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For the quadratic complex moment problem ~;; = [Z'2/dp (0 < i+ j < 2),
we obtain necessary and sufficient conditions for the existence of representing
measures p supported in the unit circle T or in the closed unit disk D. We
explicitly construct all finitely atomic representing measures supported in T or
D which have the fewest atoms possible. For the quadratic D-moment problem in
which the moment matrix M (1) is positive and invertible, there exists an ellipse
€ C D such that the minimal (3-atomic) representing measures are supported
in the complement of the interior region of £. Finally, we apply these results to
obtain information on the location of the zeros of certain cubic polynomials.

1 Introduction

Given complex numbers Yo, Yo1» Y105 Yoz, Y11s Y20, and a closed subset K of the complex
plane C, the quadratic complex K-moment problem entails finding necessary and sufficient
conditions for the existence and uniqueness of a positive Borel measure p such that v,; =
[z dp (0 <i+j <2),andsuppp C K. In the present paper, we provide a comprehensive
analysis of this problem for the cases when K = T (the unit circle) or K = D (the closed
unit disk). In each case, we provide existence criteria for representing measures p expressed
Yoo Vo1 710
concretely in terms of the moment matrix M (1) := | 79 711 720 | (Theorems 1.8 and
Yo1 Yoz Y1
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3.1): such measures exist if and only if M (1) > 0 and 7,; = 7y (in the unit circle case)
or ¥1; < 7go (in the unit disk case). Our results go beyond existence criteria, in that we
obtain a complete parameterization of minimal representing measures in each case (Remark
3.2, Corollary 4.12 and Theorem 5.7). For a prescribed point z € K, we provide an explicit
computational test for determining whether z is in the support of a representing measure,
supported in K, with the fewest atoms (Theorem 4.2, Corollary 4.3, Theorem 4.11 and
Corollary 4.12). For such a point z, we provide an algorithm for explicitly constructing all
such minimal K-representing measures. Further, we present a geometric description of the
location of the atoms of minimal K-representing measures (Corollary 4.12, Remark 4.1(ii)
and Theorem 5.7). This parameterization of minimal representing measures is analogous to
Hamburger’s parameterization of representing measures for the full moment problem on the
real line ([AhKr], [Akh], [KrNu], [ShTa]). We believe that our results for the disk comprise
the first parameterization of minimal representing measures in a truncated moment problem
for a set of positive planar measure.

In order to state our results in detail, we recall the moment matrix approach to
truncated multivariable moment problems. Given a doubly indexed finite sequence of com-
plex numbers v = Y3 1 v40, Yo1, Y1os - - -» Yo.2n -+ Yonor With 749 > 0 and ~;; = 7,5, the
truncated complex moment problem entails finding a positive Borel measure p supported in
the complex plane C such that

Yij = /zizjd/i (0<i+j < 2n);

p is called a representing measure for . In [Cur], [CuFi2], [CuFi3], [CuFi4], [CuFi5], [Fil]
and [Fi2], we studied truncated moment problems (in one or several variables) using an
approach based on positivity and extension properties of the moment matriz M (n) associated
to the data. If u is a representing measure, then card supp u > rank M (n) [CuFi2, Corollary
3.7]. For n > 3, not every minimal representing measure has rank M (n) atoms ([CuFi4,
Theorem 5.2|, [Fi3]), but in a variety of cases we have established that minimal representing
measures are indeed rank M (n)-atomic ([Cur], [CuFi2], [CuFi3], [CuFi4]). In particular,
when v(2") is of flat data type (i.e., M(n) > 0 and rank M (n) = rank M (n — 1) ), a unique
representing measure exists, which is rank M (n)-atomic [CuFi2].

This result is compatible with our previous results for measures supported on the
real line, nonnegative real line, or some prescribed finite interval (truncated Hamburger,
Stieltjes and Hausdorff moment problems), and for measures supported on the unit circle
(truncated Toeplitz moment problems) [CuFil]. In these cases, the concept of recursive-
ness for positive Hankel matrices motivated the development in [CuFi2] of a “functional
calculus” for the columns of M(n), which plays a key role in establishing the following
basic tool for constructing rank M (n)-atomic representing measures. In the sequel, we let
Chri(ny denote the column space of M(n), we denote the successive columns of M(n) by
1,2,72,72, 22,72, ...,Z", ..., Z", and we let P,, denote the complex polynomials in z and Z
of degree at most n. For p € P, p =Y a;;z'2%, we let p(Z, Z) ==Y a;; Z'Z7 € Cpr(ny.-

Theorem 1.1 (cf. [CuFi2, Theorem 5.4, Corollary 5.12, Theorem 5.13, and Corollary 5.15])
Suppose M (n) is positive and admits a flat (i.e., rank-preserving) extension M(n + 1), so



that 2" = p(Z,7) in Crttns1) for some p € P,. Then there exist unique, successive flat
moment matriz extensions M(n 4+ 2), M(n+3), ..., which are determined by the relations

Zn+k = (Zk_lp)(Z, Z) € C]V[(n+k) (k‘ > 2).
Let r :=rank M (n). Then there exist unique scalars ag, ..., ar—1 such that in Cyr),
7" =apl +...+a, 17" L.

The generating polynomial g,(z) = 2" — (ag+ ... + a,_12""1) has r distinct roots, zo, ..., zr_1,
andy has arank M (n)-atomic (minimal) representing measure of the form v = v[M (n+1)] =
> pibs,, where the densities p; > 0 are determined by the Vandermonde equation

V(Zo, EE3) Z7~—1)<p07 ey pr71>T = (7007 ) 70,7'71)T7

and where 6, denotes the unit-mass atomic measure supported at w. The measure v[M (n+1)]
is the unique representing measure for v2+2)

In [CuFi5] we studied the truncated complex K-moment problem, in which the
support of a representing measure is required to be contained in a prescribed closed set
K C C. For a polynomial ¢(z,2), let K, := {z € C : q(2,2) > 0} and let k := [%].
Corresponding to a flat extension M(n + 1) of M(n) > 0 we have the extension M(n + k)
(Theorem 1.1); we let M,(n+ k) denote the localizing matriz for M (n + k) relative to g (see
below for the definition of localizing matrix).

Theorem 1.2 [CuFi5, Theorem 1.1] There exists a rank M (n)-atomic representing measure
for v supported in K, if and only if M (n) > 0 and there is some flat extension M (n+ 1)
for which M, (n+ k) > 0. In this case, v[M(n + 1)] is a rank M (n)-atomic representing
measure supported in K,, with precisely rank M (n) — rank M, (n + k) atoms in Z(q) :=
{z€C:q(z,Z2) =0}.

For q(z,z) := 1 — zz, Theorem 1.2 provides an abstract solution to the truncated
complex K-moment problem for K = D or K = T, but establishing the existence of the
desired flat extension M (n+1) is itself a difficult problem [CuFi5]. Similarly, Atzmon’s solu-
tion to the full complex moment problem for D [Atz], Putinar’s elegant alternative approach
[Put], and Schmiidgen’s subsequent solution to the full K-moment problem for compact semi-
algebraic sets [Sch|, do not readily yield constructive formulas for representing measures (see
also [BeMa] for related results). By contrast, in the present paper, for the quadratic moment
problem (n = 1), we develop concrete algorithms for constructing rank M (1)-atomic (mini-
mal) representing measures supported in the unit disk or unit circle. These algorithms are
expressed solely in terms of the data v and are independent of Theorem 1.2.

To illustrate our viewpoint, consider K = D. In the case when rank M(1) = 2, the
necessary conditions M(1) > 0 and 1 = vy, > 7, entail  := vy, — v3; # 0, and we let w
denote a fixed square root of 7. In Theorem 4.2 we compute a closed interval I C (0, 400)
such that the 2-atomic (minimal) representing measures for 7 supported in D are precisely

those of the form p, = #6701%10 + %(5%17%1” (t € I), where 6, denotes the unit mass



at z. In Sections 4 and 5, we use this result and a “rank reduction” construction to analyze
the case when M (1) is positive and invertible. In Theorem 4.11 we compute an open region
Q) C D such that a point 2z, € D is an atom of a 3-atomic (minimal) representing measure
p for v supported in D if and only if zp € D\ Q. In Section 5 we identify £ := 9 as
an ellipse and show, further, that the two remaining atoms of i can be chosen on the unit
circle if and only if zy € £ (Theorem 5.5).

The preceding viewpoint (working with the atoms of a minimal representing mea-
sure) was motivated by the difficulty we encountered when we tried to directly construct flat
extensions satisfying the conditions of Theorem 1.2 for the case n = 1, ¢(z,2) := 1 — zz,
and k = 1. (By virtue of Theorem 1.8, we know that such extensions do exist.) For the
quadratic moment problem with K = T, we again bypass Theorem 1.2, but in a different
way. We prove Theorem 3.1 by constructing flat extensions M (2) in which there is a column
relation ZZ = 1; for n = k = 1, this is equivalent to the condition M; ;,(2) = 0 [CuFi5,
Proposition 3.9].

In this paper, we focus almost exclusively on the quadratic moment problem (n = 1).
For n > 1, in [CuFi4, Theorem 1.5] we presented an abstract solution to the truncated
complex moment problem, but a concrete analysis exists only for special cases. Indeed, even
for the quartic moment problem (n = 2), the existence of positive M (2) which do not admit
representing measures [CuFi6] considerably complicates the theory. On the other hand, some
of our techniques, including the “rotation” technique of Section 2 and the “rank reduction”
technique of Sections 2 and 4, are clearly applicable to general truncated complex moment
problems. We plan to study the implications of these techniques for n > 1 elsewhere.

In order to further describe our results, we require some terminology and results
concerning moment matrices. Recall that for n > 1 and m = m(n) := (n+ 1)(n + 2)/2,
the m x m moment matric M(n) = M(n)(y) is defined as follows. For 0 < i,j < n, the
(i+1) x (j + 1) matrix M[i, j] has as entries the moments of order i + j :

Vi Titrj-1 0 Vitj0
GEE A N Y
Yoi+5  Viitg-1 Vi

and M<n) = (M[i7j])0Si,j§n-
For n = 1, the quadratic moment problem with data v = ¥® : 7.0, %01 Y10,
Yo2s Y115 Y20 corresponds to

M(l) — M[()? 0] M[O, 1] _ 300 :;Ol :;10
M[l, 0] M[l, 1] 7;;) 7;; 7??

