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Abstract. Let γ ≡ γ(2n) denote a sequence of complex numbers
γ00, γ01, γ10, . . . , γ0,2n, . . . , γ2n,0 (γ00 > 0, γij = γ̄ji), and let K denote a
closed subset of the complex plane C . The Truncated Complex K-moment
Problem for γ entails determining whether there exists a positive Borel mea-
sure µ on C such that γij =

R
z̄izj dµ (0 ≤ i + j ≤ 2n) and suppµ ⊆ K.

For K ≡ KP a semi-algebraic set determined by a collection of complex poly-
nomials P = {pi (z, z̄)}mi=1, we characterize the existence of a finitely atomic
representing measure with the fewest possible atoms in terms of positivity and
extension properties of the moment matrix M (n) (γ) and the localizing matri-
ces Mpi . We prove that there exists a rankM (n)-atomic representing measure

for γ(2n) supported in KP if and only if M (n) ≥ 0 and there is some rank-
preserving extension M (n+ 1) for which Mpi (n+ ki) ≥ 0, where deg pi = 2ki
or 2ki − 1 (1 ≤ i ≤ m).

1. Introduction

Let γ ≡ γ(2n) denote a sequence of complex numbers γ00, γ01, γ10, . . . , γ0,2n,
. . . , γ2n,0 (γ00 > 0, γij = γ̄ji), and let K denote a closed subset of the complex
plane C. The Truncated Complex K-moment Problem for γ entails determining
whether there exists a positive Borel measure µ on C such that

γij =
∫
z̄izj dµ (0 ≤ i+ j ≤ 2n)(1.1)

and

suppµ ⊆ K;(1.2)

a measure µ satisfying (1.1) is a representing measure for γ.
In the sequel, we characterize the existence of a representing measure satisfying

(1.2) in the case when K is a semi-algebraic set determined by a finite collection of
complex polynomials P = {pi (z, z̄)}mi=1, i.e.,

K = KP := {z ∈ C : pi (z, z̄) ≥ 0, 1 ≤ i ≤ m} .
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Our existence criterion is expressed in terms of positivity and extension properties
of the moment matrix M (n) (γ) associated to γ and of the localizing matrix Mpi

corresponding to each pi (see below).
This research is motivated by the extensive literature concerning the Full Mul-

tivariable K-Moment Problem [Akh] [Fug] [Hav] [Sch] [ShTa], including the Full
Complex K-Moment Problem in which moments of all orders are prescribed, i.e.,
γ = (γij)i,j≥0. The Riesz–Haviland criterion [Rie, §5] [Hav] provides an “abstract”
solution to the Full Multivariable K-Moment Problem. In the case of the Full
Complex K-Moment Problem this criterion may be expressed as follows:

p (z, z̄) ≡
∑

arsz̄
rzs ∈ C [z, z̄] , p|K ≥ 0 =⇒

∑
arsγrs ≥ 0.

For general closed sets K ⊂ C, the cone of nonnegative polynomials cannot eas-
ily be characterized, so the Riesz–Haviland criterion is intractable. In particular,
for K = C there is no concrete description of the nonnegative polynomials, and the
Full Complex Moment Problem (equivalent to the Full Two-Dimensional Real Mo-
ment Problem) remains unsolved. By contrast, A. Atzmon [Atz] found a “concrete”
solution to the Full Complex Moment Problem for K = D, the closed unit disk; an
alternate solution to the disk problem was formulated by M. Putinar [Put]. Subse-
quently, K. Schmüdgen [Sch] presented a concrete solution to the Full Multivariable
K-Moment Problem in the case when K is a general compact semi-algebraic set
(cf. the remarks following Theorem 1.8 below).

A result of J. Stochel [Sto] shows that the Truncated Multivariable K-Moment
Problem is more general than the Full MultivariableK-Moment Problem; neverthe-
less, it appears that prior to the present work there has been no systematic study
of truncated multivariable K-moment problems. The criterion that we develop for
general semi-algebraic sets is not as directly applicable as Schmüdgen’s criterion
for the compact semi-algebraic case, but whenever our moment matrix method can
be applied, it yields an explicit formula for a finitely atomic representing measure
supported in K. In a companion paper [CuFi7], we use moment matrix techniques
independent of the present work to explicitly solve the Quadratic Moment Problem
(n = 1) for the unit disk and the unit circle.

We devote the remainder of this section to stating the main results and illus-
trating them with examples. Section 2 contains a brief survey of some necessary
background results on moment matrices. In Section 3 we introduce localizing ma-
trices, the new tool that we employ to locate the support of a representing measure
relative to a prescribed semi-algebraic set; Section 3 contains the proof of Theorem
1.2, which describes localizing matrices in terms of compressions of moment ma-
trices. Section 4 contains the proofs of the existence theorems for finitely atomic
representing measures supported in semi-algebraic sets. All of these results for
truncated K-moment problems in one complex variable can be generalized to any
number of real or complex variables (cf. [CuFi4, Chapter 7]); for the case of one
real variable, in Section 5 we present new accounts of the truncated K-moment
problems of Hamburger, Stieltjes, and Hausdorff for K = R, K = [0,+∞), and
K = [a, b], respectively.

Let Pn denote the complex polynomials q (z, z̄) =
∑
aij z̄

izj of total degree at
most n, and for q ∈ Pn, let q̂ = (aij) denote the coefficient vector of q with respect
to the basis

{
z̄izj

}
0≤i+j≤n of Pn (ordered lexicographically: 1, z, z̄, z2, zz̄, z̄2, . . . ,

zn, . . . , z̄n). For p ∈ P2n, p (z, z̄) ≡
∑
bij z̄

izj, let Λ (p) :=
∑
bijγij . The moment
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matrix M (n) ≡M (n) (γ) is the unique matrix (of size (n+1)(n+2)
2 ) such that〈

M (n) f̂ , ĝ
〉

= Λ (f ḡ) (f, g ∈ Pn).(1.3)

If we label the rows and columns of M (n) lexicographically as 1 , Z, Z̄, Z2, ZZ̄,
Z̄2, . . . , Zn, . . . , Z̄n, it follows that the row Z̄kZl, column Z̄iZj entry of M (n) is
equal to 〈

M (n) ̂̄zizj, ̂̄zkzl〉 = Λ
(
z̄i+lzj+k

)
= γi+l,j+k.

For example, with n = 1, the Quadratic Moment Problem for γ(2) : γ00, γ01, γ10,
γ02, γ11, γ20 corresponds to

M (1) =

1 Z Z̄
1 γ00 γ01 γ10

Z

(
γ10 γ11 γ20

)
Z̄ γ01 γ02 γ11

.

γ admits a representing measure µ, then for f ∈ Pn,
〈
M (n) f̂ , f̂

〉
= Λ

(
|f |2

)
=∫

|f |2 dµ ≥ 0, whence M (n) ≥ 0.
Now let p ∈ P2n, p 6≡ 0, and define k by deg p = 2k or deg p = 2k − 1. There

exists a unique localizing matrix Mp (n) ≡Mp (n) (γ) (of size (n−k+1)(n−k+2)
2 ) such

that 〈
Mp (n) f̂ , ĝ

〉
= Λ (pf ḡ) (f, g ∈ Pn−k).

Thus, if a representing measure µ for γ is supported in Kp ≡ {z ∈ C : p (z, z̄) ≥ 0},
then for f ∈ Pn−k,〈

Mp (n) f̂ , f̂
〉

= Λ
(
p |f |2

)
=
∫
p |f |2 dµ ≥ 0,

whence Mp (n) ≥ 0.
If γ admits a representing measure µ, then card suppµ ≥ rankM (n) [CuFi4,

Corollary 3.7]. The main result of [CuFi4] shows that γ admits a rankM (n)-
atomic (minimal) representing measure if and only if M (n) ≥ 0 and M (n) ad-
mits an extension to a (necessarily positive) moment matrix M (n+ 1) satisfying
rankM (n+ 1) = rankM (n); such an extension is called a flat extension. A variety
of concrete conditions for the existence of flat extensions are presented in [CuFi5]
[CuFi6], though complete necessary and sufficient conditions are not known.

The Flat Extension Theorem (Theorem 2.1 below, cf. [CuFi4] [Fi3]) shows that if
M (n) ≥ 0 admits a flat extension M (n+ 1), then M (n+ 1) admits unique succes-
sive flat (positive) moment matrix extensions M (n+ 2), M (n+ 3), . . . . Further,
let r := rankM (n), so that in CM(r) (the column space of M (r)) there is a de-
pendence relation of the form Zr = c01 + c1Z + · · · + cr−1Z

r−1. The polynomial
zr −

(
c0 + · · ·+ cr−1z

r−1
)

has r distinct roots, z0, . . . , zr−1, which provide the
support for the unique representing measure for γ(2n+2) corresponding to the flat
extension M (n+ 1). The densities of this measure, ρ0, . . . , ρr−1, are determined
by the Vandermonde equation

V (z0, . . . , zr−1) (ρ0, . . . , ρr−1)t = (γ00, . . . , γ0,r−1)t ;(1.4)

we denote the measure
∑r−1

i=0 ρiδzi by ν [M (n+ 1)].
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Our main result, which follows, characterizes the existence of a rankM (n)-
atomic representing measure supported in a semi-algebraic set Kp, where p is an
arbitrary polynomial in C [z, z̄]. Assume that M (n) ≥ 0 admits a flat extension
M (n+ 1) and let k :=

[
deg p+1

2

]
. Since deg p ≤ 2 (n+ k), Mp (n+ k) is well-defined

relative to the unique flat extension M (n+ k) of M (n+ 1) if k ≥ 1, or relative to
M (n) if k = 0.

Theorem 1.1. Let p ∈ C [z, z̄], p 6≡ 0, deg p = 2k or deg p = 2k − 1. There
exists a rankM (n)-atomic (minimal) representing measure for γ(2n) supported in
Kp if and only if M (n) ≥ 0 and there is some flat extension M (n+ 1) for which
Mp (n+ k) ≥ 0. In this case, the measure ν [M (n+ 1)] is a rankM (n)-atomic
representing measure supported in Kp, with precisely rankM (n)− rankMp (n+ k)
atoms in Z (p) ≡ {z ∈ C : p (z, z̄) = 0}.

To apply Theorem 1.1, we need to be able to explicitly compute localizing ma-
trices. Suppose p ∈ P2n, d := deg p, and let k :=

[
d+1

2

]
, so that 0 ≤ k ≤ n. Write

p (z, z̄) ≡
∑

0≤r+s≤d arsz̄
rzs. Then

for each r, s, there exist i, j ≥ 0, 0 ≤ i+ j ≤ k,
0 ≤ (r + s)− (i+ j) ≤ k, such that z̄rzs = z̄izj · z̄r−izs−j;

(1.5)

this decomposition is not unique. Let σ =
(n− k + 1) (n− k + 2)

2
, and let

[Z̄s−jZr−i]M (n)[Z̄iZj ] denote the compression of M (n) to the first σ columns in-

dexed by multiples of Z̄iZj and to the first σ rows indexed by multiples of Z̄s−jZr−i.
The following result provides a computational formula which expresses Mp (n) as a
linear combination of compressions of M (n).

Theorem 1.2. Let p ∈ P2n, p 6≡ 0, p (z, z̄) ≡
∑

0≤r+s≤d arsz̄
rzs. Then

Mp (n) =
∑

0≤r+s≤d
ars[Z̄s−jZr−i]M (n)[Z̄iZj] .

Moment matrix structure implies that the expression for Mp (n) in Theorem 1.2 is
independent of the decomposition in (1.5).

In the sequel, we denote the compression of a moment matrix M (n) to rows
Z̄i1Zj1 , . . . , Z̄ipZjp and columns Z̄r1Zs1 , . . . , Z̄rqZsq by

{Z̄i1Zj1 ,...,Z̄ipZjp}M (n){Z̄r1Zs1 ,...,Z̄rqZsq} .

For a square matrix M and p > 0, we let [M ]p denote the compression of M to the
first p rows and columns. We let M{p1,...,pk} denote the compression of M to rows
and columns p1, . . . , pk.

We illustrate Theorem 1.2 by computing Mp (2) for p (z, z̄) = 1− zz̄.

