Z̄ + γ̄Z + δ̄Z̄2 + ε̄Z̄Z, whence Z̄3 ∈ RanM(2). We have thus
proved the following result:

Lemma 4.6. Corresponding to γ23 ∈ C, there exists a unique moment matrix
block B(3) ≡ B(3)[γ23] (determined by (4.5) and (4.7)–(4.9)) such that RanB(3) ⊆
RanM(2).

In order to analyze the C-block of [M(2) ; B(3)[γ23]], we require the following
result, which establishes (4.6).

Lemma 4.7. In C(M(2) B(3) ),

Z̄3 = AZ̄ +BZ̄Z + CZ̄2 +DZ̄Z2 + EZ̄2Z.

Proof. Moment matrix structure implies that the desired relation holds in the first
three rows of the indicated columns (cf. [CuF2, Proposition 2.3]). The remaining
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required identities are:

γ41 = Aγ21 +Bγ22 + Cγ31 +Dγ23 + Eγ32 (which is (4.7)),

γ32 = Aγ12 +Bγ13 + Cγ22 +Dγ14 + Eγ23 (which is (4.8)), and

γ50 = Aγ30 +Bγ31 + Cγ40 +Dγ32 + Eγ41 (which follows from (4.2) and (4.9)).

Let us denote the flat extension [M(2) ; B(3)[γ23]] by

N =
(

M(2) B(3)
B(3)∗ C

)
.

N is a moment matrix M(3) if and only if C is Toeplitz; in the present context,
[CuF2, Proposition 2.3] implies that C is Toeplitz if and only if C33 = C44 and
C32 = C43.

Proposition 4.8. C33 − C44 = E(C32 − C43).

Proof. From Lemma 3.15 and (4.5), we have

C33 =
〈
Z̄2Z, Z̄2Z

〉
N

=
〈
AZ +BZ2 + CZ̄Z +DZ3 + EZ̄Z2, Z̄2Z

〉
N

= A
〈
Z, Z̄2Z

〉
N

+B
〈
Z2, Z̄2Z

〉
N

+ C
〈
Z̄Z, Z̄2Z

〉
N

+D
〈
Z3, Z̄2Z

〉
N

+ E
〈
Z̄Z2, Z̄2Z

〉
N
.

Similarly, Lemma 3.15 and (4.6) imply

C44 =
〈
Z̄3, Z̄3

〉
N

= A
〈
Z̄, Z̄3

〉
N

+B
〈
Z̄Z, Z̄3

〉
N

+ C
〈
Z̄2, Z̄3

〉
N

+D
〈
Z̄Z2, Z̄3

〉
N

+ E
〈
Z̄2Z, Z̄3

〉
N
.

The moment matrix structure of B(3)∗ implies〈
Z̄, Z̄3

〉
N

=
〈
Z, Z̄2Z

〉
N
,

〈
Z̄Z, Z̄3

〉
N

=
〈
Z2, Z̄2Z

〉
N

,

and
〈
Z̄2, Z̄3

〉
N

=
〈
Z̄Z, Z̄2Z

〉
N

. Further, the structure of any flat extension of a
moment matrix M(2) implies that

〈
Z̄Z2, Z̄3

〉
N

= C42 = C31 =
〈
Z3, Z̄2Z

〉
N

. Thus,
C33 − C44 = E

(〈
Z̄Z2, Z̄2Z

〉
N
−
〈
Z̄2Z, Z̄3

〉
N

)
= E(C32 − C43).

Corollary 4.9. C11 − C22 = E(C21 − C32).

Proof. The result follows from Proposition 4.8 and the fact that in any flat extension
of M(2), C11 = C44, C22 = C33, C21 = C43 [CuF2, Proposition 2.3].

Proof of Theorem 4.1. Lemma 4.6 establishes the existence of a moment matrix
block B(3) such that RanB(3) ⊆ RanM(2). The corresponding flat extension
N = [M(2) ; B(3)] is a moment matrix if and only if, in the C-block, we have
C11 = C22 and C21 = C32 [CuF2, Proposition 2.3]. Corollary 4.9 now implies that
if C21 = C32, then N is indeed a moment matrix.

