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Abstract

Let β ≡ β(2n) = {βi}|i|�2n denote a d-dimensional real multisequence, let K denote a closed subset

of Rd , and let P2n := {p ∈ R[x1, . . . , xd ]: degp � 2n}. Corresponding to β, the Riesz functional L ≡
Lβ : P2n → R is defined by L(

∑
aix

i) := ∑
aiβi . We say that L is K-positive if whenever p ∈ P2n and

p|K � 0, then L(p) � 0. We prove that β admits a K-representing measure if and only if Lβ admits a

K-positive linear extension L̃ :P2n+2 → R. This provides a generalization (from the full moment problem
to the truncated moment problem) of the Riesz–Haviland theorem. We also show that a semialgebraic set
solves the truncated moment problem in terms of natural “degree-bounded” positivity conditions if and
only if each polynomial strictly positive on that set admits a degree-bounded weighted sum-of-squares
representation.
© 2008 Elsevier Inc. All rights reserved.

Keywords: Truncated moment problem; K-moment problems; Riesz functional; Riesz–Haviland theorem; Moment
matrix extension; Flat extensions of positive matrices; Semialgebraic sets; Localizing matrices; Positive functional

* Corresponding author.
E-mail addresses: rcurto@math.uiowa.edu (R.E. Curto), fialkowl@newpaltz.edu (L.A. Fialkow).
URLs: http://www.math.uiowa.edu/~rcurto/ (R.E. Curto), http://www.mcs.newpaltz.edu/faculty/fialkow.html

(L.A. Fialkow).
1 Research was partially supported by NSF Research Grant DMS-0400741.
2 Research was partially supported by NSF Research Grant DMS-0457138.

0022-1236/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jfa.2008.09.003



Author's personal copy

2710 R.E. Curto, L.A. Fialkow / Journal of Functional Analysis 255 (2008) 2709–2731

1. Introduction

Let β ≡ β(∞) = {βi}i∈Z
d+ denote a d-dimensional real multisequence and let K denote a

closed subset of R
d . The full K-moment problem asks for conditions on β such that there exists

a positive Borel measure μ, with suppμ ⊆ K , satisfying βi = ∫
xidμ (i ∈ Z

d+) (here xi :=
x

i1
1 · · ·xid

d , for x ≡ (x1, . . . , xd) ∈ R
d and i ≡ (i1, . . . , id ) ∈ Z

d+). In the truncated K-moment
problem of degree m (where 1 � m < ∞), the data are restricted to β ≡ β(m) = {βi}i∈Z

d+,|i|�m.

A theorem of J. Stochel [49, Theorem 4] shows that β(∞) has a K-representing measure μ (as
above) if and only if for each m, β(m) has a K-representing measure. In this sense, the truncated
moment problem is more general than the full moment problem, and several results from [20,
Section 4] and [16, Section 6] illustrate how the truncated moment problem can be used to solve
the full moment problem in special cases (cf. Remark 2.16(ii)). By contrast, existence theorems
for the full moment problem cannot simply be “truncated” to give valid results for the truncated
moment problem (cf. Example 2.1). In this note we study analogues for the truncated moment
problem of known existence theorems for representing measures in the full moment problem.

Let P := R[x1, . . . , xd ] and for p ≡ ∑
aix

i ∈ P , let p̂ ≡ (ai) denote the coefficient vector
of p with respect to the basis for P consisting of the monomials in degree-lexicographic order.
Corresponding to β ≡ β(∞), the Riesz functional L ≡ Lβ : P → R is defined by L(

∑
aix

i) :=∑
aiβi . We say that L is K-positive if whenever p ∈ P and p|K � 0, then L(p) � 0; if L is K-

positive for K = Rd , we say simply that L is positive. K-positivity is a necessary condition for
the existence of a K-representing measure μ, since if p ∈ P satisfies p|K � 0, then p|suppμ � 0,
whence L(p) = ∫

p dμ � 0. Conversely, the classical theorem of M. Riesz [37] (d = 1) and
Haviland [23] (d > 1) provides a fundamental existence criterion for K-representing measures.

Theorem 1.1 (Riesz–Haviland theorem). β ≡ β(∞) admits a representing measure supported in
the closed set K ⊆ R

d if and only if Lβ is K-positive.

In the truncated moment problem for β(2n), it follows as above that the existence of a K-
representing measure implies that the Riesz functional Lβ(2n) : P2n → R is K-positive, i.e., p ∈
P2n, p|K � 0 ⇒ Lβ(2n) (p) � 0. A result of V. Tchakaloff [51, Théorème II, p. 129] implies that
the converse is true in case K is compact. However, we show in Section 2 that in general it is not
true that β(2n) has a K-representing measure whenever Lβ(2n) is K-positive, so the most direct
analogue of Theorem 1.1 for the truncated moment problem is false (cf. Example 2.1). Instead,
the appropriate analogue of the Riesz–Haviland theorem for the truncated K-moment problem,
which is our main result, assumes the following form.

Theorem 1.2. β ≡ β(2n) admits a K-representing measure if and only if Lβ admits a K-positive
linear extension L̃ : P2n+2 → R.

Note that Theorem 1.2 actually implies Theorem 1.1. Indeed, given β ≡ β(∞), if Lβ is K-
positive, then for each n, Lβ(2n+2) is a K-positive extension of Lβ(2n) . Theorem 1.2 then implies

that for each n, β(2n) has a K-representing measure, whence Stochel’s theorem implies that β

has a K-representing measure. We note also that Theorem 1.2 remains true if β(2n) is replaced
by β(2n+1); this is clear from the proof of Theorem 1.2 in Section 2 (cf. Theorem 2.4). In the
sequel, we focus on β(2n) rather than on β(2n+1), primarily because the data for β(2n) define a
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complete real moment matrix M(n) (as described below), so it is notationally more convenient
to treat β(2n).

Let Q ≡ {q0 := 1, q1, . . . , qm} ⊆ P and let KQ denote the semialgebraic set {x ∈ R
d :

qi(x) � 0 (1 � i � m)}. Our main application of Theorem 1.2 is Theorem 1.6, which shows
that if each polynomial that is strictly positive on KQ admits a “degree-bounded” weighted sum-
of-squares representation, then the truncated moment problem on KQ can be solved in terms of
positivity for the localizing matrices associated to each qi . In Section 2 we present some concrete
conditions for representing measures related to the algebraic variety V ≡ V(M(n)) associated
to β(2n). In particular, V-positivity for Lβ(2n) implies the existence of V-representing measures

for β(2n) when d = 1 (Proposition 2.15); when d = 2, n � 2 and V is a subset of a planar curve
p(x, y) = 0 with degp � 2 (Proposition 2.17); when V is compact (Proposition 2.18); or when
card V = rank M(n) (Proposition 2.19).

