Flat Extensions of Positive Moment Matrices:

Relations in Analytic or Conjugate Terms*

RAUL E. CURTO AND LAWRENCE A. FIALKOW

September 15, 1996

Dedicated to our teacher and friend, Carl M. Pearcy, on the occasion of his sixztieth birthday

1. INTRODUCTION
Given a doubly indexed finite sequence of complex members v = 73 : ~v50, Y01, Y10 -- -, Y0,2ns - -5 Y2n,0, With
Yoo > 0 and 7;; = 7¥ji, the truncated compler moment problem entails finding a positive Borel measure u supported in

the complex plane C such that
(1.1) Vi = /fizj dp  (0<i+j<2n)

v is called a truncated moment sequence (of order 2n) and pu is called a representing measure for 4. The truncated
complex moment problem is closely related to several other moment problems: the full moment problem prescribes
moments of all orders, i.e., v = (7ij)ij>0, Yoo > 0, 7ij = 7js; the K-moment problem (truncated or full) prescribes a
closed set K C C which is to contain the support of the representing measure ([Atz], [BM], [Cas], [CP], [P3], [Sch2],
[StSz], [Sza]); and the multidimensional moment problem extends each of these problems to measures supported in C*
([Ber], [BCJ], [Cas], [Fug], [Hav1], [Hav2], [McG], [P1], [P2], [P4]); moreover, the k-dimensional complex moment problem
is equivalent to the 2k-dimensional real moment problem [CF4, Section 6]. All of these problems generalize classical
power moment problems on the real line, whose study was initiated by Stieltjes, Riesz, Hamburger, and Hausdorff (cf.
[AK], [Akh], [Hau], [KrN], [Lan], [Sar], [ShT]). Recently, J. Stochel [Sto] proved that a solution to the multidimensional
truncated K-moment problem actually implies a solution to the corresponding full moment problem. For k = 1, we
may informally paraphrase Stochel’s result as follows: If K C C is closed, if v = (745)i,j>0 is a full moment sequence,
and if for each n > 1 there exists a representing measure g, for {v;;}o<itj<2n such that supppu, C K, then there
exists a subsequence of {u,} that converges (in an appropriate weak topology) to a representing measure y for v with
suppu C K.

In [CF4] we initiated an approach to the truncated complex moment problem based on positivity and extension
properties of the moment matric M(n) = M(n)(vy) associated to a truncated moment sequence v (see below for
notation). If u is any representing measure for v, then cardsupp p > rank M (n) (see (1.5) below); the main results of

[CF4] characterize the existence of representing measures p for which card supp p = rank M (n).
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Theorem 1.1. [CF4, Corollary 5.14] If M (n) > 0 and M(n) is flat, i.e., rank M (n) = rank M(n — 1), then -y has a

unique representing measure, which is rank M (n)-atomic.

Theorem 1.2. [CF4, Theorem 5.13] v has a rank M (n)-atomic representing measure if and only if M (n) > 0 and M (n)
admits a flat extension M (n+ 1), i.e., M(n) can be extended to a moment matrix M (n+ 1) satistying rank M (n+1) =
rank M (n).

In [CF4] we conjectured that if y has any representing measure, then it has a rank M (n)-atomic representing measure;
this conjecture remains open. In the present note we study concrete sufficient conditions for the existence of flat moment
matrix extensions of positive moment matrices; in view of Theorem 1.2, each such condition leads to the solution of a
corresponding truncated moment problem.

To explain our results we require some additional notation. For m > 1, let M,,(C) denote the m x m complex
matrices. For n > 1, let m = m(n) := (n + 1)(n+ 2)/2; we introduce the following lexicographic order on the rows and

columns of matrices in M,,,\(C): 1, Z, Z, 2%, ZZ, AR

Z", ..., Z"; rows or columns indexed by 1, Z, Z2, ...,
Z™ are said to be analytic. Let v : Yoo, ---, V0,20, ---5 Y2n,0 b€ a truncated moment sequence; given 0 < i,j < n we

define the (i 4 1) x (j + 1) matrix B;; whose entries are the moments of order i + j:

Yij Yi+1,5—1 tee Yi+4,0
Yi—1,5+1 Yij Yi+1,5-1 e
. Yi—1,j+1 .
0,5+ cee Vji

Bij has the Toeplitz-like property of being constant on each diagonal. We now define the moment matrizc M(n) =

M (n)(y) via the block decomposition M (n) = (Bj;)o<i j<n. For example, if n = 1, the quadratic moment problem for

Y P 7Y00s Yois Y105 Y025 Y115 Y20 corresponds to

Yoo 7Yoi1 Y10
Boo  Boz

M(l)— - Y10 Y11 720
Big Bn

Yo1 7oz 711
Note that for 0 <i+j <n, 0 <k + ¢ < n, the entry in row ZkZ[, column Z'Z9 of M (n) is equal to Vit j1k-
Let P, C Clz, 2] denote the complex polynomials in z, Z of total degree < n. For p € Py, p(2,2) = > o<1 j<n a;;z'29,
let §(z,2) = 3. a;;2°2 and let p = (ago, @01, @105« - » Aops - - -5 no)T € C™™. The basic connection between M (n)(7)

and any representing measure p is provided by the identity

(1.3) / fadu=Mm)f.9)  (f.g€Po)

in particular (M (n)f, f) = J1fI?dp >0, so M(n) > 0. For the quadratic moment problem (n = 1), positivity of M (1)
implies the existence of rank M (1)-representing measures [CF4, Theorem 6.1], but in general positivity of M (n) does

not by itself imply the existence of representing measures.



We next recall from [CF4] some additional necessary conditions for the existence of representing measures. Let Caz(n)

n

denote the column space of M(n), i.e., Carn) = (1,2,Z,...,2",...,Z"y c C™"), Forp € P,, p = Y ai;ztzd, we
define p(Z, Z) € Cpr(ny by p(Z,Z) = ZaijZiZj; note that if p(Z, Z) = 0 then p(Z, Z) = 0 [CF4, Lemma 3.10]. If p is

a representing measure for «y, then
(1.4) For p € P, p(Z,7Z) =0 < suppu C Z(p) == {z € C: p(z, 2) = 0} [CF4, Prop. 3.1].
It follows from (1.4) that
(1.5) If 11 is a representing measure for «, then cardsupp p > rank M (n) [CF4, Cor. 3.5].
The following Structure Theorem for positive moment matrices provides a basic tool for constructing flat extensions.
Theorem 1.3. [CF4, Theorem 3.14] Let M (n)(y) > 0. If f, g, fg € Pn_1 and f(Z,Z) =0, then (fg)(Z,Z) = 0.