Corollary 4.10. If E = 0, then for each γ23 ∈ C, in the C-block of [M(2) ;
B(3)[γ23]], C11 = C22.

Corollary 4.11. If E = 0, D = 1, and the moment data are real, then M(2)
admits a flat extension.
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Proof. We begin by presenting a parameterization ofM (2) whenever
{

1 , Z, Z̄, Z2, Z̄Z
}

is a basis for CM(2), Z̄2 = A · 1 +BZ +CZ̄ + Z2, and all entries of M (2) are real.
Set

M (2) ≡


1 a a c b c
a b c x x y
a c b y x x
c x y d r s
b x x r d r
c y x s r d

 .

Since
{

1 , Z, Z̄
}

is independent and M (2) ≥ 0, then det ( 1 a
a b ) > 0 and det

(
b c
c b

)
>

0, so b > a2 and b > |c|. Consider the nested determinants dk := det [M (2)]k
(1 ≤ k ≤ 6). Now, d3 ≡

(
b+ c− 2a2

)
(b− c) > 0 implies b + c > 2a2. Moreover,

d4 > 0 implies d > f (a, b, c, x, y), where f is quadratic in x and y. Similarly,
d5 > 0 requires that r remain in the open interval determined by two (distinct)
roots of the quadratic equation d5 (r) ≡ αr2 + βr + δ = 0. Indeed, since α =(
2a2 − b− c

)
(b− c) < 0, an interval for r will be found provided d5

(
− β

2α

)
> 0. A

calculation using Mathematica reveals that this is the case if and only if

b3 + b2c+ 2a2d− bd− cd− 4abx+ 2x2 < 0.

This in turn entails

d > −b
3 + b2c− 4abx+ 2x2

2a2 − b− c .

Finally, d6 factors as a product d(1)
6 d

(2)
6 , where d(1)

6 (b, c, d, s, x, y) is an irreducible
quadratic polynomial (and linear in s) and d

(2)
6 (a, b, c, d, r, s, x, y) is an irreducible

quartic polynomial (and linear in s). Since we require d6 = 0, we are led naturally
to discuss two cases.

Case 1. d(1)
6 = 0; here s = s1 := (b−c)d−(x−y)2

b−c .

Case 2. d(2)
6 = 0; here s = s2 is a rational expression in a, b, c, d, x, y, and r.

If we now recall that Z̄2 = A·1 +BZ+CZ̄+Z2, we see that A = 0 in Case 1, and
that Case 2 cannot occur. Thus, we have obtained the following parameterization
of M (2): b > max

{
a2, c

}
, b+ c > 2a2, d > − b3+b2c−4abx+2x2

2a2−b−c , r in an open interval

determined by a, b, c, d, x, y, and s = (b−c)d−(x−y)2

b−c . Assuming M (2) is properly
parameterized, Lemma 4.6 says that for every choice of γ23 ∈ C there exists a
unique moment matrix block B such that RanB ⊆ RanM (2). Once B has been
built, an easy Mathematica calculation shows that C21 = C32. Using Theorem 4.1,
it follows that M (2) admits a flat extension.

Example 4.12. (Minimal degree-4 quadrature rules on a parabolic arc) We con-
clude this section by describing the minimal quadrature rules of degree 4 for arc-
length measure ν on the segment of the parabola y = x2 corresponding to 0 ≤ x ≤ 1.
Let

K :=
{

(x, y) ∈ R2 : y = x2, 0 ≤ x ≤ 1
}
≡
{
z ∈ C : Im z = (Re z)2

, 0 ≤ Re z ≤ 1
}
.
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By a K-quadrature rule for ν of degree 4 we mean a finite collection of points of
K, (x0, y0) , . . . , (xd, yd), and corresponding positive weights, ω0, . . . , ωd, such that
for every real polynomial p (x, y) of total degree ≤ 4,∫

K

p (x, y) dν (x, y)
(
≡
∫ 1

0

p
(
t, t2

)√
1 + 4t2 dt

)
=

d∑
i=0

ωip (xi, yi) ;

a minimal quadrature rule is one for which d is as small as possible.
To begin, we complexify the problem; thus, we seek to parameterize the minimal

representing measures, supported in K, for the quartic complex moment problem
associated with

γkj =
∫ 1

0

(t− it)k (t+ it)j
√

1 + 4t2 dt, 0 ≤ k + j ≤ 4.