We note that positivity for L̃ := Lβ(2n+2) is in general a much stronger condition than pos-
itivity for the corresponding moment matrix M(n + 1). For this reason, in general it is quite
difficult to directly verify that an extension L̃ : P2n+2 → R is K-positive. One approach to
establishing K-positivity or the existence of representing measures is through extensions of
moment matrices. For simplicity, consider the case K = R

d (the case of a general semialge-
braic set is discussed following Theorem 1.4). [15] implies that β admits a finitely atomic
representing measure if and only if for some k � 0, M(n) has a positive semidefinite exten-
sion M(n + k), which in turn admits a flat (i.e., rank-preserving) extension M(n + k + 1).
The generalization of this result to measures with finite moments up to at least degree 2n + 1
follows from [35] or [13], and the extension to general measures follows from a recent result
of [2] (cf. Section 2). When the extension M(n + k) (as above) exists, we may always take k �
min{card V − rank M(n),dim P2n − rank M(n)} [21, Proposition 2.3], and examples of [19] and
[21] illustrate cases where k > 0 is required. Corresponding to the flat extension M(n + k + 1)

is a computable rank M(n + k)-atomic representing measure μ for β(2n), so in this approach we
circumvent K-positivity (though the Riesz functional associated to M(n+1)[μ] is clearly a pos-
itive extension of Lβ ). Various sufficient conditions for flat extensions appear in [8,9,14,16,17,
30]; perhaps the basic condition is M(n) � 0 and rank M(n) = rank M(n−1) [7]. Theorem 1.2
shows that, in principle, the existence of an extension M(n + k) (as above) is completely deter-
mined by a choice of M(n+1) for which the corresponding Riesz functional L(2n+2) is positive.

A second approach to positivity for an extension L̃ : P2n+2 → R concerns the structure of pos-
itive polynomials. Note that the main difficulty associated with Theorem 1.1 is that for a general
closed set K ⊆ R

d there is no concrete representation theorem for polynomials that are nonneg-
ative on K , so there may be no practical test to check whether Lβ is K-positive. In this sense,
Theorem 1.1 is an “abstract” solution to the moment problem, and, similarly, Theorem 1.2 is an
abstract solution to the truncated moment problem. In the case when K is a compact semialge-
braic set, a celebrated theorem of K. Schmüdgen [42, Theorem 1] provides a concrete test for the
K-positivity of Lβ(∞) (cf. Theorem 1.3 below). In Section 3 we will derive certain analogues of
Schmüdgen’s results for the truncated moment problem.

Let Q = {q0, q1, . . . , qm} ⊆ P (with q0 ≡ 1) and consider the semialgebraic set

KQ = {
x ∈ R

d : qi(x) � 0 (1 � i � m)
}
.

Moreover, let Qπ denote the set of products of distinct polynomials in Q, that is,

Qπ := {qi1 · · ·qis : qij ∈ Q, 0 � i1 < · · · < is � m, 1 � s � m + 1};
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observe that Q ⊆ Qπ and that KQ = KQπ . Let Q̃ denote any set satisfying Q ⊆ Q̃ ⊆ Qπ , so that
KQ = KQ̃. In our applications, we will specify Q̃ = Q or Q̃ = Qπ as needed.

Recall from [9] and [15] the moment matrix M ≡ M(∞)(β) associated with β ≡ β(∞), de-
fined by 〈Mf̂ , ĝ〉 := Lβ(fg) (f, g ∈ P). For p ∈ P , the localizing matrix Mp ≡ Mp(∞) is
defined by 〈Mpf̂ , ĝ〉 := Lβ(fgp) (f, g ∈ P); observe that M1 = M. If μ is a representing
measure for β , then for f ∈ P , 〈Mf̂ , f̂ 〉 = Lβ(f 2) = ∫

f 2 dμ � 0, so M is positive semidefi-
nite (M � 0). Similarly, if μ is a representing measure supported in KQ and r ≡ qi1 · · ·qis ∈ Qπ ,
then 〈Mr f̂ , f̂ 〉 = Lβ(rf 2) = ∫

qi1 · · ·qis f
2 dμ � 0 (since qij |suppμ � 0), whence Mr � 0. The

results in [42] are presented in terms of positive multisequences; here we give an equivalent
reformulation in terms of moment matrices.

Theorem 1.3. (K. Schmüdgen [42].) Suppose KQ is compact and Q̃ = Qπ . The sequence β ≡
β(∞) has a representing measure supported in KQ if and only if Mr � 0 for each polynomial
r ∈ Q̃.

The conclusion of Theorem 1.3 also holds for certain semialgebraic sets that are not compact.
Consider the following property for a semialgebraic set KQ and an associated Q̃:

(S) β ≡ β(∞) has a representing measure supported in KQ if and only if Mr � 0 for each
polynomial r ∈ Q̃.

Hamburger’s theorem for the real line R is equivalent to the assertion that (S) holds with d = 1,
Q = Q̃ = {1}, and Stieltjes’ theorem for the half-line [0,+∞) is equivalent to the statement that
(S) holds when d = 1, Q = Q̃ = {1, x} (cf. [1,46]). Moreover, a theorem of J. Stochel [48] is
equivalent to the statement that if d = 2 and degp � 2, then (S) holds for the algebraic set KQ,
where Q = Q̃ = {1,p,−p}. Other algebraic sets satisfying (S) are described in [33,39,43,48,50].

