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Abstract. Let K denote a nonempty closed subset of Rn and let β ≡ β(m) =
{βi}i∈Z

n

+
,|i|≤m, β0 > 0, denote a real n-dimensional multisequence of finite degree

m. The TruncatedK-Moment Problem (TKMP) concerns the existence of a positive
Borel measure µ, supported in K, such that

βi =

∫

Rn

xidµ (i ∈ Z
n
+, |i| ≤ m).

In this survey we describe a number of interrelated techniques for establishing the
existence of such K-representing measures. We discuss representing measures aris-
ing from K-positivity of the Riesz functional associated with β; measures arising
from flat extensions of positive moment matrices; connections between TKMP and
the classical Full Multivariable K-Moment Problem; Tchakaloff’s Theorem and its
generalizations and applications to TKMP; and connections between TKMP and
optimization problems, via semidefinite programming.

1. Introduction

Let β ≡ β(m) = {βi}i∈Zn
+,|i|≤m, β0 > 0, denote a real n-dimensional multise-

quence of finite degree m, and let K denote a closed subset of Rn. The Truncated
K-Moment Problem for β (TKMP) concerns the existence of a positive Borel measure
µ, supported in K, such that

(1.1) βi =

∫

K

xidµ (i ∈ Z
n
+, |i| ≤ m).

(Here, for x ≡ (x1, . . . , xn) ∈ R
n and i ≡ (i1, . . . , in) ∈ Z

n
+, we set |i| = i1 + · · ·+ in

and xi = xi11 · · ·xinn .) A measure µ as in (1.1) is a K-representing measure for β; for
K = R

n, we refer to TKMP simply as the Truncated Moment Problem (TMP) and
to µ as a representing measure. In the sequel, we usually assume m is even, m ≡ 2d,
so the moment data completely define a moment matrix Md, as described below. By
a concrete solution to the truncated K-moment problem we mean a set of necessary
and sufficient conditions for K-representing measures that can be effectively applied
in numerical examples. For a given K, concrete solutions, valid for all d ≥ 1, are
known only in a few cases. These include, for n = 1, K = R, [0,+∞), and [a, b] (cf.
[6]), and for n = 2, when K is a curve p(x, y) = 0 with deg p ≤ 2 (cf. [11] [13] [15]),
and for certain curves of higher degree [23]. Concrete solutions are also known for
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sequences whose moment matrices have special features, e.g., in the case of flat data
(cf. Section 3).

TKMP is motivated in part by the much-studied K-Moment Problem (KMP)
(or Full K-Moment Problem) for β(∞) ≡ {βi}i∈Zn

+
(cf. [1] [2] [5] [34] [43] [50] [51]

[52] [57]). A result of J. Stochel [55] shows that a solution to TKMP actually implies
a solution to KMP: β(∞) has a K-representing measure if and only if β(m) has a
K-representing measure for every m ≥ 1 (cf. Section 4). Additional motivation
for TKMP comes from its diverse applications, e.g., to subnormal operator theory,
polynomial optimization and positive polynomials, control theory and Nevanlinna-
Pick problems, and signal processing, among others. Some of these applications are
described in several recent surveys and monographs (cf. [32] [36] [37]). The classical
Riesz-Haviland Theorem solves KMP in terms of K-positivity of the Riesz functional
associated to β(∞) (cf. Section 2). In the sequel we discuss the extent to which K-
positivity can be adapted to TKMP (Sections 2, 5, and 6). In many cases it is difficult
to directly verify K-positivity in TKMP, so we discuss an alternate approach based
on moment matrix extensions (Section 3). Several other recent approaches, based
on semidefinite programming [31] [29], or on algebraic geometry and convex analysis
[4], are largely beyond the scope of this survey, although we mention these directions
briefly and include some relevent references. The paper is organized as follows:
Section 2: Representing measures from K-positivity
Section 3: Representing measures from flat extensions of positive moment matrices
Section 4: From the truncated moment problem to the full moment problem
Section 5: Tchakaloff’s Theorem: generalizations and applications
Section 6: Strict K-positivity, the core variety, and positive definite moment matrices
Section 7: TKMP and optimization methods.

2. Representing measures from K-positivity.

In this section we discuss the role of K-positive Riesz functionals in moment
problems. Let R[x] ≡ R[x1, . . . , xn] and for 0 < m < +∞, let Pm := {p ∈
R[x], deg p ≤ m}. For β ≡ β(m), the Riesz functional Lβ : Pm −→ R is defined
by

Lβ(
∑

i∈Zn
+,|i|≤m

aix
i) =

∑
aiβi.

If µ is a K-representing measure for β and p ∈ Pm satisfies p|K ≥ 0, then Lβ(p) =∫
K
p dµ ≥ 0, so in this sense Lβ is K-positive; for K = R

n, we say simply that Lβ is

positive. In the Full K-Moment Problem for β ≡ β(∞), a classical theorem of M. Riesz
(n = 1) [46] and E.K. Haviland (n > 1) [30] provides a solution to KMP expressed in
terms of K-positivity of the associated functional Lβ : R[x] −→ R.

Theorem 2.1. (Riesz-Haviland Theorem) β ≡ β(∞) has a K-representing measure if
and only if the corresponding functional Lβ is K-positive, i.e., for p ∈ R[x1, . . . , xn],
if p|K ≥ 0, then Lβ(p) ≥ 0.
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In the sequel we will be concerned with the extent to which Theorem 2.1 admits
an analogue for TKMP. Our immediate concern, however, is to illustrate how Theorem
2.1 can be used in some cases to obtain “concrete” solutions to KMP, i.e., solutions
expressed in terms of positivity of matrices closely associated with β(∞). For p ≡∑

i∈Zn
+

aix
i ∈ R[x], let p̂ ≡ (ai) denote the coefficient vector of p relative to the basis

B of monomials in R[x] in degree-lexicographic order. Following [7] [10] [14], we
associate to β ≡ β(∞) the moment matrix M∞ ≡M∞(β), with rows and columns X i

indexed by the elements xi of B. The entry in row X i, column Xj of M∞ is βi+j

(i, j ∈ Z
n
+), so M∞ is a real symmetric matrix characterized by 〈M∞p̂, q̂〉 = Lβ(pq)

(p, q ∈ R[x]). If Lβ is positive (in particular, if β has a representing measure), then
〈M∞p̂, p̂〉 = Lβ(p

2) ≥ 0, and since M∞ is real symmetric, it follows that M∞ is
positive semidefinite (M∞ � 0).

For a first application of Riesz-Haviland, consider the classical theorem of Ham-
burger for K = R (cf. [2]):

Theorem 2.2. (Hamburger’s Theorem) Let n = 1. β ≡ β(∞) has a representing
measure supported in R if and only if M∞ � 0.

Proof. Suppose M∞ � 0. It is well-known that if p ∈ R[x] satisfies p|R ≥ 0, then
p = u2 + v2 for certain polynomials u and v [40]. Thus Lβ(p) = Lβ(u

2) + Lβ(v
2) =

〈M∞û, û〉 + 〈M∞v̂, v̂〉 ≥ 0, whence Lβ is positive. The existence of a representing
measure now follows from Theorem 2.1. �

We next consider the theorem of Stieltjes for K = [0,+∞) (cf. [2]), but for
this we need additional notation. Given β ≡ β(∞), set M ≡ M∞(β). For p ∈ R[x],
we define the localizing matrix M (p), with rows and columns X i indexed by the
monomials in B, as follows:

〈M (p)f̂ , ĝ〉 = Lβ(pfg) (f, g ∈ R[x]).

Note that for p ≡ 1, M (p) = M . If β has a representing measure µ supported in
Sp := {x ∈ R

n : p(x) ≥ 0}, then for f ∈ R[x],

〈M (p)f̂ , f̂〉 = Lβ(pf
2) =

∫

Sp

pf 2 dµ ≥ 0,

so M (p) � 0.

Theorem 2.3. (Stieltjes’ Theorem) Let n = 1 and K = [0,+∞). β ≡ β(∞) has a
K-representing measure if and only if M ≡M∞(β) � 0 and M (x) � 0.

Proof. Since the necessity of the conditions is clear, we focus on sufficiency, and we
suppose that M � 0 and M (x) � 0. It is known that if p is a polynomial satisfying
p|[0,+∞) ≥ 0, then there exist polynomials r, s , u, v such that p = r2+ss+x(u2+v2)
[40]. Now Lβ(p) = Lβ(r

2) + Lβ(s
2) + Lβ(xu

2) + Lβ(xv
2) = 〈M∞r̂, r̂〉 + 〈M∞ŝ, ŝ〉 +

〈M (x)û, û〉+〈M (x)v̂, v̂〉 ≥ 0. Thus Lβ isK-positive, so the result follows from Theorem
2.1. �
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Our next application of Riesz-Haviland concerns the theorem of K. Schmüdgen
[50] for the case when K is a compact basic semialgebraic subset of Rn. Let P ≡

{p1, . . . , pk} ⊂ R[x] and consider the basic closed semialgebraic set KP ≡
k⋂

i=1

Spi . Let

I = {0, 1}k and for I ≡ (i1, . . . , ik) ∈ I, let PI := pi11 · · · pikk . The following result of
Schmüdgen provides a concrete solution to KMP in the case when KP is compact.