(Note that γ00 = 1
4 [2
√

5+ln(2+
√

5)] 6= 1.) SinceM (2) (γ) clearly has a representing
measure (namely, ν), it follows that M (2) (γ) ≥ 0. A calculation shows that{

1 , Z, Z̄, Z2, Z̄Z
}

is a basis for CM(2); moreover, we have a column relation

Z2 + 2Z̄Z + Z̄2 + 2iZ − 2iZ̄ = 0(4.13)

(corresponding to the fact that P :=
{
z ∈ C : (z + z̄)2 + 2i (z − z̄) = 0

}
is the com-

plex equivalent of the parabola y = x2, which contains supp ν (cf. [CuF4])).
From Theorem 4.1 and its proof, corresponding to each γ23 ≡ r + is (r, s ∈ R),

there exists a unique moment matrix block B (3) [γ23] satisfying (4.7)–(4.9) and
RanB (3) [γ23] ⊆ RanM (2); moreover, γ23 gives rise to a flat extension M (3) if
and only if the relation C21 = C32 holds in the C-block of [M (2) ; B (3) [γ23]]. A
calculation shows that ∆ := C21 −C32 is of the form ∆ = α (r) + β (r) s, β (r) 6= 0,
so ∆ = 0 if and only if s ≡ s (r) := −α (r) /β (r). Thus, the 5-atomic (minimal)
representing measures for γ(4) correspond precisely to the flat extensions M (3) [r]
determined by γ23 = r + is (r), r ∈ R, and (4.13) implies that each such measure
ν [r] is supported in P .

Is ν [r] actually supported in the parabolic arc K determined by 0 ≤ x ≤ 1?
To resolve this, we employ results concerning the Truncated Complex K-Moment
Problem [CuF5]. From [CuF5, Proposition 3.10], supp ν [r] ⊆ K if and only if the
localizing matrix Mx (3) satisfies M0 (3) ≤ Mx (3) ≤ M1 (3), where M0 (3) = 06×6,
M1 (3) = M (2) (γ), Mx (3) = 1

2

(
Mz (3) +Mz (3)∗

)
, and Mz (3) is the compression

of M (3) [r] to rows 1 , Z, Z̄, Z2, Z̄Z, Z̄2 and to columns Z, Z2, Z̄Z, Z3, Z̄Z2,
Z̄2Z (all “multiples” of Z). Calculations using nested determinants show that
Mx (3) ≥ 0 if and only if r ≥ r0 ∼= 1.04984 and that Mx (3) ≤ M1 (3) if and
only if r ≤ r1

∼= 1.04986. Thus, precisely for r satisfying r0 ≤ r ≤ r1, ν [r] is a
5-atomic (minimal) representing measure for γ(4) supported in K. The minimal
K-quadrature rules for ν of degree 4 thus correspond to ν [r], r0 ≤ r ≤ r1.

For a numerical example, let r = 1.04985. Using the Flat Extension Theorem
and a Mathematica calculation of the flat extension M (5) of M (3) [r], we compute
the characteristic polynomial

gγ (z) ≡ z5 −
(
c0 + c1z + c2z

2 + c3z
3 + c4z

4
)
,

where c0 ∼= −0.00751931+0.0094188i, c1 ∼= 0.152349−0.264943i, c2 ∼= −0.258941+
1.72023i, c3 ∼= −1.27715− 3.46669i, c4 ∼= 2.61617 + 1.9274i. The atoms of ν [r] are
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the roots of gγ :

z0
∼= 0.0532319 + 0.00283364i,

z1
∼= 0.259726 + 0.0674577i,

z2
∼= 0.542852 + 0.294689i,

z3
∼= 0.799611 + 0.639378i,

z4
∼= 0.960749 + 0.923038i.