In [42], for the case when KQ is compact, Schmüdgen used Theorem 1.3 to establish a struc-
ture theorem for polynomials that are strictly positive on KQ. Consider the convex cones in P
defined by

ΣQ̃ :=
{
p ∈ P : p =

∑
j

f 2
j +

∑
k

rk
∑
j

g2
kj : fj , gkj ∈ P, rk ∈ Q̃

}
. (1.1)

For Q̃ = Q (respectively Qπ ) we denote ΣQ̃ by ΣQ (respectively ΣQπ ). In [42, Corollary 3],
Schmüdgen proved that if KQ is compact, then each polynomial that is strictly positive on KQ
belongs to ΣQπ ; this result is generally referred to in the literature as Schmüdgen’s Positivstel-
lensatz. The converse of Schmüdgen’s Positivstellensatz is also true, and holds for general KQ.
For suppose that each polynomial that is strictly positive on KQ belongs to ΣQ̃. To show that

KQ and Q̃ satisfy (S), let β ≡ β(∞) be given and assume that Mr � 0 for each r ∈ Q̃. To
prove that β has a KQ-representing measure, we will verify that L ≡ Lβ is KQ-positive. For
p ∈ P with p|KQ � 0, and for ε > 0, we have p + ε > 0, so p + ε belongs to ΣQ̃. Thus,

p + ε = ∑
j f 2

j + ∑
k rk

∑
j g2

kj (as in (1.1)), whence

L(p) + εL(1) = L(p + ε) = L

(∑
j

f 2
j +

∑
k

rk
∑
j

g2
kj

)

=
∑
j

〈Mf̂j , f̂j 〉 +
∑

k

∑
j

〈Mrk ˆgkj , ˆgkj 〉 � 0. (1.2)
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Since ε > 0 is arbitrary, it follows that L(p) � 0. Thus, L is KQ-positive, so the existence of
a KQ-representing measure follows from Theorem 1.1. Since the converse implication in (S)
is always true, KQ and Q̃ satisfy (S). We thus have the following result for the full moment
problem on semialgebraic sets.

Theorem 1.4. (Cf. [42, Corollary 3], [33, Corollary 3.1].) If KQ is compact, then each poly-
nomial that is strictly positive on KQ belongs to ΣQπ . Conversely, for arbitrary KQ, if each
polynomial that is strictly positive on KQ belongs to ΣQ̃, then KQ satisfies (S) with Q̃.

Consider a (necessarily compact) KQ with the following property:

(P) There exists R > 0 such that R − (x2
1 + · · · + x2

d) ∈ ΣQ.

In [34], M. Putinar proved that if KQ satisfies (P), then KQ satisfies (S) with Q̃ = Q, and that
each polynomial that is strictly positive on KQ belongs to ΣQ. For other results related to [42],
see [26,33,39,40], and the references cited therein.

In Section 3 we establish analogues of Theorem 1.4 for the truncated moment problem. To
motivate these results, we first recall a general existence criterion for representing measures.
Let β ≡ β(2n) and define the associated moment matrix M(n) ≡ M(n)(β) by 〈M(n)p̂, q̂〉 :=
Lβ(pq)(p, q ∈ Pn) [8,15]; M(n) is a square matrix, of size dim Pn, with columns Xi (|i| � n).
Let KQ be as above and let degqi = 2ki or 2ki − 1 (1 � i � m). For s ∈ P2n with deg s = 2k or
2k − 1, recall from [15] the localizing matrix Ms(n) ≡ Ms(n)(β), defined by 〈Ms(n)p̂, q̂〉 :=
Lβ(spq) (p, q ∈ Pn−k); the size of Ms(n) is dim Pn−k . Also recall from [15] that if M(n)

(� 0) admits a flat extension M(n+ 1), then M(n+ 1) admits unique successive flat extensions
M(n+2),M(n+3), . . . . The existence criterion of [15, Theorem 1.1] states that β has a finitely
atomic KQ-representing measure if and only if M(n) admits a positive extension M(n+ k) (for
some k � 0), which in turn admits a flat extension M(n + k + 1) such that Mqi

(n + k + ki) � 0
(1 � i � m). (An estimate for k and an extension to general measures follow as above for the
case KQ = R

d .) In Section 3 we study cases where the conditions of [15] can be relaxed, as we
next describe.

Let KQ be as above and choose n so that 2n � degqi for i = 0, . . . ,m. For k � 0, consider
the following properties for KQ:

(Sn,k) β(2n) has a KQ-representing measure if and only if M(n) admits a positive extension
M(n + k) such that Mqi

(n + k) � 0 for i = 1, . . . ,m

and

(Rn,k) β(2n) has a KQ-representing measure if and only if M(n) admits a positive, recursively
generated extension M(n + k) such that Mqi

(n + k) � 0 for i = 1, . . . ,m.

In the preceding properties we have dropped the requirement for a flat extension, which is fre-
quently difficult to establish. Observe that for fixed n and k, (Sn,k) implies (Rn,k). Note also that
(Rn,k) implies (Sn,k+1); this follows from the fact that if M(n+k+1) is positive, then M(n+k)

is positive and recursively generated [7, Theorem 3.14]. In verifying property (Sn,k) or (Rn,k),
one direction is always true. For, suppose β ≡ β(2n) has a KQ-representing measure μ. [2] then
implies that β admits a finitely atomic KQ-representing measure ν (cf. Section 2). Since ν has
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moments of all orders, for each k, M(n+ k)[ν] is a positive and recursively generated extension
of M(n), and since suppν ⊆ KQ, then Mqi

(n + k)[ν] � 0 (0 � i � m).
Whereas Schmüdgen works with the cone ΣQπ ∩ P2n, we focus on the sub-cone ΣQ,n, de-

fined by

ΣQ,n :=
{
p ∈ P2n: p =

∑
j

f 2
0j + q1

∑
j

f 2
1j + · · · + qm

∑
j

f 2
mj , qif

2
ij ∈ P2n (0 � i � m)

}
.

It follows from an application of Carathéodory’s theorem described in [51, pp. 126, 127] that
the total number of terms qif

2
ij in such a representation of p can always be taken to be at most

dim P2n (cf. Lemma 3.3). In the sequel we consider the property for KQ that for some n and k,
each p ∈ P2n with p|KQ > 0 admits a degree-bounded weighted sum-of-squares representation,
in the sense that p ∈ ΣQ,n+k . In Section 3 we obtain the following analogue of one direction of
Theorem 1.4 for the truncated moment problem.

Theorem 1.5.

(i) Assume that KQ satisfies (Sn,k) for some n and k. Then every polynomial in P2n that is
strictly positive on KQ belongs to ΣQ,n+k .

(ii) Assume that KQ satisfies (Rn,k) for some n and k. Then each polynomial in P2n that is
strictly positive on KQ belongs to ΣQ,n+k+1.