In view of Theorem 1.3 the following condition is necessary for the existence of a positive extension M(n + 1) of
M(n)(v):
(RG) f.9,f9€Pa, f(2,7)=0= (f9)(Z,Z) =0.
A moment matrix satisfying (RG) is said to be recursively generated.

For the case of the truncated moment problems in one real variable, where the “moment matrix” associated to

moments v : Yo, ..., Yon is the Hankel matriz H(n) = (Vit;j)o<i,j<n, we have the following result.
Theorem 1.4. [CF3, Section 3] The following are equivalent:

1) There exists a positive Borel measure ji, supp u C R, such that v; = [t'du(t) (0 < i < 2n);
2) ~ has a rank H (n)-atomic representing measure supported in R;
3) H(n) > 0 and H(n) is recursively generated (in the one-variable sense);

4) H(n) > 0 and H(n) admits a flat (i.e., rank preserving) extension H(n + 1).

In [CF4] we presented several cases in which Theorem 1.4 admits the following analogue for the truncated complex

moment problem:

(1.6) If M(n) is positive and satisfies (RG),
then M (n) admits a flat extension M (n + 1).

Of course, if (1.6) holds for a particular M (n)(7y), then by Theorem 1.2, v has a rank M (n)-atomic representing measure.

Theorem 1.1 corresponds to the case of (1.6) in which M (n) > 0 and for all ¢ + j = n, 7'77 € (ZZZm)OSHmSn,l.

In the present note we establish (1.6) in the following two new cases:

(1.7) 7 = al + BZ for some a, 3 € C (Theorem 2.1);



(1.8) Z% = p(Z,Z) for some p € Py_1, where k < [2] 4+ 1 (Theorem 3.1).

On the other hand, we show that (1.6) does not always hold. In Section 4 we use an example of Schmiidgen [Schl] to
construct a positive invertible (hence recursively generated) moment matrix M (3)(vy) for which v admits no representing
measure; hence M (3)(vy) admits no flat extension M (4).

We conclude this section with some preliminaries concerning flat moment matrix extensions of positive moment
matrices. For n > 1 and A € M,,,)(C), A = A*, we define an hermitian sesquilinear form (-,-)4 on Py, by (p,q)a :=

(Ap, ¢); thus the entry in row ZkZé, column Z'Z7 of A is given by

(Z'79,2020) = (AZizi, zkzt)

= (220,2F2% 4 (0<i4+j<n, 0<k+{¢<n).

Moreover, if there exist p, ¢ € P, such that 7'z = p(Z,7) and 7"zt = q(Z,7), then (z'27, 25254 = (p,q)a. The

following intrinsic characterization of moment matrices provides a useful tool for constructing extensions.

Theorem 1.5. [CF4, Theorem 2.1] Let n > 1 and let A € M,,(,)(C). There exists a truncated moment sequence vy
such that A = M(n)(v) if and only if

0) (1,1)4 > 0;

1) A= A%

2) (p,a)a = (@,P)a (p,q € Pn) (symmetric property);

3) (zp.q)a = (p.Zq)a (p,q € Pn-1);

4) (zp,2q)a = (Zp,Z2q) A (P, q € Pn-1) (normality property).

For 0 <4,j < n, let Bli,j] € M(iy1)x(j+1)(C). Let Z', 2" Z, ..., Z" denote the rows of Bli, j] and let 27, Z/~'Z,
R 77 denote the columns of Bli,j]. For 0 <r <i,0<s<j, we denote the entry in row Z" 77 column Z°Z77% of
Bli, j] by (2523"5,2%1'”)3[1-7]-}. For i = j, this notation is consistent with our previous definition of (-,-)g; ;1. We say

that B[i, j] is symmetric if

(1.9) (222972, 272 gy = (28,272 gy (0<7r<i, 0<s <)),

and we say that B[i, j| satisfies normality if it is constant on diagonals, i.e.,

(1.10) (z5297%, Erz"*T}B[i’j] = (zsTlpi—s1 ZTHZFT*I)B“,J-] (0<r<i, 0<s<j).

Note that if BJi, j] is symmetric and constant on upper diagonals (i.e., where r < s in (1.10)), then B[i, j] satisfies
normality. More generally, given Bl[i, j], there exist scalars {Ve,m}etm=itj, Yem = 7me, such that for all s +¢ = 4,

u+v = j, we have (2“2",2°2") ; j| = Yutt,o+s if and only if B, j] is symmetric and satisfies normality.



Given v = ), in addition to M (n) we may also define blocks Bg n+41, . . ., Bn—1,n+1 via (1.2). Given B = B[n,n+1],

let
BO,n+1
B:=
anl,n+1
B
M(n) B . .
Given C := Bln+1,n+ 1], let M = ~ ; M is an extension of M(n); M is a flat extension if rank M =
B C

rank M (n). Note that if C is self-adjoint and constant on upper diagonals, then C' is constant on all diagonals and is
thus also symmetric.

In the sequel we seek to construct M so that it is a positive flat extension of the form M (n + 1). The structure theory
of positive operator matrices (cf. [Fia], [Smu]) implies that if M > 0, then Ran B C C M(n); €quivalently, there exists a
matrix W such that B = M(n)W. Conversely, given M(n) > 0 and B = M(n)W, then M > 0 & C > W*M(n)W;
moreover, M is a flat extension of M(n) > 0 < C = W*M(n)W. (In this case, C' is independent of W.) Thus a flat
extension of a positive moment matrix is positive. The block structures of Band M (n), Theorem 1.5, and the preceding
remarks, imply that to construct a flat moment matrix extension M (n+ 1) of M(n) > 0 it is necessary and sufficient to

construct a block B[n,n + 1] such that

(1.11) B[n,n + 1] is symmetric and satisfies normality;
(1.12) Ran B C Cpy(n) (so that B = M (n)W for some W);
(1.13) W*M (n)W is constant on upper diagonals.