Example 1.3. Let

M ≡M (2) =

1 Z Z̄ Z2 ZZ̄ Z̄2

1 γ00 γ01 γ10 γ02 γ11 γ20

Z γ10 γ11 γ20 γ12 γ21 γ30

Z̄ γ01 γ02 γ11 γ03 γ12 γ21

Z2

γ20 γ21 γ30 γ22 γ31 γ40

ZZ̄ γ11 γ12 γ21 γ13 γ22 γ31

Z̄2 γ02 γ03 γ12 γ04 γ13 γ22
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and let p (z, z̄) := 1− zz̄. We compute Mp (2) using n = 2, k = 1, σ = 3, 1 = 1 · 1 ,
zz̄ = z̄0z1 · z̄1z0 (cf. (1.5)). Theorem 1.2 implies

Mp (2) = {1 ,Z,Z̄}M{1 ,Z,Z̄} − {Z,Z2,ZZ̄}M{Z,Z2,ZZ̄}(1.6)

=

γ00 γ01 γ10

γ10 γ11 γ20

γ01 γ02 γ11

−
γ11 γ12 γ21

γ21 γ22 γ31

γ12 γ13 γ22


=

γ00 − γ11 γ01 − γ12 γ10 − γ21

γ10 − γ21 γ11 − γ22 γ20 − γ31

γ01 − γ12 γ02 − γ13 γ11 − γ22

 .

Note that the alternate decomposition zz̄ = z̄1z0 · z̄0z1 leads to the same result, as
required.

We next illustrate Theorem 1.1 by adapting a result of [Fi3] which parameterizes
the minimal quadrature rules of degree 2 for planar Lebesgue measure on the closed
unit disk D.

Example 1.4. ([Fi3]) The complex moments up to degree 2 of Lebesgue measure
on the unit disk are γ00 = π, γ11 = π

2 , γ01 = γ10 = γ02 = γ20 = 0; in particu-
lar, M (1) > 0. We seek to describe the representing measures for γ(2) that are
supported in the closed disk and have minimal support among such measures. For
each choice of “new moments” of degree 3 for such a measure, γ12 = x and γ03 = y,
let

B =

γ02 γ11 γ20

γ12 γ21 γ30

γ03 γ12 γ21

 =

0 π
2 0

x x̄ ȳ
y x x̄

 .

A flat extension M (2) is determined by the requirement that C ≡ B∗M (1)−1
B is

Toeplitz (cf. (2.4) below), and a calculation shows that this is equivalent to

|y|2 − |x|2 =
π2

8
.(1.7)

Thus M (1) admits flat extensions and γ admits 3-atomic representing measures.
To see which of these are supported in the unit disk, we use (1.6) to compute

N ≡M1−zz̄ (2) =

 π
2 −x −x̄
−x̄ π

4 −
4
π |x|

2 − 2
π

(
x̄2 + xȳ

)
−x − 2

π

(
x2 + x̄y

)
π
4 −

4
π |x|

2

 .

Theorem 1.1 implies that the 3-atomic representing measures for γ(2) that are
supported in the disk correspond to x and y which satisfy (1.7) and N ≥ 0. For the
latter condition we first require |x|2 ≤ π2

24 (positivity of the 2 × 2 upper left hand
corner of N).

Case 1. |x|2 = π
24 . In this case, N ≥ 0 if and only if y = −2x2

x̄ , whence rankN = 1;
thus ν [M (2)] has 2 (= rankM (1)− rankN) atoms on the unit circle and one atom
in the open disk.

Let ∆ := 32π detN = π4 − 48π2 |x|2 + 320 |x|4 − 64 |x|2 |y|2 − 256 Rex3ȳ; in the
remaining cases, N ≥ 0 if and only if |x|2 < π2

24 and ∆ ≥ 0.
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Case 2. |x|2 < π2

24 and ∆ = 0. In this case, N ≥ 0 and rankN = 2; one atom is on
the circle and two atoms are in the open disk.

Case 3. |x|2 < π2

24 and ∆ > 0. In this case, N > 0, so all three atoms are in the
open disk.

To compute ν [M (2)] via the Flat Extension Theorem, we note that there is a
dependence relation in the column space of the extension M (3) of the form

Z3 =
y

π
1 − 4

π2

(
x2 − yx̄

)
Z +

4
π
xZ2;

the support of ν [M (2)] consists of the roots of the cubic polynomial

z3 −
(
y

π
− 4
π2

(
x2 − yx̄

)
z +

4
π
xz2

)
,

and the densities may be computed from the Vandermonde equation.

As noted above, the Flat Extension Theorem shows that if M (n) admits a flat
extension M (n+ 1), then M (n+ 1) admits a unique flat extension M (∞), which
in turn determines a unique rankM (n)-atomic representing measure ν [M (n+ 1)]
corresponding to M (n+ 1). In the proof of Theorem 1.1, in order to establish that
supp ν [M (n+ 1)] ⊆ Kp, we assume Mp (n+ k) ≥ 0 and we need to verify that
Mp (∞) ≥ 0. The following structure theorem for localizing matrices, which is our
main technical result, shows that Mp (∞) is positive because it is a flat extension
of Mp (n+ k).

Theorem 1.5. Suppose M (n+ 1) is a flat extension of M (n) ≥ 0, and let p ∈
C [z, z̄], with deg p = 2k or deg p = 2k − 1. If Mp (n+ k) ≥ 0, then for each d ≥ 0,
there is a transition matrix W ≡Wn,d such that

Mp (n+ k + d+ 1) =
(

Mp (n+ k + d) Mp (n+ k + d)W
W ∗Mp (n+ k + d) W ∗Mp (n+ k + d)W

)
.

In particular, Mp (n+ k + d+ 1) is a flat (positive) extension of Mp (n+ k + d).

The extension of Theorem 1.1 to general semi-algebraic sets is an immediate
consequence of Theorem 1.1 and its proof. Let P = {p1, . . . , pm} ⊆ C [z, z̄] and
define ki by deg pi = 2ki or deg pi = 2ki − 1 (1 ≤ i ≤ m).

Theorem 1.6. There exists a rankM (n)-atomic representing measure for
γ(2n) supported in KP := {z ∈ C : pi (z, z̄) ≥ 0, 1 ≤ i ≤ m} if and only if
M (n) ≥ 0 and there is some flat extension M (n+ 1) for which Mpi (n+ ki) ≥ 0
(1 ≤ i ≤ m). In this case, the measure ν [M (n+ 1)] is a rankM (n)-atomic rep-
resenting measure supported in KP , with precisely rankM (n)− rankMpi (n+ ki)
atoms in Z (pi) (1 ≤ i ≤ m).

We illustrate Theorem 1.6 by giving a partial parameterization of the minimal
quadrature rules of degree 2 for Lebesgue measure on the triangle with vertices 0,
1, i.

Example 1.7. Let p1 (z, z̄) = z+z̄
2 , p2 (z, z̄) = z−z̄

2i , p3 (z, z̄) = 1 −
(
z+z̄

2 + z−z̄
2i

)
;

thus KP ≡ {z ∈ C : pi (z, z̄) ≥ 0, 1 ≤ i ≤ 3} is the triangle with vertices 0, 1, i.
The complex moments up to degree 2 for Lebesgue measure on KP are γ00 = 1

2 ,
γ01 = 1+i

6 , γ10 = 1−i
6 , γ02 = i

12 , γ20 = − i
12 , γ11 = 1

6 , and we also have γ12 =
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1+i
15 . We seek to characterize the representing measures ν of least support which

interpolate γ12 as well as γ(2) and which satisfy supp ν ⊆ KP .
Since γ12 is prescribed, a calculation shows that a flat extension M (2) of M (1)

(> 0) is determined by a choice γ03 = y1 + iy2 satisfying(
y1 +

1
120

)2

+
(
y2 −

1
120

)2

=

(√
3

120

)2

.(1.8)

Since deg pi = 1 (1 ≤ i ≤ 3), Theorem 1.6 implies that ν [M (2)] is supported in
KP if and only if Mpi (2) ≥ 0 (1 ≤ i ≤ 3), and these conditions are equivalent to(

y1 +
1

240

)2

+
(
y2 −

1
60

)2

≤
(

7
240

)2

,(1.9) (
y1 +

1
60

)2

+
(
y2 −

1
240

)2

≤
(

7
240

)2

,(1.10) (
y1 −

1
240

)2

+
(
y2 +

1
240

)2

≤
(

1
40
√

2

)2

.(1.11)

The solutions to (1.8)–(1.11) comprise an arc of the circle (1.8). Using the Flat
Extension Theorem, we find a dependence relation in the column space of M (3) of
the form

Z3 = c01 + c1Z + c2Z
2,(1.12)

where

c0 =
2
25

(1 + i) (i+ (30− 30i)y1 + (30 + 30i)y2) ,

c1 =
1
50
i (−37 + (360 + 360i)y1 − (360− 360i)y2) ,

c2 = (−1− i) (−1 + (6 + 6i) y1 − (6− 6i) y2) ;

the support of ν [M (2)] consists of the roots of z3−
(
c0 + c1z + c2z

2
)
. One solution

to (1.8)–(1.11) occurs with y1 = − 1
120 + 1

40
√

6
and y2 = 1

120 −
1

40
√

6
; the atoms

computed using (1.12) are

z0 ≈ 0.155051 + 0.155051i,
z1 ≈ 0.655928 + 0.166546i,
z2 ≈ 0.166546 + 0.655928i,

with corresponding densities ρ0 ≈ 0.152045, ρ1 = ρ2 ≈ 0.173977.

Theorem 1.6 gives a criterion for the existence of rankM (n)-atomic representing
measures supported in KP , but in the general case minimal representing measures
have more than rankM (n) atoms. In [CuFi6, Theorem 1.5] we proved that γ(2n)

has a finitely atomic representing measure if and only if there is some k ≥ 0 such
that M (n) admits an extension to a positive moment matrix M (n+ k), which in
turn admits a flat extension M (n+ k + 1). It is known that k > 0 may be required,
in which case a minimal representing measure has more than rankM (n) atoms
[CuFi6, Theorem 5.2]; a concrete example of this phenomenon (for n = 3) appears
in [Fi2, Theorem 3.1]. This example is based on [Fi2, Theorem 2.2], which provides
an algorithm for computing the minimal representing measure for any moment
matrix M (n) in which there is a column relation of the form Zm = p

(
Z, Z̄

)
for
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some m, 1 ≤ m ≤ n, and some p ∈ Pm−1. Despite this result, relatively little is
known about minimal representing measures arising from rank-increasing moment
matrix extensions. By combining [CuFi6, Theorem 1.5] with Theorem 1.6 we obtain
the following abstract solution to the Truncated Complex K-Moment Problem.

Theorem 1.8. γ(2n) admits a finitely atomic representing measure supported in
KP if and only if for some k ≥ 0, M (n) admits a positive extension M (n+ k)
which in turn has a flat extension M (n+ k + 1) satisfying Mpi (n+ k + ki) ≥ 0
(1 ≤ i ≤ m).

We conclude this section by comparing Theorem 1.8 to a theorem of Schmüdgen
[Sch] which solves the Full K-Moment Problem on Rn in the case when K ≡ KP
is a compact semi-algebraic set. Schmüdgen’s result is actually stated in terms of
positive sequences, but for R2 we can complexify Schmüdgen’s result and paraphrase
it in the language of moment matrices as follows: A full moment sequence (γij)i,j≥0

(γ00 > 0, γij = γ̄ji) has a representing measure supported in a compact semi-
algebraic set KP if and only if M (∞) (γ) ≥ 0 and Mq (∞) (γ) ≥ 0 for every
polynomial q that is a product of distinct pi’s. Thus, in the case when the semi-
algebraic set is compact, the sole criterion for representing measures is positivity
of moment matrices and localizing matrices. By contrast, Theorem 1.8 applies to
any semi-algebraic set and entails positivity only for the Mpi matrices (not the
Mq’s); however, Theorem 1.8 presupposes the existence of certain positive and flat
extensions M (n+ k) and M (n+ k + 1).