In [CuFi2, Theorem 6.1] we established the following result.

Theorem 1.3 Let r := rank M(1). The following statements are equivalent for v = v?).
(i) v has a representing measure;

(i) v has an r-atomic representing measure;
(iii) M (1) > 0.



In this case,
(a) if r = 1, the unique representing measure is 700(5%1/700 ;
(b) if r = 2, the 2-atomic representing measures are parameterized by a complez line z =

a+ Bz (2 # Yo)s
(c) if r = 3, the 3-atomic representing measures contain a sub-parameterization by a circle.

Recall that P,, C C|z, z] denotes the polynomials in z and z of total degree at most
n. Forp € P, p(2,2) = D gciicn @77, let p = (aoo, o, aro, -, Gons -, o)’ € C™™) . For
q € Pony 4(2,2) = Y o< j<om bi;z'27, let A(q) = > o<itj<om biVij- M(n) is the unique matrix
in M,,(n)(C) satisfying A(pq) = (p, D riny = (M(n)p,qG) (p,q € Py). The basic connection
between the moment matrix M (n) and any representing measure p is provided by the identity
[ pq dp = (p, @) arny (P> q € Py) [CuFi2]; in particular, (M (n)p, p) = [ |pf* dp > 0, so

if v admits a representing measure, then M(n) > 0. (1.2)

For p € Po, p =Y. 0727, let p(Z,2) := Y a; Z2°Z7 € Cprmy and let Z(p) := {z €
C:p(z,2) =0}). For 0 <r+s<mn,lete, =(0,..,0,1,0,..0)7, with a 1 in the Z°Z"
position. Note that for 0 < r + s < n, the (r,s) element of v := p(Z, Z) is equal to

Vis = (V,€5,)
= (p,Z2°2") M(n)
= Zogiﬂgn i (227, 2°2") mm)
= Zogiﬂgn Qi5Yitr j+s-

We list below four fundamental results needed for our purposes here.

Proposition 1.4 ([CuFi2, Proposition 3.1]) Suppose p is a representing measure for ~. For
p € Pn, _
supppu C Z(p) < p(Z,Z) = 0.

Proposition 1.5 ([CuFi2, Corollary 3.7]) Let u be a representing measure for . Then
card supp p > rank M (n).

Proposition 1.6 ([CuFi2, Remark 3.15(ii)]) Suppose M(n) admits a positive moment ma-
triz extension M(n + 1). Then M(n) is recursively generated, i.e., if f,g,fg € Pn and
f(Z,2Z) = 0 in Car(ny, then (f9)(Z,Z) =0 in Cartny-

Proposition 1.7 ([CuFi2, Lemma 3.10]) Let M (n) be a moment matriz, and let p € P,,. If
p(Z,Z) =0 then p(Z,Z) = 0.

Let us now consider the circle and disk quadratic moment problems for 7 :
Yoos Yo1> Y105 Yozs V115 Ya0; 1 view of (1.2) we may assume M (1) > 0. If one insists that
a representing measure for 42 have support in the unit circle or unit disk, additional neces-
sary conditions beyond positivity of M (1) must be imposed, to reflect the fact that, in the



support set, Zz = 1 or Zz < 1, respectively. This leads to consideration of a relation between
Yoo and ;. For, if p is a representing measure for v, vo0 = [ 1 dp and vy, = [ 2z dp, so
the above mentioned conditions on zZ easily imply that v;; = v or 711 < Vg9, respectively.
This observation also shows that if x4 is supported in the closed unit disk, then v;; = 7,0
implies that p is actually supported in the unit circle.

Note that v, the total mass, has no effect on the size or location of the support
of a representing measure. In order to simplify certain calculations, we generally assume,
without loss of generality, that v,y = 1. Moreover, one can focus on the cases rank M(1) = 2
and rank M (1) = 3. For, it is easy to see that

rank M(1) =1 v, = |”701|2 and gy = ”731 (1.3)

(in which case M(1) > 0). It then follows that when rank M (1) = 1, u := 6,,, is the unique
representing measure for . Since supp p = {7y, }, we see that supp x4 C T (the unit circle)
or supp s € D (the closed unit disk), depending upon whether |yq,| = 1 or |yy,| < 1. By
contrast, we show that v,, is never in the support of a minimal representing measure when
rank M (1) = 2 or rank M (1) = 3 (Corollary 2.7).

We next briefly introduce the case when rank M (1) = 2. Proposition 1.7 allows us
to assume that {1, 7} is linearly independent and that

7 =al + B2, (1.4)

where a, 3 € C. Moreover, (1.4) implies at once that

at+af = 0
{ P (15)

(cf. [CuFi3, (2.2)]). In Section 4, we use (1.4) and (1.5) to solve the rank 2 disk problem; in
particular, we prove that the support of a representing measure lies in the line Z = a + (z.
Also in Section 4, we reduce the case when rank M (1) = 3 to an equivalent problem with
rank M (1) = 2.

Let us recall the notion of localizing matriz introduced in [CuFi5]. Let g € Pay,,
q # 0, and define k£ by deg q = 2k or degq = 2k — 1. There exists a unique localizing matriz
M,(n) (of size W) such that

(My(n)f,5) = Mafg) (.9 € Pus).

Thus, if a representing measure p for -y is supported in K, then for f € P,,_y,

(Mf.F) = a1 = [alf? du=o,

whence M,(n) > 0.
For q(z,z) := 1 — zz, [CuFi5, (1.6)] shows that

L= Yo1— 712 Y0 — Y21
M1—2z(2) = Yo — Y21 Y11 — Vo2 V20 — V31
Yo1 — Y12 Yo2 — Y13 VY11 — V22



Theorem 1.2 implies that v(?) has a rank M (1)-atomic representing measure supported in D
if and only if M(1) > 0 and M;_;,(2) > 0 for some flat extension M (2) of M(1). Notice that
the condition y;; < 749(= 1) is obviously necessary if one wants to ensure that M;_5,(2) > 0.
Our main existence result, which follows, shows that M (1) > 0 and v,; < 7, are indeed

sufficient to guarantee the existence of a rank M (1)-atomic representing measure supported
in D.

Theorem 1.8 The following statements are equivalent for v = ~v@.

(i) There exists a representing measure supported in D;

(ii) There erists a rank M (1)-atomic representing measure supported in D;

(iii) There exists a flat extension M(2) for which the associated measure v[M(2)] (cf. Theo-
rem 1.1) is supported in D, with rank M (1) — rank M;_z, (2) atoms in T;

(iv) M(1) = 0 and vy < Yoo-

Section 2 is devoted to preliminary reductions concerning the quadratic moment
problem for the closed unit disk. In Section 3 we give a detailed (constructive) analysis of
the quadratic moment problem for the unit circle. In Theorem 3.1 we prove that there exists a
rank M (1)-atomic representing measure supported in the unit circle if and only if M (1) >0
and v;; = 7Ygo- Minimal representing measures are unique in the rank1 and rank?2 cases
(Remarks 3.2 and 3.4), and are parameterized by the points of T in the rank 3 case (Corollary
4.12(ii)). We present the proof of Theorem 1.8 in Section 4, partially as a consequence of our
analysis of the T-moment problem in Section 3; our proof of (iv) = (ii) is constructive, and
independent of the flat extension technique. In particular, when rank M (1) = 2, Theorem
4.2 gives a complete description of the 2-atomic (minimal) representing measures supported
in D. For the case when rank M(1) = 3, in Theorem 4.11 and Algorithm 4.14 we give a
complete (constructive) description of the 3-atomic representing measures supported in D.
Section 5 is devoted to a refined analysis of the rank 3 case; in Theorem 5.5 we identify an
ellipse £ C D such that zy € £ if and only if 2 is an atom of a 3-atomic representing measure
supported in D with the remaining two atoms in the unit circle. More generally, z, € D
is an atom of a 3-atomic representing measure supported in D if and only 2, is not in the
interior region of £ (Theorem 5.7). For such a point z5, Theorem 5.7 completely describes
the minimal representing measures supported in D for which z; is an atom. Finally, as an
application, in Section 6 we identify classes of cubic polynomials having three distinct roots
in the unit circle; these include, for example, the polynomials 2* + wB32? — 3z — w, where
w] =1, 18] < 1.
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2 Preliminaries

This section contains some useful reductions in the quadratic moment problem for the unit
disk. Thus, we shall always assume M (1) > 0 and 7y;; < 7o = 1. We begin by showing that
one can always assume 7y, > 0 (Corollary 2.2 below).

Lemma 2.1 Let M(n) be the moment matriz for v = v For 0 # X € C, define Dy as
the m(n) x m(n) diagonal matriz with X' N as the entry corresponding to row and column
Z'Z3, that is, Dy = diag(1,\, A, N}, A\\,\°, ...). Let M(n)" := D*M(n)D. Then

(i) M(n) is a moment matriz, namely the moment matriz associated to 7;; := A'X,; (0 <
i+7<2n);

(ii) M(n) >0 if and only if M(n) > 0;

(iii) rank M(n) = rank M(n);

(iv) v admits a finitely atomic representing measure p = >, p0,, if and only if ¥ admits a
finitely atomic representing measure i = Y p0z,, with Z; = Azj.

In brief, v and 3™ give rise to equivalent truncated moment problems, whose representing
measures satisfy the relation supp i = Asupp p.

Proof. Straightforward from the definition of M(n) . 1

V10

L V011
and 7, = )\2)\’72.]. (0 < i+4j < 2n). Then the equivalent family 3 satisfies 75, > 0 and
Vi =Y (0 <0 < n).