Theorem 1.5 provides a sufficient condition for finite convergence in the polynomial opti-
mization method of J. Lasserre [27]; indeed, if the conditions of Theorem 1.5(i) hold, then for
f ∈ P2n, the optimal value f ∗ := inf{f (x): x ∈ KQ} is realized at the (n + k)th Lasserre re-
laxation (cf. Proposition 3.2). In Theorem 3.18 we show that Theorem 1.5 can be extended to
nonnegative polynomials in those cases where the cone ΣQ,n+k is closed in P2(n+k). In Section 3
we also establish the following converse of Theorem 1.5, an analogue to the converse direction
in Theorem 1.4.

Theorem 1.6.

(i) If k � 1 and each polynomial in P2n+2 that is strictly positive on KQ belongs to ΣQ,n+k ,
then KQ satisfies (Sn,k).

(ii) If k = 0, KQ is compact, and each polynomial in P2n that is strictly positive on KQ belongs
to ΣQ,n, then KQ satisfies (Sn,0).

Example 2.1 (below) shows that the compactness hypothesis cannot be dropped in Theo-
rem 1.6(ii). Given Q̃ such that Q ⊆ Q̃ ⊆ Qπ , consider the convex cone ΣQ̃,n

:= {p ∈ P2n: p =∑
i ri

∑
j f 2

ij , ri ∈ Q̃, rif
2
ij ∈ P2n}. Let (S̃n,k) be the property that β(2n) has a KQ-representing

measure if and only if M(n) admits a positive extension M(n+ k) such that Mr (n+ k) � 0 for
every r ∈ Q̃. It is straightforward to modify the proofs of Theorems 1.5 and 1.6 so as to obtain
analogues where (Sn,k) is replaced by (S̃n,k) and ΣQ,n+k is replaced by ΣQ̃,n+k

.
In the classical literature, the truncated moment problem was solved concretely only for the

interval [a, b], for finite unions of closed intervals, for the circle, and for some cases of the line
R and the half-line [0,+∞) (cf. [1,25,46]). These results were proved using the representations
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of positive polynomials for these sets, and thus illustrate Theorem 1.6 (cf. Section 3). Addi-
tional examples of this approach, for planar curves of the form y = f (x) or yf (x) = 1, appear
in the forthcoming article [22] (cf. Remark 3.21). An alternate approach to truncated moment
problems is through extensions of moment matrices. In [6] we used recursiveness of moment
matrices to complete the one-dimensional results for the line and half-line, and also in [8,11] and
[16] to solve the truncated moment problem for lines, circles, and ellipses. In [14] and [16] we
used recursiveness and the variety condition rank M(n) � card V(M(n)) to solve the truncated
moment problem for the other conics (parabolas and hyperbolas). These results, together with
Theorem 1.5, yield “degree-bounded” weighted sum-of-squares representations for polynomi-
als that are positive on these sets (cf. Section 3). These representations are apparently new for
parabolas and hyperbolas (and possibly for lines and ellipses). Despite the preceding results, the
applicability of weighted sums of squares to truncated moment problems (as in Theorems 1.5
and 1.6) seems limited. Indeed, by contrast with Schmüdgen’s results for the full moment prob-
lem (cf. Theorems 1.3 and 1.4), the proof of [41, Example 5.1] implies that if d � 2 and KQ has
nonempty interior, then for every n � 3 and every k � 0, KQ fails to satisfy (Sn,k). In the case of
the closed unit disk, (S1,0) is satisfied [11, Theorem 1.8(iv)], but whether the disk satisfies (S2,k)
for some k � 0 appears to be open.

2. An analogue of the Riesz–Haviland theorem for the truncated moment problem

We begin with an example which shows that the truncated moment problem does not admit
the most direct analogue of the Riesz–Haviland theorem.

Example 2.1. For d = 1 and K = R (the real line), we will exhibit β ≡ β(4) for which L ≡ Lβ is
K-positive, but β admits no representing measure. Define β(4) by β0 = β1 = β2 = β3 := 1 and
β4 := 2, so that

M(2) =
⎛
⎝ 1 1 1

1 1 1
1 1 2

⎞
⎠ .

A calculation shows that M(2) � 0. Indeed, a partitioned real symmetric matrix M = (
A B

BT C

)
is positive semidefinite if and only if A � 0 and there exists a matrix W such that B = AW and
C � WTAW (cf. [47], [9, Proposition 2.2]). In the present case, A = ( 1 1

1 1

)
, B = ( 1

1

)
, C = (2),

and we may take W = ( 1
0

)
. In this case, Lβ is defined by L(a0 + a1x + a2x

2 + a3x
3 + a4x

4) :=
a0 + a1 + a2 + a3 + 2a4. To see that L is R-positive, recall that if p ∈ P4 satisfies p|R � 0,
then there exist f,g ∈ P2 such that p = f 2 + g2 [32, Solution 44, p. 259]. Now L(p) =
L(f 2 + g2) = 〈M(2)f̂ , f̂ 〉 + 〈M(2)ĝ, ĝ〉 � 0; thus, L is R-positive. Assume that μ is a rep-
resenting measure for β . Since

∫
(x − 1)2 dμ = L(x2 − 2x + 1) = β2 − 2β1 + β0 = 0, it follows

that (x −1)|suppμ ≡ 0. We thus have (x −1)x3|suppμ ≡ 0, so 0 = ∫
(x −1)x3 dμ = L(x4 −x3) =

β4 − β3 = 1, a contradiction. Thus L is K-positive, but β has no representing measure.

We will return to Example 2.1 in the sequel. We now turn to the proof of Theorem 1.2, which
we restate for ease of reference.

Theorem 2.2. β ≡ β(2n) admits a K-representing measure if and only if Lβ admits a K-positive
extension L : P2n+2 → R.
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We require some preliminary results and notation. Let X be a locally compact Hausdorff
space. A continuous function f :X → R vanishes at infinity if, for each ε > 0, there is a compact
set Cε ⊆ X such that X \ Cε ⊆ {x ∈ X: |f (x)| < ε}. Let C0(X) denote the Banach space of all
functions on X which vanish at infinity, equipped with the norm ‖f ‖∞ := supx∈X |f (x)|. The
space Cc(X) of continuous functions with compact support is norm dense in C0(X) [5, III.1,
Exercise 13]; when X is compact, C0(X) = Cc(X) = C(X), where C(X) denotes the space of
continuous real-valued functions on X equipped with the ‖ · ‖∞ norm. The Riesz representation
theorem [5, C.18] states that C0(X)∗, the dual space of C0(X), is isometrically isomorphic to
M(X), the space of finite regular Borel measures on X (equipped with the norm ‖μ‖ := |μ|(X));
under this duality, corresponding to μ ∈ M(X) is the functional μ̂ on C0(X) defined by μ̂(f ) :=∫

f dμ. For the case when X ⊆ R
d , B1(C0(X)∗), the closed unit ball of C0(X)∗, is weak-∗

compact and metrizable [5, Theorems V.3.1 and V.5.1]. The following result is due to J. Stochel
[49], where it is stated in terms of complex variables and the complex moment problem.