Acknowledgements. This research commenced during Fall 1996, while the second-
named author was visiting The University of Iowa on a sabbatical leave; he is
grateful to the Department of Mathematics for its hospitality and support. Many of
the examples and some of the theorems in this paper were proved using calculations
with the software tool Mathematica.

2. Flat extensions of positive moment matrices

Given γ ≡ γ(2n), for 0 ≤ i, j ≤ n we define the (i+ 1)×(j + 1) matrix Bij whose
entries are the moments of order i+ j:

Bij :=



γij γi+1,j−1 · · · γi+j,0
γi−1,j+1 γij γi+1,j−1

γi−1,j+1

...
...

γ0,j+i · · · γji


.(2.1)

It follows from equation (1.3) that M (n) (γ) admits a block decomposition
M (n) = (Bij)0≤i,j≤n.

We may also define blocks B0,n+1, . . . , Bn−1,n+1 via (2.1). Given “new moments”
of degree 2n + 1 for a prospective representing measure, let Bn,n+1 denote the
corresponding moment matrix block given by (2.1), and let

B (n+ 1) :=


B0,n+1

...
Bn−1,n+1

Bn,n+1

 .
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Given a moment matrix block C (n+ 1) of the form Bn+1,n+1 (corresponding to
“new moments” of degree 2n+ 2), we may describe the moment matrix extension
M (n+ 1) via the block decomposition

M (n+ 1) =
(

M (n) B (n+ 1)
B (n+ 1)∗ C (n+ 1)

)
.(2.2)

A theorem of Smul’jan [Smu] shows that a block matrix

M =
(
A B
B∗ C

)
(2.3)

is positive if and only if (i) A ≥ 0, (ii) there exists a matrix W such that B = AW ,
and (iii) C ≥ W ∗AW (since A = A∗, W ∗AW is independent of W provided B =
AW ). Note also that if M ≥ 0, then rankM = rankA if and only if C = W ∗AW ;
conversely, if A ≥ 0 and there exists W such that B = AW and C = W ∗AW ,
then M ≥ 0 and rankM = rankA. A block matrix M as in (2.3) is an extension
of A, and is a flat extension if rankM = rankA. A flat extension of a positive
matrix A is completely determined by a choice of block B satisfying B = AW and
C = W ∗AW for some matrix W ; we denote such a flat extension by [A;B].

For an (n+ 1)× (n+ 2) matrix Bn,n+1, representing “new moments” of degree
2n+ 1 for a prospective representing measure of γ(2n), let

B :=


B0,n+1

...
Bn−1,n+1

Bn,n+1

 .

By Smul’jan’s theorem, M (n) ≥ 0 admits a (necessarily positive) flat extension

[M (n) ;B] =
(
M (n) B
B∗ C

)
in the form of a moment matrix M (n+ 1) (cf. (2.2)) if and only if

B = M (n)W for some W (i.e., RanB ⊆ RanM (n));
C ≡W ∗M (n)W is Toeplitz, i.e., has the form of a moment matrix
block Bn+1,n+1.

(2.4)

Theorem 2.1. (Flat Extension Theorem) [CuFi4, Remark 3.15, Theorem 5.4,
Corollary 5.12, Theorem 5.13, and Corollary 5.15] [CuFi5, Lemma 1.9] [Fi3] Suppose
M (n) (γ) is positive and admits a flat extension M (n+ 1), so that Zn+1 = p

(
Z, Z̄

)
in CM(n+1) for some p ∈ Pn. Then there exist unique successive flat (positive, re-
cursively generated) moment matrix extensions M (n+ 2), M (n+ 3), . . . , which
are determined by the relations

Zn+k =
(
zk−1p

) (
Z, Z̄

)
∈ CM(n+k) (k ≥ 2).(2.5)

Let r := rankM (n). There exist unique scalars a0, . . . , ar−1 such that in CM(r),

Zr = a01 + · · ·+ ar−1Z
r−1.

The characteristic polynomial gγ (z) ≡ zr −
(
a0 + · · ·+ ar−1z

r−1
)

has r distinct
roots, z0, . . . , zr−1, and γ has a rankM (n)-atomic minimal representing measure
of the form

ν = ν [M (n+ 1)] =
∑

ρiδzi ,
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where the densities ρi > 0 are determined by the Vandermonde equation

V (z0, . . . , zr−1) (ρ0, . . . , ρr−1)t = (γ00, . . . , γ0,r−1)t .

The measure ν [M (n+ 1)] is the unique representing measure for γ(2n+2), and is
also the unique representing measure for M (∞).

We note in connection with (2.5) that due to the structure of moment matrix
blocks Bij , an extension M (n+ 1) is completely determined from M (n) once col-
umn Zn+1 is specified.

Finally, we recall from [CuFi4] [Fi1] that M (n) ≥ 0 is recursively generated if
the following property holds:

p, q, pq ∈ Pn, p
(
Z, Z̄

)
= 0 =⇒ (pq)

(
Z, Z̄

)
= 0.(RG)

If M (n) ≥ 0 admits a flat extension M (n+ 1), then M (n+ 1), and all of its
successive flat extensions M (n+ 1 + d) (described by Theorem 2.1), are recursively
generated [CuFi4, Remark 3.15-ii)].

3. Localizing matrices

Given γ ≡ γ(2n), k ≤ n, and p ∈ P2k, we define a localizing matrix Mp (n) ≡
Mp (n) (γ), whose positivity is a necessary condition for the existence of a repre-
senting measure for γ supported in Kp := {z ∈ C : p (z, z̄) ≥ 0}. The purpose of
this section is to prove Theorem 1.2 (restated as Theorem 3.5 below), which shows
how to compute Mp (n) as a linear combination of compressions of M (n). In the
next section, this description of Mp (n) will be utilized to characterize the existence
of minimal representing measures supported in a prescribed semi-algebraic set.

Motivated by Riesz’s analysis of moment problems in R [Akh], we define the
Riesz linear functional Λγ : P2n → C by

Λγ
( ∑

0≤r+s≤2n

arsz̄
rzs
)

:=
∑

0≤r+s≤2n

arsγrs.

Recall from [CuFi4] that M (n) ≡ M (n) (γ) may be defined as follows: for 0 ≤
i+ j ≤ n, 0 ≤ k + l ≤ n,〈

M (n) ̂̄zizj, ̂̄zkzl〉 := γi+l,j+k;

thus 〈
M (n) ̂̄zizj, ̂̄zkzl〉 = Λγ

(
z̄i+lzj+k

)
= Λγ

((
z̄izj

) (
z̄kzl

))
,

whence, by linearity, 〈
M (n) f̂ , ĝ

〉
= Λγ (f ḡ) (f, g ∈ Pn).(3.1)

Let p ∈ P2n, deg p = 2k or deg p = 2k − 1 (0 ≤ k ≤ n), and set σ ≡ σ (k, n) :=
(n−k+1)(n−k+2)

2 . The map

ϕp : Cσ × Cσ → C
defined by

ϕp

(
f̂ , ĝ
)

= Λγ (pf ḡ) (f, g ∈ Pn−k)
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is sesquilinear; thus, by the Riesz representation theorem for sesquilinear forms,
there exists a unique matrix Mp (n) ≡ Mp (n) (γ) ∈ Mσ (C) (which we sometimes
abbreviate as Mp) such that

ϕp

(
f̂ , ĝ
)

=
(
Mp (n) f̂ , ĝ

)
(= Λγ (pf ḡ)) (f, g ∈ Pn−k).(3.2)

Note that if there exists a representing measure µ for γ supported in Kp, then(
Mpf̂ , f̂

)
= Λγ

(
p|f |2

)
=
∫
p|f |2 dµ ≥ 0 (f ∈ Pn−k),(3.3)

whence Mp ≥ 0.
Our first goal is to describe Mp (n) concretely, as a linear combination of certain

compressions of M (n). Note that if r, s ≥ 0, 0 ≤ r + s ≤ 2k, then there exist
i, j ≥ 0 such that

z̄rzs = z̄izj · z̄r−izs−j (0 ≤ i+ j ≤ k, 0 ≤ (r + s)− (i+ j) ≤ k).(3.4)

(In the sequel, we abbreviate these conditions by writing 0 ≤ i+j, (r + s)−(i + j) ≤
k.) Indeed, (i, j) can be chosen as the integral point in the triangle 0 ≤ u + v ≤ k
closest to (r, s).

Lemma 3.1. Let 0 ≤ k ≤ n, 0 ≤ r + s ≤ 2k, and suppose p (z, z̄) ≡ z̄rzs =
z̄izj · z̄r−izs−j with 0 ≤ i+ j, (r − i) + (s− j) ≤ k. For f, g ∈ Pn−k,〈

Mp (n) f̂ , ĝ
〉

=
〈
M (n)̂̄zizjf,

(
zr−iz̄s−jg

)̂ 〉
.

Proof.〈
Mp (n) f̂ , ĝ

〉
= Λγ (pf ḡ)

= Λγ
((
z̄izjf

)
(zr−iz̄s−jg)

)
(with 0 ≤ i+ j + n− k, r − i+ s− j + n− k ≤ n)

=
〈
M (n)̂̄zizjf,

(
zr−iz̄s−jg

)̂ 〉
.

Proposition 3.2. Let 0 ≤ k ≤ n. For 0 ≤ r + s ≤ 2k, 0 ≤ t+ u, q + v ≤ n− k,〈
Mz̄rzs (n) ̂̄zqzv, ̂̄ztzu〉 = γr+q+u,s+v+t.

Proof. Write z̄rzs = z̄izj · z̄r−izs−j with 0 ≤ i + j, (r − i) + (s− j) ≤ k. Lemma
3.1 implies〈

Mz̄rzs (n) ̂̄zqzv, ̂̄ztzu〉 =
〈
M (n)

(
z̄izj z̄qzv

)̂
,
(
zr−iz̄s−j z̄tzu

)̂ 〉
=
〈
M (n)

(
z̄i+qzj+v

)̂
,
(
z̄s+t−jzr+u−i

)̂ 〉
= γ(i+q)+(r+u−i),(j+v)+(s+t−j)

= γr+q+u,s+v+t.

Note that in Lemma 3.1 and Proposition 3.2 we are not assuming that p (z, z̄) ≡
z̄rzs satisfies deg p = 2k or deg p = 2k − 1, only that deg p ≤ 2k; thus the size of
Mp (n) may be greater than (n−k+1)(n−k+2)

2 and the vectors f̂ , ĝ are then defined
with respect to that larger size. We consider this more general framework because
in the sequel z̄rzs may contribute to a polynomial q with deg q > r + s.

Let p, q, t, u ≥ 0 and suppose A is a matrix whose columns are indexed by

Z̄0Zp, . . . , Z̄pZ0, . . . , Z̄0Zp+q, . . . , Z̄p+qZ0,
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and whose rows are indexed by

Z̄0Zt, . . . , Z̄tZ0, . . . , Z̄0Zt+u, . . . , Z̄t+uZ0.

Suppose 0 ≤ r+s ≤ p+q, r, s ≥ 0. The columns of A that are indexed by multiples
of Z̄rZs are of the form

Z̄r+iZs+j , max (0, p− (r + s)) ≤ i + j ≤ (p+ q)− (r + s) .

Let κ denote the number of such columns; if p ≥ r + s,

κ = p− (r + s) + 1 + · · ·+ (p+ q)− (r + s) + 1

= (q + 1)
(
p+

q

2
+ 1− (r + s)

)
;

if p ≤ r + s,

κ = 1 + · · ·+ (p+ q)− (r + s) + 1

=
((p+ q)− (r + s) + 1) (p+ q − (r + s) + 2)

2
.

For κ ≥ σ ≥ 1, we denote the compression of A to the first σ of these columns
corresponding to total degree at least d by A[Z̄rZs] ≡ A[Z̄rZs;d,σ] (assuming that
there are at least σ such columns). Similarly, let τ denote the number of rows of A
indexed by multiples of Z̄mZl, and for 1 ≤ ρ ≤ τ , let [Z̄mZl]A ≡ [Z̄mZl;e,ρ]A denote
the compression of A to the first ρ of these rows corresponding to total degree at
least e (assuming there are at least ρ such rows). We denote the compression of A
to these rows and columns by [Z̄mZl;e,ρ]A[Z̄rZs;d,σ], or by [Z̄mZl]A[Z̄rZs] when the
values of e, ρ, d, σ are clear from the context.