Theorem 2.4. (Schmüdgen [50]) Assume that K ≡ KP is compact. Then β ≡ β(∞)

has a K-representing measure if and only if the localizing matrix M (PI ) is positive
semidefinite for each I ∈ I.

The original proof of Theorem 2.4 in [50] did not employ Riesz-Haviland. To
prove Schmüdgen’s Theorem via Riesz-Haviland, we require the following character-
ization of the polynomials that are strictly positive on KP .

Theorem 2.5. (Schmüdgen’s Positivstellensatz [50]) Assume KP is compact. If p|KP

is strictly positive, then

p =
∑

I∈I

PI(

jI∑

j=1

(f
(I)
j )2),

where each f
(I)
j is a polynomial, i.e., p is a weighted sum of squares with weights PI .

Proof of Theorem 2.4. The necessity of the condition is clear. For sufficiency, suppose
that a polynomial p is strictly positive on KP . From Theorem 2.5 we have

Lβ(p) =
∑

I∈I

Lβ(PI(
∑

j

(f
(I)
j )2) =

∑

I∈I

∑

j

〈M (PI )f̂
(I)
j , f̂

(I)
j 〉 ≥ 0.

For p|K ≥ 0, we may apply the preceding to p+ ǫ (ǫ > 0) to conclude that Lβ is K-
positive, whence Riesz-Haviland implies the existence of a K-representing measure.
�

Although Theorem 2.4 is concrete, it does entail 2k positivity conditions. A result of
M. Putinar [41] reduces the number of positivity conditions to just k under a mild
additional hypothesis. Consider the quadratic module associated with P : QP :=

{s0 +
k∑

i=1

sipi}, where each si is a sum of squares of polynomials.

Theorem 2.6. (Putinar [41]) Suppose KP is a compact basic semialgebraic set such
that

(2.1) Sq is compact for some q ∈ QP .

Then each polynomial p that is strictly positive on KP belongs to QP , i.e., p admits

a representation p = s0 +

k∑

i=1

sipi for certain sums of squares s0, . . . , sk.
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Note that (2.1) holds, in particular, if some Spi is compact. Further, since
KP is compact, there exists N such that ||x||2 < N for all x ∈ KP . If we add to the
presentation of KP the polynomial pk+1 := N−||x||2, then, as a set, KP is unchanged,
but (2.1) now clearly holds. In view of Theorem 2.6, it is clear that if (2.1) holds,
then the positivity ofM and of the localizing matricesM (pi) (1 ≤ i ≤ k) are sufficient
to imply the existence of a KP representing measure via Riesz-Haviland.

We next begin to examine the extent to which the techniques related to Theorem
2.1 can be adapted to TKMP, and for this we require some additional notation.
Following [7] [10] [14], we associate to β ≡ β(2d) the moment matrix Md ≡ Md(β),
with rows and columns X i indexed by the monomials in Pd in degree-lexicographic
order. The entry in row X i, column Xj of Md is βi+j (i, j ∈ Zn

+, |i|, |j| ≤ d), so Md

is a real symmetric matrix characterized by 〈Mdp̂, q̂〉 = Lβ(pq) (p, q ∈ Pd). If Lβ is
positive, then 〈Mdp̂, p̂〉 = Lβ(p

2) ≥ 0, so Md is positive semidefinite (Md � 0).
For p(x) ≡

∑
aix

i ∈ Pd, we define an element p(X) of Col Md, the column
space of Md, by p(X) :=

∑
aiX

i, and a calculation shows that p(X) =Mdp̂. We also
set Zp := {x ∈ R

n : p(x) = 0}.

Proposition 2.7. ([7, Prop. 3.1]) If β ≡ β(2d) admits a representing measure µ, then
for p ∈ Pd, supp µ ⊆ Zp ⇐⇒ p(X) = 0.

Proof. p(X) = 0 ⇐⇒ Mdp̂ = 0 ⇐⇒ 〈Mdp̂, p̂〉 = 0 (since Md � 0) ⇐⇒ Lβ(p
2) =

0 ⇐⇒
∫
p2dµ = 0 ⇐⇒ p|supp µ ≡ 0. �

Suppose µ is a representing measure for β ≡ β(2d) and p(X) = 0, so that
p|supp µ ≡ 0. If q is a polynomial such that deg p+deg q ≤ d, then since (pq)|supp µ ≡ 0,
it follows from Proposition 2.7 that (pq)(X) = 0 in Col Md. We say that Md is
recursively generated if whenever p, q, pq ∈ Pd and p(X) = 0, then (pq)(X) = 0. The
preceding shows that positivity and recursiveness of Md are necessary conditions for
representing measures.

Now let n = 1, K = R, d = 2, and let M2(β) be given by

(2.2)




a a a

a a a

a a b


 (a < b)

[16, Example 2.1]. Since M2 � 0, and since each polynomial that is nonnegative on R

is a sum of squares of polynomials, it follows exactly as in the proof of Hamburger’s
Theorem that Lβ is positive. However, since M2 is not recursively generated (X = 1,
but X2 6= X), we see that there is no representing measure. Thus, the most direct
analogue of Riesz-Haviland for TKMP is not valid: even in a case where the proof of
K-positivity procedes exactly as in KMP (via sums of squares), the conclusion that
a representing measure exists may fail.

In the preceding example we were able to apply sums of squares methods to
establish K-positivity. However, in many truncated moment problems, even this
step may be difficult to carry out. Let n = 2 and β ≡ β(6). Consider the case
K ≡ D = S1−x2−y2 , the closed unit disk in the plane. To establish K-positivity of
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Lβ , we consider p ∈ P6 satisfying p|K > 0. According to Theorem 2.5, there exists a
representation of p as

(2.3) p =
∑

f 2
i + (1− x2 − y2)

∑
g2i ,

where the fi and gi are polynomials. If we were to mimic the proof of Theorem 2.4,
we would then compute Lβ(p) =

∑
Lβ(f

2
i )+

∑
Lβ((1−x

2−y2)g2i ). However, a result
of C. Scheiderer [48] shows that for d ≥ 3 and N > 2d, there exists p ≡ pd,N ∈ P2d

such that p|K > 0, but some f 2
i or some g2i has degree greater than N , so Lβ(f

2
i )

or Lβ((1 − x2 − y2)g2i ) is undefined. This lack of degree-bounded representations is a
fundamental obstacle to applying the K-positvity techniques of KMP to TKMP.

Despite the preceding difficulties in adapting Riesz-Haviland to TKMP, there
is an appropriate analogue, as we next describe.

Theorem 2.8. (Truncated Riesz-Haviland Theorem [16]) Let β ≡ β(2d) or β ≡
β(2d−1). β has a K-representing measure if and only if β admits an extension to

a sequence β̃ ≡ β̃(2d+2) such that Lβ̃ is K-positive.

Theorem 2.8 is not, by itself, a concrete solution to TKMP because, as dis-
cussed above, it may be very difficult to verify K-positivity. Several authors have
addressed this issue from a variety of viewpoints. For K compact and semi-algebraic,
Helton and Nie [31] developed an approach to K-positivity of Lβ based on semidefi-
nite programming. Extending this approach, the author and Nie showed in [29] that
Lβ is positive if and only if the optimal values for an infinite sequence of semidefinite
programming problems associated to β are all nonnegative (see also [39]). In another
direction, Vasilescu [59] has studied TMP using techniques from function spaces and
C*-algebras. Recently, G. Blekherman [4] used methods of algebraic geometry and
convex analysis to prove a remarkably general result, part of which we paraphrase as
follows.

Theorem 2.9. (cf. Blekherman [4]) If d ≥ 3 and rank Md ≤ 3d − 3, then Lβ is
positive.

Blekherman’s result is actually stated in terms of existence of representing measures
in the Homogeneous Truncated Moment Problem (HTMP) (cf. Theorem 6.13 below).
By combining Theorem 2.9 with Theorem 2.8, we have the following concrete sufficient
condition for representing measures.

Corollary 2.10. If d ≥ 3 and rank Md ≤ 3d − 3, then β(2d−1) has a representing
measure.

Finally, we note that although, in general, there is a gap between K-positivity
and the existence of K-representing measures, this gap vanishes in the sense of ap-
proximation, as the following result shows.

Theorem 2.11. (cf. [27]) Let β ≡ β(m). Lβ is K-positive if and only if β (viewed as
an element of Rdim Pm) is the limit of multisequences β(m)[k] (k ≥ 1) each of which

has a K-representing measure µk. In this case, βi = lim
k→∞

∫
xidµk (|i| ≤ m).
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3. Representing measures from flat extensions of positive moment

matrices.