We next provide a sufficient condition for B[n,n+1] to be symmetric. Assume Ran BC Chi(n); thus, fori+j =n+1,

there exist p;; € P,, such that 7'z =pij(Z,7) € Chrr(n)-
Lemma 1.6. If p;; = pj; for alli+ j =n+1, then B = B[n,n + 1] is symmetric.
Proof. Fori+j=n+1,k+/{=n,

(i, 2k =

Let [M(n)]n,1 = (Bij)ogignflyogjgn, let [B]nfl = (Bi,n+1)0§i§n71, and let {Vivj}ogi+j§n+1 denote the columns

of the block S := ([M(n)],_1 [Bln_1)-



Lemma 1.7. Suppose M (n) is recursively generated. If p, ¢ € Ppn, pq € Pni1 and p(Z,Z) = 0 in Cr(n), then
(pg)(V,V) =0 in Cs.

Proof. Let k:=degp (< n) and denote p(z,z) = Zogr—s-sgk arsZ" 2%, It suffices to prove that if i +j <n+1 — k,
then (z'z7p)(V,V) = 0. Since M(n) satisfies (RG), if i + j < n — k, then ('27p)(Z,Z) = 0 in Cpr(n), so clearly
(z29p)(V,V) = 0 in Cg. Suppose i +j = n+ 1 —k and assume j > 1. Then (RG) = (2'297'p)(Z, Z) = 0 in Cps(n), and
an obvious adaptation of the proof of Theorem 1.3 shows that (2'27p)(V, V) = (2(2271p))(V, V) = 0. The proof when

7 =0,7>11is similar. O

Lemma 1.8. (cf. [CF4, Lemma 5.2-ii]) Suppose M (n + 1) is a flat extension of M(n) > 0, and let p € Pp41 be such
that p(Z7 Z) =0in C[M(n+1)}n- Then p(Z, Z) =01in CM(nJrl).

Lemma 1.9. Suppose M (n) is positive and recursively generated. If M (n+1) is a flat extension of M (n), then M (n+1)

is recursively generated.

Proof. Suppose p, q, pq € Pny1 and p(Z,Z) = 0. We seek to show that (pq)(Z,Z) = 0, and we may assume
p € Pp, for otherwise ¢ is a constant function and the result is immediate. Using [CF4, Lemma 3.10], it suffices to
consider the case q(z,%) = z*. When degp + i < n, a combination of M (n) being recursively generated and Lemma 1.8
yields the desired result. Assume, therefore, degp + i = n + 1. Since p € P,, and p(Z, Z) = 0 in Cri(n+1)s the proof of
Theorem 1.3 (applied to M (n + 1)) shows that [(2'p)(Z, Z)],, = 0 (where [],, denotes truncation of a vector through
rows corresponding to monomials of total degree n). The result now follows from Lemma 1.8. O
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for helpful discussions concerning the subject of this paper. Some of the calculations in Section 4 were obtained with

the help of the software tool Mathematica [Wol].

2. THE CASE OF Z=al + f3Z

In this section we focus on a positive, recursively generated moment matrix M(n) = M (n)(vy) in which the third column,
7, is a linear combination of the first and second columns, 7 and Z. We will show that M (n) always admits a flat
extension M (n+1); thus there exists a rank M (n)-atomic representing measure y for . As outlined in the Introduction,
our method is to define a suitable block B of the form M (n)W so that properties (1.11)—(1.13) are satisfied. To motivate
our construction, we consider first the quadratic moment problem (n = 1).

We are given six numbers, Yoo, Y01, 710, Y02, Y11, Y20, (Yoo > 0, vi; = 7;:) such that M (1) > 0 and Z=al + (2
for some «, € C, and we would like to find a 6 x 6 moment matrix M (2) which is a flat extension of M (1). Since
the case rank M (1) = 1 is straightforward, we focus on rank M (1) = 2, that is, I and Z are linearly independent. By
Lemma 1.8, the relation Z = a1 + 3Z and the flatness condition would imply ZZ = aZ + 3Z% and 7’ =aZ + 827

in Car(2)- To describe M (2) it thus remains to define column Z?; we focus on the case a # 0. By (1.2), we know that



<22, 1> M) must equal 792, and by Theorem 1.5, a necessary condition for the existence of an extension M (2) is

2.1) (2 20m@) = 57 = (5 (01 +B2)2)e) = 0z 2 +6(22%) )
— d<Z7Z>M(1) +ﬁ<2272>M(2)'

Let us briefly pause to establish a relation between a and 3 : Since Z = al + 3Z, [CF4, Lemma 3.10] forces at once

the relation Z = a1 + 37 = al + flal + BZ) = (a+ fa)l+ |ﬂ|2 7. By the linear independence of I and Z, we must

then have

a+pBa=0

18] =1

(2.2)
Thus, (2.1) becomes

o <zQaZ>M(2) = |a|2 <zaz>M(l) + OCB<2272>M(2) = |a\2 <ZvZ>M(1) —a <Z27Z>M(2) )

that is
2Re(a (27, Z>M(2)) = |af* (2, 2) (1) -

Therefore, o <z2,z>M(2) = 1la)? (2, 2) (1) T it, for some ¢ € R. Observe also that

(% D)) = (77 01+ 82) y5) = (5 Ly F (25 2) g9

so the choice of <z2, z> and the flatness requirement) fully determines the remaining entries of M (2). We shall now

M(2) (

extend this idea to the general case n > 1.

Theorem 2.1. Assume that M(n) > 0 satisfies (RG) and that Z = al + 3Z. Then M(n) admits a flat extension

M(n+1).

We note that Theorem 2.1 is independent of Theorems 1.1 and 3.1. Indeed, [CF4, Section 6] contains the case
when M (1) is positive, recursively generated, Z = «al + 3% and {1, Z} is linearly independent; thus M (1) is not
flat (independence from Theorem 1.1) and Z ¢ (1) (independence from Theorem 3.1). A more ambitious example is
contained in [Fia, Section 5], wherein M (2) is positive, recursively generated, Z = al + $Z, and {1, Z, Z*} is linearly
independent.