Corollary 2.2 Let M(n) be the moment matriz for Y3 with vy, # 0, and define \ =

Remark 2.3 Observe that X\ in Corollary 2.2 is of modulus 1, so multiplication by A is
a rotation. It follows that representing measures p and i for ~v and 7, respectively, will
simultaneously share any rotation-invariant properties (e.g., the number of atoms located in
D or T). This will be important for the qualitative analysis of the support to be carried out
in Algorithm 4.14. 1

Lemma 2.4 Suppose M(1) is positive and invertible, with v,; < Yoo = 1 and 74 € R.
Then |y | <1 and [ye| < 711-

Proof. For a square matrix A, let Ag, ;1 denote the compression of A to rows and

columns indexed by i1, ..., ix; if A is positive and invertible, sois Ag, . ;1. Now det M(l){l’g} =
5

Y11 — Yo > 0, 50 [y | < Vo < 1 also, det M (1) 23y = 31— [Yoal” > 0,80 [ypo| <v11- W

Our next result will allow us to restrict attention to the case when rank M (1) = 2.

Lemma 2.5 Assume that M(1) > 0, rank M (1) =3, 741 < Yoo =1 and vy, € R. Forp #1

let
1 Yo1r =P Yo1 — P

1—0p 1—p
Yor =P Y11 — P Yoo — P
M) = | Pt et e (21)

Yoo =P o2 P Tu_P
1—p 1—0p 1—p
Then there ezists a unique py (0 < py < 1) such that M(1)(p,) > 0 and rank M(1)(p,) = 2.




Proof. Observe that for p # 1,

det M(1)(p) = 1 o =i
where
P :=det M (1) 4+ 2(1 — v41)*(711 — Re 7gy) > det M(1) > 0 (2.2)

(by Lemma 2.4). It follows that det M (1)(p) = 0 if and only if

det M (1)
= —. 2.3
v (23
Thus, we let p, := & g[(l). Observe that 0 < p, < 1. Moreover, M(1)(p) is positive and has
rank 2 if and only if
1 Jor — P
l—p
det Vo1 —p yu—p | =0 (2.4)
1—p 1—p
Now, (2.4) holds if and only if (o — p)? < (1 — p)(71; — p), or equivalently,
2
Y11~ Jot
p < . 2.5
L+ =270 (25)

(Observe that 1+ vy, — 275 = (1 —701)® + (711 — 73,) > 0.) By combining (2.3) and (2.5),
we see that M(1)(p,) > 0 and rank M (1)(p,) = 2 if and only if

_ det M(1) < Y11~ You

Po = . 2.6
0 P L4711 — 270 (2:6)

Now,

(V11 = 761) P — (14711 — 27¢1) det M(1)
= (711 = g)[det M(1) + (1 = v5) (2711 — Vo2 — Y20)] — [(1 = 81) + (v11 — 7§1)] det M (1)
= (vi1 = 781) (1 = 781) (2711 = Yoo — Y20) — (1 = 78;) det M (1)
= (1= 750)[(v11 = 781) (2711 — Yoz — 720) — det M(1)]
= (1 =31 i — 72l* > 0 (by Lemma 2.4),

0 (2.6) holds. =

Corollary 2.6 Given a positive and invertible M (1), with v;; < Yoo = 1 and vo; € R, let
det M (1

Po = GTU’ where P := det M (1) + 2(1 — vo;1)* (11— Re Yog). Let M(1)(p,) be given by

(2.1) (so that rank M (1)(p,) = 2). The representing measures for v* having an atom at

1 are of the form p := (1 — py)v + pyd1, where v is a representing measure for M(1)(p,)-

The measure fu is 3-atomic (minimal) if and_only if v is 2-atomic (minimal); moreover,

suppv C D (resp. T) if and only if supp u C D (resp. T).



Proof. Observe that v, (1) = (1 —pg)7:;(v) +po (0 < i+ < 2). We claim that M(1)(p,)
cannot admit a minimal (i.e., 2-atomic) representing measure v whose support includes an
atom at 1. For, if that were the case, p would be a 2-atomic representing measure for M (1),
a contradiction to Proposition 1.5. 1

Corollary 2.7 Let i be a minimal finitely atomic representing measure for v, with v, (1] =
1. Then o € supp p if and only if p = 6, and rank M(1) = 1.

Proof. Assume first that rank M (1) = 3 and 7, € supp u, so p = pb,,, + (1 — p)v, with
0 < p <1 and v 2-atomic. By writing the moment identities,

Yoo = P + (1= p)ro[V]
Yoo = Mok (=070l (2.7)
T = plyml + @ =)y

It follows easily from (2.7) that vo;[¥] = Vo1, Yo2lV] = M and v, [V] = m—pral®, Using

1-p
these data we now form M (1)[r], which must be of rank 2. However, a straightforward

calculation shows that det M (1)[v] = dflt M)( ) > 0, a contradiction. If instead rank M(1) = 2,
p must be of the form pé,  + (1 — p)d, for some z # 7, with 0 < p < 1. As before,
Yor = PYo1 + (1 — p)z, which implies that z = ,,, again a contradiction. We conclude that
the only instance in which vy, lies in the support of a minimal representing measure is when

rank M (1) =1. 1

Example 2.8 Let vy = 1, 7oy = (1 4+1)/2, 9o := 1/8 + /2 and 7, = 3/4. The
associated moment matriz M(1) is positive and invertible, with det M (1) = 3/64. Let A :=
Y10/ 7ol = (1 = 4)/v/2. By Corollary 2.2, the family 7po == 1, Y01 = Mo = 1/V2,
Fon = Mg = 1/2 — /8 and 7y, == [N~y = 3/4 is equivalent to the family {7}, and
Yoo > 0. Lemma 2.5 says that with P := det m+2(1 Yo1)(F11— Re %2) =51/64—1/y/2
(cf. (2.2)) and p := detM( )/P = 3/(51 — 32v/2) (cf. (2.6)), the matriz M(l)( ) given as
in (2.1) has rank 2. Moreover, if U is a 2-atomic representing measure for M(l)( ), then
f:= (1 —p)v+ pb1 is a 3-atomic representing measure for ]\m By rotating the support
by A, the measure i gives rise to a 3-atomic representing measure u for M(1). B

We shall revisit Example 2.8 in Sections 4 and 5.

3 Existence of Representing Measures Supported on
the Unit Circle

In this section we solve the quadratic moment problem for the unit circle; as usual, we
assume vy = 1.

Theorem 3.1 Suppose M(1) is positive. The following statements are equivalent for 4%,
(i) There exists a representing measure supported in T;
(ii) There exists a rank M (1)-atomic representing measure supported in T;

(iii) v11 = Yoo-



Remark 3.2 The proof of Theorem 3.1 will show that when (iii) holds, the flat extensions
M (2) corresponding to rank M (1)-atomic representing measures supported in T are com-
pletely determined by appropriate choices of vo3. The choice is unique when rank M (1) =1 or
rank M (1) = 2, so in these cases there exist unique rank M (1)-atomic representing measures
supported in T. When rank M (1) = 3, 7,5 may be chosen from a circle of positive radius, so
in this case there exist infinitely many 3-atomic representing measures supported in T. The
case when rank M(1) = 1 corresponds to det M(1)j1,90 = 0, i.e., |vo1] = Y11 = Yoo = 1; in
this case the unique representing measure, jt = 0., (cf. Theorem 1.3), is clearly supported
in T, and the unique flat extension corresponds to Yo3 = Yo1Vo2- In the sequel we prove
Theorem 3.1 in the cases when rank M (1) > 1. 1

Lemma 3.3 ([Smu|, [CuFi3]) Assume M(1) > 0. A moment matriz extension

e = ("5 ) (3.1)

of M(1) is flat (i.e., rank-preserving) if and only if there exists a 3 x 3 matriz W such that
B =MW and C = W*M(1)W.

Proof of Theorem 3.1.  Observe that in order for a moment matrix extension M (2) to
give rise to a representing measure p supported on the unit circle T, it is necessary that the
moments satisfy

Vit1,541 = / 2 dp = / 2”227 dp = ,; (3.2)
T T

thus, Y11 = Y0, Y22 = V11> Y12 = Vo1 Y1z = Yoz, etc. It follows from Lemma 3.3 that,
irrespective of rank M (1), a flat moment matrix extension M (2) is completely determined
by the value assigned to g5 (see (3.3) below). Indeed, it is always the case that the B
block is determined by its leftmost column, in this case (Yog, V12, V03)” (= (Vo> Vo1, Yoz )~ )-
If, in addition, M(2) is a flat extension, then the C' block must be of the form W*B, where
B = M(1)W. Therefore, any flat extension M (2) must be of the form

I Y1 70 Y2 1 720
Yo 1 Y0 Yor Yo Vso
M(2) = Yor Yoz 1 7Yo3 Yor 7o (3.3)
Yo Yo Y0 1 Y20 Vao
L v Y10 Yoo 1 720
Yoz Yoz Yor Yoa Yoz 1

where 7y, depends upon the value assigned to vo3. (Note that ZZ = 1 in Cps(2), as required
by Proposition 1.4).
When rank M(1) = 2, we can assume, without loss of generality, that

Z =al + B2, (3.4)

whence a + af = 0 and |B| = 1 (cf. (1.5)). Moreover, since M (1) is recursively generated,
[CuFi4, Proposition 1.7(i)] implies that any flat extension M (2) is recursively generated, so



in Cyoy, 1 = 72 Z = aZ + 72, which establishes at once a linear dependence between the
column Z? and the columns 1 and Z, namely
5 1 « - - - _
Z==1—=Z=p1—-aBZ =01+ aZ. (3.5)
g B
By Proposition 1.7, this also shows that Z? must then be a linear combination of 7 and Z,
namely Z? = 31 + aZ. Therefore, the construction of M(2) really depends on building the
column Z2, which in turn depends on finding suitable complex numbers vy and ., fitting
(3.5). From (3.3), the unique solution is obtained by specifying

Yos = BYo1 + Ve (3.6)

It follows from Lemma 3.3 that the corresponding flat extension is a moment matrix M (2)
if the block C' := W*M(1)W is Toeplitz. By [CuFi2, Proposition 2.3], it suffices to check
that C1; = Cy. Now, using (3.5) and the relation ZZ = 1 in Chr(2), we have

Ci1 = Bya + @v19 = avgy + Brge = 1 = Cao,

by (3.4), as desired. Since ZZ = 1 in M(2), Theorem 1.1 and Proposition 1.4 imply that
the 2-atomic representing measure corresponding to M (2) is supported in T.