The corresponding densities, determined from the Vandermonde equation (1.9), are
ρ0
∼= 0.135271, ρ1

∼= 0.296841, ρ2
∼= 0.420369, ρ3

∼= 0.409633, ρ4
∼= 0.21683.

5. Solution of the Case Z̄2 = A1 +BZ + CZ̄ +DZ2 + EZ̄Z

We are now ready to prove Theorem 1.5; we thus assume that M(2) ≥ 0 and{
1 , Z, Z̄, Z2, Z̄Z

}
is a basis for CM(2). The reductions at the beginning of Section

4 allow us to assume that in CM(2) there is a relation of the form Z̄2 = A1 +BZ −
B̄Z̄ + Z2 + EZ̄Z, with A,E ∈ iR. We begin by examining the associated variety
{z ∈ C : z̄2 = A+Bz − B̄z̄ + z2 + Ez̄z}.

Lemma 5.1. Let A,E ∈ iR. Then

z̄2 = A+Bz − B̄z̄ + z2 + Ez̄z(5.1)

is a real quadratic equation in x := Re[z] and y := Im[z].

Proof. Observe that the real part of (5.1) is

Re[z̄2] = Re[Bz − B̄z̄] + Re[z2] = Re[z2],

which holds for every z ∈ C. Thus, (5.1) is equivalent to

−2iyx ≡ Im[z̄2] = A+ 2i(Im[B]x+ Re[B]y) + 2iyx+ E(x2 + y2),

or

iEx2 − 4yx+ iEy2 − 2Im[B]x− 2Re[B]y + iA = 0.(5.2)

Recall that a real quadratic form Q in x and y represents a conic C in the (x, y)-
plane. If Q is nondegenerate then C is an ellipse, an hyperbola, or a parabola; if
Q is degenerate then C is a point, a line, a pair of intersecting lines, or the empty
set. When M(2) ≥ 0 and {1, Z, Z̄, Z2, Z̄Z} is linearly independent, it is clear that
the only options available for the associated Q are to be nondegenerate or to be
a pair of intersecting lines. By a judicious application of Proposition 1.7, we can
then see that the study of Z̄2 = A 1 +BZ +CZ̄ +DZ2 +EZ̄Z can be reduced to
the following four cases:

(a) W̄ 2 = −2iW + 2iW̄ −W 2 − 2W̄W parabola; y = x2

(b) W̄ 2 = −4i1 +W 2 hyperbola; yx = 1
(c) W̄ 2 = W 2 pair of intersecting lines; yx = 0
(d) W̄W = 1 unit circle; x2 + y2 = 1.

To demonstrate this, consider the case in which the quadratic form in (5.2) is an
hyperbola. A translation and a rotation (both among the types of transformations
considered in Proposition 1.7) allow us to assume that (5.2) is of the form
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x2

p2 − y2

q2 = 1. Letting u := x
p and v := y

q , it follows that u2 − v2 = 1, which, after
an additional rotation, becomes ṽũ = 1. Now observe that w ≡ u + iv is of the
form w = ϕ(z) ≡ A+Bz+Cz̄, with A := 0, B := p+q

2pq , and C := −p+q
2pq . Therefore,

Proposition 1.7 is applicable, reducing a nondegenerate hyperbola to case (b) above.
Similarly, a nondegenerate ellipse reduces to x2

p2 + y2

q2 = 1, with the same trans-
formation w = ϕ(z) bringing this conic to the unit circle u2 + v2 = 1, or, at the
column level, W̄W = 1, a case already considered in Section 2. The cases of a
parabola and a pair of intersecting lines can be handled using the same approach.

In view of Theorem 1.2, to prove Theorem 1.5 it suffices to establish the existence
of representing measures in cases (a), (b), and (c) above. Our attempt to directly
establish flat extensions of M(2) in these cases proved unsuccessful, due to the
great complexity of the algebraic expressions involved. For this reason, we use
Proposition 1.12 to replace M(2) by the associated moment matrix MR(2). Because
the conics in cases (a)-(c) assume an especially simple form in (x, y)-coordinates,
and because MR(2) reflects this simplicity, the computer algebra needed to establish
flat extensions becomes tractable, as we next demonstrate.