The results of Section 2 for TKMP that are based on K-positivity have two
disadvantages. One is the difficulty in verifying K-positivity that we have previously
discussed. The other is that the K-positivity results, based on convex analysis, yield
the existence of representing measures, but provide no means for constructing them.
In the present section we discuss some results which permit the construction of finitely
atomic representing measures without recourse to K-positivity. Let V ≡ V (Md)

denote the algebraic variety corresponding to Md, i.e., V =
⋂

p∈Pd,p(X)=0

Zp (where

Zp := {x ∈ R
n : p(x) = 0}). It follows from Proposition 2.7 that that if µ is a

representing measure for β, then supp µ ⊆ V (Md), whence

(3.1) r ≡ rank Md ≤ card supp µ ≤ v ≡ card V (Md) (cf. [7, Cor. 3.7]).

We refer to the necessary condition rank Md ≤ card V (Md) as the variety condi-
tion. In the sequel we will cite the following basic existence theorem of [7] [14] for a
“minimal” representing measure, a representing measure µ satisfying card supp µ =
rank Md.

Theorem 3.1. (cf. Flat Extension Theorem [14, Theorems 1.1-1.2]) β ≡ β(2d) has
a rank Md-atomic representing measure if and only if Md � 0 and Md admits
a flat moment matrix extension, i.e., a moment matrix extension Md+1 satisfying
rank Md+1 = rank Md. In this case, β(2d+2) admits a unique representing measure,
µ ≡ µMd+1

, satisfying supp µ = V (Md+1) and card supp µ = rank Md. Further,
Md+1 admits unique successive positive moment matrix extensions Md+2, Md+3, . . .,
and these are flat extensions.

Note that for the case of flat data (Md � 0 and rank Md = rank Md−1), Theorem 3.1
(applied to Md−1) implies the existence of a unique (rank Md-atomic) representing
measure for β(2d).

Suppose Md is positive and admits a flat extension Md+1. The unique repre-
senting measure for Md+1 referred to in Theorem 3.1 may be explicitly computed as
follows (cf. [14, Theorem 1.2]). Let r = rank Md, so that card V (Md+1) = r and
V (Md+1) ≡ {wi}

r
i=1. Let B ≡ {X i1, . . . , X ir} denote a basis for Col Md, and consider

the Vandermonde-type matrix

(3.2) W ≡WB :=




wi1
1 . . . wi1

r
...

...
wir

1 . . . wir
r


 .

ThenW is invertible, and [14] shows that β(2d+2) has the unique representing measure

µ ≡ µMd+1
, of the form µ =

r∑

i=1

ρiδwi
, where δwi

denotes the atomic measure with

supp δwi
= {wi}, and ρ ≡ (ρ1, . . . , ρr) is determined by ρT =W−1(βi1 , . . . , βir)

T (here
7



and in the sequel, ·T denotes matrix transpose); in particular, µ is independent of
basis B. Of course, µ is also a representing measure for β.

We next recall some properties of positive moment matrix extensions that we
will refer to in the sequel. As we discuss in Section 4, a result of Bayer and Teichmann
[3] implies that if β ≡ β(2d) admits a K-representing measure, then β admits a finitely
atomic K-representing measure ν. Since ν has convergent power moments of all
orders, it follows that Md ≡ Md[ν] admits successive positive, recursively generated
moment matrix extensions, namely, Md+1[ν], Md+2[ν], . . .. This leads to the following
solution to TMP, expressed in terms of moment matrix extensions.

Theorem 3.2. (Moment Matrix Extension Theorem [14, Corollary 1.4]) β(2d) has a
representing measure if and only if there is an integer k ≥ 0 such that Md admits a
positive moment matrix extensionMd+k which in turn admits a flat extensionMd+k+1.

Upper bounds for k, derived from Theorems 5.1 and 5.3 (below) are given in [14],
but these are not very useful in practice. In the application that we discuss below
(Theorem 3.3), we have 0 ≤ k ≤ 1. In Section 7 we will discuss an analogue of
Theorem 3.2 for TKMP in the case when K is a basic closed semialgebraic set. The-
orem 3.2 was proved for finitely atomic representing measures in [14]; the preceding
formulation for general representing measures comes by combining the results of [14]
and [3]. Theorem 3.2 is not, by itself, a concrete solution to the truncated moment
problem, but it does provide a framework for obtaining concrete solutions in certain
cases. We will describe several such cases below, but we require some preliminaries
concerning positive moment matrices.

Consider a real symmetric block matrix M̃ ≡

(
M B

BT C

)
. A result of Smul’jan

[53] implies that M̃ � 0 if and only if M � 0, there exists a matrix W such that
B = MW (equivalently, Ran B ⊆ Ran M [19]), and C � C♭ ≡ W TMW (note that
C♭ is independent ofW satisfying B =MW ). In this case, the matrixM ♭ ≡ [M ;B] :=(

M B

BT C♭

)
is a positive flat extension of M , i.e., M ♭ � 0 and rank M ♭ = rank M .

Consider a moment matrix extension

Md+1 ≡

(
Md Bd+1

BT
d+1 Cd+1

)
.

If Md � 0, then Md+1 is a flat (hence positive) extension of Md if and only if Bd+1 =
MdW (for some W ) and Cd+1 = C♭ ≡W TMdW ; equivalently, Md+1 = [Md;Bd+1].

Suppose Md+1 � 0 and let p ∈ Pd; [21] implies that if p(X) = 0 in Col Md,
then p(X) = 0 in Col Md+1, i.e., column dependence relations in Md extend toMd+1.
It follows that

(3.3) Md+1 � 0 =⇒ V (Md+1) ⊆ V (Md).

In the sequel we will also require the following basic property of positive moment
matrices:

(3.4) Md+1 � 0 =⇒ Md is recursively generated [7, Theorem 3.14].
8



Finally, for the planar case (n = 2), consider the block matrix decomposition
Md ≡ (M [i, j])0≤i,j≤d, where M [i, j] is the matrix with i+ 1 rows and j + 1 columns
of the form

(3.5) M [i, j] ≡




βi+j,0 βi+j−1,1 βi+j−2,2 . . . βi,j
βi+j−1,1 βi+j−2,2 . . . βi−1,j+1

βi+j−2,2 . . . βi−2,j+2
... . . .

...
βj,i βj−1,i+1 βj−2,i+2 . . . β0,i+j



.

Note thatM [i, j] has all of the moments in β(2d) of degree i+j and has the Hankel-like
property of being constant on cross-diagonals; in particular, in the extension Md+1,
block Cd+1 ≡ M [d + 1, d + 1] is a Hankel matrix. Further, blocks B[d, d + 1] and
B[d+ 1, d+ 1] are completely determined by the entries in columns Xd+1 and Y d+1.

To illustrate the moment matrix extension approach to TMP, we will discuss
the following result of [15].

Theorem 3.3. Let n = 2 and let p(x, y) be a polynomial satisfying deg p ≤ 2. For
d ≥ deg p and β ≡ β(2d), the following are equivalent:
i) β has a representing measure supported in Zp;
ii) Md has the column relation p(X, Y ) = 0 and admits a positive, recursively gener-
ated extension Md+1;
iii) (concrete condition) Md is positive semidefinite, recursively generated, p(X, Y ) =
0 in Col Md, and rank Md ≤ card V (Md);

For p as in Theorem 3.3 and K = Zp, the solution of the Full K-Moment
Problem is due to J. Stochel [54]; we will discuss the connection between Theorem
3.3 and Stochel’s result in the next section. The conditions in Theorem 3.3-iii) are
concrete in the sense that they can be checked using elementary linear algebra or, in
the case of the variety condition, checked using computer algebra software. Condition
ii) is attractively simple, but without the aid of iii) it may be difficult to determine
whether the desired extension exists. We note also that Theorem 3.3 does not extend
to bivariate curves of degree 3; a detailed analysis in [23] of TKMP for the case when
K is the curve y = x3 shows that the conditions in iii) do not always imply the
existence of a K-representing measure (cf. Example 5.9 below). Before sketching the
proof of Theorem 3.3, we illustrate it with an example from [15].

Example 3.4. For n = 2, consider β ≡ β(4) given by

M2(β) =




1 1 1 2 0 3
1 2 0 4 0 0
1 0 3 0 0 9
2 4 0 9 0 0
0 0 0 0 0 0
3 0 9 0 0 28



.
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M2 is positive with rank M2 = 5. The variety V (M2) is determined by the column
relation XY = 0 and coincides with the degenerate hyperbola xy = 0. M2 thus sat-
isfies the conditions of Theorem 3.3. In any positive, recursively generated extension
M3, we have X2Y = XY 2 = 0, so B3 must be of the form

B3 =




4 0 0 9
9 0 0 0
0 0 0 28
p 0 0 0
0 0 0 0
0 0 0 q



.

A calculation shows that Ran B3 ⊆ Ran M2, but C
♭ in [M2;B3] is not Hankel, e.g.

C♭
41 = 1 but C♭

32 = 0. Thus M2 has no flat extension M3.
We claim that there exists a rank 6 extension M3 which admits a flat extension

M4. Actually, there are infinitely many such extensions, each dependent on arbitrary
choices for p and q. For a definite example, set p = 18, q = 84. A calculation shows
that C♭

11 = 42. We now consider block C3 (for an extension M3) of the form

C3 =




u 0 0 0
0 0 0 0
0 0 0 0
0 0 0 v


 , u > 42.