We omit the proof of the following elementary result.

Lemma 3.3.
(i) [ · ]A[ · ] =

(
[ · ]A

)
[ · ] = [ · ]

(
A[ · ]

)
;

(ii) (AB)[ · ] = A
(
B[ · ]

)
; [ · ] (AB) =

(
[ · ]A

)
B;

(iii) [ · ](AB)[ · ] =
(

[ · ]A
) (
B[ · ]

)
;

(iv)
(

[Z̄mZl;e,ρ]A
)∗

= A∗[Z̄mZl;e,ρ] (here, the convention is that if the rows of

A are indexed by Zp, Zp−1Z̄, . . . , the columns of A∗ are also indexed by
Zp, Zp−1Z̄, . . . , and similarly for the columns of A and the rows of A∗).

Lemma 3.4. Suppose 0 ≤ k ≤ n and let σ = (n−k+1)(n−k+2)
2 . For 0 ≤ p + q,

l+m ≤ k, let M ≡ [Z̄mZl;0,σ]M (n)[Z̄pZq ;0,σ], the compression of M (n) to the first

σ columns indexed by multiples of Z̄pZq and to the first σ rows indexed by multiples
of Z̄mZl. Then M = [Mz̄pzq·z̄lzm (n)]σ, the compression of Mz̄pzq·z̄lzm (n) to its first
σ rows and columns.

Proof. The columns of M are indexed by Z̄p+iZq+j (0 ≤ i + j ≤ n − k) and the
rows are indexed by Z̄m+aZl+b (0 ≤ a+ b ≤ n− k). The entry in row Z̄m+aZ l+b,
column Z̄p+iZq+j of M is thus γp+i+l+b,q+j+m+a. The corresponding entry of

Mz̄pzq·z̄lzm (n), located in row Z̄aZb, column Z̄iZj, is
〈
Mz̄pzq ·z̄lzm (n) ̂̄zizj, ̂̄zazb〉 =〈

Mz̄p+lzq+m (n) ̂̄zizj , ̂̄zazb〉 = γp+l+i+b,q+m+j+a (by Proposition 3.2, since
p+ l + q +m ≤ 2k), so the result follows.
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The main result of this section, which follows, describes Mp (n) in terms of
compressions of M (n). Let 0 ≤ k ≤ n and suppose p (z, z̄) ≡

∑
0≤r+s≤d arsz̄

rzs,
with d ≡ deg p = 2k or 2k − 1.

Recall that for each r, s ≥ 0 with 0 ≤ r + s ≤ 2k, there exist i ≡ i (r, s, k),
j ≡ j (r, s, k), t ≡ t (r, s, k), u ≡ u (r, s, k) ≥ 0 such that i+ j, t+ u ≤ k, i+ t = r,
j + u = s; thus

p (z, z̄) =
∑

0≤r+s≤d
arsz̄

izj · z̄r−izs−j .

Since deg p = 2k or 2k − 1, the size of Mp (n) is σ × σ, where σ = (n−k+1)(n−k+2)
2 .

Thus, by (3.2) and the uniqueness property of Mp (n),

Mp (n) =
∑

ars [Mz̄rzs (n)]σ ,

and Lemma 3.4 implies that for each r, s,

[Mz̄rzs (n)]σ = [Mz̄izj ·z̄r−izs−j (n)]σ
= [Z̄s−jZr−i;0,σ]M (n)[Z̄iZj ;0,σ] .

Note also from Proposition 3.2 and the proof of Lemma 3.4 that we may obtain
[Mz̄rzs (n)]σ from M (n− k) by replacing each γij in the latter matrix by γr+i,s+j .

We thus have the following computational description of Mp (n), which restates
and refines Theorem 1.2.

Theorem 3.5.
(i) Mp (n) =

∑
0≤r+s≤d ars[Z̄s−jZr−i;0,σ]M (n)[Z̄iZj ;0,σ].

(ii) The entries in Mp (n) are of the form
∑

0≤r+s≤d arsγr+u,s+v (0 ≤ u + v ≤
2 (n− k)).

We note that the construction of Mp (n) in Theorem 3.5(i) is independent of the
way in which we factor the monomials of p as in (3.4), as the following example
shows.

Example 3.6. Let n = 3, p (z, z̄) = z + z2z̄, k = 2; then deg p = 2k − 1. Consider
the decompositions

p1 = z · 1 + z2 · z̄ and p2 = 1 · z + z̄z · z;

we have σ = (n−k+1)(n−k+2)
2 = 3. Now

Mp1 (3) = [Z̄0Z0;0,3]M (3)[Z̄0Z;0,3] + [Z̄0Z1;0,3]M (3)[Z2Z̄0;0,3]

=

Z Z2 ZZ̄
1 γ01 γ02 γ11
Z

(
γ11 γ12 γ21

)
Z̄ γ02 γ03 γ12

+

Z2 Z3 Z2Z̄
Z γ12 γ13 γ22

Z2

(
γ22 γ23 γ32

)
ZZ̄ γ13 γ14 γ23

,

and, similarly,

Mp2 (3) =

1 Z Z̄

Z̄ γ01 γ02 γ11
ZZ̄

(
γ11 γ12 γ21

)
Z̄2 γ02 γ03 γ12

+

Z̄Z Z2Z̄ ZZ̄2

Z̄ γ12 γ13 γ22
ZZ̄

(
γ22 γ23 γ32

)
Z̄2 γ13 γ14 γ23

.

We next present some properties of Mp (n).
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Proposition 3.7.
(i) For p ≡ 1, Mp (n) = M (n).
(ii) For 1 ≤ k ≤ n, f ∈ Pk, p = |f |2, h, g ∈ Pn−k,〈

M|f |2 ĝ, ĥ
〉

=
〈
M (n) f̂ g, f̂h

〉
.

(iii) For k = n, deg f = n, p = |f |2, Mp (n) =
(〈
M (n) f̂ , f̂

〉)
.

(iv) Let 0 ≤ k ≤ n and let p = f1f̄2, with f1, f2 ∈ Pk. For g1, g2 ∈ Pn−k,

〈Mpĝ1, ĝ2〉 =
〈
M (n) f̂1g1, f̂2g2

〉
.

Proof. (i) Clear.
(ii)

〈
M|f |2 ĝ, ĥ

〉
= Λγ

(
|f |2gh̄

)
= Λγ (fg (fh)) =

〈
M (n) f̂ g, f̂h

〉
.

(iii) For g, h ∈ P0, gh̄
〈
Mp (n) 1̂, 1̂

〉
=
〈
Mp (n) ĝ, ĥ

〉
= Λγ

(
pgh̄

)
; with g = h ≡ 1,〈

Mp (n) 1̂, 1̂
〉

= Λγ (p) = Λγ
(
|f |2

)
=
〈
M (n) f̂ , f̂

〉
.

(iv) 〈Mpĝ1, ĝ2〉 = Λγ
(
f1f̄2g1ḡ2

)
= Λγ

(
f1g1

(
f2g2

))
=
〈
M (n) f̂1g1, f̂2g2

〉
.

Proposition 3.8. Mp (n)∗ = Mp̄ (n).

Proof.
〈
Mp̄ (n) f̂ , ĝ

〉
= Λγ (p̄f ḡ) = Λγ

(
pgf̄

)
=
〈
Mp (n) ĝ, f̂

〉
=
〈
f̂ ,Mp (n) ĝ

〉
=〈

Mp (n)∗ f̂ , ĝ
〉

.

Proposition 3.9. Let p ∈ Pn.
(i) If n is even, or if n is odd and deg p < n, then Mp (n) = 0⇒ p

(
Z, Z̄

)
= 0 in

CM(n).
(ii) If deg p = n, or if n is even and deg p = n− 1, then p

(
Z, Z̄

)
= 0 in CM(n) ⇒

Mp (n) = 0.
(iii) If M (n) ≥ 0 is recursively generated, and p

(
Z, Z̄

)
= 0 in CM(n), then

Mp (n) = 0.

Before proving Proposition 3.9, we pause briefly to note that the formulation is
sharp in the following sense. Concerning (i), if n is odd and deg p = n, then we
may have Mp (n) = 0 and p

(
Z, Z̄

)
6= 0. To see this, consider n = 1, p (z, z̄) = z,

k = 1; here, Mz (1) = (γ01) and Z =
(
γ01 γ11 γ02

)t. Concerning (ii), let n = 3,

p (z, z̄) = z2, k = 1, so deg p = n − 1; note that
(
Mz2 (3) ẑ2, ẑ2

)
= γ24 and

Z2 = (γ02, γ12, γ03, γ22, γ13, γ04, γ32, γ23, γ14, γ05)t, so Z2 = 0 in CM(3) need not
imply Mz2 = 0.

Proof of Proposition 3.9. (i) Let d ≡ deg p = 2k or 2k − 1, and denote p as
p (z, z̄) ≡

∑
0≤r+s≤d arsz̄

rzs. The elements of Mp (n) are indexed as
∑
arsγr+u,s+v

(0 ≤ u + v ≤ 2 (n− k)) (cf. Theorem 3.5(ii)). The components of p
(
Z, Z̄

)
are of

the form
〈
p
(
Z, Z̄

)
, ̂̄zizj〉 =

∑
ars

〈
Z̄rZs, ̂̄zizj〉 =

∑
ars

〈
M (n) ̂̄zrzs, ̂̄zizj〉 =∑

arsγr+j,s+i (0 ≤ i + j ≤ n). Since Mp (n) = 0, to prove p
(
Z, Z̄

)
= 0 it

suffices to prove n ≤ 2 (n− k), i.e., 2k ≤ n. Since deg p ≤ n, we may assume
deg p = 2k − 1. If n is even, say n = 2m, then since 2k − 1 = deg p ≤ n = 2m,
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it follows that k ≤ m, whence 2k ≤ n. If n is odd, i.e., n = 2m − 1, then
deg p < n⇒ 2k − 1 < 2m− 1⇒ 2k ≤ 2m− 1 = n.

(ii) We use the notation introduced in the proof of (i). To prove p
(
Z, Z̄

)
= 0⇒

Mp (n) = 0, it thus suffices to check that 2 (n− k) ≤ n (or n ≤ 2k) under the
conditions of the hypothesis. If deg p = n, the result is clear since deg p ≤ 2k. If n
is even, n = 2m, and deg p = n− 1, then 2k − 1 = deg p = 2m− 1, so k = m and
n = 2m = 2k.

(iii) We retain the notation introduced above; in particular, the entries of Mp (n)
are

∑
arsγr+u,s+v (0 ≤ u + v ≤ 2 (n− k)). Since p

(
Z, Z̄

)
= 0 and M (n) is re-

cursively generated, then
(
z̄lzmp

) (
Z, Z̄

)
= 0 (0 ≤ l + m ≤ n − deg p). Thus,

for 0 ≤ i + j ≤ n, 0 =
〈(
z̄lzmp

) (
Z, Z̄

)
, ̂̄zizj〉 =

〈∑
arsZ̄

r+lZs+m, ̂̄zizj〉 =∑
arsγr+l+j,s+m+i, and it follows that 0 =

∑
arsγr+a,s+b (0 ≤ a+ b ≤ 2n−deg p).

To complete the proof, it suffices to verify that 2 (n− k) ≤ 2n− deg p, and this
follows since deg p ≤ 2k.

Proposition 3.10. Let deg p ≤ n and suppose µ is a representing measure for
γ(2n).

(i) suppµ ⊆ Z (p)⇒Mp (n) = 0.
(ii) If n is even, or if n is odd and deg p < n, then Mp (n) = 0⇒ suppµ ⊆ Z (p).

Proof. (i) Since suppµ ⊆ Z (p), [CuFi4, Proposition 3.1] implies that p
(
Z, Z̄

)
= 0,

and [CuFi4, Remark 3.15] implies that M (n) is positive and recursively generated.
Proposition 3.9(iii) thus implies Mp (n) = 0.

(ii) Proposition 3.9(i) implies that p
(
Z, Z̄

)
= 0, so the result follows from [CuFi4,

Proposition 3.1].