Proposition 2.3. (Real version of [49, Proposition 1].) Let K be a nonempty closed subset of R
d

and let ρ be a nonnegative continuous function on K . Assume that {μω}ω∈Ω is a net of finite
positive Borel measures on K and μ is a finite positive Borel measure on K such that

(i) limω∈Ω

∫
K

f dμω = ∫
K

f dμ (f ∈ Cc(K)), and
(ii) supω∈Ω

∫
K

ρ dμω < +∞.

Then
∫
K

ρ dμ � supω∈Ω

∫
K

ρ dμω and
∫
K

fρ dμ = limω∈Ω

∫
K

fρ dμω (f ∈ C0(K)). More-
over, if the set {x ∈ K: ρ(x) � r} is compact for some r > 0, then

∫
K

f dμ = limω∈Ω

∫
K

f dμω

for every f :K → R such that f/(1 + ρ) ∈ C0(K).

The next result is our main tool for proving Theorem 2.2.

Theorem 2.4. Let β ≡ β(2n) and let K be a nonempty closed subset of R
d . If the Riesz functional

Lβ is K-positive, then β(2n−1) has a K-representing measure.

Proof. Let f1 ≡ 1, f2, . . . , fN denote a listing of the monomials in P2n in degree-lexicographic
order; thus β = {β(fi)}Ni=1, where β(fj ) = Lβ(fj ), and we set ζβ = (β(f1), . . . , β(fN)). For
x ∈ K , let ζ(x) := (f1(x), . . . , fN(x)) ∈ R

N , and let ζ(K) := {ζ(x): x ∈ K}. Let cone ζ(K)

denote the convex cone in R
N generated by ζ(K), i.e.,

cone ζ(K) :=
{

k∑
i=1

aiζ(xi): k � 1, ai � 0, xi ∈ K

}
.

If ζβ ∈ cone ζ(K), then β has a finitely atomic K-representing measure. Indeed, if ζβ =∑k
i=1 aiζ(xi) (for some k � 1, ai > 0, xi ∈ K (1 � i � k)), let μ := ∑k

i=1 aiδxi
(where δx is

the unit-mass measure supported at x). Clearly,

∫
fj dμ =

k∑
i=1

aifj (xi) =
[

k∑
i=1

aiζ(xi)

]
j

= [ζβ ]j = β(fj ) (1 � j � N),

so μ is a K-representing measure for β .
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Next, consider the closed convex cone C ≡ cone ζ(K). We will show below that ζβ ∈ C,
but we first show that if ζβ ∈ C, then β(2n−1) has a K-representing measure. To see this, sup-

pose ζβ = limp→+∞
∑kp

i=1 aipζ(xip) (kp � 1, aip � 0, xip ∈ K). Let μp = ∑kp

i=1 aipδxip
, so that∫

fj dμp = ∑kp

i=1 aipfj (xip) = [∑kp

i=1 aipζ(xip)]j . Now,

lim
p→+∞

∫
fj dμp = [ζβ ]j = β(fj ) (1 � j � N). (2.1)

In particular, limp→+∞ ‖μp‖ = limp→+∞
∫

f1 dμp = β(f1), so {μp} is bounded in C0(K)∗.
Since the unit ball of C0(K)∗ is compact and metrizable, it follows that some subsequence
(which we also denote by {μp}) is weak-∗ convergent, i.e., there exists Λ ∈ C0(K)∗ such that
limp→+∞

∫
f dμp = Λ(f ) (f ∈ C0(K)). Since each μp � 0, the Riesz representation theo-

rem implies that Λ(f ) = ∫
f dμ (f ∈ C0(K)) for some positive finite regular Borel measure

μ with suppμ ⊆ K . Let σp = ∫ ‖x‖2n dμp and set σ = supp σp . Since ρ(x) ≡ ‖x‖2n ∈ P2n,
(2.1) implies that {σp} is convergent, whence σ < +∞. Proposition 2.3 now implies that
limp→+∞

∫
f dμp = ∫

f dμ for every f such that f/(1 + ‖x‖2n) ∈ C0(K). It follows exactly
as in the proof of [13, Proposition 3.2] that for f ∈ P2n−1, f/(1 + ‖x‖2n) ∈ C0(K). Thus, for
each fj satisfying deg fj � 2n− 1, we have limp→+∞

∫
fj dμp = ∫

fj dμ, while (2.1) implies
limp→+∞

∫
fj dμp = β(fj ). Thus β(fj ) = ∫

fj dμ whenever degfj � 2n − 1, whence μ is a
K-representing measure for β(2n−1).

To complete the proof we will show that ζβ ∈ C. For otherwise, since C is a closed cone
in R

N , the Minkowski separation theorem (cf. [51, p. 124], [3, (34.2)]) implies that there exists
a ≡ (aj )1�j�N ∈ R

N such that 〈a, v〉 � 0 (v ∈ C) and 〈a, ζβ〉 < 0. Let p(x) = ∑N
j=1 ajfj (x) ∈

P2n. For x ∈ K , since ζ(x) ∈ C, then p(x) = ∑N
j=1 ajfj (x) = 〈a, ζ(x)〉 � 0, so p|K � 0. Since

Lβ is K-positive, it follows that Lβ(p) � 0. On the other hand, since Lβ(p) = 〈a, ζβ〉 < 0, we
have a contradiction. Thus ζβ ∈ C and β(2n−1) has a K-representing measure. �

Let μ denote a positive Borel measure on R
d having convergent moments up to at least de-

gree m, and let β(m)[μ] denote the sequence of moments of μ, defined by βi := ∫
xi dμ (|i| � m).