First, let us show that the analytic columns of M (n) can always be assumed to be linearly independent.

Proposition 2.2. ([CF4, Corollary 5.15]) Assume M(n) > 0 and that the analytic columns of M(n) are linearly
dependent. Letr := min{k > 1: Z¥ € (1,Z,...,Z*1)}. Then ~ has a representing measure if and only if {1, Z, ..., Z" 1}

spans Cpy(ny- In this case the representing measure is unique, and is r (= rank M (n))-atomic.

In Theorem 2.1, (RG) and Z = al + 3Z imply 7'7 = (0 + B2)'29)(Z,Z) in Cpgny (0 < i4j < m, i > 1),
whence {Z'}_ spans Cys(,). Since M(n) > 0, it follows from (RG), Proposition 2.2 and Theorem 1.2 that if {Z'}1

is dependent, then M (n) has a flat extension M(n + 1). In the sequel we thus assume {Z°}?_ is independent.



The proof of Theorem 2.1 will be a consequence of a series of lemmas. Our first goal is to define column Z" ™ of
the block B. If o = 0, then Z = $Z with || = 1, say § = ¢'¥. The requirement (z"*1, 2" Mnt1) = (2" 22" ) M(ns1) =
Bz, 2") p(n+1) forces us to define (zHL 2 5 = re'2mi=¥)/2 with r > 0 and j € Z. If o # 0, then proceeding as in

the n = 1 case we define (z”“, z”}B = %Ewm + % for some fixed t € R. Let

(2.3) (271, 5i2j>3 _ Visntitl ) - it+j<n-—1 (i eR)
Wjnyi + B (LA i j=n—i
and in Cg let
(2.4) 2570 =aZ" 24 32 2 (k> 1, b=n+1—k)
(All of these columns have length equal to the size of M (n), that is, (n + 1)(n +2)/2.)
We may write B as a block column matrix B = (Bg, ceey En)T, where, for each j, the columns of Bj are indexed
lexicographically by 2", ..., 7™ and the rows by 77, ..., 7. For p € Pny1 and g € P, we define (p.q) 5 =

(p(Z,Z),q), where p(Z, Z) is defined in the usual way using the columns of M(n) and of B; note that if p, 7 € Ppy1
and p(Z,Z) =7(Z,Z), then (p,q) 5 = (r,q) 5

Observe the following consequence of (RG): If 0 < £+ m < 2n, £ > 1, then Zzm = oz zm 4 BZ“Z’”“ in
Ca(n); thus

(2.5) Yem = @Ye—1,m + BYe—1,m+1-
Lemma 2.3. B = M(n)W for some W.

Proof. From (2.4), it is enough to check that Z"™' € Ran(M(n)). Since {1,Z,...,Z"} is independent and
M(n) > 0, the Extension Principle [Fia] implies that the compression of M(n) to the analytic rows and columns is

invertible. Thus there exist complex numbers aq, ..., a, such that
i L 1 e
Zai (2, % >M(n) = (2", 2 >B (0< £ <n).

We shall show that the same relation holds for non-analytic rows, those determined by monomials of the form Z bz k>

1, k+ ¢ <n. We use induction on k£ > 1. For kK = 1 we have

n n

n
Z ai(z', 22 p(n) = @ Z a; (2, 2% pny + B Z%‘(Zi, 2N vy
=0

i=0 i=0

Zf+1

since Z* and are analytic, we have

> ai(z'z, Z£>M(n) = a(z"t 2% 5 + Bz 2 5

= aveni1 + Bz"TL Y 5 (by (2.3), since £ < n — 1).

(2.6)

For ¢ < n — 1, the last expression in (2.6) equals

e+l + BVetinil = Ven+2 (by (2.5))
= (7,50 5 (by (23)).



For ¢ = n — 1, the final expression in (2.6) coincides with (z"*1, z2%) 5 by (2.3).

For k > 1, we have

Z?:o @; <zi’ Zkze>M(n) = ZZ‘L:O a; <Ziv (o + ﬁz)gkilng(n)
= a2 2k—126>M(n) A a2 zk—lzé+1>M(n)
= a(z"t Zk_1z€>§ + B (=", 2’6_12“‘1%;, (by induction)

= aYen+k + B <Zn+17 2&—122+1>B — <Z"+1, 2’“z€>é

(by (2.3) if k + ¢ = n and by (2.3) and (2.5) if k + ¢ <n — 1), as desired. O

The next lemma shows that for j <n —1, Bj = Bj nt1(7).
Lemma 2.4. Fori+j=n+4+1landp+q<n-—1,
(2'27,202%) g = (2'27 71, 277 02) ) = Vivagtoe
Proof.  We use induction on ¢ > 0. For i = 0, (2.3) implies

<Zn+17 2p2q>é = Ygntp+l = <Zn, 2p+lzq>M(n) .

When ¢ > 1,
<Zi ntl—i szq>é = « <2"712"+1’i, 2p2q>]§ + 0 <Z"712"+2’i, 2p2q>é
= « <Zi*12"*i, 2P+1zq>M(n) + 4 <2"712”+1’i, Zp“zq)M(n)
(by Theorem 1.5 for the first term and
by induction for the second term)
= (2", ), 0.0

The next lemma establishes normality between columns 2" and Z"Z of B,,.

Lemma 2.5. Forp+qg=mn, p>1,

(z"+1, 2p712q+1>§ = (22", 2P2%) 5.
Proof.  We use induction on p > 1. For p =1,

<22",22"’1>B = (az" 4 Bz zzn 1) 5
— OKZn,EZn41>N“n)%—ﬂ<zn+1752n_1>§

n,+1. Zn>

= Vn-1,n+41+ B(@Vn—1nt1 + B <Z g)

= QYn—1,n+1 — XYn—1n+1 + <Zn+17 Zn>§ = <Zn+1’zn>1§.