We remark that if n is odd and deg p = n, we may have Mp (n) = 0, but suppµ

need not be contained in Z (p); to see this, let n = 1, M (1) =
(

1 0 0
0 1 0
0 0 1

)
, p (z, z̄) = z,

k = 1. From [CuFi4, Theorem 6.1], M (1) admits a representing measure µ, and
suppµ * Z (p) = {0} since card suppµ ≥ rankM (1) = 3; on the other hand,
Mp (1) = (γ01) = 0.

Proposition 3.11. Suppose γ ≡ γ(2n) has a representing measure µ and let K =
suppµ. If k ≤ n

2 and p ∈ P2k, then Mp (n) = 0 if and only if p|K = 0.

Proof. If p|K = 0, then K ⊆ Z (p), so [CuFi4, Proposition 3.1] implies p
(
Z, Z̄

)
= 0

in CM(n). Since M (n) has a representing measure, M (n) is positive and recur-
sively generated [CuFi4, Remark 3.15], so Proposition 3.9(iii) implies Mp (n) = 0.
Conversely, if Mp (n) = 0, then by Proposition 3.9(i), p

(
Z, Z̄

)
= 0, so [CuFi4,

Proposition 3.1] implies that suppµ ⊆ Z (p), i.e., p|K ≡ 0.

In the next section we will study the relationship between successive flat ex-
tensions M (n+ 1) ,M (n+ 2) , . . . of M (n) ≥ 0 and the corresponding successive
extensions of Mp (n). As motivation for these results, we next present several ex-
amples concerning the behavior of Mp (·) with respect to positive extensions of
moment matrices.

Our first example illustrates a case in which M (1) ≥ 0, Mz (1) ≥ 0, but for
every positive extension M (2), Mz (2) is not positive.
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Example 3.12. Let M (1) =
(

1 0 0
0 1 0
0 0 1

)
, so that Mz (1) = (0) ≥ 0. For any positive

extension M (2), we have

Mz (2) =

γ01 γ02 γ11

γ11 γ12 γ21

γ02 γ03 γ12

 ,

so self-adjointness of Mz (2) would entail 0 = γ02 = γ̄11 = 1. The preceding
argument implies that γ(2) has no finitely atomic representing measure supported
in R+; in fact, since Z 6= Z̄ in CM(1), γ(2) has no representing measure supported
in R [CuFi4, Proposition 3.1].

We next study a complete parameterization of the flat extensions corresponding
to a particular quadratic moment problem. Depending on the choice of the flat
extension M (2), the corresponding representing measure will be supported in the
interior of the unit disk, supported in the disk with exactly one atom on the circle,
or not supported in the disk at all.

Example 3.13. Let M (1) =
(

2 i −i
−i 1 0
i 0 1

)
≥ 0, so that Z̄ = α1 + βZ with α = −i

and β = 1. [CuFi5, Section 2] thus implies that the flat extensions M (2) are
completely parameterized by a choice of γ12 of the form

γ12 =
1
2
ᾱγ11 +

it

2α
=
i

2
− t

2
(t ∈ R).

Corresponding to such a flat extension M (2) [t] there is a 2-atomic representing
measure µ [t], which is thus a representing measure for γ(2). Theorem 2.1 now
implies that in CM(2)[t] there is a relation of the form

Z2 = a1 + bZ.(3.5)

Since {1 , Z} is a basis for CM(1), (3.5) is equivalent to(
2 i
−i 1

)(
a
b

)
=
(
γ02

γ12

)
=
(

0
1
2 −

t
2

)
,

whence a = 1
2 + it

2 , b = i− t. Now (3.5) implies

γ22 = aγ20 + bγ21 =

(
t2 + 1

)
2

and

γ13 = aγ11 + bγ12 =

(
t2 − it

)
2

.

Let p (z) := 1− zz̄; then Theorem 3.5 implies

M ≡Mp (2) =

γ00 − γ11 γ01 − γ12 γ10 − γ21

γ10 − γ21 γ11 − γ22 γ20 − γ31

γ01 − γ12 γ02 − γ13 γ11 − γ22


=

 1 i+t
2

−i+t
2

−i+t
2

1−t2
2

−t2−it
2

i+t
2

−t2+it
2

1−t2
2

 ≡ (A B C
)
.
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Observe that C = −iA + B, so if [M ]2 ≥ 0, then M , as a flat extension of [M ]2,
is also positive. Since det [M ]2 = 1

4 −
3
4 t

2, it follows that Mp (2) ≥ 0 if and only if
t2 ≤ 1

3 . Thus, if t2 > 1
3 , then suppµt * D.

Now suppose t2 ≤ 1
3 and recall from Theorem 2.1 that suppµ [t] = Z (gt), where

gt (z) ≡ z2 − bz − a = z2 − (i− t) z −
(
i
2 + it

2

)
. The roots of gt are

z1 =
i− t+

√
1 + t2

2
and z2 =

i− t−
√

1 + t2

2
,

and since t2 ≤ 1
3 , it follows that |zi| ≤ 1 (i = 1, 2). Note also that t2 < 1

3 ⇔
rankMp (2) = 2⇔ |zi| < 1 (i = 1, 2) and that t2 = 1

3 ⇔ rankMp (2) = 1⇔ |z1| < 1
and |z2| = 1 if t = 1√

3
, and |z1| = 1 and |z2| < 1 if t = − 1√

3
.

These results are in keeping with our main results. Indeed, Theorem 1.1 im-
plies that since M (1) ≥ 0 admits a flat extension M (2) for which Mp (2) ≥ 0,
then there exists a representing measure supported in the disk with exactly
rankM (1)− rankMp (2) (= 2− rankMp (2)) atoms in the circle.

The following example illustrates cases in which Mp (n) = 0 does not imply
suppµ ⊆ Z (p) for n < deg p ≤ 2n.

Example 3.14. Let M (1) =
(

1 a a
a 1 2a2−1
a 2a2−1 1

)
, with |a| < 1. Then M (1) ≥ 0 and

Z̄ = α1 + βZ with α = 2a, β = −1. It thus follows from [CuFi5, Section 2] that
the flat extensions M (2) are determined by

γ12 =
1
2
ᾱγ11 +

it

2α
= a+

it

4a
(t ∈ R).

Let p (z, z̄) := 1−zz̄, so that Mp (1) = 0. Now Mp (2) = 0 entails γ01−γ12 = 0, i.e.,
t = 0. Thus if t 6= 0, the measure µ [t] corresponding to the flat extension M (2) [t]
satisfies Mp (2) [t] 6= 0, whence suppµ [t] * Z (p) (by Proposition 3.10(i) applied
to M (2) [t]). (It is not difficult to check that if t = 0, then suppµ [t] ⊆ Z (p) and
Mp (2) = 0, in keeping with Theorem 1.1.)

4. Existence of minimal representing measures

This section is devoted to the proof of Theorem 1.1, which for convenience we
restate as Theorem 4.1 below. In the sequel we assume that M (n+ 1) is a flat
extension of M (n) ≥ 0; thus Theorem 2.1 implies that there exist unique succes-
sive flat extensions M (n+ 2), M (n+ 3), . . . , M (∞); moreover, M (∞) admits
the unique representing measure ν [M (n+ 1)], which is a rankM (n)-atomic rep-
resenting measure for γ(2n) (cf. (1.4)).

Let p ≡ p (z, z̄) ∈ C [z, z̄] and let Kp := {z ∈ C : p (z, z̄) ≥ 0}. The following
result characterizes the existence of a minimal representing measure supported in
Kp.

Theorem 4.1. Let M (n) ≥ 0 and suppose deg p = 2k or 2k − 1. There exists
a rankM (n)-atomic representing measure for γ(2n) supported in Kp if and only
if there is some flat extension M(n + 1) for which Mp(n + k) ≥ 0. In this case,
the measure ν [M(n+ 1)] is a rankM (n)-atomic representing measure supported
in Kp, with precisely rankM (n)− rankMp (n+ k) atoms in Z (p).

Note that there is no restriction on the size of k in Theorem 4.1. We pause to
illustrate Theorem 4.1 in a case in which k > n, so that Mp (n) is not even defined.
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Example 4.2. Let n = 1, M (1) =
(

1 0 0
0 1 0
0 0 1

)
and let p (z, z̄) = z3 − 1, so that

2 = k > n. Consider the flat extension

M (2) =


1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 1 0 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1

 .

Since Z2 = Z̄, Z̄Z = 1 , Z̄2 = Z in CM(2), M (3) is uniquely determined by the
column relations Z3 = Z̄Z = 1 and Z2Z̄ = Z. Thus, using Theorem 3.5,

Mz3 (3) =

Z2 Z3 Z2Z̄
Z̄ 1 0 0

Z̄Z

(
0 1 0

)
Z̄2 0 0 1

and M1 (3) =

1 Z Z̄
1 1 0 0
Z

(
0 1 0

)
Z̄ 0 0 1

,

whence Mp (3) = (0) ≥ 0. Thus, corresponding to the flat extension M (2), Theo-
rem 4.1 guarantees the existence of a 3-atomic representing measure µ for γ(2) with
3 (= rankM (1) − rankMp (3)) atoms in Z (p). Indeed, since Z3 = 1 in CM(3), if
z0, z1, z2 denote the distinct cube roots of unity, then µ = 1

3 (δz0 + δz1 + δz2) is the
unique such representing measure (cf. [CuFi4, Example 3.2]).

To prove Theorem 4.1 we require some auxiliary results concerning flat exten-
sions. We first show how the flat extension M (n+ 1) determines a sequence of
transition matrices Wn,d (d ≥ 1), such that the unique flat extension M (n+ d+ 1)
is determined from M (n+ d) via Wn,d. In Theorem 4.3, which is a restatement
of Theorem 1.5, we then describe how the successive extensions Mp (n+ k + d+ 1)
(d ≥ 0) can be computed using the same sequence of transition matrices.

Since M (n+ 1) is a flat extension of M (n), for 0 ≤ j ≤ n+1, there exist scalars
wZ̄0Z0,Z̄n+1−jZj , . . . , wZ̄0Zn,Z̄n+1−jZj , . . . , wZ̄nZ0,Z̄n+1−jZj such that in CM(n+1),

(4.1) Z̄n+1−jZj = wZ̄0Z0,Z̄n+1−jZj1 + wZ̄0Z,Z̄n+1−jZjZ + wZ̄Z0,Z̄n+1−jZj Z̄

+ · · ·+ wZ̄0Zn,Z̄n+1−jZjZ
n + · · ·+ wZ̄nZ0,Z̄n+1−jZj Z̄

n,

and the same relation automatically holds in C(M(n)B(n+1)).
Now Theorem 2.1 implies that for d > 0, there is a unique flat extension

M (n+ d+ 1) of M (n+ d), defined by the following relations in CM(n+d+1) which
derive from (4.1):

(4.2)
Z̄n+1−jZd+j = wZ̄0Z0,Z̄n+1−jZjZ

d + wZ̄0Z,Z̄n+1−jZjZ
d+1 + wZ̄Z0,Z̄n+1−jZj Z̄Z

d

+ · · ·+ wZ̄0Zn,Z̄n+1−jZjZ
n+d + · · ·+ wZ̄nZ0,Z̄n+1−jZj Z̄

nZd (0 ≤ j ≤ n+ 1).

Further, in CM(n+1), the relation

(4.3) Z̄n+1 = wZ̄0Z0,Z̄n+11 + wZ̄0Z,Z̄n+1Z + wZ̄Z0,Z̄n+1Z̄

+ · · ·+ wZ̄0Zn,Z̄n+1Zn + · · ·+ wZ̄nZ0,Z̄n+1Z̄n
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implies that in CM(n+d+1), for 1 ≤ j ≤ d,

(4.4)
Z̄n+1+jZd−j = wZ̄0Z0,Z̄n+1Zd−jZ̄j+wZ̄0Z,Z̄n+1Zd−j+1Z̄j +wZ̄Z0,Z̄n+1Zd−jZ̄j+1

+ · · ·+ wZ̄0Zn,Z̄n+1Zn+d−jZ̄j + · · ·+ wZ̄nZ0,Z̄n+1Zd−jZ̄n+j.