A cubature rule for μ of degree m is a finitely atomic representing measure for β(m)[μ]. A clas-
sical result of Tchakaloff [51, Théorème II; p. 129] shows that if suppμ is compact, then for
each m, μ has a cubature rule ν of degree m with suppν ⊆ suppμ and card suppν � dim Pm.
Extensions of this result to the case where suppμ is unbounded appear in [35] and [13], but the
cubature rules in these papers only extend to degree m − 1. Recently, Bayer and Teichmann [2,
Theorem 2] obtained the full extension of Tchakaloff’s theorem: μ always has a cubature rule
ν of degree m such that suppν ⊆ suppμ (and satisfying card suppν � 1 + dim Pm). This result
has an important consequence for the truncated moment problem, for it implies that if β(2n) has a
K-representing measure, then β(2n) has a finitely atomic K-representing measure. By combining
this result with Theorem 2.4, we obtain our proof of Theorem 2.2, as follows.

Proof of Theorem 2.2. Let β ≡ β(2n) and suppose that Lβ admits a K-positive extension
L : P2n+2 → R. Theorem 2.4 implies that there is a positive Borel measure μ supported in
K such that L(p) = ∫

p dμ (p ∈ P2n+1). In particular, for |i| � 2n, βi = Lβ(xi) = L(xi) =∫
xi dμ, so μ is a K-representing measure for β . Conversely, suppose β(2n) admits a K-

representing measure. The Bayer–Teichmann theorem [2] implies that β(2n) admits a finitely
atomic K-representing measure ν. Since ν has convergent moments of all orders, we may define
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β̃ ≡ β̃(2n+2) by β̃i := ∫
xi dν (|i| � 2n + 2). Now suppν ⊆ K , so it follows immediately that

Lβ̃ : P2n+2 → R is K-positive, and since β̃i = βi (|i| � 2n), Lβ̃ is an extension of Lβ . �
Since each nonnegative polynomial on R is a sum of two squares, for d = 1 positivity of the

Riesz functional Lβ(2m) is equivalent to positivity of the corresponding moment matrix M(m),
which can be checked by concrete tests. For d > 1, positive polynomials are not necessarily
sums of squares, so it is difficult to directly verify that Lβ(2m) is positive. In the remainder of
this section and in Section 3 we study several concrete criteria which guarantee the existence of
K-positive extensions (and K-representing measures). We begin by recalling some concrete (i.e.,
computable) necessary conditions for representing measures in the truncated moment problem.
As in the full moment problem, the basic necessary condition for a representing measure for
β(2n) is positivity of the moment matrix. Indeed, if μ is a representing measure, then for p ∈ Pn,
〈M(n)p̂, p̂〉 = Lβ(p2) = ∫

p2 dμ � 0. Note that M(n) � 0 is equivalent to the condition that
Lβ is square positive, i.e., for p ∈ Pn, Lβ(p2) � 0. Let CM(n) denote the column space of
M(n). For p(x) ≡ ∑

|i|�n aix
i ∈ Pn, we denote by p(X) the element of CM(n) defined by

p(X) := ∑
|i|�n aiX

i ; note that p(X) = M(n)p̂. Each dependence relation in the columns of
M(n) may be expressed as p(X) = 0 for some p ∈ Pn. Let V ≡ V(M(n)) denote the variety of
M(n), defined by V := ⋂

p∈Pn,p(X)=0 Z(p), where Zp := {x ∈ R
d : p(x) = 0} (cf. [9, p. 6]).

Proposition 2.5. (Cf. [7, Proposition 3.1 and Corollary 3.7].) Suppose β ≡ β(2n) has a repre-
senting measure μ.

(i) p ∈ Pn satisfies p(X) = 0 in CM(n) if and only if suppμ ⊆ Z(p);
(ii) suppμ ⊆ V(M(n));

(iii) rank M(n) � card suppμ � card V(M(n)).

Remark 2.6. Note that if β ≡ β(2n) admits a representing measure μ, then Lβ is V-positive;
for, if p ∈ P2n and p|V � 0, then p|suppμ � 0 from Proposition 2.5(ii), so L(p) = ∫

p dμ � 0.
We may also introduce the variety in the full moment problem for β(∞), V(M(∞)) =⋂

p∈P,p(X)=0 Z(p). If β(∞) admits a representing measure μ, then suppμ ⊆ V(M(∞)). In-
deed, if p ∈ P and p(X) = 0 in CM(∞), then with n = deg p, μ is a representing measure for
β(2n) and p(X) = 0 in CM(n), so Proposition 2.5 implies suppμ ⊆ Z(p).

Theorem 1.1 now admits the following reformulation.

Proposition 2.7. Let K ⊆ R
d be a nonempty closed set. The following are equivalent for

β ≡ β(∞):

(i) β admits a K-representing measure;
(ii) Lβ is K-positive;

(iii) Lβ is K ∩ V(M(∞))-positive.

Proof. Clearly, (iii) implies (ii), so in view of Theorem 1.1, it suffices to show that (i)
implies (iii). Suppose μ is a K-representing measure for β and suppose f ∈ P satisfies
f |K∩V(M(∞)) � 0. Since suppμ ⊆ K ∩ V(M(∞)) by Remark 2.6, then f |suppμ � 0, so we
have L(f ) = ∫

f dμ � 0. �



Author's personal copy

R.E. Curto, L.A. Fialkow / Journal of Functional Analysis 255 (2008) 2709–2731 2719

Returning to the truncated moment problem for β ≡ β(2n), the same argument as in the preced-
ing proof shows that if β admits a K-representing measure, then Lβ is K ∩ V(M(n))-positive.
Motivated by Example 2.1 and Proposition 2.7, in the sequel we study whether the analogue of
Proposition 2.7(iii) ⇒ (i) holds for the truncated moment problem. In particular, for K = Rd , we
consider the following question.

Question 2.8. Let β = β(2n) and V = V(M(n)). If Lβ is V-positive, does β have a representing
measure (necessarily supported in V)?

Suppose M(n) > 0 (M(n) is positive definite), so that V(M(n)) = R
d . In view of Theo-

rem 1.2, in this case Question 2.8 is equivalent to the following question.

Question 2.9. If M(n) > 0 and Lβ is positive, does Lβ admit a positive extension L : P2n+2 → R.

In Question 2.9, the hypothesis that Lβ is positive is essential. Indeed, [8] illustrates a case
with d = 2 where M(3) > 0, but there is no representing measure. In this example, the Riesz
functional is not positive.