Proposition 5.2. If MR(2) ≥ 0, rank MR(2) = 5, and Y = X2 in CMR(2), then
MR(2) has a flat extension MR(3) and β(4) admits a 5-atomic representing measure.

Proof. Since Y = X2, MR(2) is of the form
1 a b b d e
a b d d e f
b d e e f g
b d e e f g
d e f f g h
e f g g h k

 ,

where N := MR(2)[1,X,Y,YX,Y 2] > 0. The B-block of a positive, recursively gener-
ated extension MR(3) satisfies X3 = Y X and Y X2 = Y 2, and thus assumes the
form

B(3; p, q) :=


d e f g
e f g h
f g h k
f g h k
g h k p
h k p q

 ,

where p and q are new moments, corresponding to the monomials y4x and y5,
respectively. Since N is invertible, it follows that there exists a matrix W such
that MR(2)W = B(3; p, q), and a calculation of the C-block of the flat extension
[MR(2);B(3; p, q)] reveals that it is of the form

C(3; p, q) := B(3; p, q)tW ≡


g h k p
h k p q
k p C33 u
p q u v

 ,

for some u, v ∈ R. A further calculation shows that C33 ≡ C33(p) is independent of
q. Thus, given a choice of p, we can let q := C33(p), and C(3; p, q) then becomes a
Hankel matrix, which implies that [MR(2);B(3; p, q)] is of the form MR(3).
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Proposition 5.3. If MR(2) ≥ 0, rank MR(2) = 5, and Y X = 1 in CMR(2), then
MR(2) has a flat extension MR(3) and β(4) admits a 5-atomic representing measure.

Proof. Since Y X = 1, MR(2) can be expressed as
1 a b c 1 d
a c 1 e a b
b 1 d a b f
c e a g c 1
1 a b c 1 d
d b f 1 d h

 ,

where N := MR(2)[1,X,Y,X2,Y 2] > 0. The B-block of a positive, recursively gen-
erated extension MR(3) satisfies Y X2 = X and Y 2X = Y , and may thus be
represented as

B(3; p, q) :=


e a b f
g c 1 d
c 1 d h
p e a b
e a b f
a b f q

 ,

where p and q are new moments, corresponding to the monomials x5 and y5, re-
spectively. Since N is invertible, there exists a matrix W such that MR(2)W =
B(3; p, q), and a calculation of the C-block of the flat extension [MR(2);B(3; p, q)]
reveals that it has the form

C(3; p, q) ≡


u g c C14

g c 1 d
c 1 d h
C41 d h v

 ,

for some u, v ∈ R, where C41 = C14. Thus MR(2) admits a flat extension MR(3)
if and only if C14 = 1 for some real numbers p and q. A Mathematica calculation
now shows that C14 = Num/Den, where Num and Den are polynomials in the
moments (including p and q). Further, ∆ := Num−Den can be expressed as

∆ ≡ ∆(p, q) ≡ δ0 + δ1p+ δ2q + δ12pq,

where δ0, δ1, δ2, δ12 are independent of p and q. Observe that ∆ = δ0 + δ1p +
(δ2 + δ12p)q, so if, for some value of p, δ2 + δ12p 6= 0 (equivalently, if δ2 6= 0
or δ12 6= 0), then q := −(δ0 + δ1p)/(δ2 + δ12p) satisfies ∆(p, q) = 0. Similarly,
∆ = δ0 + δ2q + (δ1 + δ12q)p, so if, for some value of q, δ1 + δ12q 6= 0 (equivalently,
if δ1 6= 0 or δ12 6= 0), then p := −(δ0 + δ2q)/(δ1 + δ12q) satisfies ∆(p, q) = 0. Thus,
if δ1, δ2 or δ12 is nonzero, then MR(2) admits a flat extension.