We now consider the case when rank M (1) = 3 and v;; = 7o, = 1. Thus det M (1) >
0 and 1 — |yy,|* = det M(1) g2y > 0. Write 7o, = a +1b, g, = c+id, yo3 = r +is. A
calculation of C' := B*M(1)™'B shows that C;; = Cy (i.e., C is Toeplitz) if and only if
(r, s) satisfies

Cr Cs det M (1)
(r———=)+(s— 5)% = ( )%
1 — Yo L — |vpl L — 701
where
¢, = —a® + 3ab® + 2ac — ac® — 2bd — 2bed + ad?
and

s := —3a’b + b® + 2bc + bc® + 2ad — 2acd — bd>.

For each such v,3 = r + is, the corresponding 3-atomic representing measure is supported
in T since ZZ = 1 (Theorem 1.1 and Proposition 1.4). &

Remark 3.4 (i) In the rank 2 case of Theorem 3.1(iii) = (ii), we can give a direct argument
to show that the representing measure we constructed is supported in T. Indeed, the zeros of
the generating polynomial g(z) := 22— (B+az) are zp := Y12 W and z = TV ”Sﬁw, both
on the unit circle. Moreover, we know that card supp p > rank M(1) = 2, so zg # z1, i.e.,
a?+43 # 0. (Alternatively, if o> +43 = 0 then a(aa—4) = a*a+48a = 0 (using (1.5)), so
a| = 2. However, (3.4) implies o+ Byo1 = 710, 50 || < 710 = Brvoul < 2[v01| <2711 =2,
a contradiction.)

(ii) For the rank 3 case of Theorem 3.1(iii) = (i), we shall see later on (Corollary 4.12
(ii)) that a point 2o is in the support of a 3-atomic representing measure ju with supp p C D
if and only if zo € T, in which case supppu C T.



(iii) In Theorem 3.1, as an alternative check that v[M(2)] is supported in T, we can apply
Theorem 1.2 and verify that My_5,(2) = 0 in this case. For, using [CuF'i5, (1.6)],

I Y1 710 Y11 Y12 V21
Ml—zz(Q) = M1(2) — Miz(2) = Y10 Y11 VY20 - Yo1 VY22 V31
Yo1 Yoz Y11 Y12 Y13 V22

by (3.2).

The preceding arguments readily lead to a more general result for truncated T-
moment problems, which we now state without proof.

Theorem 3.5 Let M(n) be a positive moment matriz satisfying v;,1 ;.1 = Vi; for every
(4,7) such that 0 < i+ j < 2n—2. Then one can always choose a complex number g o, in
such a way that the restriction of the column Z™*' to the first m(n) rows becomes a linear
combination of the columns in M(n). Therefore, M(n) admits a flat extension M(n + 1),
which also satisfies the condition My_z,(n+ 1) = 0, thus giving rise to a rank M (n)-atomic
(minimal) representing measure supported in T.

Corollary 3.6 (c¢f. [AhKr, Theorem 1.I.12], [CuFil, Theorem 6.12], [Ioh, p. 211]) The
classical truncated trigonometric moment problem

/Z’“ du(z) =7, (-n<k<n)

(Vo > 0 and vy_,, = 4, for k =1,....,n), admits a solution if and only if the Toeplitz matriz
T, := (Vi—;)i =0 is positive.

Example 3.7 We conclude this section by erxamining how the results of Section 2 and the
present section apply to the case when M(1) =1, i.e., Yoo = V11 = 1 and Yo = Y10 = Vo2 =
Yoo = 0. Now rank M (1) = 3, P = 3, and p, = %, so Corollary 2.6 reduces the existence
problem for representing measures supported at zg = 1 to the study of the rank 2 matrix

1 -1 _1
~ A
M@1) =ML)(p) = -5 1 —3
-1 _1 7
2 2
Further, Z = —1 — Z in Crmqy s so the unique flat extension with representing measure

supported on the unit circle is determined by Z* = —1 — Z (cf. (3.5)). This leads to the
generating polynomial g(2) = 22 + z + 1, whose zeros are the two cube roots of unity w =
’142@ and w? = ’lﬁ@ We can then use the Vandermonde equation V(w,w?)(pg, p1)" =
(Y00 Yo1) = (1, —3)T to compute the associated densities py = py = 5 (cf. Theorem 1.1), so
M(1)" admits the 2-atomic representing measure v = 3(8,, + 8.2). By Corollary 2.6, M(1)
then admits the 3-atomic representing measure 1 = (61 + 6., + 6.2) (and M(2) = M(2)[]
is given as in [CuFi2, Example 3.2]); u is thus the unique 3-atomic (minimal) representing

measure for 2 supported in T with 1 € supp p. However, we pointed out earlier (Theorem



1.8) that the set of 3-atomic measures for v?) contains a sub-parameterization by a circle,
so there are infinitely many such measures. Indeed, any choice of 3 would lead to a flat
moment matriz extension M(2), by letting V15 = Vo1 = 0, Y30 := Yo3, You := 0, V13 =
Y31 := 0, and v,y := |703|2. If one insists, however, that the support be contained in the unit
circle, then |vo3] = 1, and the generating polynomial is g(z) = 23 — 7,3, whose zeros are the
cube roots of 3. Since the flat extensions of M(1) are completely determined by choices
for vos (c¢f. Remark 3.2), we see that the 3-atomic representing measures for M(1) that are
supported in T are completely parameterized by the points o3 of T. (In Theorem 4.11 we
will show that for any rank 3 circle problem, the minimal representing measures supported
in T are naturally parameterized by the points of T.) B

4 Existence of Representing Measures Supported in
the Unit Disk

The first goal of this section is to give a complete constructive description of the 2-atomic
(minimal) representing measures in the rank 2 disk problem (Theorem 4.2). In Corollary
4.3, we use Theorem 4.2 and the rank reduction tools of Section 2 to prove the existence of a
3-atomic (minimal) representing measure in the rank 3 disk problem. These results are then
used to prove Theorem 1.8. In Theorem 4.11 we continue our analysis of the rank 3 disk
problem by providing a computational test to determine whether a prescribed point z € D
is an atom of some minimal representing measure p with supp # C D. By combining this
result with Theorem 4.2, in Algorithm 4.14 we give a constructive parameterization of all
3-atomic (minimal) representing measures having z as an atom.

Let us initially assume that M (1) > 0, v; < 799 = 1, and rank M (1) = 2 (that is,
Vo1l? < 71y and Z = ol 4 BZ). Direct calculation shows that

o = Y1011 — Y01720

)
and )
= 720 ; 7107 (4.1)
where & := v,; — |701|* (> 0; cf. [CuFi2, (6.1)]); observe that (4.1) leads to
B8 = Yo2 — Vou- (4.2)

To find a 2-atomic representing measure p = py0., + p10., supported in D, we shall solve
the system of equations

Po+ P = 1
Pozo + p121 = Yo
, 43
P + 177 = Yo2 (43)

2 2
polzol” + o1 lal” =

for pg, p; > 0 and 29,21 € D. Let p := py, s0 p; = 1 —p. It follows that pzo+ (1 —p)z1 = Yoy,
from which we obtain

Z1 1—p



The third equation in (4.3) now leads to

2
Yo1 — P
pzy + (1= p) (%) = Yoz,

which is equivalent to
p(z0 — ’701)2 — (1= p)(vo2 — 731) =0,

or
1— A2
(20 — Y1) = ( P) (Vo2 701)7
p
SO
2
20 = Yo, (1=p) Vo2 — ’701|8%2’A7‘g<702—731)‘
p
Let ¢ := — p; since 0 < p < 1, we see that 0 < ¢t < +oo. (Note that we can recover p
from ¢, that is,
1
- : 4.5
o1y e ) (45)

Now, let

1— — Yol 1 /7
20 = o1 + \/( p) |Z)02 701|651Ar9(%2—v31) = o1 + t1/ 36, (4.6)

using (4.2)), where we agree to denote +/|Vgy — V2 3749 (102 -781) by v/36. A straightfor-
02 — Vo1
ward calculation using (4.4), (4.5) and (4.6) then leads to

1 /=

21 = %Yo1 — Z ﬁé (47)

From (4.6), we then have

|Z0|2 = |’701|2 + 2Re (tyg, \ B6) + 76 = |’701|2 + 2tRe (5q, \ B6) + %8,

and our goal is to make |z < 1. Similarly, (4.7) implies

2 B _ 1
|31|2 = |701|2 - ;Re (Yo1 \/ B6) + t_géu

and we wish to make |z;| < 1. Let A :=Re (J4;1/(6) and
C:=1-|yul> =71 — " =6>0; (4.8)
we are naturally led to the system of inequalities

o2+ 2tA - C <
Ct24+2tA—6 > 0



(representing the conditions |zp] < 1 and |z1]| < 1, respectively). With D := /A% + Cé >
|A|, we obtain 6t? + 2tA — C = §(t — t11)(t — t12) and Ct? + 2tA — § = C(t — ta1)(t — ta2),
where

t —A-D
11 -— 6 )
—A+D
t12 = 5 O,
t —A-D
21 -— C
and A+ D
too Z:T > 0.

Since C' > 6 (by (4.8)), we have to < t12, so the solution set for (4.9) is [tag, t12]-
With a value of ¢ in the interval [tes,t12], we define p, zp and z; using (4.5), (4.6),
and (4.7) (or 4.4); calculations using (4.3) show that

[t =y = bz, + (1= p)os, (4.10)

is a representing measure for M (1) supported in D.

Remark 4.1 (i) Observe that if t = t12, the first inequality in (4.9) becomes an equality,
i.e., |z0] = 1; if t = toy the second inequality in (4.9) becomes an equality, i.e., |z1| = 1. To
get both zy and z in the unit circle we must have tay = t19, or C =6, that is, v, = 1 (in
accord with Section 3).