Now let Wn,d be the (n+d+1)(n+d+2)
2 × (n+ d+ 2) matrix in Figure 1.

(Figure 1 below illustrates various parallel diagonals, each delineated by a pair
of large black dots; each such diagonal is constant, with value given by the matrix
element above and to the left of the diagonal.)

For d ≥ 0, write

M (n+ d+ 1) =
(

M (n+ d) B (n+ d+ 1)
B (n+ d+ 1)∗ C (n+ d+ 1)

)
;

then (4.1)–(4.4) imply that

B (n+ d+ 1) = M (n+ d)Wn,d,(4.5)

whence

M (n+ d+ 1) =
(

M (n+ d) M (n+ d)Wn,d

W ∗n,dM (n+ d) W ∗n,dM (n+ d)Wn,d

)
.(4.6)

We are now prepared to prove Theorem 1.5, which we restate for convenience.

Theorem 4.3. Suppose M (n+ 1) is a flat extension of M (n) ≥ 0 and suppose
deg p = 2k or 2k − 1. If Mp (n+ k) ≥ 0, then for each d ≥ 0,

Mp (n+ k + d+ 1) =
(

Mp (n+ k + d) Mp (n+ k + d)Wn,d

W ∗n,dMp (n+ k + d) W ∗n,dMp (n+ k + d)Wn,d

)
.(4.7)

In particular, Mp (n+ k + d+ 1) is a flat (positive) extension of Mp (n+ k + d) .

Proof. We may assume by induction on d ≥ 0 that Mp (n+ k + d) ≥ 0. Write
p = α1p1 + · · ·+ αtpt, where αi ∈ C and

pi = z̄rizsi · z̄lizmi with 0 ≤ ri + si, li +mi ≤ k.

Since deg p = 2k or 2k − 1, Mp (n+ k + d+ 1) has size ρ ≡ (n+d+2)(n+d+3)
2 ; thus,

by (3.2),

Mp (n+ k + d+ 1) =
t∑
i=1

αiMi,

where Mi ≡ [Mpi (n+ k + d+ 1)]ρ.
From (4.5)–(4.6) we have

M (n+ k + d+ 1) =
(

M (n+ k + d) B (n+ k + d+ 1)
B (n+ k + d+ 1)∗ C (n+ k + d+ 1)

)
,(4.8)

with

B (n+ k + d+ 1) = M (n+ k + d)Wn+k,d(4.9)

and

C (n+ k + d+ 1) = B (n+ k + d+ 1)∗Wn+k,d.(4.10)
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Zn+d+1 . . . ZdZ̄n+1 Zd−1Z̄n+2. . . Z0Z̄n+d+1

d(d+1)
2


0

Zd wZ̄0Z0,Zn+1 . . . wZ̄0Z0,Z̄jZn+1−j . . . wZ̄0Z0,Z̄n+1

d


0

•
. . .

. . .

•

Zd+1 wZ̄0Z1,Zn+1 . . . wZ̄0Z1,Z̄n+1

ZdZ̄ wZ̄Z0,Zn+1 . . . wZ̄Z0,Z̄n+1 •

d


0

• . . .
. . . . . .

. . . •

•

Zd+2



wZ̄0Z2,Zn+1 . . . wZ̄0Z2,Z̄n+1



Zd+1Z̄ wZ̄Z,Zn+1 . . . wZ̄Z,Z̄n+1 •

ZdZ̄2 wZ̄2Z0,Zn+1 . . . wZ̄2Z0,Z̄n+1 • . . .

d


0

• . . . . . .
. . . . . . •

. . . •

•
...

Zn+d wZ̄0Zn,Zn+1 . . . wZ̄0Zn,Z̄n+1

...
...

... •

ZdZ̄n wZ̄nZ0,Zn+1 . . . wZ̄nZ0,Z̄n+1

...
. . .

d


0

• . . . . . .
. . . . . . •

. . .
...

•
Figure 1: W ≡Wn,d
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Our next goal is to obtain a matricial description ofMi. Recall thatMp(n+k+d)
has size σ×σ, where σ = (n+d+1)(n+d+2)

2 , and that Mp (n+ k + d+ 1) has size ρ×ρ,
where ρ = (n+d+2)(n+d+3)

2 . Now Theorem 3.5 implies that Mi is the compression of
M (n+ k + d+ 1) to columns indexed by the first ρ multiples of Z̄riZsi and to rows
indexed by the first ρ multiples of Z̄miZli . In particular, it follows from Theorem
3.5 that [Mi]σ = [Mpi (n+ k + d)]σ, the compression of M (n+ k + d) to columns
indexed by the first σ multiples of Z̄riZsi and rows indexed by the first σ multiples
of Z̄miZli . We may thus denote the ρ× ρ matrix Mi as

Mi =
(

[Mpi (n+ k + d)]σ Bpi (n+ k + d+ 1)
B′pi (n+ k + d+ 1) Cpi (n+ k + d+ 1)

)
,(4.11)

whence

Mp (n+ k + d+ 1) =
(

Mp (n+ k + d) Bp (n+ k + d+ 1)
B′p (n+ k + d+ 1) Cp (n+ k + d+ 1)

)
,(4.12)

where

Mp (n+ k + d) =
∑

αi [Mpi (n+ k + d)]σ ,(4.13)

Bp (n+ k + d+ 1) =
∑

αiBpi (n+ k + d+ 1) ,(4.14)

B′p (n+ k + d+ 1) =
∑

αiB
′
pi (n+ k + d+ 1) ,(4.15)

Cp (n+ k + d+ 1) =
∑

αiCpi (n+ k + d+ 1) .(4.16)

From Theorem 3.5,

[Mpi (n+ k + d)]σ = [Z̄miZli ;0,σ]M (n+ k + d)[Z̄riZsi ;0,σ] ;

in particular, the columns of this matrix are indexed by

Z̄ri+fZsi+g (0 ≤ f + g ≤ n+ d).

Thus, from Theorem 3.5, Bpi(n+ k+ d+ 1) is the compression of M(n+ k+ d+ 1)
to columns indexed by the next ρ−σ (= n+d+ 2) multiples of Z̄riZsi and to rows
indexed by the first σ multiples of Z̄miZli . The columns of Bpi (n+ k + d+ 1) are
thus indexed by

Z̄ri+fZsi+g (f + g = n+ d+ 1),

so that

Bpi (n+ k + d+ 1) = [Z̄miZli ;0,σ]M (n+ k + d+ 1)[Z̄riZsi ;n+d+1+ri+si,ρ−σ] .
(4.17)

Similarly, we also have

B′pi (n+ k + d+ 1) = [Z̄miZli ;n+d+1+mi+li,ρ−σ]M (n+ k + d+ 1)[Z̄riZsi ;0,σ]

(4.18)

and

(4.19) Cpi (n+ k + d+ 1)

= [Z̄miZli ;n+d+1+mi+li,ρ−σ]M (n+ k + d+ 1)[Z̄riZsi ;n+d+1+ri+si,ρ−σ] .

We assert that

Bpi (n+ k + d+ 1) = [Mpi (n+ k + d)]σWn,d.(4.20)
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To prove (4.20), let r := ri, s := si, l := li, m := mi, so that r + s, l +m ≤ k. The
columns of [Mz̄rzs·z̄lzm (n+ k + d)]σ are indexed by

Z̄rZs, Z̄rZs+1, Z̄r+1Zs, . . . , Z̄rZs+n+d, . . . , Z̄r+n+dZs,

and the columns of Bz̄rzs·z̄lzm (n+ k + d+ 1) are indexed by

Z̄rZs+n+d+1, . . . , Z̄r+n+d+1Zs.(4.21)

Claim. For 0 ≤ j ≤ n+ d+ 1,

Z̄r+jZs+n+d+1−j in CB
z̄rzs·z̄lzm(n+k+d+1)

coincides with

Z̄jZn+d+1−j in C[Mpi
(n+k+d)]

σ
Wn,d

.

We may denote the columns of [Mpi (n+ k + d)]σWn,d in the same way as we
index the columns of Wn,d, i.e.,

Z̄jZn+d+1−j (0 ≤ j ≤ n+ d+ 1).

Case 1. 0 ≤ j ≤ n+ 1. Direct calculation shows that in C[Mz̄rzs·z̄lzm (n+k+d)]
σ
Wn,d

,

(4.22) Z̄jZn+d+1−j = wZ̄0Z0,Z̄jZn+1−j Z̄rZs+d + wZ̄0Z1,Z̄jZn+1−j Z̄rZs+d+1

+ wZ̄Z0,Z̄jZn+1−j Z̄r+1Zs+d + wZ̄0Z2,Z̄jZn+1−j Z̄rZs+d+2

+ wZ̄Z,Z̄jZn+1−j Z̄r+1Zs+d+1 + wZ̄2Z0,Z̄jZn+1−j Z̄r+2Zs+d

+ · · ·+ wZ̄0Zn,Z̄jZn+1−j Z̄rZs+d+n + · · ·+ wZ̄nZ0,Z̄jZn+1−j Z̄r+nZs+d.

Let J := n+ 1− j. If we express (4.1) as

Z̄jZn+1−j = Z̄n+1−JZJ ≡ qJ
(
Z, Z̄

)
in CM(n+1),

then Theorem 2.1 implies that in CM(n+k+d+1),

Z̄r+jZs+d+n+1−j =
(
Z̄rZs+dqJ

) (
Z, Z̄

)
.

From (4.1),

qJ
(
Z, Z̄

)
= wZ̄0Z0,Z̄n+1−JZJ1 + wZ,Z̄n+1−JZJZ + wZ̄,Z̄n+1−JZJ Z̄

+ · · ·+ wZ̄0Zn,Z̄n+1−JZJZ
n + · · ·+ wZ̄nZ0,Z̄n+1−JZJ Z̄

n

= wZ̄0Z0,Z̄jZn+1−j1 + wZ,Z̄jZn+1−jZ + wZ̄,Z̄jZn+1−j Z̄

+ · · ·+ wZ̄0Zn,Z̄jZn+1−jZn + · · ·+ wZ̄nZ0,Z̄jZn+1−j Z̄n,

whence, in CM(n+k+d+1),

(4.23) Z̄r+jZs+d+n+1−j = wZ̄0Z0,Z̄jZn+1−j Z̄rZs+d

+ wZ,Z̄jZn+1−j Z̄rZs+d+1 + wZ̄,Z̄jZn+1−j Z̄r+1Zs+d

+ · · ·+ wZ̄0Zn,Z̄jZn+1−j Z̄rZs+d+n + · · ·+ wZ̄nZ0,Z̄jZn+1−j Z̄r+nZs+d.

When (4.23) is compressed to rows indexed by the first σ multiples of Z̄mZl,
we obtain (4.22); thus Z̄r+jZs+d+n+1−j in CB

z̄rzs·z̄lzm(n+k+d+1) coincides with
Z̄jZn+d+1−j in C[Mz̄rzs·z̄lzm(n+k+d)]

σ
Wn,d

.
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Case 2. n + 1 < j ≤ n + d + 1, d ≥ 1. We express Z̄jZn+d+1−j in
C[Mz̄rzs·z̄lzm(n+k+d)]

σ
Wn,d

as follows. Let u := j − n − 1, 1 ≤ u ≤ d. Then

Z̄jZn+d+1−j = Z̄n+1+uZd−u, and by direct calculation, this equals

(4.24) wZ̄0Z0,Z̄n+1Z̄r+uZs+d−u + wZ,Z̄n+1 Z̄r+uZs+d−u+1

+ wZ̄,Z̄n+1Z̄r+u+1Zs+d−u + wZ2,Z̄n+1Z̄r+uZs+d−u+2

+ wZ̄Z,Z̄n+1Z̄r+u+1Zs+d−u+1 + wZ̄2,Z̄n+1Z̄r+u+2Zs+d−u

+ · · ·+ wZn,Z̄n+1Z̄r+uZs+d−u+n + · · ·+ wZ̄n,Z̄n+1Z̄r+u+nZs+d−u.