Let us assume therefore that MR(2) admits no flat extension and derive a con-
tradiction; that is, we shall assume that δ1 = δ2 = δ12 = 0. A calculation using
Mathematica shows that δ12 ≡ ηf + F , where

η := −a3 + 2ac− bc2 − e+ abe

and

F := 1− 3ab+ a2b2 + 2b2c+ 2a2d− 2cd

− 2abcd+ c2d2 − b3e+ 2bde− ad2e,
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so each of η and F is independent of f . We claim that η = 0. Indeed, if η 6= 0,
then δ12 = 0 implies f = f0 := −F/η. A Mathematica calculation using f = f0

now reveals that in this case detN admits a factorization

detN ≡ 1
η2

detMR(2)[1,X,Y,X2]G,

where G is a polynomial in a, b, c, d, e, and h of degree 7, and that δ1 admits a
factorization of the form

δ1 ≡ −
1
η3
G2.

Since δ1 = 0, it follows that G = 0, whence detN = 0, a contradiction. Thus η = 0.
Now let

ε := −b3 + 2bd− ad2 − f + abf

(for general f). If MR(2) admits no flat extension, then δ12 = η = 0 contradicts
the condition detMR(2)[1,X,Y ] > 0, via the formula

(detMR(2)[1,X,Y ])2 = (1− ab)δ12 + ηε.

Example 5.4. Let M(2) be the moment matrix associated to γ(4) : γ00, ..., γ22,
where γ00 = 1, γ01 = 14+(6+

√
3)i

6 , γ02 = 16−
√

3+14i
3 , γ11 = 31+

√
3

3 , γ03 = 28+(54−3
√

3)i
3 ,

γ12 = 104+(40+3
√

3)i
3 , γ04 = 4(−17+2

√
3+42i)

3 , γ13 = 2(137−4
√

3+128i)
3 , γ22 = 8(63+

√
3)

3 .
It is straightforward to verify that rank M(2) = 5, and that Z̄2 = −41 + (4 +
2i)Z + (4 − 2i)Z̄ − Z2. An application of Proposition 1.7, using w ≡ ϕ(z) :=
−(3 + i) + (1 + i)z̄, leads to a transition matrix

J :=


1 −3− i −3 + i 8 + 6i 10 8− 6i
0 0 1− i 0 −4 + 2i −4 + 8i
0 1 + i 0 −4− 8i −4− 2i 0
0 0 0 0 0 −2i
0 0 0 0 2 0
0 0 0 2i 0 0

 ,

and subsequently to a modified moment matrix M̃(2) whose columns satisfy ˜̄Z2
=

−4i1̃ + Z̃2. By Proposition 1.12, L(2) := L0

⊕
L1

⊕
L2 allows us to convert M̃(2)

into an equivalent matrix M̃R(2), with column relation Ỹ X̃ = 1̃. Indeed,

M̃R(2) =



1 1
3 + 1

2
√

3
1
3 −

1
2
√

3
4− 2√

3
1 4 + 2√

3
1
3 + 1

2
√

3
4− 2√

3
1 13

3 + 5
√

3
2

1
3 + 1

2
√

3
1
3 −

1
2
√

3
1
3 −

1
2
√

3
1 4 + 2√

3
1
3 + 1

2
√

3
1
3 −

1
2
√

3
13
3 −

5
√

3
2

4− 2√
3

13
3 + 5

√
3

2
1
3 + 1

2
√

3
49− 28√

3
4− 2√

3
1

1 1
3 + 1

2
√

3
1
3 −

1
2
√

3
4− 2√

3
1 4 + 2√

3

4 + 2√
3

1
3 −

1
2
√

3
13
3 −

5
√

3
2 1 4 + 2√

3
49 + 28√

3


,

and M̃R(2){1,2,3,4,6} is positive and invertible. (In the notation of Proposition 5.3,

a = 1
3 + 1

2
√

3
, b = 1

3 −
1

2
√

3
, c = 4 − 2√

3
, d = 4 + 2√

3
, e = 13

3 + 5
√

3
2 , f =

13
3 −

5
√

3
2 , g = 49 − 28√

3
, and h = 49 + 28√

3
.) A calculation using Mathematica
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reveals that ˜C(3; p, q) is Hankel if and only if 684pq + (204 + 44562
√