(ii) To obtain p, in (4.10) we chose one particular value of the square root of (36, call

it w; that is, z(t) = Yo +tw and z1(t) = v — % (toe < t < t1). Similarly, we

could have chosen w := —w as the square root of 36, and this would have led instead to
Zo(t) == yo + tw and Z(t) == vy, — 2. If we let t := 1 (i <t< é), we see at once

that Zo(f) = o1 + 10 = v9, — £ = 2z1(t) and Z(f) = vo + tw = 20(t). In particular,

20(%) = |21(t22)| =1 and 21(%)’ = |Zo(t12)| = 1, so that 'EQQ = é and '512 = é It
follows that an atom of a 2-atomic representing measure can be chosen in either the segment
[20(t12), z0(taz)] or the segment [z1(t22), z1(t12)]. We now claim that these two segments do

not overlap, and that zo(tae) # z1(t12). As a matter of fact,

z1(tig) — 20(te2) (Vo1 — %) — (Y01 + t22w) B —15 — taw _in -0
z1(te) — 20(ti2) (Yoo — 75) — (Yoo Ht2w)  —g —tpw  tn

This shows that the segment [2o(t22), 21(t12)], which represents the “exclusion zone” for atoms
of representing measures, has positive length. Incidentally, notice that vy, is in that zone, as
anticipated by Corollary 2.7. (For an illustration of the “exclusion zone,” see Figure 1.) i

We summarize the preceding discussion in the following result.



Theorem 4.2 Let M(1) be positive, with v;; < Yoo = 1 and rank M (1) = 2. The 2-
atomic (minimal) representing measures for 7(2) that are supported in D are the measures
= 1%525%1“1” + 11_27525701—%1” (tao <t < tiz), where w is a square root of 36 (cf. (4.10)).
More precisely, for tos < ti12 and t € (ta,t12), the associated representing measure p, has
both atoms inside the open unit disk, while p,,, and p, , each has one atom inside and one
atom on the circle. When tog = t15 (which requires v, = 1), My, has both atoms on the unit
circle. Finally, a point z belongs to the support of a 2-atomic (minimal) representing measure
supported in the unit disk if and only if z belongs to the line segment {yg, +tw : tas <t < t1a}
or to the line segment {yo — % : tao <t < tia}.

Corollary 4.3 Let M(1) be positive and invertible, with v;; < Yoo = 1. Choose A € T so
that the rotated system 7,; corresponding to X via Lemma 2.1 satisfies 7y € R (e.g., let

—_~—

Ai=1if vy =0 and X := 22 if 5, # 0 (¢f. Corollary 2.2)). Let M(1) denote the moment

Vo1l
matriz associated with 7;; and let M(1)(py) denote its reduction (via Lemma 2.5) to a rank

2 disk problem. Let {1}y 1
that are supported in D (cf. Theorem 4.2). Then the 3-atomic representing measures for
v ?) that are supported in D, with an atom at X, are the measures v; == (1 — py)w; + pdx
(tog < t < t12), where wy is obtained from p, by a \-rotation of the support. The measure
v has exactly two atoms on the unit circle (including \) if and only if v;; < 1 and t = toy
or t = t1o; v, has three atoms on the unit circle if and only if v, = 1, in which case
t =t = too.

—_~—

—_~—

| denote the 2-atomic representing measures for M(1)(py)

Proof. Combine Theorem 4.2 with Corollary 2.6 and Remark 2.3. 1

Proof of Theorem 1.8.  Clearly (i) = (iv) and (ii) = (i), and we have just finished
proving that (iv) = (ii). Therefore (i), (ii) and (iv) are all equivalent. Theorems 1.1 and 1.2
provide the equivalence (ii) < (iii).

Example 4.4 (Example 2.8 Revisited) Consider

1 70-51/2 70-51/2
32(—3+2v2 32(—3+2v/2)
M(l) e 70—514/2 3(—=47+32V2) (180+514)—(1284-32)v/2
T 32(—34+2v/2) 64(—34+2v/2) 384—256+/2
70—51/2 (180—514)—(128—32i)v/2 3(—47+32¢/2)
32(—3+2+/2) 384—2564/2 64(—3+2v/2)

M (1) is the moment matriz obtained from Ezample 2.8 after rotating the original data v
by \ = 1—\75 and applying Lemma 2.5 to bring the rank down to 2 (i.e., M(1) coincides with

—_~—

M (1)(p) of Example 2.8). Using the notation leading up to the statement of Theorem 4.2, we
see that a = (2 — i)(—30866 + 28191+/2) /(65400 — 46240v/2), B = (—3 + 4i) /5, 6 = 5(281 —

198v/2)/[512(3 — 2v/2)2] =2 0.327005, /36 = \/(3/512 +4/128)(—281 4 198v/2) /(3 — 21/2),
A = 0.0989761, C' = 0.850212, and D = 0.536488. It follows that tos = 0.514592 and
t1p = 1.33794. By taking t = t12, we obtain p, ,, with zo = 0.729183 — 0.684318: and
71 = 0.195882 + 0.3822844, where |z = 1 and |z | = 0.429547. If instead, t = ts2, then pu,,
has zy = 0.518624 — 0.263199i and z; = —0.109945 + 0.993938i, with |zo| = 0.581588 and




Al (tgg) 1

(t1a <t < tg)
\ z1(t12) L
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)

Figure 1: Location of zo(t12), 20(t22), z1(t12) and 21 (t22) in Example 4.4

|z1] = 1. The latter case leads (via Corollary 4.3) to a 3-atomic representing measure p (for
the original data v ) with supp p = {wo, wr,ws} C D, where wy = 0.552833 + 0.1806124,

=~ —(.780563 + 0.625078 and wy = A = (1 + z)/\/_ (both wy and we belong to the unit
circle); the corresponding densities are py = 0.377783, p; = 0.100039 and p, = 0.522178.
Figure 1 shows the unit disk, the line z = o + Bz, and the “exclusion zone” for atoms of
2-atomic representing measures. i

For the rank 3 case of the disk problem, we can use Theorem 4.2 to develop a
constructive algorithm which completely parameterizes the 3-atomic representing measures
supported in D. The main step, which follows, provides a criterion for a prescribed point of
D to belong to the support of such a measure.

Suppose now that M (1) is positive and invertible, with ;; < 7,9 = 1. By analogy
with the rank reduction result of Section 2 (Lemma 2.5), consider the moment matrix

1 Yo1—PZ Y10—PZ
_ 1—p 1-p
M(1)[p; 2] == 7110:;‘2 i ”p'z‘ Too— ZZ (p#1,2€C). (4.11)
You—pz 202 a1 —plzl?
1—p 1—p 1—p
Observe that
1 1 SR
M(1)[p; 2] = Tp[M(l) pzz’] = TpM(l)[I— pM (1) 22", (4.12)
where z == (1 z 2 )t. To analyze det M(1)[p;z], we need some auxiliary results; for

completeness, we include the proofs.

Lemma 4.5 For x,y € C™ let x@Qy denote the operator on C™ given by x @ y(u) :=
(u,y)x. Then xy* is the matriz associated with x Qy with respect to the canonical basis
for C™.,



Proof. <(X®Y)ej7e’i> = (e, y) (xe) =z = (xy")y; (1<i,5<m). 1
Lemma 4.6 Let A =xQy be a rank-one matriz. Then
det(/ +A)=1+TrA=1+(x,y), (4.13)

where Tr denotes the canonical trace.

Proof. Choose an orthonormal basis {f;}”, such that f; := T Lhe matrix of I + A with
respect to this basis is
1+ xy) (f.y) [ (£, y) (1]l
0 1 0
0 0 0 ’
0 0 1
so det(/ + A) = 1+ (x,y). Moreover,
Tr A = Tr(xy™) szyz = (4.14)
|
Corollary 4.7 For M(1)[p; z| given by (4.11),
det M (1 _
det M(1)[p; 2] = (1_—/)()3)(1 —p(M(1)7'z,2)). (4.15)
Proof. By (4.12),
1
det M(1)[p; 2] = S det M (1) det(I — pM (1) 'zz*)
M(1
= M) (v (1) )
(1=p)
det M (1 3
— (1_—[)()3)(1 — pTr(M(1)"'2() 2))
(by (4.13) and Lemma 4.5, respectively)
det M(1) .
= ———(1—p(M(1) "2,z
(1= (M(1) 2.2)
(by (4.14)), as desired. &
Lemma 4.8
_ 1
<M(1) 1Z7Z> =1+ ———(n - |2 (4.16)
1 — [l
i ’702710 — Yo1V11 — |%1| Z+ynz+ 7012 - %22|
det M(1)

In particular, (M (1) 'z,z) > 1 for all z € C, with equality holding precisely when z = v,,.



Proof. Straightforward symbolic manipulation establishes (4.16); the last statement fol-
lows easily from (4.16). &

Lemma 4.8 allows us to make the following

Definition 4.9 For z € C, let p, := m

Proposition 4.10 Let z € C.

(i) 0<p, <L

33 ’Yll*|701\2

(11) Pz < Y110 P+ o1 =21

(iil) equality holds in (1) or (ii) if and only if z = vo;;

(iv) if M(1) is positive and invertible, and if z # 7oy, then p, is the unique solution of the
equation det M(1)[p; z] = 0.

Proof. By (4.16),

1 B 2 2
2|z_%1|2:711 o™+ o1 — 2|

(M(1) 'z,2) > 1+ 5
Y11 — |%1| Y11 — |701|

bl

from which (i), (ii) and (iii) follow at once. Finally, notice that when z # 7y, p, # 1 (by
Lemma 4.8), so M (1)[p,; 2] is well defined, and by (4.15)

det M (1
et M (1) 2] = T (1= . (V1) 2,2)) .
Since (4.15) is linear in p, it follows that p, is the unique solution of the equation det M (1)[p; z] =

0. 1

We are now ready to give a criterion for the existence of a 3-atomic representing

measure for M (1) with zp as one of its atoms; recall that zg:= (1 Zy 2o ).