With u = 43, a calculation shows that M3 is positive and recursively generated, with
rank M3 = 6, if and only if v = 263. In the resulting M3 there is a column relation
Y 3 = −5 ·1+7X+11Y −X3. Thus, in any recursively generated extensionM4 ofM3,
we must have Y 4 = −5Y + 11Y 2, so Y 4 is uniquely determined. In B4 we must also
have X3Y = X2Y 2 = XY 3 = 0. Moment matrix structure now determines all of the
elements of X4 in B4 except r ≡ β70. A calculation shows that r := 81 is the unique
value of r such that X4 belongs to Ran M3. With this value, we have Ran B4 ⊆
Ran M3, and a further calculation shows that [M3;B4] is a flat moment matrix
extension of M3. From Theorem 3.1, this yields a 6-atomic representing measure µ
for β, which may be computed as described following Theorem 3.1. The variety ofM4,
which provides the support of µ, is the set of common zeros of xy = 0, y3 = −5+7x+
11y−x3, y4 = −5y+11y2, and a new relation, x4 = −5x+7x2: (x1, y1) ≈ (2.16601, 0),
(x2, y2) ≈ (0.782816, 0), (x3, y3) ≈ (−2.94883, 0), (x4, y4) ≈ (0, 0.463604), (x5, y5) ≈
(0, 3.06043), (x6, y6) ≈ (0,−3.52404). The corresponding densities may be computed
as described following (3.2): ρ1 ≈ 0.303081, ρ2 ≈ 0.203329, ρ3 ≈ 0.00359018, ρ4 ≈
0.0821253, ρ5 ≈ 0.316218, ρ6 ≈ 0.00165656. �

Proof of Theorem 3.3. We sketch a proof of Theorem 3.3 and in doing so we close
a gap in the proof given in [15]. In [11], R.E. Curto and the author showed that
the existence of representing measures in the Truncated Complex Moment Problem
(TCMP) is stable under invertible degree one mappings, and also that TCMP is
equivalent to TMP. As discussed in [25], in TMP, invertible degree one mappings
τ : R2 7→ R

2 are of the form τ(x, y) = (a + αx+ γy, b+ δx+ λy), with αλ− γδ 6= 0.
10



It is well-known that under such a mapping, the degree 2 curve p(x, y) = 0 may
be transformed into one of the following nine basic varieties: x2 + y2 = 1, y = x2,
xy = 1, xy = 0, x2 = 1, x2 = 0, x2 = −1, x2 + y2 = 0, and x2 + y2 = −1 (cf.
[47, p. 405]). In a series of papers, we proved Theorem 3.3 for each of the first four
varieties, corresponding to a circle [11], parabola [13], hyperbola [15], or degenerate
hyperbola (intersecting lines) [15]. For each of these cases, we proved iii) implies i)
by explicitly constructing either a flat extension Md+1, or, in certain cases of xy = 0,
a positive extension Md+1 followed by a flat extension Md+2 (as in Example 3.4). A
careful examination of these proofs also shows that ii) implies i).

In [25] we noted that the preceding analysis is incomplete, since it does not
consider all nine of the varieties. However, in [25] we showed that if Md is positive,
then the column relations X2 = −1 and X2 + Y 2 = −1 cannot occur. Further, we
showed in [25] that if Md � 0 and either X2 = 0 or X2 + Y 2 = 0, then rank M2 ≤ 3.
In this case, if rank M1 = 3, then it follows from [14] that rank Md = rank M1 = 3
and that Md has a unique representing measure. In the subcase when rank M1 < 3,
it follows from [8] that Md has a measure if and only if it is recursively generated.
Thus, to complete the proof of Theorem 3.3, it remains to consider the variety x2 = 1,
corresponding to two parallel lines. For this variety, we proved the equivalence of i)
and iii) in [25], but we did not consider condition ii). In the sequel, we will therefore
prove the equivalence of i) and ii) for p(x, y) := x2 − 1.

Assume i) holds and suppose β has a representing measure µ supported in
Zp. Then Proposition 2.7 implies that p(X, Y ) = 0 in Col Md. Also, since β has a
representing measure, then Corollary 5.4 (below) implies that β has a finitely atomic
representing measure ν. Since ν has finite moments of degree 2d + 2, Md+1[ν] is a
positive, recursively generated extension of Md, whence ii) holds.

For the converse, assume that Md+1 is a positive and recursively generated
extension of Md and p(X, Y ) = 0 in Col Md. Thus, in Col Md+1, for each q(x, y)
with deg q ≤ d− 1, we have

(3.6) (x2q)(X, Y ) = q(X, Y ).

In particular, (3.6) recursively determines all columns of Md+1 except those of the
form XY i (1 ≤ i ≤ d) or Y i (1 ≤ i ≤ d + 1). We consider several cases for the
column structure ofMd. IfMd is p-pure, i.e., the column relations inMd are precisely
those derived from p(X, Y ) = 0 via recursiveness, then it follows from [25] that Md

has a flat extension Md+1, whence Md+1 has a representing measure by Theorem 3.1.
Next, we consider the case when Md is recursively determinate, i.e., in addition to
X2 = 1, there is a column relation of the form Y j = q(X, Y ), where 0 ≤ j ≤ d,
deg q(x, y) ≤ j, and q has no yj term. Since we also have X i = 1 with i = 2, we have
i + j − 2 = j ≤ d, so it follows from [17, Corollary 2.4] that Md has a unique flat
extension Md+1, and thus β has a representing measure.

In the remaining case, there is a minimal i, 1 ≤ i ≤ d− 1, such that Md has a
column relation of the form

(3.7) XY i = a01 + b1X + a1Y + · · ·+ bjXY
j−1 + ajY

j + · · ·+ biXY
i−1 + aiY

i.
11



Thus, by recursiveness in Md+1, we see that XY d is a linear combination of columns
of Md. The same is obviously also true for X2+iY j ≡ X iY j for i + j = d − 1. Since
Md+1 � 0, by the definition of [Md;Bd+1], dependence relations in the columns of
( Md Bd+1 ) extend to the columns of ( BT

d+1 C
♭ ). It follows that the first d + 1

columns of block Cd+1 in Md+1 coincide with the corresponding columns of C♭ in
[Md;Bd+1]. Since both Cd+1 and C♭ are positive (in particular, real symmetric), it
follows that C♭ and Cd+1 agree entrywise, except possibly in the lower right-hand
corner (the moment for y2d+2). Thus C♭ has the form of a moment matrix block

C̃d+1, so [Md;Bd+1] is a flat moment matrix extension of Md. The existence of a
representing measure for β now follows from Theorem 3.1. �

In the preceding result, we used moment matrix extensions to solve TKMP in
the case where K is a planar curve of degree 1 or 2. Moment matrix extensions can
sometimes be used to solve the truncated moment problem based not on a predefined
K, but rather on the type of structures present in the moment matrix. Theorem 3.1
is such a result. We conclude this section with another illustration of this approach.
For n = 2, we say that Md is recursively determinate if there exists a column relation
X i = p(X, Y ) with i ≤ d and deg p < i, and also a relation Y j = q(X, Y ) with deg q ≤
j ≤ d, where q has no yj term (or with the roles of p and q interchanged). In this case,
the only possible recursively generated moment matrix extension Md+1 is completely
determined by setting Xd+1 := (xd+1−ip)(X, Y ) and Y d+1 := (yd+1−jq)(X, Y ), first
in Col Md to define Bd+1, then, if possible, in Col BT

d+1, to define Cd+1. If this
construction leads to a well-defined moment matrix Md+1, then Md+1 is said to be a
recursively determined extension of Md. In this case, we can attempt to repeat this
procedure so as to define Md+2, and so on. This leads to the following algorithmic
solution to the moment problem for recursively determinate moment matrices.

Theorem 3.5. ([17]) Let n = 2 and supposeMd is recursively determinate. β ≡ β(2d)

has a representing measure if and only if Md admits recursively determined positive,
recursively generated moment matrix extensions Md+1, . . . ,M2d−1. In this case, at
least one of these extensions is a flat extension. Moreover, there exist cases in which
the first flat extension is M2d−1.

Note that in Theorem 3.5, although there is no concrete positivity test directly
related to β, there is a finite procedure for determining whether or not a representing
measure exists, and, if so, for computing such a measure. In the worst case, however,
it may require d− 1 extension steps to resolve the existence of a measure.

4. From the truncated moment problem to the full moment problem

In this section we discuss the following result of J. Stochel [55], which provides
an essential link between TKMP and the Full K-Moment Problem.

Theorem 4.1. (Stochel [55]) β ≡ β(∞) has a K-representing measure if and only if
β(m) has a K-representing measure for each m ≥ 1.

Stochel’s result provides a framework for solving the Full K-Moment Problem
without explicitly using Riesz-Haviland, thereby circumventing the structure theory

12



of K-positive polynomials. In this section, we illustrate this approach in several
examples. We begin with a second proof of Hamburger’s Theorem (cf. Theorem 2.2),
concerning moment problems on the real line. This will be based on the following
solution of TKMP for K = R.