Remark 2.10. Theorem 2.2 implies that a linear functional L : P2n → R admits a K-representing
measure if and only if L admits a K-positive extension to P2n+2. It is natural to ask whether
other forms of extended K-positivity lead to representing measures. One possibility is to define
L to be mK-positive if whenever P ≡ (pij )

m
i,j=1 is an m × m matrix of polynomials in P2n,

the pointwise positivity of P on K implies that L(P ) := (L(pij ))
m
i,j=1 � 0. We say that L is

completely K-positive if L is mK-positive for all m � 1. It is not difficult to check that complete
K-positivity of L is a necessary condition for the existence of a K-representing measure. At
first sight, this notion may appear to be stronger than K-positivity, but Prof. Vern Paulsen has
pointed out to us that an adaptation of the proof of [31, Proposition 3.8] shows that complete
K-positivity is actually equivalent to K-positivity. Thus, complete K-positivity, while allowing
matrix polynomials of all sizes to occur, apparently cannot account for increases in polynomial
degree, as needed for the existence of a representing measure.

We devote the remainder of this section to illustrating cases where Question 2.8 has a posi-
tive answer, and to this end we require some preliminary results. Let β ≡ β(2n) and recall from
[18] and [7] that M(n) is recursively generated if whenever p,q,pq ∈ Pn and p(X) = 0 in
CM(n), then (pq)(X) = 0. Motivated by the proof of Example 2.1, and by a suggestion from
Prof. Michael Möller, we say that L ≡ Lβ is strongly recursively generated if the following prop-
erty holds: if p ∈ Pn, L(p2) = 0, and q ∈ P satisfies pq ∈ P2n, then L(pq) = 0. We next show
that strong recursiveness is a necessary condition for representing measures. In Example 2.1, L is
not strongly recursively generated, since L((1 − x)2) = 0 but L((x − 1)x3) 
= 0.

Proposition 2.11. If β ≡ β(2n) has a representing measure, then Lβ is strongly recursively gen-
erated.

Proof. Suppose p ∈ Pn, Lβ(p2) = 0, and q ∈ P satisfies pq ∈ P2n. Since β has a repre-
senting measure, M(n) � 0, so 0 = Lβ(p2) = 〈M(n)p̂, p̂〉 = ‖M(n)1/2p̂‖2, whence p(X) =
M(n)1/2(M(n)1/2p̂) = 0. Proposition 2.5(i) implies that suppμ ⊆ Z(p), i.e., p|suppμ ≡ 0. Now
pq|suppμ ≡ 0, so Lβ(pq) = ∫

pq dμ = 0. �
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Proposition 2.12. For β ≡ β(2n), if L ≡ Lβ is strongly recursively generated, then M(n) is
recursively generated.

Proof. Suppose p,q,pq ∈ Pn and p(X) = 0. Since M(n)p̂ = p(X) = 0, then L(p2) =
〈M(n)p̂, p̂〉 = 0. Let r ∈ Pn, so that pqr ∈ P2n. Since L is strongly recursively generated,
we have 〈M(n)p̂q, r̂〉 = L(pqr) = 0. Thus, 〈M(n)p̂q, r̂〉 = 0 (all r ∈ Pn), so (pq)(X) =
M(n)p̂q = 0, as desired. �

Recall from [17] that β is consistent if whenever p ∈ P2n and p|V ≡ 0, then Lβ(p) = 0.

Proposition 2.13. Let β ≡ β(2n) and V ≡ V(M(n)). If L ≡ Lβ is V -positive, then β is consis-
tent, M(n) � 0, L is strongly recursively generated, and r := rank M(n) � v := card supp V .

Proof. Suppose L is V-positive. If p ∈ P2n satisfies p|V ≡ 0, then V-positivity implies L(p) � 0
and L(−p) � 0, whence L(p) = 0; thus β is consistent. For p ∈ Pn, V-positivity implies
that L(p2) � 0, so 〈M(n)p̂, p̂〉 � 0, whence M(n) � 0. To show that L is strongly recur-
sively generated, let p ∈ Pn with L(p2) = 0. Since M(n) � 0, we have ‖M(n)1/2p̂‖2 =
〈M(n)1/2p̂,M(n)1/2p̂〉 = 〈M(n)p̂, p̂〉 = L(p2) = 0, whence p(X) = M(n)p̂ = M(n)1/2 ×
(M(n)1/2p̂) = 0. Thus, V ⊆ Z(p), i.e., p|V ≡ 0. Now for q ∈ P such that pq ∈ P2n, since
pq|V ≡ 0, V-positivity for L implies that L(pq) = 0; thus L is strongly recursively generated.

To complete the proof, we will show that r � v. The linear map ψ : CM(n) → Pn|V , given
by ψ(p(X)) := p|V (p ∈ Pn), is well defined (by the definition of V). Since L is V-positive,
β is consistent, hence weakly consistent (cf. [17]), i.e., if p ∈ Pn and p|V ≡ 0, then p(X) =
0 ∈ CM(n). Thus, ψ is one-to-one, whence r ≡ dim CM(n) � dim Pn|V . Since we may assume
that v < +∞, then dim Pn|V � dim R

v = v (where we view a polynomial restricted to V as the
sequence of its values at the points of V); thus, r � v. �

In the proof of Proposition 2.17 we will need the following result.

Corollary 2.14. Let V := V(M(n)). If Lβ is V-positive and V ⊆ Z(p) for some p ∈ Pn, then
p(X) = 0 in CM(n).

Proof. Proposition 2.13 implies that β is consistent, so [17, formula (2.2) in Lemma 2.2] im-
plies that M(n) is weakly consistent, i.e., q ∈ Pn, q|V ≡ 0 ⇒ q(X) = 0 (in CM(n)). Since by
hypothesis V ⊆ Z(p), we must have p|V ≡ 0, so the result follows. �

The preceding results show that V(M(n))-positivity for Lβ(2n) implies many of the known
necessary conditions for representing measures. Using these results we next present some cases
where Question 2.8 has an affirmative answer.

Proposition 2.15. (Truncated Hamburger moment problem.) Let d = 1 (one real variable). The
following are equivalent for β ≡ β(2n):

(i) β has a representing measure;
(ii) M(n)(β) is positive semidefinite and recursively generated;

(iii) β has a rank M(n)-atomic representing measure;
(iv) Lβ is V(M(n))-positive.
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Proof. The equivalence of (i), (ii), and (iii) is established in [6, Theorem 3.9], and (i) ⇒ (iv) was
derived in Remark 2.6. Finally, (iv) ⇒ (ii) follows from Propositions 2.12 and 2.13. �
Remark 2.16. (i) Theorem 1.2 can be used to give an alternate proof of (ii) ⇒ (i) in Proposi-
tion 2.15. Indeed, if M(n) is positive and recursively generated, then [6, Theorem 2.6] shows that
M(n) admits a positive extension M(n + 1). Since M(n + 1) � 0, the sum-of-squares repre-
sentation for nonnegative polynomials on R [32] implies that the Riesz functional corresponding
to M(n + 1) is positive, whence Theorem 1.2 implies that β(2n) admits a representing measure.