Theorem 4.11 Suppose M(1) is positive and invertible, with v,; < Yoo = 1, and let zg € D.
Then there exists a 3-atomic representing measure p with zy € supp u € D if and only if

(1) Y11 < Yoo, <0 # Yo1s and
1=

1= (4.17)
1 — |2

Pz <

(this condition is vacuous if |zo| = 1); or
(i) v1; = Yoo and zo € T, in which case p is uniquely determined, and supp u C T.

Proof. Since M(1) is positive and invertible, det[M (1)} > 0, s0 1 = 7;;, > |74;|”. Thus, if
zg € T, then |z9| = 1 > |7y;]- We may thus assume in case (ii), as well as in case (i), that
20 7 Yo1- Proposition 4.10(iii) now implies that 0 < p,, < 1 and

2
Y11 — |701|
2 2
Y11 — [Youl” + [vo1 — 20l

pZo < (4]‘8)



Now (4.18) is equivalent to

Pzo Y01 — 20)* < (1 — Pzo |20 %) (1 — Pz) T (P2 |20)* = |0 ) (1 — Pz)
= Pz0(|701|2 — 2 Re o1 % + |20])
< (V1= P2 1201 ) (L= p2y) + 2 1201 = [var I* = 02, |20l + 2 [yon
& p2 |20l = 20, Re vo120 + [yoi* < (v = p2 120 (1 = 1)
|701 - PZOZO|2 Y11 = Pz |Z0|2
(1= p,)° 1= ps,
& det[M(1)[ps,; 20]]2 > 0.

=

The last inequality and Proposition 4.10(iv) imply that M = M(1)[p,,; 2] is positive and of
rank 2. Thus M represents a rank 2 disk problem if and only if My < My, i.e.,

2

< 1. 4.19
e (4.19)

We now turn to case (i). Since 7;; < 1 and |z9| < 1, (4.17) is equivalent to
(4.19); thus M represents a rank 2 disk problem. By Theorem 4.2, M admits a 2-atomic
representing measure v supported in D. It is easy to see that p = (1 — Pag)V F Pz
is a 3-atomic representing measure for M (1) supported in D with an atom at zy; indeed,
2o € supp v implies card supp p = 2, which is impossible by Proposition 1.5.

For the converse in case (i), let 1 be a 3-atomic representing measure for M (1) with
2o € supp u € D, and let p, := pu({z0}). Write i = pyb., + p162, + pob=,, and observe that

1 p121tpo22 P1Z1+poZ2
. | |12;I50 oo? 7121[70 Y
N zZ1 Zo 21 29 z Z
M(l)[po; ZO] _ P1 1_/31702 P1 1_/31702 P1 11_;02 2
P121+po22 127 +po%3 pilz1* 4oz
1=po 1=po 1=po

A straightforward computation now shows that

S 1 .
det M(1)[py; z0) = p1P2(p1 + po _(’_19_0 - )3)(2’122 212’2) —0,
0

S0 Py = p,, (by Proposition 4.10(iv)) and, moreover,

2
p1p2 |21 — 22

det M(1)[p.,; z0] 11,23 = det M(1)[pg; 20] 11,23 = TETNE >0,
— Po
so rank M(1)[p,,; 2] = 2. Finally, observe that (4.17) holds, since
2 2
21|+ pg |2 + 1 —p,

L —pg T l=py 1=pg

For case (ii), assume 7y;; = 759(= 1) and zg € T. M defines a rank 2 circle problem

) Yi1—p, 1207 1—p . . . .
since 1117;() = 17;0 = 1. By Theorem 3.1, M admits a unique 2-atomic representing
20 20




measure v supported in T, whence p := (1 — p, )v + p, 6, is a representing measure for
M (1) supported in T. As in case (i), it follows that p is 3-atomic with an atom at zy. For
uniqueness, suppose 7 is a 3-atomic representing measure for M (1) with zy € suppn C D
(equivalently, suppn C T). Write n = p, 6.,+w, where p, :=n({z}); exactly as in the proof
of the converse direction of case (i), we see that p, = p, , whence M = M (1)w] = M(1)[v].
Thus, w and v are representing measures for M supported in T, so Remark 3.2 (uniqueness
in the rank 2 circle problem) implies w = v, whence 7 = p.

For the converse in case (ii), assume that p is a 3-atomic representing measure
with zy € suppp € D. Since v,; = 7qp, it follows that supp u C T (cf. remarks following
Proposition 1.7), whence zp € T. 1

Corollary 4.12 (i) Let M (1) be positive and invertible, with v;; < Yoo = 1, and let M3 :=
{z€D:zcsuppu C D, card supp u = 3, pu a representing measure for M(1)}. Ms is a
proper closed subset of D which contains T.

(ii) Let M(1) be positive and invertible, with 1 = Yoo = 1. Then zy is in the support of
a rank 3 representing measure . with supppu C D if and only if 2o € T, in which case
supppu € T.

Proof. (i) By Theorem 4.11, M3 is clearly closed. We also know that -y, ¢ Mj. Finally,
Theorem 4.11 implies that T C M3.
(ii) The result follows immediately from Theorem 4.11(ii). §

In Section 5 we will see that the set M3 in Corollary 4.12 coincides with the com-
plement in D of the interior region of a nondegenerate ellipse that is contained in D.

Remark 4.13 We have already seen that the point zg in Theorem 4.11 cannot be chosen
arbitrarily if one seeks a 3-atomic representing measure. Concretely, if zo = 7y, it 1S easy

to see that det M(1)[p; zo] = dfffz)(;) > 0 for all p # 1; this implies that M (1)[p; zo] cannot

admit a 2-atomic representing measure (by Proposition 1.5), and a fortiori, v?) cannot admit
a 3-atomic representing measure supported in D with an atom at zy (cf. Corollary 2.7). &

Theorem 4.11 establishes an algorithm to parameterize the space of 3-atomic solu-
tions for a given rank 3 D-moment problem, as follows.

Algorithm 4.14 (Parameterization of 3-atomic (minimal) representing measures supported
in D)

Let M(1) be positive and invertible, with v;; < o = 1. Assume a point
zo € D is prop_osed as an atom of a 3-atomic reprf,senting measure
supported in D; as before, let zy := ( 1z 2 ) and let

1

Pz *= (D) Tz0.20) "

Step (a): If p,, > 1, then M(1) admits no 3-atomic representing measure p with
2o € supp p C D; otherwise proceed to Step (b).



Step (b): By Proposition 4.10(i), we know that p,_ is well defined and 0 < p, < 1. If

p.. > —=2u, then Theorem 4.11 says that M (1) admits no 3-atomic
207 1=z

representing measure 4 with 2o € supp u C D; otherwise M (1) does admit a
3-atomic representing measure p with 2y € suppp € D . To construct such
a measure, proceed to Step (c).

Step (c): Assuming that 2y € D is an atom for a 3-atomic representing measure, then
two cases arise when Theorem 4.2 is applied to the rank 2 disk problem for

M (1)[p.; z0]:

(c1): t12 = top (this happens when I 1=y

1|z
two remaining atoms will be on the unit circle; and

), in which case the

(Co): t12 < to9, which leads to one of the two remaining atoms inside
the disk and one on the unit circle (choose t = t15 or t = t95),
or the two remaining atoms inside the unit disk (choose
t1o <t < tgg). [ |

Consider the points described by Case (c;) of Algorithm 4.14. The main result
of Section 5 below says that the locus of zy’s that qualify as atoms in D for 3-atomic
representing measures with the two remaining atoms in T is an ellipse, whose location is
completely determined by the initial data.

We conclude this section by presenting a concrete application of Algorithm 4.14.

Example 4.15 Let

1 1ti 1=
Ma)y= | = 3 1Zi
o 1—2&-2 1 4 7 8 3 2
2 sT3 1
As we have seen before (Ezample 2.8), M(1) > 0 and det M (1) = 2 > 0. Now, (M (1) 'z,z) =
%(19— 162 + 162% — 48y +48y?), so p = p, = 19_16$+165’2_48y+48y2, where z = x+1iy. Observe
that
1 1
19 — 162 + 162% — 48y + 48y = 16(x — 5)2 +48(y — 5)2 +3, (4.20)

so p is always positive (as predicted by Proposition 4.10). Fix zy = xq + iyo € D. To check
Step (a) of Algorithm 4.14, we compute

1—(M(1)'z,z) = 1- 1[16(ac — %)2 +48(y — 1)2 + 3]

3 2
16 1, 1,
= ——|(z—-= — )2 <
Sle— )7 43— 51 <0
It follows that
Pz 215 (20— 3) +3(yo —3)* =0

According to Step (a) of Algorithm 4.1/, for zg = %+lz’ M (1) admits no 3-atomic represent-
ing measure p with zg € supppu C D (observe that zy = 74, as anticipated by Proposition



4.10; see also Corollary 2.7 and Remark 4.13). We next focus on zy # % + %z A simple

1=y 7—160+2822 —48y0 +60y2
1]zl —  4(1—|20|*)(19—1620+1622—48yo+48y32)’ s0 by (4.20)

calculation shows that p, —

Po > 13 71|1 & 7 — 160 + 282§ — 48yo + 60y; =

—‘Z

28(z0 — 2)? +60(yo — 2)* — 2 < 0
Snell= E((wg) {14\/:7 10\/5D

where E((p,q),{a,b}) denotes the mtemor of the ellipse given by £ p* + (y 20—, (Q rep-
resents, therefore, the “exclusion zone.” Incidentally, observe that 1 5+ z € Q as expected.)
Note that p,, = 11__71|12 precisely when T — 16z¢ + 2873 — 48yo + 6Oy(2) = O, that is, when zy s

|z
on the ellipse & = 089:

Poy = 1_—7112 & 2 € &. (4.21)
1 — [zo]

By Step (b) of Algorithm 4.14, M(1) admits no 3-atomic representing measure p with zy €
supp € D whenever zg € Q2. Moreover, M(1) admits a 3-atomic representing measure i
with 2o € suppp C D if and only if 20 € D\ Q (cf. Figure 2). When z € D\ Q, the
associated 3-atomic representing measure |1 has the two remaining atoms in the unit circle
precisely when zy € Ey; otherwise, p has at most one other atom on the unit circle. Consider
the case when 2o =0 € D\ Q. Here, Py = g and py = %, so the associated moment matriz
18

1 (1 +1) %(1—@)
M0 = | BO-i) & RG]
32(1+Z> 1_6(§+%) 64

d 44-3¢

and § ==y, — Yol = 2. The coefficients a and 3 are —33(1 — 3i) and %52, respectively,

and 36 = 25(4 — 3i) (cf. (4.2)). Then A = Re (y19/36) = Re [$5(1 — 1)/ 25(4 — 30)],
C=1-|yl = Bl oand D = VA2 +Cé = 425%. It follows that ty = 0.415873 and
t12 22 0.66102. We now choose t € [ta, t10], say t = 5. By (4.5), (4.6) and (4.7), we obtain
z1 2 0.798073 + 0.525642¢ and zy = —0.223544 4 0.8661817. Note that |Zl|2 =~ 0.955626 and
|,22|2 =~ (.894562, so 21,22 e D, in agreement with Theorem 4.2. The associated densities

are p; = —4 and py = 52. Therefore, p = 60 + 64(5 L+ 16622 1

We shall revisit Example 4.15 at the end of Section 5.