Theorem 4.2. ([6, Theorem 3.9]) Let n = 1 and K ≡ R. β ≡ β(2d) has a representing
measure if and only if Md is positive and recursively generated.

Alternate proof of Hamburger’s Theorem. Suppose β ≡ β(∞) has a representing
measure µ, and let M ≡ M∞(β). For each p ∈ R[x], we have 〈Mp̂, p̂〉 = Lβ(p

2) =∫
p2dµ(x) ≥ 0, so the necessity of the condition follows. For sufficiency, suppose

M � 0. For each d ≥ 1, Md+1(β) � 0, so it follows from (3.4) that Md is positive and
recursively generated. Theorem 4.2 now implies that β(2d) has a representing measure,
so the result follows from Theorem 4.1. �

We next consider the theorem of Stieltjes for the half-line [0,∞) (Theorem 2.3
above). For n = 1 and β ≡ β(∞), let M = M∞(β) and let J (= M (x)) denote the
“shifted” Hankel matrix (β1+i+j)i,j≥0. Further, for d ≥ 1, let Jd−1 ≡ (β1+i+j)0≤i,j≤d−1

and let vd = (βd+1, . . . , β2d)
T . We recall the following solution to TKMP for K =

[0,+∞).

Theorem 4.3. (cf. [6, Theorem 5.3]) Let n = 1 and β ≡ β(2d). β has a representing
measure supported in K ≡ [0,+∞) if and only if Md � 0, Jd−1 � 0, and vd ∈
Ran Jd−1.

Alternate proof of Stieltjes’ Theorem. Let K = [0,+∞) and suppose µ is a K-
representing measure for β ≡ β(∞). It follows as in the preceding proof that M � 0.
Moreover, for p ∈ R[x], 〈Jp̂, p̂〉 = Lβ(xp

2) =
∫
xp2dµ(x) ≥ 0, so J � 0. For the

converse, suppose M and J are positive semidefinite. Let d ≥ 2. Since M � 0, then
Md � 0. Since J � 0, then Jd � 0, so the discussion of positive block matrices in
Section 3 implies that Jd−1 � 0 and that vd ∈ Ran Jd−1. It thus follows from Theorem
4.3 that β(2d) has a K-representing measure. Since d ≥ 2 is arbitrary, Theorem 4.1
implies that β(∞) has a representing measure supported in K. �

For our final illustration of Theorem 4.1, let p(x, y) denote a bivariate polyno-
mial with deg p(x, y) ≤ 2. In [54], Stochel solved the Full K-Moment Problem for
K ≡ Zp; we may paraphrase Stochel’s result as follows.

Theorem 4.4. (Stochel) Let n = 2 and suppose deg p(x, y) ≤ 2. β ≡ β(∞) has a
representing measure supported in Zp if and only ifM ≡M∞(β) � 0 and p(X, Y ) = 0
in Col M .

Proof. Let µ denote a representing measure supported in K ≡ Zp. Clearly, M � 0.
For each q ∈ R[x], since supp µ ⊆ Zp, we have 〈p(X, Y ), q̂〉 = Lβ(pq) =

∫
pq dµ = 0.

Since q is arbitrary, it follows that p(X, Y ) = 0 in Col M . For the converse, suppose
M � 0 and p(X, Y ) = 0. For d ≥ 2, since Md+2(β) � 0, then (3.4) implies that
Md+1(β) is a positive and recursively generated moment matrix extension of Md(β).
Since we also have p(X, Y ) = 0 in Col Md, then it follows from Theorem 3.3 that
β(2d) has a K-representing measure. Since d ≥ 2 is arbitrary, it now follows from
Theorem 4.1 that β has a K-representing measure. �
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Following Stochel [54], we say that a polynomial p(x, y) is type A if the condi-
tionsM∞(β) � 0 and p(X, Y ) = 0 in Col M imply that β has a representing measure
(supported in Zp). Theorem 4.4 shows that if deg p ≤ 2, then p is type A, and in [54]
Stochel also proved that not every degree 3 polynomial is type A. In [56] Stochel and
Szafraniec proved that there exist type A polynomials of arbitrarily large degree.

5. Tchakaloff’s Theorem and TKMP

In this section we discuss Tchakaloff’s Theorem and its generalizations, includ-
ing the Bayer-Teichmann Theorem, and how these results relate to TKMP. Let µ
denote a positive Borel measure and let K = supp µ. Suppose µ has convergent
moments up to at least degree m, i.e.,

∫
xidµ is convergent for all i with |i| ≤ m. A

cubature rule for µ of degree m is a finitely atomic K-representing measure for the
sequence β(m) defined by βi :=

∫
xidµ (|i| ≤ m). In [58], V. Tchakaloff used convex

analysis to establish the following fundamental existence theorem for cubature rules.

Theorem 5.1. ( V. Tchakaloff [58]) Let K denote a compact subset of R
n with

positive n-dimensional Lebesgue measure. Let µ denote the restriction of Lebesgue
measure on R

n to K, and let m be a positive integer. There exist finitely many points
in K, w1, . . . , wN (N ≤ dim Pm), and positive weights α1, . . . , αN , such that for each

p ∈ Pm, L(p) :=
∫
K
p(x)dµ(x) =

N∑

i=1

αip(wi).

A careful examination of [58] reveals that the role of µ is simply to establish
that L : Pm 7−→ R is K-positive. Thus we may paraphrase Tchakaloff’s Theorem as
the analogue of Riesz-Haviland for TKMP in the compact case, as follows.

Theorem 5.2. (cf. [29, Theorem 2.2]) Let β ≡ β(m), β0 > 0, and let K be a compact
subset of Rn. β has a K-representing measure if and only if Lβ : Pm 7−→ R is K-
positive, in which case β admits a K-representing measure µ with card supp µ ≤
dim Pm.

The example in (2.2) shows that Theorem 5.2 cannot be extended to the case
where K is non-compact. In that example, for n = 1 and d = 2, K = R, and β ≡ β(4),
we see that Lβ can be positive although β has no representing measure. Nevertheless,
the original cubature theorem of Tchakaloff does admit generalization. An extension
of Theorem 5.1 to the case when K is unbounded was obtained by Mysovskikh [38].
For the compact case, Putinar [42] extended Theorem 5.1 to arbitrary positive Borel
measures. For arbitrary closed K and a positive Borel measure µ having convergent
moments up to at least degree m ≡ 2d, Putinar also established the existence of
a cubature rule ν of degree 2d − 1, such that card supp ν ≤ dim P2d. Analogous
results for the case m ≡ 2d+ 1 were subsequently obtained by Curto and the author
in [12]. Finally, in 2006, Bayer and Teichmann proved the ultimate generalization of
Tchakaloff’s Theorem.

Theorem 5.3. (Bayer and Teichmann [3]) Let µ be a positive Borel measure on R
n

with convergent moments up to degree at least m, and let β ≡ β(m)[µ]. Then there
14



exists a representing measure ν for β such that supp ν ⊆ supp µ and card supp ν ≤
dim Pm.

Theorem 5.3 has the following significant consequence for the truncated moment
problem.

Corollary 5.4. If β ≡ β(m) has a K-representing measure µ, then β admits a finitely
atomic K-representing measure.

Proof. Since βi =
∫
xidµ (|i| ≤ m), Theorem 5.3 implies that there exists a degree-m

cubature rule ν for µ. Thus ν is a finitely atomic K-representing measure for β. �

Corollary 5.4 leads to the following important necessary condition for representing
measures; we have already used this result in the proof of Theorem 3.3.

Proposition 5.5. If β ≡ β(2d) has a representing measure, then Md admits positive
recursively generated moment matrix extensions of all orders, Md+1, Md+2, ....

Proof. Since β has a representing measure, Corollary 5.4 implies that there exists a
finitely atomic representing measure ν. Since ν has convergent moments of all orders,
for each k ≥ 1, Md+k := Md+k[ν] has a representing measure, namely ν, and is thus
a positive, recursively generated extension of Md. �

Recall from Theorem 2.11 that Γ := {β ≡ β(m) ∈ R
dim Pm : Lβ is positive}

is the closure of the multisequences having representing measures. We devote the
remainder of this section to an application of Proposition 5.5 which permits us to
exhibit a nontrivial example of a sequence in bdry Γ, a positive Riesz functional Lβ(2d)

whose positivity does not arise from the existence of a representing measure for β
or from the equivalence of positivity of Lβ with positive semidefiniteness of Md(β).
Following [44] [45], we refer to p ∈ P2d as positive semidefinite (psd) if p|Rn ≥ 0,

and as a sum of squares (sos) if there exist p1, . . . , pk ∈ Pd such that p =
k∑

i=1

p2i . For

β ≡ β(2d), positivity of Lβ is easily established if each psd polynomial is sos, since then

Lβ is positive if and only if Md � 0; indeed, in this case, if p is psd, then p =
k∑

i=1

p2i ,

so

(5.1) Lβ(p) =
∑

Lβ(p
2
i ) =

∑
〈Mdp̂i, p̂i〉 ≥ 0.