The inductive step is a bit more complex: For p > 2,

<z"+1,2p712q+1>é — 07’Yq+1,n+p—1 _|_B<Zwr1,217722q+2>J§ (by (2‘3))

= a(z", ) s 4 Bz, )



by Lemma 2.4 and the induction hypothesis; then
(2l zp 0t o = a(az™ + B2 2P 1) o + B{az" + 2", zPm 10t o (by 2.4)
= Oé(d <Zn7 Z1’71'2:(1>]\4(,r1/) + /B <Z’na Zpil'zq+1>1\4(n)) + 6(6[ <Zn+1a 2p712q>é + B <Zn+17 2[)*12Q+1>B)
=a (2" 2229 ) + B (2", 2P29) 5 = (22", 2P2%) 5 (by (2.4)). O
We next establish normality for B,,.
Lemma 2.6. Fori+j=n+1,>1,p+q=n,p>1,
(F12d, 2P0 5 = (2012071 2P0 5.
Proof. The proof is by induction on ¢ > 0; for ¢ = 0, Lemma 2.5 implies
(2" ZP ety o = (227, 2P29) 5.
For ¢ > 1, we have
(z'29, zP~ 120ty 5
=a(zi7127, Zi"*lz‘ﬁl)M(n) + Bz zp ety (by (2.4))
= o229, 222 ) + B(2120, 2P 29) 5 (by Theorem 1.5-4) and by induction)
= (ziH1071 zp29) 5 (by (2.4)). O
To establish symmetry for B,, we first show that the relationship between column Z"* and row Z™ of B, is compatible
with the structure of a moment matrix block By, p41(7).

Lemma 2.7. Fork+{=n+1, k>1,

(2t 5m) 5 = L, 12T

Proof. We use induction on k > 1. For k =1, the a = 0 case is trivial so we assume «a # 0:

<Zzn’zn>]§ - <Zn+1’zn>]§ =

e

< Znazn>1§ + <Zn+1’zn>]§ - <Zn+1azn>§

(ol yun = (2" 27) 5 = a (27¥27) 5)

Qil— Qi

(|oz|2"/nn — 2Re(a (2", z”>B) =0,
by the definition of (z"*1,2")5. As for the inductive step, consider (z"*1,zk=12¢) 5 with k > 1. By (2.3) and the

induction hypothesis, this is equal to

Vb1 + ﬂ<2n+1’2k7222+1>é = (2"t ZF2 z‘3>é + 6<2k7126+172n> ’

ool

which in turn is equal to a(z™, Ekflzf)M(n) + B (" 124 2") 5, by Lemma 2.4. Thus,
LN = ale™ 2L 20y, B (a1 )
= Q(FF a2 pyy + B(EF LR 2 = (22 Y
(by (2.4)), as desired. O

We next establish symmetry for B,,.
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Lemma 2.8. Fori+j=n+1,k+{=n,
(zizd 2k 2t) 5 = (227, 2% 20 5.

Proof.

We give the proof only for & > i and leave the other case to the reader.

(Zizd, Zk2t) 5 = (antl, Zh—ixlii) o (by Lemma 2.6)
= (ghmitl b omy (Lemma 2.7)
= (2%, z’%e)é (Lemma 2.6). O

For ¢ + j = 2n + 1, we now define v;; as follows.

0<i<mn:y;= (" zn ),

n<i<2n41:v; = (2""20,2")5.

It follows readily from normality and symmetry in B, that B, is of the form B, ,1(y). Since B, satisfies (1.11) and

M(n) B
(1.12), to complete the proof of Theorem 2.1 we must show that C = W*M (n)W is Toeplitz. Let M := ~( )
B* C
denote the unique flat extension of M(n) subordinate to B, and let (-,-)as be the associated form. Since M = M*, if p,
r, 8 € Pni1, with 7(Z,Z) = s(Z,Z) in Cyy, then (p,7)ar = (p, s)a. By flatness and Lemma 1.8, the columns of M of

order n + 1 satisfy the relations of (2.4).
Lemma 2.9. Fori+j=p+q¢=n+1,7>1,¢>1,
(7129, 2P29) pp = (F0H12071 Tty , )

Proof. We first consider i = 0, j = n + 1 and proceed by induction on p > 0. For p = 0, the @ = 0 case is trivial
so we assume « # 0.
(zz™, 22" — (2" 2 )y
= (az" + B2 az™ + B2 — (
= |a|?(z", 2™)pr + 2Re(aB{z"T1, 2™ )

= |a*ynn — 2Re(a{z™t1, 27) 1) = 0.

1 1
2L ey

Forp>1,

(2L ZP24) 3,
= (2" (a+ B2)zP 12
= a2t 2Py 4 B2t 2P 2at )
= a(zz", 2P29 VY + B(22", 2P29)
(by normality outside C' for the first term and by induction on p for the second term)

= (22", 2712 Yy
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We now induct on i > 0. For ¢ > 1, we use (2.4), normality in M outside C, and induction to obtain

(Z0279,2P2%) = (207120 220\ + B(Z 12T 2P0,
= a(ziz7t 2Py + B(F2T, 2P )y

= (gtlgi—t zptlza-1y,, O

The proof of Theorem 2.1 is now complete.

3. FLAT EXTENSIONS FOR Z% € (Z'Z7)o<iyj<h 1

In this section we study flat extensions of positive, recursively generated moment matrices M (n) for which there is a
relation Z* = p(Z, Z ) for some p € Pi_1. In the case when k < [%] + 1, we prove the existence of a unique flat extension
M(n + 1). For the case [%] + 1 < k < n, we describe a simple algorithm which can be used to determine the existence

of flat extensions in numerical examples.

Theorem 3.1. Suppose M(n) is positive and recursively generated. If 1 < k < [2| + 1 and Z* = p(Z,Z) for some

p € Pr_1, then M(n) admits a unique flat extension M(n + 1).

Remark 3.2. For n odd, or for n even and k < [%] + 1, Theorem 3.1 can be obtained as a consequence of Theorems 1.1
and 1.2, since in each of these cases M (n) is actually flat. Indeed, since Z¥ = p(Z, Z), then Z* = p(Z, Z) [CF4, Lemma
3.10]; thus (RG) implies that for i +j = n — k, Z*Z/*k = (2'29p)(Z,Z) and Z'**Z) = (2'pz7)(Z,Z). In the indicated
cases the preceding relations imply that for r + s = n, Z"Z° = p,s(Z, Z) for some p,s € Py,_1. The proof of Theorem

3.1 that we present below is independent of Theorems 1.1 and 1.2 and uses a more direct argument.