5 Description of the Space of Solutions

In this section we complete our parameterization of minimal representing measures in the
rank 3 disk problem. Assume that M (1) positive and invertible, with y;; < v4, = 1, and let
2o € D. Using Algorithm 4.14, Step (c;), we can determine whether z, is a support point
of some 3-atomic representing measure having the other two atoms, zy and z1, in T; such a
point 2o will be called admissible. In the present section we show that the admissible points
trace out a computable ellipse £ inside D. Further, this ellipse actually coincides with the



Figure 2: M(1) in Example 4.15 admits no 3-atomic representing measures having a support
point inside €.

boundary of the region D \ M3 (cf. Corollary 4.12). Thus, a point z € D is in the support
of a (minimal) 3-atomic representing measure p with supp 4 C D if and only if 2 is not in
the interior region determined by £. Since the conclusions that we seek are invariant under
rotation, we shall assume that v, € R (by Lemmas 2.1 and 2.2 and Remark 2.3).

Proposition 5.1 Let M(1) be a positive and invertible moment matriz, assume 7y;; < 1
(= Y00), and let pn = pydzy + p162 + pad=, be a representing measure for M (1) with zp,zy € T
and zo € D (such a measure exists by Corollary 4.3). Then zo € D1 :={z € D : |z| < \/711}-

Proof. Since pu is a representing measure for M (1), we know that p, + p; + py = Yo = 1
and py 201> + py |12 + py |22]> = 741, from which it follows that 1 — p, = v, — py |22|%;
therefore,

Py = I—y

= —. (5.1)
1 — |2
Since 0 < p, < 1, (5.1) implies that 1 —~;; < 1 — |22]%, 50 |22| < /A71- B

Proposition 5.1 not only says that zo € Dy, it also establishes a formula for p,, given
by (5.1). For arbitrary but fixed z € D; we now let p := =13 and we build a quadratic

1|2

moment problem ]\m = M(1)[2] with data Yoo := 1 — p, Yo1 := Vo1 — PZ> Vo2 := Vo2 — P>
and ¥;; :=1—p.

Proposition 5.2 M(1) admits a 3-atomic representing measure p with one atom at z € Dy

and the two remaining atoms on T if and only if M(1) admits a 2-atomic representing
measure v supported in T.



Proof. Observe that u and v are related by the equation p=v + pd,. 1

In light of Proposition 5.2, we now focus on the moment matrix M (1). Theorem

—_—~—

3.1 implies that M (1) admits a 2-atomic representing measure supported in T if M (1) >0

—~—

and rank M (1) = 2. Conversely, if M (1) admits a 2-atomic representing measure, then

P —~—

2 > rank M(1) (by Proposition 1.5), and if rank M (1) = 1, then the unique representing
measure is l-atomic (Proposition 1.4), a contradiction. Thus, M (1) admits a 2-atomic

P

representing measure supported in T if and only if M (1) > 0 and rank M(1) = 2.

—~—

To guarantee that M (1) is both positive and of rank 2, two conditions are required:

(i) det[M(1)]2 > O (here [ - ] denotes compression to the first two rows and columns); and

—_—~—

(ii) det M(1) = 0.

—~—

Proposition 5.3 det[M(1)]s > 0 if and only if z belongs to the disk

Dy ={weD:|w— (1 —711)7m < Y11 — 731}‘

1 _’7(2)1 1 _”7(2)1
Proof. Observe first that
o _ L —yn
Yo1 = Yo1 — P2 ="To1 — SR
1 — 2]
- 1—7v
Yo2 = Yo2 — 102’2 = Y02 — —112 : 2’2>
1 — 2]
and
S s —1 1—’711_711_|Z|2
Yoo = Y11 P 1_ |z|2 1_ |z|2 :
Thus

det[]\/f(T)]g = det < Too o1 ) >0
Y10 Yoo

if and only if |54;] < Fgg, OF

1 _ L2
_ T z‘ < Ju |32| ‘ (5.2)
1= ||

If we let 4, := a, 741 := e and z := x + iy, a calculation (squaring both sides) shows that
(5.2) is equivalent to

a? — €* — 2ax + 2aex + 2 — a*x? + y? — a*y?

<0
1— a2 —qy? ’

which in turn is equivalent to
a? — €* — 2ax + 2aex + x* — a’z? + y? — a*y?
1—a?

<0 (5.3)



(because both denominators are positive: z € D; by construction, and |a|] < 1 by Lemma
2.4). Observe that the numerator of (5.3) can be rewritten as

) a(l—e)., o a*—2a%e+¢e’
(1—a)[($—ﬁ) +y°] = T—
so (5.3) is equivalent to
- —— =<0
(x 1—a? S+ (1 —a?)?
The latter inequality is equivalent to
oy (1 —711)Ym Y11~ You
L =75 1 -4

which proves that det[M(1)[z]]2 > 0 if and only if z € Dy. 1
We now show that the disk D, is actually contained properly in D;.

Corollary 5.4 With the notation as above, Dy C D;.

Proof. It suffices to show that the sum of the absolute value of the center of Ds and the

radius of Dy is less than the radius of D; (recall that Dy is centered at the origin), that is

Y11 — 731
1- 7(2)1

(1 =)y
‘ 11 01 < 711‘

1—731

Recall that vo9 =1 > v;; > 731, Vo1 > 0, and observe that

(I=711)701 Y171 0=71)ve Y1178
’ 1*731 + 1*731 B 1*731 + 1*V%1
_ Jortvis Vit
= e S o VT
the latter inequality being a consequence of the fact that the function f,;(t) := ';LT;‘ is strictly

increasing on the interval [0, +00) whenever 0 < a <b. &

We are now ready to discuss the second condition, det M(1) = 0. A calculation

—_~—

shows that det M (1) = 0 precisely when
N 9|2 N -2 N -2
’%2 - 701’ + (1 - 711)(7%1 — [%02") = (511 — Y01 )2- (5.4)
If we let vy, = a, Ygo = ¢ +1id, 71, = e, and z = z + 1y, it follows that (5.4) is equivalent to
Az® +2Bxy + Cy* + 2Dx + 2Ey + F = 0, (5.5)

where
A:=det M(1)+2(1 —e)(e —c¢)
B :=-2d(1 —e¢)
C:=det M(1) 4+ 2(1 —e)(e + ¢ — 2a?)
D :=—2a(1 —e)(e—c)
E :=2ad(1—¢e)
F :=2a%*e—c) —e(e* — 2 — d?).



Now observe that 0 < det M(1) = (e —c)(e+c—2a*) —d?* and e — ¢ > 0 by Lemma
2

2.4, 50 e + ¢ — 2a% > > 0. It follows that A+ C' > 0. Moreover,

AC — B?* =det M(1)? + 2det M(1)(1 — €)(2e — 2a?)
+4(1 — e)*(e — ¢)(e + ¢ — 2a®) — 4d*(1 — e)?
= det M(1)? + 4det M(1)(1 —e)(e — a?®) + 4 det M(1)(1 — e)?
= det M(1)[det M (1) + 4(1 — e)(1 — a?)] > 0.

We thus see that (5.5) is an ellipse, which we will denote by £. A priori, it is not obvious
whether this ellipse is real or imaginary, and the usual rotation and translation transforma-
tions to bring it to its canonical form do not reveal immediately whether any points inside
the unit disk belong to the ellipse. Here is where Corollary 4.3 is central: we know that
there exists a 3-atomic representing measure for M(1), p = pyd., + p102, + P20, such that
20,21 € T and 2z € D. Thus M (1)[z] is positive and of rank 2 (by Proposition 5.2 and the
subsequent remarks), so det M (1)[z] = 0 for z = z5; that is, 2o € £ (the ellipse is real). Our
goal is to show that the entire ellipse £ is inside Ds!

Theorem 5.5 Let M(1) be a positive and invertible, with v, < vy = 1. Then € :== {z =
z+iy € D: det M(1)[z] =0} is an ellipse, and € C Dy. A 3-atomic representing measure
for v2) is of the form u = pyd., + P16z, + pPebs,, with zo € D and 25,21 € T, if and only
if 20 € &, py = 11_—;21;27 and pyd., + p10, 1S the unique 2-atomic representing measure for
M (1)[22] supported in T (cf. Theorem 3.1). In particular, v is uniquely determined by zs.