A well-known theorem of Hilbert shows that each psd polynomial is sos if and only
if n = 1, d = 1, or n = d = 2 (cf. [44] [45]). (For the purposes of this note, we refer
to this result as “Hilbert’s Theorem.”) Thus, we seek an example of positivity of Lβ

in which β has no representing measure and in which (n, d) are beyond the scope of
Hilbert’s Theorem.

To this end, we first discuss an application of moment matrix extensions and
the Bayer-Teichmann Theorem. This result characterizes the existence of representing
measures in the bivariate truncated moment problem for β ≡ β(2d) in the case when
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the variety of Md coincides with y = x3. In [23] we associated to such a sequence β
a certain computable rational function in the moment data denoted by ψ(β).

Theorem 5.6. ([23]) Let d ≥ 3. Suppose Md is positive and (y − x3)-pure, i.e., the
variety V (Md) is completely determined (via recursiveness) by the column relation
Y = X3. The following are equivalent for β ≡ β(2d):
i) β has a representing measure (necessarily supported in y = x3);
ii) Md has a flat extension Md+1 (and β has a corresponding (3d)-atomic minimal
representing measure supported in y = x3);
iii) (concrete condition) β1,2d−1 > ψ(β);
iv) Md admits a positive, recursively generated extension Md+1.

We briefly outline the proof, merely to indicate the kinds of ingredients that
are involved. The proof follows the steps i) =⇒ iv) =⇒ iii) =⇒ ii) =⇒ i). The
implication i) =⇒ iv) derives from Proposition 5.5- this is the step that depends on
Bayer-Teichmann. The step iv) =⇒ iii) entails a detailed analysis of the structure
of positive extensions of (y− x3)-pure moment matrices. The implication iii) =⇒ ii)
is based on the explicit construction of a flat extension Md+1, and ii) =⇒ i) follows
from the Flat Extension Theorem (Theorem 3.1).

Using the preceding result, we may exhibit an example, due to C. Easwaran and
the author [20], concerning a positive Riesz functional Lβ whose positivity does not
arise from the existence of a representing measure or from sums of squares as in (5.1).
In the sequel, for n = 2, we denote the successive rows and columns of the moment
matrix M ≡ M3(β) by 1, X, Y, X2, XY, Y 2, X3, X2Y, XY 2, Y 3. We denote the
elements of β(6) by βij (i, j ≥ 0, i + j ≤ 6), where βij corresponds to the monomial
xiyj. Let Col M denote the column space of M in R

10. Under the conditions

(5.2) M ≡M3(β) � 0, Y = X3 in Col M, rank(M) = 9,

M3 is (y−x
3)-pure, so we may compute ψ(β), and a highly intensive computer algebra

calculation reveals the following key property.

Proposition 5.7. ([20])Under the conditions of (5.2), ψ(β) is independent of β15
and β06.

In the sequel we say that β ≡ β(2d) is consistent if

(5.3) p ∈ P2d, p|V (Md) ≡ 0 =⇒ Lβ(p) = 0.

Consistency is a necessary condition for representing measures which implies thatMd

is recursively generated.

Theorem 5.8. ([20]) Let n = 2. For β ≡ β(6), suppose M ≡ M3(β) � 0, Y = X3,
and rank M = 9. If β15 = ψ(β), then Lβ is positive, but β has no represent-
ing measure, and positivity of Lβ does not arise from sums of squares as in (5.1).
Moreover, β is consistent (so M3 is recursively generated) and the variety condition
rank M3 ≤ card V (M3) also holds.
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Example 5.9. For an example illustrating Theorem 5.8, consider

(5.4) M ≡ M3(β) =




1 0 0 1 2 5 0 0 0 0
0 1 2 0 0 0 2 5 14 42
0 2 5 0 0 0 5 14 42 132
1 0 0 2 5 14 0 0 0 0
2 0 0 5 14 42 0 0 0 0
5 0 0 14 42 132 0 0 0 0
0 2 5 0 0 0 5 14 42 132
0 5 14 0 0 0 14 42 132 429
0 14 42 0 0 0 42 132 429 1429
0 42 132 0 0 0 132 429 1429 4847




(cf. [20]). It is not difficult to verify all of the hypotheses; in particular, a calculation
using [23] shows that ψ(β) = 1429 = β15. �

Proof. (Sketch of proof of Theorem 5.8) With β as in the hypothesis, M3 is positive,
and since Y = X3 and rank M3 = 9, it is clear that V (M3) coincides with the curve
y = x3, so the variety condition holds. Moreover, since y − x3 is irreducible and
has infinite variety, it follows from [23, Lemma 3.1] that β is consistent. We now
claim that Lβ is positive. Since β15 = ψ(β), positivity for Lβ cannot be derived from
the existence of a representing measure, since Theorem 5.6-iii) shows that β has no
representing measure. Moreover, as we discussed above, positivity for Lβ cannot be
derived from the positivity of M3 via sums of squares arguments as in (5.1) because,
by Hilbert’s Theorem, there exist degree 6 bivariate polynomials that are psd but not
sos.

To prove that Lβ is positive, we employ a sequence of approximate representing
measures. Observe that the matrix obtained from M by deleting row X3 and column
X3 is positive definite. It follows that there exists δ > 0 such that if we replace β15
(= ψ(β)) by β15 +

1
m

(with 1
m
< δ), then the resulting moment matrix, M3(β

[m]),

remains positive, with rank M3(β
[m]) = 9 and Y = X3 in Col M3(β

[m]). Proposition
5.7 implies that ψ(β [m]) is independent of β15[β

[m]] and β06[β
[m]], so we have ψ(β [m]) =

ψ(β) = β15 < β15 +
1
m

= β15[β
[m]]. It now follows from Theorem 5.6-iii) that β [m]

has a representing measure, whence Lβ[m] is positive. Note that the convex cone

{β ≡ β(6) ∈ R
10 : Lβ is positive} is closed; since ‖β [m] − β‖ = 1

m
−→ 0, we conclude

that Lβ is positive. �

6. Strict K-positivity, the core variety, and positive definite moment

matrices

In this section we consider the truncated moment problem for a positive definite
moment matrix. This case of the truncated moment problem is largely unsolved, due
to the lack of dependence relations in Col Md. As we have seen, such relations,
when present and combined with recursiveness, are useful in constructing positive
extensions leading to flat extensions and representing measures (cf. Section 3). To
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study the positive definite case, we introduce refinements of K-positivity and of the
variety V (Md), which may be of independent interest.

Following [27], for β ≡ β(m), we say that Lβ is strictly K-positive if Lβ is K-
positive and the conditions p ∈ Pm, p|K ≥ 0, and p|K 6≡ 0 imply Lβ(p) > 0. IfK = R

n

and Lβ is strictly K-positive, we say that Lβ is strictly positive. Note that if β has a
representing measure µ, then Lβ is strictly K-positive for K = supp µ. Further, K
is a determining set for Pm if the conditions p ∈ Pm and p|K ≡ 0 imply p ≡ 0. (If
K has nonempty interior, then K is a determining set, but certain finite sets are also
determining sets.) Strict positivity leads to the following existence criterion.

Theorem 6.1. ([27, Theorem 1.3]) For β ≡ β(m), if K is a determining set for Pm

and Lβ is strictly K-positive, then β has a K-representing measure.

The remainder of this section is based on [26]. Let β ≡ β(2d) and recall the

variety V (Md) :=
⋂

p∈Pd, Mdp̂=0

Zp, which we now designate by V(0). For i ≥ 0, let

V(i+1) :=
⋂

p∈kerLβ, p|
V(i)≥0

Zp.

We define the core variety of β (or of Md(β)) by V ≡ V(β) :=

∞⋂

i=0

V(i); we also

denote this by V(Md). The usefulness of the variety V (Md) lies in the fact that it
contains the support of any representing measure. The core variety has the same
inclusion property as V (Md), and since it is a subvariety of V (Md), it provides a
better indication of the location of the support. In the sequel we set ν := card V(β).

Proposition 6.2. [26, Prop. 2.1] If µ is a representing measure for β, then supp µ ⊆
V(β).

Corollary 6.3. [26, Cor. 2.3] i) If β has a representing measure, then rank Md ≤
card V(β).
ii) If µ is a representing measure for β with int(supp µ) 6= ∅, then V(β) = R

n.

Proof. i) (3.1) shows that if µ is a representing measure for β, then rank Md ≤
card supp µ, so the result follows from Proposition 6.2.
ii) Since a proper affine variety has empty interior in R

n, the result follows from
Proposition 6.2. �

We next turn to several results of [26] related to computing the core variety.

Lemma 6.4. [26, Lemma 2.6] For i ≥ 0, V(i+1) ⊆ V(i).

We note for future reference the following implications that are implicit in the
proof of Lemma 6.4:

(6.1) p ∈ kerLβ, p|V(i) ≥ 0 =⇒ V(i+1) ⊆ Zp

⋂
V(i) [26, (2.1)]

(6.2) p ∈ ker Lβ , p|V(i) > 0 =⇒ V = ∅ [26, (2.2)]
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(6.3) V(i) = V(i+1) =⇒ V = V(i) [26, (2.3)]

We further note that there always exists i such that V(i) = V(i+1) (as in (6.3)), whence
V = V(i) [26, Prop. 2.7].