Example 3.3. The case when n is even and k = [%} + 1 does not follow from Theorems 1.1 and 1.2 since M (n) need

not be flat. For example, with n = 2, consider

1 0 0 0 1 0

01 0 a a Ié]
M) = 0 0 { 16} « 7 di

0 a B la?+|8? &+ pa 203

1 a a o+pa |o?+|p? a%+pba

0 8 « 208 a?+pBa |a® + |82

Note that Z? = aZ + 3Z and Z? = aZ + (Z.

Since {1, Z, Z} is independent, M (2) satisfies (RG). Now M (2) > 0 < |32 > 1 + |a|?; moreover, if |3]% > 1 + |a|?,
then M (2) is positive and satisfies (RG), but it is not flat (since rank M(2) =4 > rank M (1)). The existence of a unique

flat extension for M(2) follows from Theorem 3.1, whence Theorem 1.2 implies the existence of a unique 4-atomic
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representing measure, of the form p = Z?:o pi02,. Using the method of [CF4] and [Fia], we see that the atoms {z;}3_,
are the four distinct roots of
2t =202 4 (Ba — )22 + (87 — |a*)z,
and the densities {p;}?_, may be obtained from the Vandermonde equation V (zq, ..., 23)(po, - - -, p3)T = (700,701, Y02, Y03) L -
Proof of Theorem 3.1. Our first goal is to define a block B = B[n,n + 1] € My41,,+2(C) to serve as By py1 in

the extension. Denote p by p(z,2) = D <,y <1 arsZ 2" Fori+j=n+ 1, we define p;; € Py as follows:

i>k, j<k:pij(z,z)=z"kp(z, 2);
(3.1) i 2k, j>kipij(z,2) =272 pP (2, 2).

i<k, j>k:pj(z,z2)= ZiI 7 Fp(z, 2);
(Note that since k < [%] + 1, either i > k or j > k, so p;; is well-defined for all i + j = n + 1.) Since p(Z, Z) = 7% in
Cai(ny, then p(Z, Z) = Z" in Cr(ny [CF4, Lemma 3.10]; since M (n) satisfies (RG), Lemma 1.7 and (3.1) imply

(3.2) Fori+j=n+1,VVI =p;(V,V) in Cs.

(We illustrate the case when n is odd and i = j = k. Since Z* = p(Z, Z), Lemma 1.7 implies (2*2%)(V, V) = (ZFp)(V, V).
Also, since p(Z, Z) = Z*, (RG) implies (pp)(Z, Z) = (pz*)(Z, Z) in Cpy(ny; thus VFVF = (2Fp)(V,V) = |p|*(V, V). The
other cases of i + j = n 4+ 1 are somewhat simpler to analyze, so we omit the details.)

We now define B € M,,11.,+2(C) by extending (3.2) through rows corresponding to degree n. Denote the columns
of

Bont1

anl,n+1

B

by Z'Z7 (i + j =n+1). We define B implicitly via the relations
(3.3) 7'7 =py(Z,Z)  (i+j=n+1).

Note that (3.3) uniquely determines the candidate for a flat moment matrix extension M(n + 1). Indeed, since
M (n) satisfies (RG), the relation Z*¥ = p(Z, Z) and Lemma 1.9 imply that (3.3) must hold in any flat moment matrix
extension of M(n); since B uniquely determines any flat extension of M(n) containing this block, it follows that there
is at most one flat extension M (n + 1); our goal is to prove that the flat extension determined by (3.3) is indeed of the
form M(n+ 1).

Since degp < k —1, then degp;; < n, so RanB C Car(n), which establishes (1.12). We next establish that B satisfies
(1.9) (symmetric property) and (1.10) (normality).

Symmetric property for B. From (3.3) and Lemma 1.6, it suffices to show that for ¢ + j = n + 1, p;; = Dj;, but this

is clear from (3.1).
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Normality for B. Fori+j=n+1,{+m =n, m > 1, j > 1 we must show
<2i2j: 222m>B — <Zi+12j_1, 2€+1zm—1>B

We divide the proof into several cases.

Case B1.

i>k, j<k:(z20,2%™p = (ZF2p, 22™) v (by (3.3))

— <2i7k+12‘j71ﬁ, 2€+12m71>

M(n) (Theorem 1.5)
= (Fitlzi—l gl ym-lyp (by (3.3)).

Case B2. j >k, i < k: (3.3) implies
(5129, 22 = (5120, 227 yymy.

Subcase B2a. i+ 1 < k. Then j — 1 > k (for otherwise, n+1=i+j=(i+1)+(j—1) < (k—1)+(k—1) <n);
thus
(Z' 27 Fp, Eézm>M(n) = (FHli—koly, ZZJrlzm’l)M(n) (by Theorem 1.5)
= (Fflyi—l gl ym-lyp (by (3.3)).
Subcase B2b. i+ 1 =k, j = k. (This case occurs only when n is even, i.e., n =2d, k =d+1,i=d, j =d+ 1,

i+j=2d4+1=n+1.) We must show that
<2k712k, 2Z2m>3 — <2kzk717 2Z+1szl>B

or, equivalently,

(3.4) (2", 22y = (02T 22T ap (.-

Since B is symmetric, it suffices to consider upper diagonals, with m > k — 1 (see the remarks following (1.10)). Now
<2k—1p’ 2€Zm>M(n) — Z Qs <2r+k—1zs’ Z€Zm>M(n).
0<r+s<k—1
We have r + k-1 < k—14+k—1=nand s+ (r+k—1) < 2k —2 = n; moreover, m > k—1 > s and
r+k—1+m>r+k—1+k—1=7r+n>n. Thus

<2r+k7125’ 2ZZm>M(n)

(zrhsth=d Ztrs M=) i n) (by Theorem 1.5-4))
= (zn, gttep(mos)—(n=(rdsth=1D)y /) (by Theorem 1.5-2)-3)).
Now
(ZF1p, 22 iy = D aps(En, FUTE R