Now, if we express (4.3) as Z̄n+1 = f
(
Z, Z̄

)
, with f (z, z̄) := w1,Z̄n+1 +wZ,Z̄n+1z+

wZ̄,Z̄n+1 z̄ + · · ·+ wZn,Z̄n+1zn + · · ·+ wZ̄n,Z̄n+1 z̄n, then in CM(n+k+d+1),

Z̄r+jZs+n+d+1−j = Z̄r+u+n+1Zs+d−u(4.25)

=
(
z̄r+uzs+d−uf

) (
Z, Z̄

)
= w1,Z̄n+1Z̄r+uZs+d−u + · · ·+ wZnZ̄n+1Z̄r+uZs+d+n−u

+ · · ·+ wZ̄n,Z̄n+1Z̄r+u+nZs+d−u,

which coincides with (4.24) after compression to rows indexed by the first σ multi-
ples of Z̄mZl.

This completes the proof of the Claim.

Since Z̄r+jZs+n+d+1−j is the j-th column of Bz̄rzs·z̄lzm (n+ k + d+ 1) and
Z̄jZn+d+1−j is the j-th column of [Mpi (n+ k + d)]σWn,d, 0 ≤ j ≤ n + d + 1,
it now follows that (4.20) holds.

We next assert that

B′pi (n+ k + d+ 1) = Bp̄i (n+ k + d+ 1)∗(4.26)

= W ∗n,d [Mpi (n+ k + d)]σ .

From (4.20), Bpi (n+ k + d+ 1) = [Mpi (n+ k + d)]σWn,d, and thus

Bp̄i (n+ k + d+ 1) = [Mp̄i (n+ k + d)]σWn,d

=
[
Mpi (n+ k + d)∗

]
σ
Wn,d

= [Mpi (n+ k + d)]∗σWn,d,

whence

Bp̄i (n+ k + d+ 1)∗ = W ∗n,d [Mpi (n+ k + d)]σ .

To complete the proof of (4.26), it suffices to show that

B′pi (n+ k + d+ 1)∗ = Bp̄i (n+ k + d+ 1) .(4.27)

From Lemma 3.3 and (4.18), and since M (n+ k + d+ 1) ≥ 0, we have

B′pi (n+ k + d+ 1)∗ =
(

[Z̄miZli ;n+d+1+mi+li,ρ−σ]M (n+ k + d+ 1)[Z̄riZsi ;0,σ]
)∗

= [Z̄riZsi ;0,σ]M (n+ k + d+ 1)∗[Z̄miZli ;n+d+1+mi+li,ρ−σ]
= [Z̄riZsi ;0,σ]M (n+ k + d+ 1)[Z̄miZli ;n+d+1+mi+li,ρ−σ]
= Bp̄i (n+ k + d+ 1)

(by (4.17) applied to p̄i = z̄mizli · z̄sizri).
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Since the columns of
(

[Mpi
(n+k+d)]

σ

B′pi
(n+k+d+1)

)
are indexed by Z̄ri+uZsi+v (0 ≤ u + v ≤

n + d) and the columns of
(
Bpi (n+k+d+1)

Cpi (n+k+d+1)

)
are indexed by Z̄ri+uZsi+v (u + v =

n + d + 1) (cf. (4.17)–(4.19)), it follows from (4.11)–(4.25) (especially (4.23) and
(4.25)) that (

[Mpi (n+ k + d)]σ
B′pi (n+ k + d+ 1)

)
Wn,d =

(
Bpi (n+ k + d+ 1)
Cpi (n+ k + d+ 1)

)
,

whence (4.12) implies(
Mp (n+ k + d)

B′p (n+ k + d+ 1)

)
Wn,d =

(
Bp (n+ k + d+ 1)
Cp (n+ k + d+ 1)

)
.(4.28)

Now (4.15), (4.26), and (4.13) imply

B′p (n+ k + d+ 1) =
∑

αiB
′
pi (n+ k + d+ 1)

= W ∗n,d
∑

αi [Mpi (n+ k + d)]σ
= W ∗n,dMp (n+ k + d) ,

whence (4.12) and (4.28) yield

Mp (n+ k + d+ 1) =
(

Mp (n+ k + d) Mp (n+ k + d)Wn,d

W ∗n,dMp (n+ k + d) W ∗n,dMp (n+ k + d)Wn,d

)
,

which is (4.7); in particular, since Mp (n+ k + d) ≥ 0, then Mp (n+ k + d+ 1) is
a flat, positive extension of Mp (n+ k + d). This completes the proof of Theorem
4.3.

Proof of Theorem 4.1. Assume first that µ is a rankM (n)-atomic representing
measure, with suppµ ⊆ Kp. By [CuFi4, Theorem 5.13], M (n) admits a flat exten-
sion M (n+ 1), which in turn gives rise to a unique flat extension M (∞). By Theo-
rem 2.1 (or [CuFi4, Corollary 5.14]), associated to M (∞) there is a unique measure
ν ≡ ν (M [n+ 1]), with card supp ν = rankM (n+ 1) = rankM (n) = card suppµ.
Since M (∞) [µ] is a flat extension of M (n) with representing measure µ, it follows
that µ = ν. Thus µ is a representing measure for M (n+ k), and since suppµ ⊆ Kp,
(3.3) implies that Mp (n+ k) ≥ 0.

Conversely, suppose M (n) admits a flat extension M (n+ 1) for which
Mp (n+ k) ≥ 0 (cf. Theorem 2.1). Repeated application of Theorem 4.3 implies
that Mp (∞) is a flat (positive) extension of Mp (n+ k). Thus, for f, g ∈ C [z, z̄],
we have

Λγ (f ḡ) =
〈
M (∞) f̂ , ĝ

〉
(4.29)

and

Λγ (pf ḡ) =
〈
Mp (∞) f̂ , ĝ

〉
.(4.30)

From [CuFi4, Theorem 4.7], there exists a unique representing measure for M (∞),
which is rankM (n)-atomic, say

µ ≡
r∑
i=1

ρiδzi ,
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where r := rankM (n), ρi > 0, zi ∈ C.
Thus 〈

M (∞) f̂ , ĝ
〉

=
∫
f ḡ dµ =

∑
ρif (zi, z̄i) ḡ (zi, z̄i)(4.31)

and 〈
Mp (∞) f̂ , ĝ

〉
=
∫
pf ḡ dµ =

∑
ρip (zi, z̄i) f (zi, z̄i) ḡ (zi, z̄i) .(4.32)

Fix i0, 1 ≤ i0 ≤ r, and let f ≡ fi0 ∈ C [z] denote a polynomial such that fi0 (zi0) = 1
and fi0 (zj) = 0 for j 6= i0. Since Mp (∞) ≥ 0,

0 ≤
〈
Mp (∞) f̂ , f̂

〉
= ρi0p (zi0 , z̄i0) .

Since ρi0 > 0, it follows that p (zi0 , z̄i0) ≥ 0. Thus suppµ ⊆ Kp ≡ {z : p (z, z̄) ≥ 0}.
Now p dµ ≥ 0, and (4.32) shows that Mp (∞) is the corresponding moment ma-

trix [CuFi4, Theorem 4.7]. By [CuFi4, Chapter 4], it follows that card supp p dµ =
rankMp (∞); similarly, rankM (∞) = card suppµ. Now

supp p dµ = {zi ∈ suppµ : p (zi, z̄i) > 0} = suppµ \ Z (p) .

We thus have

rankM (n)− rankMp (n+ k) = rankM (∞)− rankMp (∞)
= card suppµ− card supp p dµ

= card suppµ ∩ Z (p) ;

thus µ has rankM (n)− rankMp (n+ k) atoms in Z (p). The proof of Theorem 4.1
is now complete.

For the reader’s convenience, we now restate Theorem 1.6, which is an immediate
consequence of Theorem 4.1 and its proof.

Theorem 4.4. There exists a rankM (n)-atomic representing measure for
γ(2n) supported in KP := {z ∈ C : pi (z, z̄) ≥ 0, 1 ≤ i ≤ m} if and only if
M (n) ≥ 0 and there is some flat extension M (n+ 1) for which Mpi (n+ ki) ≥ 0
(1 ≤ i ≤ m). In this case, the measure ν [M (n+ 1)] is a rankM (n)-atomic rep-
resenting measure supported in KP , with precisely rankM (n)− rankMpi (n+ ki)
atoms in Z (pi) (1 ≤ i ≤ m).

We illustrate Theorem 4.1 with a particular quartic moment problem for the
closed unit disk.

Example 4.5. Let

M ≡M (2)

:=



2 i −i 0 1 0
− i 1 0 a+ i

2 a− i
2 a− i

2

i 0 1 a+ i
2 a+ i

2 a− i
2

0 a− i
2 a− i

2 c −i
(
a− i

2

)
+ c −2i

(
a− i

2

)
+ c

1 a+ i
2 a− i

2 i
(
a+ i

2

)
+ c c −i

(
a− i

2

)
+ c

0 a+ i
2 a+ i

2 2i
(
a+ i

2

)
+ c i

(
a+ i

2

)
+ c c


.
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We will describe the rankM (2)-atomic representing measures supported in the
closed unit disk D. With α = −i, β = 1, we have

Z̄ = α1 + βZ, Z̄Z = αZ + βZ2, Z̄2 = α21 + 2αβZ + β2Z2.(4.33)

Now [M ]2 > 0, and [M ]3 (≥ 0) is a flat extension of [M ]2. Let r = −i
(
a+ i

2

)
,

s = 2
(
a+ i

2

)
, so that

[
Z2
]
(3)

= r [1 ](3) + s [Z]3. Thus [M ]4 ≥ 0 if and only if

c ≥ r · 0 + s
(
a− i

2

)
= 2a2 + 1

2 . With c ≥ 2a2 + 1
2 , [M ]5 ≥ 0, since [M ]5 is a flat

extension of [M ]4, and M = [M ]6 ≥ 0, since [M ]6 is a flat extension of [M ]5 (by
4.33).

We consider first the case when M (2) ≥ 0 and rankM (2) = 2, i.e., c = 2a2 + 1
2 .

In this case, γ(4) is of flat data type, so [CuFi4, Corollary 5.14] implies that there
exists a unique representing measure µ, which is 2-atomic. Let p (z, z̄) := 1 − zz̄.
Since M (2) is a flat extension of M (1), Theorem 4.1 implies suppµ ⊆ D if and only
if Mp (2) ≥ 0, and a calculation shows that this occurs precisely when a2 ≤ 1

12 . If
a2 = 1

12 , rankMp (2) = 1, so there is one atom on the unit circle, while if a2 < 1
12 ,

rankMp (2) = 2, so both atoms are in the open unit disk.
Now let c > 2a2 + 1

2 , so that M is positive, rankM = 3, and M is recursively
generated (by (4.33)). Since Z̄ = α1 +βZ, it follows from [CuFi5, proof of Theorem
2.1] that any flat extension M (3) of M (2) is completely determined by a choice of
γ23 of the form

γ23 =
1
2
ᾱγ22 +

it

2α
=
i

2
c− t

2
(t ∈ R).(4.34)

It follows from Theorem 2.1 that in any such flat extension M (3) [t], there exists a
column relation of the form

Z3 = c01 + c1Z + c2Z
2,

where

{1 ,Z,Z2}M (2){1 ,Z,Z2} (c0, c1, c2)t = (γ03, γ13, γ23)t .(4.35)

We have

c0 =
2a+ 8a3 − 12ac− 2t

4 (1 + 4a2 − 2c)
+
i

4

(
1 + 4a2 − 6c+ 8c2 + 4at

)
(1 + 4a2 − 2c)

,

c1 =
i (4ac+ t)
−1− 4a2 + 2c

+
2
(
−c+ 2c2 + at

)
(−1− 4a2 + 2c)

,

c2 =
i

2

(
3 + 12a2 − 6c

)
(1 + 4a2 − 2c)

+
(8ac+ 2t)

2 (1 + 4a2 − 2c)
,

and the support of the representing measure µt corresponding to M (3) [t] consists
of the three distinct roots of

gt (z) := z3 −
(
c0 + c1z + c2z

2
)
.