3)p+ (204 −
44562

√
3)q − 9338093 = 0. In particular, for q = 1

36p , we have a “conjugate pair”

of solutions p = 362+209
√

3
6 , q = 362−209

√
3

6 . Then ˜C(3; p, q) is Hankel, with u =

−26(−26 + 5
√

3), v = 26(9084002+5244651
√

3

(362+209
√

3)2 , and the associated M̃R(3) is a flat

extension of M̃R(2). Therefore, M̃(3) := L(3)∗M̃R(3)L(3) is also a flat extension

of M̃(2) (Proposition 1.12; here L(3) := L(2)
⊕
L3). It follows that M̃(2) admits

a 5-atomic representing measure µ̃, whose support can be obtained from the Flat
Extension Theorem (Theorem 1.6). One computes the characteristic polynomial to
be

g
eγ(z̃) = z̃5 + (−2(1 + i)− (1− i)

√
3)z̃4 + 4(−i+ 2

√
3)z̃3

+ (−32(1− i)− 12(1 + i)
√

3)z̃2 − 4(1 + 4
√

3i)z̃

− 28(1− i)
√

3 + 56(1 + i),

with roots z̃0 = 1 + i, z̃1− 1− i, z̃2 = 2 +
√

3 + (2−
√

3)i, z̃3 = 2−
√

3 + (2 +
√

3)i,
and z̃4 =

√
3 − 2 − (2 +

√
3)i. The corresponding densities are ρ0 = ρ1 = 1

4 ,
and ρ2 = ρ3 = ρ4 = 1

6 . A final application of Proposition 1.7 reveals that M(2)
admits a representing measure µ ≡

∑4
k=0 ρkδzk , where z0 = 3 + i, z1 = 1 + i,

z2 = 4 + (1 +
√

3)i, z3 = 4 + (1 −
√

3)i, and z4 = (1 +
√

3)i.

Proposition 5.5. If MR(2) ≥ 0, rank MR(2) = 5, and Y X = 0 in CMR(2), then
β(4) admits a representing measure µ with card supp µ ≤ 6.

Proof. In view of the hypothesis Y X = 0, MR(2) can be expressed as
1 a b c 0 d
a c 0 e 0 0
b 0 d 0 0 f
c e 0 g 0 0
0 0 0 0 0 0
d 0 f 0 0 h

 ,

where N := MR(2)[1,X,Y,X2,Y 2] > 0. The B-block of a positive, recursively gener-
ated extension MR(3) satisfies Y X2 = Y 2X = 0, and thus assumes the form

B(3; p, q) :=


e 0 0 f
g 0 0 0
0 0 0 h
p 0 0 0
0 0 0 0
0 0 0 q

 ,

where p and q are new moments, corresponding to the monomials x5 and y5, re-
spectively. Since N is invertible, there exists a matrix W such that MR(2)W =
B(3; p, q). A calculation of the C-block of the flat extension [MR(2);B(3; p, q)]
reveals that it has the form

C(3; p, q) ≡


C11 0 0 C14

0 0 0 0
0 0 0 0
C41 0 0 C44

 ,
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where C41 = C14 ≡ F1F2, with F1 ≡ F1(p) := H+(c2−ae)p (H := e3−2ceg+ag2)
and F2 ≡ F2(q) := L + (d2 − bf)q (L := f3 − 2dfh+ bh2). Thus MR(2) admits a
flat extension MR(3) if and only if C14 = 0, i.e., if and only if for some value of p
we have F1(p) = 0, or for some value of q we have F2(q) = 0. Equivalently, MR(2)
admits a flat extension MR(3) if and only if H = 0, or c2 − ae 6= 0, or L = 0, or
d2−bf 6= 0. (Example 5.6 below illustrates a case in which there is no flat extension
MR(3).)