S ars (S thztqurnfk’ 26+5Z7’+k71+m*n>1\/l(n) (by (RG))

D Qrs D TigVgtrtm—1,t+s+e

= > Qg > ArsYg+r+m—1,t+s+0-
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Also, since M (n) is recursively generated, for 0 <t+4+q < k—1, Zttk=179 — (2 1zip)(Z,7) = aTSZTﬂZSH*l; thus

<Zt+k712q,22+12m71>M(n) — Zars<zr+qzs+t71’2£+lszl>M(n)

= 2 QrsVrtqtm—1t+ste-
Now
<2k71pjzézm>M(n) - Za—tq<zt+k712q’2Z+12m71>M(n)
= <Zk*1ﬁ,2”1zm*1)M(n)’

which establishes (3.4).

k

Subcase B2c. i+ 1=k, j —1>k. In Cpr(n), 7" =p(Z,Z), so by (RG),

("N (2, 2) = (2 F M p*) (4, 2);
thus
<2izjikp, lem>ju(n) — <Zi+1zjfk71p7 2€+12m71>M(n)
— <zj—k—1|p|272€+12m—1>M(n)
— <Zi+1zj—172€+1zm—1>3

Case B3. i >k, j > k. (£27,22™)p = <2i’k2j7"’|p|2,2€zm)M(n). Ifj—k>0,

<2i7kzj7k|p|2,gézm>M(n) — <2i7k+1zj7k71‘p|272£+1zm71>M(n)

= (g1l gtlymely

Suppose j = k; since Z¥ = p(Z, Z), (RG) implies
(=" p)(2,2) = (7 FpP*)(2,Z) = ("2 pl*) (2, 2).

Thus
(ZF2dRp2 2 vy = (BRERD 2™ an)
— <2i7k+12k71p, 22+1zm71>M(n)
= (gl gt mety

Following the plan outlined in Section 1 ((1.11)—(1.13)), we now define By, n+1 := B, B := (B n+t1)o<i<n, we let

M := _
B* C
denote the unique flat extension of M(n) subordinate to B, and we let (-,-)5; denote the associated form. If W =
(POnt1s PLns---+Pnls Prtt,0)s then B = M (n)W and thus C = W*M (n)W. Since (1.11) and (1.12) hold, to complete
the proof it suffices to verify that C' is constant on upper diagonals ((1.13)). By flatness and Lemma 1.8, the columns of
M are defined by (3.3). Note that by the moment-matrix block structures of M (n), B, and B*, M satisfies the following

properties which do not involve block C:

(35) (2029, 28 = vije o for0<i+j<n, 0<k+{<n+1

and for0<i+j<n4+1, 0<k+4+{<mn;
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(3.6) (pz,q)m = (p,Zq)m and

(z.q)m = (pzq)m for p,q € Pr;

(pz,q2)m = (PZ,Z)m for p€Pn1, ¢ €Py
and for p € Py, q € Pp—1.-

(3.7)

We further note the following property of M:

prv q, pq € Pn aﬂdp(Z,Z) =0in CM,

(3.8) ~
then (pq)(Z,7) in Cypy.

Indeed, since p(Z, Z) =0 in Crm(nys (RG) implies (pq)(Z, Z)=0in Ch(ny; since M is a positive extension of M (n), [Fia
implies (pq)(Z, Z) in Cyy.

To prove that C' is constant on upper diagonals we must verify

(3.9) Fori+j=0(+m=n+1,m>j>1,i>¢,
<2izj’gzzm>M — <Zi+1zj71,éé+1zm71>M.

Case Cl. i >k, j < k.

(7120, 2™ = (27 F2Ip, 262™)
— Za—m<zz‘—k+32j+r72€zvm>M
= Y a(Fktetlgtro1 glrlmety
(by (3.7), sincei —k+s+j+r—1
— i+ +(s+r) k1
<n+l4+k—1-k—1l=n—1)
= (3Ikgiolp gtrlmely

Case C2. i <k, j > k.
Subcase C2a. i < k — 1. Asin Case B2a, j — 1 >k, so

(2, 2™ = (8220 kp, 2™
= S (FTEI s slmy
= Y ap (st St mety
(by (3.7), sincei+r+j—k+s—1<n-1)
= (FHliklp stElme1y

= (gLl Fhlmely
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Subcase C2b. i+ 1=k, j = k. (n even). Note that m > j = k.

(720,282 = (25 1p, 22
= Saps(ErtF s 2y
= Y ap(zrtsthol stsymesy
(by (3.7),sincem —s>m—(k—1)>m—k>0
andr+s+k—1<2k—2=n)
= Sap (2", Fteymm (= (rtk=1))y (by (3.6), since
n—(r+k—1)>sandsincem>k=r+k—14+m>2k—1>n)

= (zitlzi-1 52+12m71>M

(exactly as in the proof of Case B2b, but replacing M (n) by M; note only that if r+s, t+¢ < k—1, then r+q+s+t—1<
n—1, so (3.5) implies (ZrTazstt-1 ZtHlm=ly e oy 1 trse)-

Subcase C2c. i+1 =4k j—1 >k 1In Cy we have Z° = §(Z,7) and, from (3.8), (27 % 1pz)(Z,7) =
(z7=*=1p|?)(Z, Z). Thus

(i, 2™y = (B0 Fp, 2ty
(LRl ey (by (3)

= (Ftlgi—l gtlymoly

Case C3. i > k,j > k. The proof is identical to that of Case B3 (replacing M (n) by M and using (3.7)).

The proof of Theorem 3.1 is now complete. O

We conclude this section by considering the case when zF = p(Z,Z) for p € Pr_1 and [%] +1 <k <n. Let
p(z,2) = Zogiﬂ‘gkq aijz'z7. In constructing a flat extension M (n + 1), B,, 41 is uniquely determined by the relation
A > agj Z"H*kﬂ'zi; indeed this relation uniquely determines 7, 5,11, - - ., Y0,2n+1, and thus also ¥, 11,0 = Yn,nt1,

«+y Y2n+1,0 = Yo,2n+1- 1f the resulting block B= (Bi,n+1)o<i<n satisfies Ran B Z Ca(n), then there is no flat extension

M(n+1). If Ran B C Chrr(n), let W be such that B = M(n)W; then M(n) admits a flat extension M (n + 1) if and only
if W*M (n)W is Toeplitz.