We seek to characterize when suppµt is contained in the unit disk. From (4.33),
in CM(3)[t] we have

Z2Z̄ = αZ2 + βZ3 and ZZ̄2 = α2Z + 2αβZ2 + β2Z3.(4.36)
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Since, by Theorem 3.5,

N ≡Mp (3) = {1 ,Z,Z̄,Z2,ZZ̄,Z̄2}M (3){1 ,Z,Z̄,Z2,ZZ̄,Z̄2}
− {Z,Z2,ZZ̄,Z3,Z2Z̄,ZZ̄2}M (3){Z,Z2,ZZ̄,Z3,Z2Z̄,ZZ̄2} ,

it follows from (4.33) and (4.36) that the first, second, and fourth columns of N
span CN . Thus, to establish N ≥ 0, it suffices to show N{1,2,4} ≥ 0. Now [N ]1 > 0,
and [N ]2 ≥ 0 if and only if det [N ]2 ≡ 3

4 − a2 − c ≥ 0.
We first consider the case c = 3

4 − a2. In this case, N{1,2,4} ≥ 0 if and only if
t = −5a−4a3

2 , whence N ≥ 0 and rankN = 1. Theorem 4.1 implies that µt has 2
atoms on the unit circle and one atom in the open disk.

Next, suppose 3
4 − a2 − c > 0 (i.e., rankMp (3) > 1); thus 2a2 + 1

2 < c < 3
4 − a2,

which entails a2 < 1
12 . Thus, under these conditions, N ≥ 0⇔ detN{1,2,4} ≥ 0. A

calculation shows that detN{1,2,4} = At2+Bt+C
32(1+4a2−2c) , where

A = 4− 48a2 (> 0, since a2 <
1
12

),

B = −64a− 256a3 + 256ac− 192ac2,

C = −27− 212a2 − 400a4 + 64a6 + 180c+ 736a2c+ 64a4c

− 444c2 − 560a2c2 + 480c3 − 192c4.

Now δ := B2 − 4AC = 48
(
−1− 4a2 + 2c

)2 (−3 + 4a2 + 4c
)2
> 0, and since A > 0

and 1 + 4a2 − 2c < 0, it follows that N ≥ 0 if and only if t1 ≤ t ≤ t2, where
t1 := −B−

√
δ

2A and t2 := −B+
√
δ

2A ; moreover, rankMp (3) = 3 if t1 < t < t2 and
rankMp (3) = 2 if t = t1 or t = t2.

Theorem 4.1 implies that if t1 < t < t2, then suppµt is contained in the open
disk, while if t = t1 or t = t2, µt has two atoms in the open disk and one atom on

the unit circle. We illustrate this with a = 1
4 , c = 21

32 , whence t1 = − (85+2
√

3)
128 and

t2 = (−85+2
√

3)
128 . For t = − 85

256 , we have c0 = 1
16 −

3i
8 , c1 = 5

4 −
i
8 , c2 = 1

8 + 3i
2 ;

z0 ≈ 0.8465 + 0.5i, z1 = −0.5 + 0.5i, z2 ≈ −0.2215 + 0.5i; ρ0 ≈ 0.501717, ρ1 = 1
3 ,

ρ2 ≈ 1.16495. For t = t2, c0 = − i
16

(
6 + i+ (1 + 2i)

√
3
)
, c1 = 10−i+(1+2i)

√
3

8 , c2 =
(1+12i−2

√
3)

8 ; z0 ≈ 0.836768 + 0.5i, z1 ≈ −0.866025 + 0.5i, z2 ≈ −0.278755 + 0.5i;
in this case, |z1| = 1, |z0|, |z2| < 1.

5. Truncated K-moment problems in R

In this section we adapt Theorem 4.1 and Theorem 4.4 to the context of trun-
cated moment problems on the real line, and we thereby obtain new characteriza-
tions for solubility in the truncated moment problems of Stieltjes (K = [0,+∞)),
Hamburger (K = R), and Hausdorff (K = [a, b]) [CuFi1], [KrNu], [ShTa]. For
moment problems in one real variable, the moment matrix corresponding to the
real truncated moment sequence β ≡ β(2n) : β0, . . . , β2n, with β0 > 0, is the Hankel
matrix H (n) ≡ (βi+j)0≤i+j≤2n. We recall the structure of a positive Hankel matrix
H (n) with r ≡ rankH (n) and columns 1 , t, . . . , tn.
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Theorem 5.1. (cf. [CuFi1, Theorem 3.9], [Fi1, Theorem 1.2], [Fi2, Theorem 4.2])
The following are equivalent:

(i) H (n) admits a positive extension H (n+ 1);
(ii) H (n) ≥ 0 admits a flat extension H (n+ 1);
(iii) H (r − 1) ≥ 0, and there exist (unique) real scalars α0, . . . , αr−1 such that

tr+s = α0t
s + · · ·+ αr−1t

r+s−1 (0 ≤ s ≤ n− r).(5.1)

Let K ⊆ R; for the K-moment problem of β(2n), a positive Borel measure µ
supported in K is a representing measure if βj =

∫
tj dµ (0 ≤ j ≤ 2n).

In case the conditions of Theorem 5.1 hold, H (n) is recursively generated in
the sense of [CuFi1]. Thus, if r ≤ n, (5.1) implies that H (r) admits unique
successive flat (positive) Hankel extensions H (r + s), s ≥ 1. If r = n + 1 and
H (n) ≥ 0, then corresponding to each choice of β2n+1 ∈ R, there exists a unique
flat extension H (n+ 1), which in turn admits unique successive flat extensions
H (n+ 2) , H (n+ 3) , . . . . Thus, whether or not H (n) ≥ 0 is singular, the flat ex-
tension H (r) of H (r − 1) admits a unique flat (positive) extension H (∞), which
in turn admits a unique (r-atomic) representing measure (cf. Theorem 2.1).

For 0 ≤ k ≤ n and p ∈ C [t], with deg p = 2k or 2k − 1, there exists a unique
matrix Hp (n) ∈Mn−k+1 (R) such that〈

Hp (n) f̂ , ĝ
〉

= Λβ (pf ḡ) , deg f, g ≤ n− k(5.2)

(where Λβ
(∑

i ait
i
)

:=
∑

i aiβi, cf. (3.2)). Thus, if β admits a representing measure
µ supported in Kp ≡ {t ∈ R : p (t) ≥ 0}, then Hp (n) ≥ 0. We have the following
analogue of Theorem 1.1.

Theorem 5.2. For β ≡ β(2n), let r := rankH (n) (β). Then β has an r-atomic
(minimal) representing measure supported in Kp if and only if H (n) ≥ 0 admits
a flat extension H (n+ 1) satisfying Hp (r − 1 + k) ≥ 0 (relative to the unique
successive flat extensions H (r + 1) , H (r + 2) , . . . of H (r) in the case k ≥ 2).

Proof. Suppose H (n) admits a flat extension, so that H (r) admits unique suc-
cessive flat extensions H (r + s) (s ≥ 1) (cf. the remarks following Theorem 5.1).
Formal repetition of the proof of Theorem 1.1, applied to H (r − 1) instead of to
M (n), implies that if Hp (r − 1 + k) ≥ 0, then there exists an r-atomic represent-
ing measure µ for H (r − 1) supported in Kp (with precisely r− rankHp (r − 1 + k)
atoms in Z (p)). In the case when r ≤ n, Theorem 5.1(iii) readily implies that µ is
a representing measure for all of β(2n).

Conversely, if µ is an r-atomic representing measure for β, then H (n+ 1) [µ] is a
flat extension of H (n), since rankH (n+ 1) [µ] ≤ card suppµ = r = rankH (n) =
rankH (n) [µ] ≤ rankH (n+ 1) [µ]; moreover, H (n+ 1) [µ] has unique flat ex-
tensions H (n+ 1 + j) [µ] (j ≥ 1). Thus, if suppµ ⊆ Kp, then (5.2) implies
Hp (r − 1 + k) [µ] ≥ 0.

Using the preceding results, we can now sharpen existence theorems for the
truncated moment problems of Stieltjes, Hamburger, and Hausdorff presented in
[CuFi1]. In [CuFi1, Theorem 5.3] we proved that β(2n) has a represent-
ing measure supported in K ≡ [0,+∞) if and only if H (n) ≥ 0, L (n− 1) ≡
(γi+j+1)0≤i+j+1≤2n−1 ≥ 0, and wn+1 ≡ (βn+1, . . . , β2n)t ∈ RanL (n− 1); note
that L (n− 1) = Hx (n).
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Theorem 5.3. Let r = rankH (n). The following are equivalent for β(2n).
(i) There exists a representing measure for β contained in [0,+∞).
(ii) There exists an r-atomic (minimal) representing measure for β contained in

[0,+∞).
(iii) H (n) ≥ 0, L (n− 1) ≥ 0, and wn+1 ∈ RanL (n− 1).
(iv) H (n) ≥ 0 has a flat extension H (n+ 1) satisfying Hx (n+ 1) ≥ 0.
(v) H (n) ≥ 0 admits a flat extension H (n+ 1) satisfying Hx (r) ≥ 0.

Proof. The equivalence (i)⇔(ii)⇔(iii) is contained in [CuFi1, Theorem 5.3].
The equivalence (ii)⇔(v) follows from Theorem 5.2 (with p (x) = x, k = 1);
and clearly (iv)⇒(v). It suffices to assume r ≤ n and to prove (v)⇒(iv) in this
case. By Theorem 5.2 and the remarks preceding it, H (r) admits unique succes-
sive flat extensions (among them H (n+ 1)), and the resulting extension H (∞)
has a unique representing measure, which is supported in [0,+∞); in particular,
Hx (n+ 1) ≥ 0.

The truncated Hamburger moment problem, for measures supported in K ≡ R,
corresponds to p (x) ≡ 1, k = 0. Thus Theorems 5.1 and 5.2 immediately yield the
following result.

Theorem 5.4. (cf. [CuFi1, Theorem 3.9]) Let r := rankH (n). Then β(2n) has
an r-atomic (minimal) representing measure supported in R if and only if H (n)
admits a positive extension H (n+ 1).

([CuFi1, Theorem 3.9] shows that the conditions of Theorem 5.4 are also equivalent
to the existence of a representing measure for β(2n) supported in R.)

We next consider the truncated Hausdorff moment problem, i.e., K = [a, b]; thus
p1 (x) = b− x, p2 (x) = x − a, k = 1. In [KrNu] Krein and Nudelman proved that
β ≡ β(2n) has a representing measure supported in [a, b] if and only if

H (n) ≥ 0 and (a+ b)L (n− 1) ≥ abH (n− 1) + J (n− 1) ,

where J (n− 1) = (γi+j)
n
i,j=1. It is straightforward to check that the latter inequal-

ity is equivalent to the condition Hp1p2 (n) ≥ 0. Alternately, Theorem 5.1, and an
obvious extension of Theorem 5.2 to general semi-algebraic sets, yield the following
criterion.

Theorem 5.5. Let r := rankH (n). Then β(2n) has an r-atomic (minimal) repre-
senting measure supported in [a, b] if and only if H (n) ≥ 0 admits a flat extension
H (n+ 1) and Hpi (r) ≥ 0 (i = 1, 2), i.e., bH (r − 1) ≥ Hx (r) ≥ aH (r − 1).

Concrete conditions (in terms of the βi) for the existence of such a flat extension
are given in [Fi1]. In [CuFi1] we proved that β(2n) has a representing measure
supported in [a, b] if and only if there is an r-atomic representing measure supported
in [a, b], and that this occurs if and only if H (n) ≥ 0 admits a flat extension for
which bH (n) ≥ Hx (n) ≥ aH (n); Theorem 5.5 thus refines this result in the case
when r ≤ n.

Added in Proof. For the Full Complex K-Moment Problem we would like to
mention recent work of M. Putinar, B. Reznick, J. Stochel, F. Szafraniec, and
F.-H. Vasilescu, in which new necessary and sufficient conditions for the existence
of representing measures are presented ([PuVa1], [PuVa2], [Rez], [StSz1], [StSz2],
[Va1], [Va2]). For instance, a rather concrete Riesz-type condition is obtained in
[PuVa1], when K is a compact semi-algebraic set. This work, together with the
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results in [PuVa2], is partially motivated by a new proof of the representation of
a polynomial positive in K as a sum of squares of rational functions, allowing as
denominators only powers of 1+|z|2, a fact also reproved, using different techniques,
in [Rez].
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