The core variety provides a tool for establishing strictK-positivity and furnishes
a link to Theorems 2.8 and 6.1.

Theorem 6.5. ([26, Theorem 2.14]) Let β ≡ β(2d). If the core variety V ≡ V(β) is
nonempty, then Lβ is strictly V-positive and β(2d−1) has a V-representing measure.
Moreover, if V is nonempty and is either compact or a determining set for P2d, then
β(2d) has a V-representing measure.

We now return to the case of a positive definite moment matrix. Recall that
Hilbert’s theorem shows each psd polynomial is sos if and only if n = 1, d = 1, or
n = d = 2 (cf. Section 1.2). In the cases of Hilbert’s theorem, it is known that a
positive definite moment matrix has a representing measure (cf. [6] for n = 1 and
[27] for d = 1 and n = d = 2). We begin with a new proof of this result based on the
core variety.

Proposition 6.6. [26, Prop. 4.1] In the cases of Hilbert’s Theorem, if Md(β) ≻ 0,
then V(β) = R

n and β has a representing measure.

Proof. Since Md ≻ 0, then V (Md) = R
n. From (6.3), to show V = R

n, it suffices
to verify that V(1) = R

n. Suppose q ∈ ker Lβ and q is psd. Then q is of the form
q =

∑
q2i for certain qi ∈ Pd, and thus 0 = Lβ(q) =

∑
Lβ(q

2
i ) =

∑
〈Mdq̂i, q̂i〉. Since

Md ≻ 0, it follows that each q̂i = 0, whence q = 0 and Zq = R
n. We thus have V(1) =⋂

q∈ker Lβ ,q|Rn≥0

Zq = R
n = V(0), whence (6.3) implies V = V(1) = V(0) = R

n. Since R
n

is a determining set, Theorem 6.5 implies that β has a representing measure. �

Remark 6.7. For the cases d = 1 or n = 1, it is known that if Md ≻ 0, then Md

admits a flat extension Md+1 (cf. [7] [27]). For the case n = d = 2, it was an open
question for several years as to whether a positive definite M2 admits a flat extension
M3. This has recently been answered in the affirmative in [18], using the proof of
Theorem 3.3 and a “reduction of rank” technique.

Relatively little is known concerning the positive definite case beyond the scope
of Hilbert’s Theorem. However, we do have the following general result.

Proposition 6.8. ([26, Prop. 4.3]) The following are equivalent for β ≡ β(2d):
i) Lβ is strictly positive;
ii) Md ≻ 0 and V = R

n;
iii) V = R

n.

Proof. We begin with i) =⇒ ii). Suppose Lβ is strictly positive. For p ∈ Pd with
p 6≡ 0, we have 〈Mdp̂, p̂〉 = Lβ(p

2) > 0, soMd ≻ 0. It follows that V(0) = V (Md) = R
n.

From (6.3), to show V = R
n, it suffices to prove that V(1) = R

n. Suppose p ∈ ker Lβ

and p|V(0) ≥ 0. Then since p is psd and Lβ is strictly positive, we have p ≡ 0,
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whence Zp = R
n. It follows that Rn = V(1) ⊆ V(0) = R

n, so the conclusion V = R
n

follows. Clearly ii) implies iii), and the implication iii) =⇒ i) follows immediately
from Theorem 6.5. �

For several of the results and examples in the sequel we require some additional
notation. Let P+

2d and Σ2d denote, respectively, the positive cones in P2d consisting
of the psd and sos polynomials, and let ∆ ≡ ∆n,2d := P+

2d \ Σ2d. Concrete examples
of polynomials in ∆ were discovered beginning some 60 years after Hilbert’s work.
We note two such examples from ∆3,6 that are discussed by Reznick [44] [45]: the
Motzkin form

M(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2;

the Robinson form

R(x, y, z) = x6 + y6 + z6 − x4y2 − x2y4 − x4z2 − y4z2 − x2z4 − y2z4 + 3x2y2z2.

It is well-known that a homogeneous form F (x, y, z) is psd (respectively, sos) if and
only if its de-homogenization f(x, y) := F (x, y, 1) is psd (respectively, sos). In the
sequel we will denote the de-homogenizations of M and R by m and r.

For the case n = 2, d = 3, and M3 ≻ 0, we may characterize the existence of
representing measures in terms of the core variety, as follows.

Theorem 6.9. ([26, Theorem 4.4]) For n = 2 and M3 ≻ 0, exactly one of the
following holds:
i) V = R

2 and there is a representing measure;
ii) ν = 10 and there is a representing measure;
iii) ν = 0 and there is no representing measure.

Example 6.10. ([26, Example 4.5]) We illustrate case ii) of Theorem 6.9. It is known
that the Robinson plynomial r(x, y) has precisely the following eight affine zeros
wi ≡ (xi, yi) (1 ≤ i ≤ 8): w1 = (−1,−1), w2 = (0,−1), w3 = (1,−1), w4 = (−1, 0),
w5 = (1, 0), w6 = (−1, 1), w7 = (0, 1), w8 = (1, 1). Corresponding to these are
eight projective zeros of the Robinson form R: w̃i := (xi, yi, 1) (1 ≤ i ≤ 8). The
Robinson form has two additional projective zeros, w̃9 ≡ (x9, y9, z9) := (1, 1, 0) and
w̃10 ≡ (x10, y10, z10) := (1,−1, 0). We now define T (x, y, z) to be the Robinson form
composed with a linear change of variables in R

3, as follows:

T (x, y, z) := R(3x− 3y + z,−3x + 5y − 2z, x− 2y + x).

Since R ∈ ∆3,6, so is T . Then the dehomogenization of T , defined by t(x, y) :=
T (x, y, 1), is in ∆2,6. For each projective zero (x, y, z) of R, (u, v, w) := (x+y+z, x+
2y+3z, x+3y+6z) is a projective zero of T , and if w 6= 0, then ( u

w
, v
w
) is an affine zero of

t. A calculation now shows that t has 10 distinct affine zeros, ui ≡ (ai, bi) (1 ≤ i ≤ 10),
as follows: u1 = (−1

2
, 0), u2 = (0, 1

3
), u3 = (1

4
, 1
2
), u4 = (0, 2

5
), u5 = (2

7
, 4
7
), u6 = (1

8
, 1
2
),

u7 = (2
9
, 5
9
), u8 = ( 3

10
, 3
5
), u9 = (1

2
, 3
4
), u10 = (0, 1

2
). Setting µ :=

10∑

i=1

δ(ai,bi), a

straightforward calculation with nested determinants shows that M3[µ] ≻ 0, and a
calculation with the moments β ≡ β(6)[µ] shows that Lβ(t) = 0. Since t is psd,
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we have V(1) ⊆ Zt, whence ν ≡ card V(β) ≤ 10. Since β has the representing
measure µ, we also have 10 = card supp µ ≤ ν, so we see that ν = 10 and V = Zt.
�

Concerning case iii) of Theorem 6.9, the first example of a positive definite
moment matrix not having a representing measure appears in [8, Section 4], for the
case n = 2 and d = 3. This example is based on Schmüdgen’s construction of
a polynomial s(x, y) that is psd but not sos [49]. This polynomial is used in [49]
to explicitly construct a linear functional L on P6 such that L|Σ6 ≥ 0 but L is
not positive. The corresponding moment matrix M3(β) is positive definite and thus
illustrates case iii) in Theorem 6.9. The following result uses the core variety to prove
the existence of a large family of positive definite moment matrices which do not have
representing measures.

Proposition 6.11. ([26, Prop. 4.6]) Let p ∈ ∆n,2d with card Zp < dim Pd. Then
there exists Md ≡ Md(βp) such that Md ≻ 0, Lβp

(p) = 0, and V(Md) = ∅, whence βp
has no representing measure.

Remark 6.12. i) The Robinson polyomial r(x, y) satisfies the hypothesis of Propo-
sition 6.11, since r ∈ ∆2,6 and card Zr = 8 < 10 = dim P3. Similarly, the Motzkin
polynomial m(x, y) satisfies card Zm = 6, and Schmüdgen’s polynomial s(x, y) satis-
fies card Zs = 9.
ii) We do not know whether, in general, Lβp

is V-positive, or even positive.

If Lβ is strictly positive, then Md ≻ 0, and Theorem 6.1 or Theorem 6.5 implies
that β has a representing measure. In [27, Question 1.2] we asked whether the same
conclusion holds if Md ≻ 0 and Lβ is merely positive (cf. [16, Question 2.9]). We will
answer this question below, but we require some preliminaries.

In [29] we studied the connection between TMP for an n-dimensional sequence
β ≡ β(2d) and the moment problem with respect to homogeneous polynomials of

degree 2d in n + 1 variables x0, x1, . . . , xn, with moment data β̃ ≡ β̃(=2d) defined by

β̃(2d−|α|,α) := βα

for every α ∈ Z
n
+ with |α| ≤ 2d. We refer to this problem as the Homogeneous Trun-

cated Moment Problem (HTMP). The moment problem for β and the homogeneous

moment problem for β̃ are not equivalent, but are closely related.