4. A PoOSITIVE INVERTIBLE MOMENT MATRIX ADMITTING NO REPRESENTING MEASURE
Using results from algebraic geometry, D. Hilbert established in [Hil] the existence of a polynomial ¢ € R[z,y] of
total degree 6 which is nonnegative on the real plane R2?, but which cannot be expressed as a finite sum of squares of
polynomials; an explicit such polynomial was later found by K. Schmiidgen [Schl]. (Another concrete example is given
in [BCJ].) We will use Schmiidgen’s example to construct data v = {7;;}o<it+j<6¢ Whose associated moment matrix
M (3)(y) is positive and invertible but admits no representing measure; in particular, M (3)(y) does not have a flat
extension M (4). This will disprove Conjecture 1.1 in [CF4], since invertible moment matrices satisfy property (RG)

vacuously. We begin by recalling Schmiidgen’s result. Let Clz,y] denote the polynomials in Hermitian variables 2 and
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y with complex coefficients (z = Z, y = §). Let P denote the cone in Clz,y] consisting of “sums of squares” > p;p;. Let
Ci ={p € Clz,y] : p(x,y) > 0 for all real z, y}. A linear functional F': C[z,y] — C is positive if F|P is non-negative;
F is strongly positive if F|C; is non-negative; F' has a positive Borel representing measure if and only if F' is strongly

positive [ShT], [Schl].
Theorem 4.1. ([Schl, Theorem]|) (1) The polynomial
g(z,y) = 200(z" — 4z)* + 200(y* — 4y)* + (v — 2*)z(z + 2)[z(z — 2) +2(y* — 4)]

is nonnegative on R?, but cannot be written as a sum of squares.
(2) There exists a positive linear functional F' on Clz, y] with F(q) < 0. Thus, F' cannot be represented as integration

with respect to a positive Borel measure with support in R2.

F is defined first on the space Cglz,y], the complex polynomials of total degree at most 6, as a linear combination

of evaluation functionals (and is then extended to all of Clz, y]):

8
F(p) == 32 ZP(Ai) +p(B1) +p(B2) —p(Ag)  (p € Cs[z,y]),
i=1
where
A1 = (—2, —2), A2 = (0, —2), Ag = (2, —2), A4 = (—2,0),
As = (0,0), Ag = (—2,2), A7:=(0,2), Ag = (2,2),
Ag _(250)7 By :(ﬁao By :(Ovﬁ)

~ =

k\ (¢
. 1\k—r1 ;k+L—1—5 r+s_ k4+l—r—s
= Y S i () (e,
r=0 s=0
and that
257 r=0and s=0
96[(—2)° +2°] + 1072 r=0and s >1

F(a"y®) =
32(3(—2)" + 2" +1072" —2" r>1land s =0

(14 (=1)"][1 4 (—=1)%]2r+s+5 r>1lands>1
The associated matrix M (3) is built using the following values:
Yoo = 257

Yo1 = 1072(1-6599i)

7020001
Yo2 = 132 Y11 = “Ho00
Y03 = 1075(142639999997) Y12 = Vo3
__ 333599999999 _ __ 485600000001
704 = T 50000000 V13 = 528 722 = T 50000000
Yo5 = 10719(1-10559999999999:) Y14 = Vo5 Y23 = Y05
_ __ 20727999999999999 _ __ 35808000000000001
Toe = 2112 V15 = 500000000000 724 = 706 733 = T 500000000000
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A straightforward calculation using the Nested Determinant Test now shows that M (3) > 0 and that det M (3) > 0.
Since the presence of a representing measure for v would immediately give a corresponding measure for F'|Cg[x, y], it
follows from Theorem 4.1(2) that M (3) cannot admit a representing measure.

In view of the preceding example we modify [CF4, Conjecture 1.1] as follows.

Conjecture 4.2. The following are equivalent for a truncated moment sequence vy = ~("):

(i) v has a representing measure;
(ii) ~ has a representing measure with moments of all orders;
(iii) ~ has a compactly supported representing measure;
(iv) ~ has a finitely atomic representing measure;
(v) v has a rank M (n)-atomic representing measure;

(vi) M(n) > 0 admits a flat extension M (n + 1).

Added in Proof. In recent work [CF5], we have adapted results of V. Tchakaloff [Tch] and I.P. Mysovskikh [Mys] to
prove (i) = (iv) in Conjecture 4.2; thus, conditions (i), (ii), (iii) and (iv) are all equivalent. Independently, M. Putinar
[P5] has found a different proof of (i) = (iv), also based on extending results of [Tch]. (Somewhat earlier, we had obtained
(iii) = (iv) by adapting [Tch], and J. McCarthy had communicated to us another proof of the same implication, using
convexity theory.)

Theorem 1.2 shows that (v) and (vi) of Conjecture 4.2 are equivalent, and clearly (v) =-(iv); however, J. McCarthy
[McC], in response to Conjecture 4.2, has recently proved that there exist truncated moment sequences v having
representing measures, but such that M (n)(v) does not have a flat extension M (n + 1). Thus (i) #(v) and Conjecture
4.2 is false as stated. McCarthy’s dimension-theoretic result actually shows that moment sequences v admitting no flat
extensions are in a sense generic: among moment sequences y with representing measures, those with rank M (n)(y)-
atomic representing measures are rare. On the other hand, it follows from the equivalence of (i) and (iv) and from the
equivalence of (v) and (vi) that a truncated moment sequence ~ has a representing measure if and only if for some k& > 0,
M (n)(y) admits a positive extension M (n + k) which in turn has a flat extension M (n + k + 1).

In [CF5] we continue to study concrete necessary or sufficient conditions for the existence of flat extensions. In par-
ticular, we exhibit several examples of positive, recursively generated moment matrices which do not admit representing

measures and which are much easier to construct and analyze than the example of Theorem 4.1.
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