Proof. We know from the preceding discussion that there exists zo € £ N Dy. Suppose
E ¢ D,. By connectedness, £ must intersect the boundary of D, say at point w, nearest
to z9. Since Dy C D; C D (by Corollary 5.4), we can form M(1)[w]. While remaining on
the ellipse and inside Ds, let t — ¢(t) be the geodesic path from z; to w, with ¢(0) = 2,
and (1) = w. Since p(t) € £ for every t € [0,1), we have M(1)[p(t)] > 0, so by upper
semicontinuity of matrix positivity we must also have M(1)[w] > 0. However, w is in the
boundary of Dy, so the upper left 2 x 2 corner of M (1)[w] is singular. Therefore, Z = a1
in the column space of M (1)[w], which implies Z = a1. Then M(1)[w] is a rank 1 positive
moment matrix, so by (1.3) and the ensuing discussion, the unique representing measure v
for M(1)[w] is 1-atomic, with suppr C T. It follows that p,, := v + p,0, is a 2-atomic
representing measure for M (1), so by Proposition 1.5, rank M (1) < card supp u,, = 2, a
contradiction. We must therefore have & C Ds.

For z, € &, let p, := 11:;21‘12; Proposition 5.3, Corollary 5.4, and the ensuing dis-
cussion imply that M (1)[zs] is positive and has rank 2. Theorem 3.1 implies that M (1)[z.]
admits a unique 2-atomic representing measure v supported in T, so Proposition 5.2 implies
that p = v + pyd,, is a 3-atomic representing measure for M (1) with an atom at zs and
two atoms in the unit circle. Conversely, if M(1) admits a 3-atomic representing measure
P00z + P10z, + pr0., With 2o € D and 2z, 21 € T, then the preceding results imply that 2z € €
(C Dy), py = 11__;21‘12 (by (5.1)), and that py0,, + p10,, is the unique representing measure for

the rank 2 circle problem corresponding to M(1)[z2]. §




We are now in a position to complete the parameterization of minimal representing
measures in the rank 3 disk problem (cf. Section 4); we begin with the case when v, € R.

Proposition 5.6 Let M(1) be a given positive and invertible moment matriz, with v,; <
Yoo = 1 and vy € R.

(i) The curve p, = ij;'é of Theorem 4.11 is precisely the ellipse £ == {z = x + iy € D :
det M(1)[z] = 0} described in Theorem 5.5. Thus, M(1) admits a 3-atomic representing
measure j with z € supp u C D if and only if z € D\Q, where §) is the interior region of £.
(ii) For each w in the interior region of £, there exists a (minimal) 4-atomic representing

measure p with w € supp p C D.

Proof. (i) Consider the curve p, = =Ny of Theorem 4.11. Replace p, by <

1
1—|z)? M(1)~1z,2)
(4.16), write z = z+iy, and use symbolic manipulation to express the curve in the equivalent
form

using

A'x® 4+ 2B'zy + C'y* +2D'x +2E'y + F' = 0. (5.6)

It is straightforward to check that (5.6) is equivalent to (5.5), so the curve coincides with
the ellipse £ of Theorem 5.5.

(ii) Following the rank-reduction strategy used in Section 2, for 0 < p < 1, consider
the associated system 7D 300 = 1= p, o1 = Vo1 — PW, Foy = Yoo — pw> and 7y, =
Y1 — P |w|2; let M(1) denote the corresponding moment matrix. In order for 2 to give
rise to a disk problem, we need 7y;; < 7, that is v;; — p |w|2 < 1 — p. This means that
p < 11:—‘11‘1; Since the ellipse £ is strictly contained in the disk Dy = D((0,0),/77;) (by

Theorem 5.5 and Corollary 5.4), we have |w|* < 7,;, so ;:—‘Eg < 1. It follows that we can
let p:= ;:—‘Eg and have 0 < p < 1 and 7;; < 74y. By the results in Section 4, we know that

—_—~—

there exists a rank M(1)-atomic representing measure ji for #® with supp ji C D. Now let
p = pby, + (1 — p)iu; clearly, p is a representing measure for +?). Since w is in the interior
region of £, Theorem 4.11 implies card supp u > 4. Now

4 < card supppu < 1+card suppip < 1+ 3 =4,

so /1 is a 4-atomic minimal representing measure for v2).

We can now state the complete parameterization of minimal representing measures
in the rank 3 disk problem.

Theorem 5.7 Let M(1) be positive and invertible, with v,, < Yoo = 1, and let z € D.
Choose A € T such that the rotated system 7® corresponding to X via Lemma 2.1 satisfies
Y01 € R. Let & C D denote the ellipse corresponding to ’y(Q) via Proposition 5.6, and let
Q denote the interior region of £ . Then M(1) admits a 3-atomic (minimal) representing
measure i with z € supp u C D if and only if = € D\, where ) := X is the interior region
of the ellipse £ := A&~ . The measure i is uniquely determined by z, and the remaining two
atoms of u belong to T, precisely when z € € (cf. Theorem 5.5). For z € D\ Q, p is not
uniquely determined by z, and the remaining two atoms may be chosen using Algorithm 4.14,
Step (¢). Finally, for z € ), there exists a (minimal) 4-atomic representing measure p with
zesuppyu C D.



Example 5.8 (Example 4.15 Revisited) For the matriz

| Lk 1
1 i 1%
o 1 S L _ 2
M(l)_ 2. 4 8 2
1+ 1,2 3
2 8 2 4

of Example 4.15, we have already applied Algorithm 4.14 to determine the location of a first
atom zy for a 3-atomic representing measure. (Note that in Example 4.15 we called the first
atom zy.) Here we will refine this calculation to exhibit the precise location of zo so that the
remaining two atoms belong to the unit circle T. To this end, we need to describe explicitly
the disks Dy and Do as well as the ellipse £ described above. First recall, however, that for
the calculation of Dy, Do, and &, a basic assumption was that v, € R. In the case at hand,
this means that we must first “rotate” the matriz M (1) to obtain

1 L L
SN 1 \? 1\/51
M(1) = o1 Ets

v i

(c¢f. Ezample 2.8). For this matriz, the associated disks are Dy = D((0,0),v/3/2) and Dy =
3

D(l/(2\/§),0) 1/2). Moreover, a = %, c=13,d=—% ande =32 It follows that
A= detM(l) +2(1—e)le—c) =4, B=-2d1-¢) =, C = detM(l) +2(1 -
efle+c—2a%) =32, D= -2al-¢)e—c) = sﬁ’ E = 2ad(1 —e) = —m, and

F =2a*(e — c¢) —e(e? — ¢ — d*) = 5. Thus, in homogeneous coordinates, £ is described
by the 3 X 3 matrix

1 1 _ 1

64 16 82

1 n _ _{

16 64 16v/2
1

1 1 T
82 162 256
For the original moment problem, therefore, we must rotate D1, Dy, and £ to obtain Dy =
Dy, Dy = D((%,3),3), and & the ellipse with associated matriz

104/ 2
7 1
64 0 32
0 15 3
64 32
1 3 T

It is straightforward to verify that € = & := 0, where Q = E((2,2),{Z\/2, 51/%}) is
the interior of the ellipse described in Example 4.15. We graph Dy, Dy and &€ in Figure 3. 1

6 An Application: Location of the Zeros of Some Cu-
bic Polynomials

In this section we give a parameterization (in terms of the coefficients) of certain analytic
monic cubic polynomials having three distinct roots on the unit circle. To this end, we



Figure 3: Relative position of Dy, Dy and £ inside the unit disk

restrict attention to rank 3 moment matrices M (1) with representing measures supported in
T; we may thus assume 0 < vy, < 711 = Yoo = 1 and |y,] < 1.
As we have seen before (cf. (3.6) and the discussion immediately preceding it), to
. M(1) B . . .
find a flat extension M(2) = < B(*) c > of M(1), it suffices to specify an appropri-
ate value for v,5. Now, the first column of B, v = ( Yoz Y12 Yos )T, must be a linear
combination of the columns in M (1), say

Z2 = Oq] —f- CYQZ —f- agz, (61)
where ( Q1 O Q3 )T =M (1)’1v. In Car(2) the same relation must hold and, moreover,
77 =1, (6.2)

SO V13 = 7Yg1- Further, the unique flat extension M(3) of M(2) is determined by Z3 =
a1 Z + o Z?+a3Z7 = onZ + asZ? + as1. It follows that the generating polynomial

g(2) = 2* — w2 — a1z — a3 (6.3)

has three distinct roots on the unit circle. Conversely, if zg, 21, 2o are three distinct points of
T then the measure p = pyd., + p102, + P02, has a moment matrix M (1) whose generating
polynomial is (z — 29)(z — 21)(z — 22).

We seek to determine the appropriate choices of v,3. Let 7o, = a, 7o = c+1id, and
Vo3 = « + iy. Looking at the fourth row of M(2), it follows from (6.1) that

Q1Y9p T Q2Y91 + Q3Y30 = Va2,

so (6.2) implies
ai(c —id) + awa + ag(x — 1y) = 1. (6.4)



A calculation shows that (6.4) is equivalent to
(x—h)?+(y—k)?=r* (6.5)

where
B o= a(2c+d?>—a®—c?)
o %1(1&2 )
ad(l—c
k.= -2z . (66)
| 1—2a2+2a2¢—c2—d2 |

1—a?

ri=

In special cases, the preceding parameterization of the generating polynomial in (6.3) in
terms of the moment data leads to some easily recognizable cubic polynomials having three
roots in the unit circle.

Theorem 6.1 Let |3| < 1, |{w| = 1. The cubic polynomial g(z) = 23 + wBz? — 3 — w has
three distinct roots in the unit circle.

Proof. Define the rank 3 circle moment problem M (1) in which 59 = vy := 1, 791 := 0
and 7y, := (. By direct computation,

a1 = Yoo = @7
_ Yo3¥20 BY03
g = — = — and
2 Hmf 1|6
Qa2 = 03 _ _ 03 _
57 1yl T 1181

By choosing 744 := w(1 — |3 |2), we obtain at once that the generating polynomial is g(z) =
B Hwb—pB—w. 1

Remark 6.2 In principle, the above procedure allows us to characterize all cubic polynomials
with three distinct roots in the unit circle. For instance, a similar technique as that employed
in the proof of Theorem 6.1 shows that all polynomials of the form py(2) = 23—t22+t2—1 (0 <
t < 1+ +/2) have three distinct roots in the unit circle (using vo, = 0 instead of vo; = 0). 1
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