Theorem 6.13. ([29, Theorem 3.1]) If β has a representing measure in TMP, then

β̃ has a representing measure in HTMP. Moreover, Lβ is positive if and only if β̃ has
a representing measure in HTMP.

We are now prepared to resolve [27, Question 1.2].

Theorem 6.14. ([26, Theorem 4.8]) For n = 2, there exists M3 such that M3 ≻ 0
and Lβ is positive, but V = ∅, so β does not have a representing measure.
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Proof. As noted in Example 6.10, the de-homogenized Robinson polynomial r(x, y)
has the following eight affine zeros wi ≡ (xi, yi) (1 ≤ i ≤ 8): w1 = (−1,−1), w2 =
(0,−1), w3 = (1,−1), w4 = (−1, 0), w5 = (1, 0), w6 = (−1, 1), w7 = (0, 1), w8 =
(1, 1). Corresponding to these are eight projective zeros of the Robinson form R,
w̃i := (xi, yi, 1) (1 ≤ i ≤ 8), and there are two additional projective zeros for R,
w̃9 ≡ (x9, y9, z9) := (1, 1, 0) and w̃10 ≡ (x10, y10, z10) := (1,−1, 0). Define the measure

ω on R
3 by ω :=

10∑

i=1

δw̃i
. Let β̃ ≡ β̃(=6) denote the ω-moments of degree 6, and

let Lβ̃ denote the corresponding functional on homogeneous forms of degree 6 in

R[x, y, z]. Now define L : R[x, y]6 7→ R by L(p(x, y)) := Lβ̃(p̃(x, y, z)) (where p̃

denotes the homogenization of p, i.e., p̃(x, y, z) = z6p(x
z
, y
z
)). Let βij := L(xiyj)

(i, j ≥ 0, i + j ≤ 6), so that Lβ = L. (Note that βij = β̃i,j,6−i−j, so β̃ is the
homogenization of β in the language of [29] (cf. Theorem 6.13).) The moment matrix
corresponding to β, M ≡ M3(β), is given by

M =




8 0 0 6 0 6 0 0 0 0
0 6 0 0 0 0 6 0 4 0
0 0 6 0 0 0 0 4 0 6
6 0 0 6 0 4 0 0 0 0
0 0 0 0 4 0 0 0 0 0
6 0 0 4 0 6 0 0 0 0
0 6 0 0 0 0 8 0 6 0
0 0 4 0 0 0 0 6 0 6
0 4 0 0 0 0 6 0 6 0
0 0 6 0 0 0 0 6 0 8




.

Using nested determinants, it is easy to check that M ≻ 0. Since β̃ has the repre-
senting measure ω in HTMP, it follows from Theorem 6.13 that Lβ is positive.

We next compute V(M). Clearly, V(0) = R
2. A calculation with the moments

of M shows that Lβ(r) = 0, and since r is psd, it follows that V(1) ⊆ Zr. Thus,
ν ≤ card Zr = 8 < 10 = rank M , so Corollary 6.3-i) already implies that ν = 0 and
that β has no representing measure. We will also verify this conclusion explicitly.
If t(x, y) ∈ P6 is psd and Lβ(t) = 0, then

∫
t̃(x, y, z)dω = Lβ̃(t̃) = Lβ(t) = 0.

Since t is psd, so is t̃, and thus t̃|supp ω ≡ 0. It follows that t|Zr
≡ 0, which implies

Zr ⊆ V(1). Since, from above, we also have V(1) ⊆ Zr, then V(1) = Zr. Now let
f(x, y) := 2 − x2 − y2 and g(x, y) := 3

2
x2y2 − x2y4. Then Lβ(f) = Lβ(g) = 0 and

f and g are nonnegative on Zr. Moreover, for 1 ≤ i ≤ 8, either f(wi) = 0 and
g(wi) =

1
2
, or f(wi) = 1 and g(wi) = 0, so V ⊆ V(2) ⊆ Zr

⋂
Zf

⋂
Zg = ∅. �

7. TKMP and optimization methods

In this section we briefly describe some connections between TKMP and opti-
mization theory. We begin with J.-B. Lasserre’s application of TKMP to the problem
of minimizing a polynomial over a basic closed semialgebraic set in R

n [35] [36]. To
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discuss Lasserre’s method, we first require an analogue for TKMP of the Moment
Matrix Extension Theorem (Theorem 3.2). We begin by defining the appropriate
notion of localizing matrix for a truncated multisequence β ≡ β(2d). Let 1 ≤ k ≤ d

and suppose p ∈ R[x] satisfies deg p = 2k or 2k − 1. Let η := dim Pd−k. We define

the localizing matrix M
(p)
d ≡M

(p)
d (β) to be the η × η matrix characterized by

(7.1) 〈M
(p)
d f̂ , ĝ〉 = Lβ(pfg) (f, g ∈ Pd−k).

If β has a representing measure supported in Sp, then M
(p)
d � 0. Now let P ≡

{p1, . . . , pm} ⊂ R[x] and suppose deg pi = 2ki or 2ki − 1 (1 ≤ i ≤ m). Consider the

basic closed semialgebraic set KP ≡
m⋂

i=1

Spi. The following result characterizes the

existence of KP -representing measures in terms of moment matrix extensions; note
that in this result, we do not assume that KP is compact. Recall from Theorem
3.1 that if Md � 0 has a flat extension Md+1, then Md+1 admits unique successive

(positive) flat extensions Md+2, Md+3, . . .. In this case, each localizing matrix M
(pi)
d+ki

is well-defined.

Theorem 7.1. (cf. [14]) β ≡ β(2d) has a KP -representing measure if and only if
Md admits a positive extension Md+j (with j ≤ 2

(
2d+n
n

)
− d), which in turn admits a

flat extension Md+j+1 for which M
(pi)
d+j+ki

� 0 (1 ≤ i ≤ m). The unique representing

measure for Md+j+1 has precisely rank Md+j − rank M
(pi)
d+j+ki

atoms in Zpi (1 ≤ i ≤
m).

For p ∈ R[x1, . . . , xn], the Optimization Problem entails estimating

(7.2) p∗ := inf
x∈KP

p(x).

Suppose deg p = 2k0 or 2k0 − 1 and let κ := max
0≤j≤m

kj. Fix t ≥ κ and consider the

t-th Lasserre moment relation for (7.2) given by

(7.3) pt := inf{Lβ(p) : β ≡ β(2t), β0 = 1,Mt(β) � 0, M
(pj)
t (β) � 0 (j = 1, . . . , m)}.

The Lasserre relaxations may be computed within the framework of semidefinite
programming [35] [36] [37]. It is not difficult to verify that pt ≤ p∗ and that for t′ ≥ t,
pt′ ≥ pt; thus {pt} is convergent, and pmom ≡ lim

t→∞
pt ≤ p∗. A result of Lasserre [35]

(cf. [37, Theorem 6.8]) shows that pmom = p∗ if the quadratic module associated to
KP is Archimedean, i.e., the quadratic module contains N − ||x||2 for some N > 0
(cf. Theorem 2.6).

In some cases there is even finite convergence to p∗. In the general case, for
fixed t, the infimum in (7.2) is not necessarily attained. Assuming that the infimum
is attained, at some optimal sequence β ≡ β{t}, we seek conditions which imply that
Lβ(p) = p∗, so that we have finite convergence of {ps}s≥κ to p∗ at stage s = t. A
basic result of [33] shows that this is the case if rank Mt(β) = rank Mt−κ(β) (cf. [37,
Theorem 6.18]). Indeed, in this case, Theorem 7.1 and the conditions of (7.3) imply
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that β has a KP representing measure, which always implies convergence at stage t.
To see this last point, note that if µ is a KP -representing measure for β ≡ β{t}, then

p∗ = p∗β0 = p∗

∫

KP

1dµ ≤

∫

KP

pdµ = Lβ(p) = pt ≤ p∗.

We note also that when rank Mt(β) = rank Mt−κ(β) holds, then the support of
the unique representing measure for Mt(β) consists of minimizers for (7.2). Further,
using Theorem 2.11, it follows that whether or not an optimizing sequence β ≡ β{t}

at stage t has a KP -representing measure, if the functional Lβ is KP -positive, then
we still have finite convergence, i.e., Lβ(p) = p∗ [28, Theorem 1.5].

The preceding discussion shows how TKMP may be adapted to the problem of
polynomial optimization. Conversely, optimization techniques based on semidefinite
programming can be used to analyze TKMP (cf. [36, Chapter 4]). This approach
was recently studied by Helton and Nie for the case when KP is compact [31], was
extended to the noncompact case in [29], and was further generalized by Nie in [39].
Finally, consider the finite-variety case of TMP [22]. Instead of developing sufficient
conditions for representing measures based on properties of the moment matrix, if
one is content to solve the problem on a sequence-by-sequence basis, then if the
variety is finite and is explicity known, this problem can be posed as a standard
linear programming problem. This unpublished observation is due to J. Nie.
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