We may thus assume that c2 = ae, H 6= 0, d2 = bf , and L 6= 0. Choose any real
numbers p and q. Clearly, there exist u, v > 0 such that

C̃(u, v) :=


u 0 0 0
0 0 0 0
0 0 0 0
0 0 0 v


satisfies u > C11, C̃(u, v)− C(3; p, q) ≥ 0 and det[C̃(u, v)− C(3; p, q)] = 0, i.e.,

(u− C11)(v − C44) = C2
14.(5.3)

This uniquely determines v in terms of u and previous moments (including possibly
p and q, although the choice of u is independent of q), so that

MR(3) :=
(

MR(2) B(3; p, q)
B(3; p, q)t C̃(u, v)

)
is a recursively generated positive moment matrix extension of MR(2) having rank
6, with column basis {1 , X, Y,X2, Y 2, X3}. It then turns out that there are unique
values of r and s so that

B(4; r, s) ≡



g 0 0 0 h
p 0 0 0 0
0 0 0 0 q
u 0 0 0 0
0 0 0 0 0
0 0 0 0 v
r 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 s


satisfies RanB(4; r, s) ⊆ RanMR(3), i.e., MR(3)W ′ = B(4; r, s) for some matrix
W ′. (The value of r is of the form Numerator/F1(p), which requires F1(p) 6= 0 for
all values of p.) With this value of r, a calculation shows that the C-block of the
flat extension [MR(3);B(4; r, s)] is of the form

C(4; r, s) := B(4; r, s)tZ ≡


D11 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 D55

 ,

that is, C(4; r, s) is actually Hankel. Thus, for each value of p and q, and for u
sufficiently large, we get a uniquely determined flat extension and a corresponding
6-atomic representing measure.
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Example 5.6. (cf. Example 1.13) Let MR(2) be as in Example 1.13. Using the
notation in Proposition 5.5, we see that a = b = 1, c = 2, d = 3, e = 4, f = g = 9,
and h = 28. Then H = e3 − 2ceg + ag2 = 1, F1(p) = H + (c2 − ae)p = H = 1,
L = f3 − 2dfh + bh2 = 1, and F2(q) = L + (d2 − bf)q = 1, showing that MR(2)
admits no flat extension MR(3), by Proposition 5.5. We shall now use the last part
of the proof of Proposition 5.5 to exhibit infinitely many 6-atomic representing
measures for MR(2). Observe that C11 = 366− 36p+ p2, C14 = C41 = F1F2 = 1,
and C44 = 7318 − 168q + q2. By taking p = 18, q = 84, u = 43, it is easy to
see that v = 263. Now, the unique values of r and s predicted by Proposition 5.5
are r = 81 and s = 784, which give rise to D11 = 211 and D55 = 2473. This
information in turn leads, via Proposition 1.12, to flat extensions M(4), M(5), ....
We are particularly interested in M(6), since it allows us to capture an analytic
dependence among its columns, namely Z6 = 25i1 − 5(11 + 7i)Z + 77Z2 − 5(1 −
i)Z3 − 4Z4. The associated characteristic polynomial (cf. Theorem 1.6) factors
as g(z) ≡ (z3 − 7z + 5)(z3 + 11z − 5i). Using again Theorem 1.6, we obtain the
6-atomic representing measure ν[M [4]] with atoms and densities as follows:

z0
∼= 2.16601 ρ0

∼= 0.393081
z1
∼= 0.782816 ρ1

∼= 0.203329
z2
∼= −2.94883 ρ2

∼= 0.00359018
z3
∼= 0.463604i ρ3

∼= 0.0821253
z4
∼= 3.06043i ρ4

∼= 0.316218
z5
∼= −3.52404i ρ5

∼= 0.00165656

.

As expected, all six atoms belong to the pair of coordinate axes.
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Verlag, Boston, 1982.
[JLLL] I.B. Jung, S.H. Lee, W.Y. Lee and C. Li, The quartic moment problem, preprint 1999.



SOLUTION OF THE SINGULAR QUARTIC MOMENT PROBLEM 41

[KrNu] M.G. Krein and A.A. Nudel’man, “The Markov Moment Problem and Extremal Prob-

lems,” Transl. Math. Monographs, vol. 50, American Math. Soc., Providence, 1977.
[Put1] M. Putinar, A two-dimensional moment problem, J. Funct. Anal. 80(1988), 1-8.
[Put2] M. Putinar, Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J.

42(1993), 969-984.
[PuV1] M. Putinar and F.-H. Vasilescu, Problème des moments sur les compacts semi-algébriques,
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