(ii) Proposition 2.15 can be used to illustrate that the truncated moment problem is more
general than the full moment problem. Hamburger’s theorem for d = 1 states that β(∞) has a
representing measure supported in R if and only if M(∞) � 0 (cf. [23, p. 166], [46, p. 5]). To
prove this via the truncated moment problem, note that if M(∞) � 0, then for each n, M(n) � 0
and M(n) is recursively generated (cf. [20, Proposition 4.2]). Proposition 2.15 thus implies that
β(2n) has a representing measure for each n, so the existence of a representing measure for β(∞)

follows from Stochel’s theorem [49].

We next resolve Question 2.8 for the case when d = 2 and V(M(n)) ⊆ Z(p), where degp �
2 � n.

Proposition 2.17. (The truncated moment problem on planar curves of degree at most 2.) Let
d = 2. Suppose degp(x, y) � 2 � n and V(M(n)) ⊆ Z(p). The following are equivalent for
β ≡ β(2n):

(i) β has a representing measure;
(ii) β has a finitely atomic representing measure;

(iii) M(n) is positive and recursively generated, and r � v;
(iv) Lβ is V(M(n))-positive.

Proof. Corollary 2.14 shows that (iv) implies p(X,Y ) = 0 in CM(n). Under this condition, [16,
Theorem 1.2] implies that (i), (ii) and (iii) are equivalent, and (i) always implies (iv). Since
Propositions 2.12, 2.13 show that (iv) implies (iii), the proof is complete. �

We next consider the case when d � 1 and V(M(n)) is compact.

Proposition 2.18. Let d � 1 and suppose V ≡ V(M(n)) is compact. If Lβ is V-positive, then β

admits a V-representing measure μ with card suppμ � dim P2n.

Proof. The proof is implicit in the proof of Tchakaloff’s theorem, concerning the existence of
cubature rules over compact sets in R

d [51, Théorème II, p. 129]. The present formulation in
terms of V-positivity is a special case of [13, Proposition 3.6] (adapted to real moment prob-
lems). �

We conclude this section by resolving Question 2.8 for the case when M(n) is extremal, i.e.,
r := rank M(n) and v := card V satisfy r = v (where V := V(M(n))).

Proposition 2.19. Let d � 1 and suppose r = v. If Lβ is V-positive, then β admits a V-re-
presenting measure.
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Proof. Proposition 2.13 implies that M(n) � 0 and β is consistent, so since r = v, the existence
of a unique representing measure μ, with suppμ = V , follows from [17, Theorem 4.2]. �
3. An equivalence for truncated moment problems on semialgebraic sets

In this section we establish analogues of Theorem 1.4 for the truncated moment problem. The
following result (which restates Theorem 1.5) is an analogue of the “only if” part of Theorem 1.4,
but without the requirement of compactness.

Theorem 3.1.

(i) Assume that KQ satisfies (Sn,k) for some n and k. Then every polynomial in P2n that is
strictly positive on KQ belongs to ΣQ,n+k .

(ii) Assume that KQ satisfies (Rn,k) for some n and k. Then each polynomial in P2n that is
strictly positive on KQ belongs to ΣQ,n+k+1.

Theorem 3.1 provides a sufficient condition for boundedly finite convergence in the poly-
nomial optimization method of J. Lasserre [27], as we now show. For Q ≡ {q0, . . . , qm}, with
q0 ≡ 1, let n satisfy 2n � degqi (0 � i � m). Let f ∈ P2n and let f ∗ := inf{f (x): x ∈ KQ}. For
k � 0, define the (n + k)th Lasserre relaxation by

f ∗
n+k := inf

{
Lβ(f ): β ≡ β(2n+2k) satisfies Lβ(1) = 1 and

Mqi
(n + k)(β) � 0 (0 � i � m)

}
.

Then f ∗
n+k � f ∗

n+k+1 � · · · � f ∗ [27], and if KQ satisfies (P), then limk→∞ f ∗
n+k = f ∗ [27]

(cf. [28, Lemma 7.10 and Proposition 7.11]). The Lasserre relaxations can be explicitly com-
puted within the framework of semidefinite programming, for example, by using the software
SeDuMi [24] (cf. [28, (7.5)]). It is thus of interest to identify conditions for finite convergence
in Lasserre’s method (cf. [28, Section 7]), and the following result shows that property (Sn,k) is
such a condition.

Proposition 3.2. Suppose KQ satisfies (Sn,k) for some n satisfying 2n � degqi (0 � i � m) and
some k � 0. Then for f ∈ P2n, f ∗ = f ∗

n+k .

Proof. For ε > 0, let g := f −f ∗ +ε. Clearly, g|KQ > 0. From Theorem 3.1, g admits a decom-
position g = ∑

i qi

∑
j g2

ij , with degqig
2
ij � 2n + 2k. If β ≡ β(2n+2k) satisfies Lβ(1) = 1 and

Mqi
(n + k)(β) � 0 (0 � i � m), then Lβ(g) = ∑

i

∑
j 〈Mqi

(n + k)(β)ĝij , ĝij 〉 � 0, whence
Lβ(f ) � f ∗ − ε. It now follows that f ∗ = f ∗

n+k , so we have convergence after k steps. �
The next result, adapted from [51, p. 126], shows that in Theorem 3.1, an element in any of

the cones ΣQ,n can be expressed using at most dim P2n generators (cf. [38, Theorem 17.1]).

Lemma 3.3. Let W be a finite-dimensional real vector space and let m := dim W . Let C be a
convex cone in W generated by vectors {fα}α∈I , i.e., C ≡ {∑n

i=1 aifαi
: n � 1, ai � 0}. Then

each element f of C has a representation as above with n � m.
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To prove Theorem 3.1 we will need the following two results, which are part of Cassier’s
technique [4] and are also implicit in [36] and [42]. Since it is difficult to find explicit statements
and proofs in the literature, we include those here for the reader’s convenience.

Lemma 3.4. Let m � 1 and let C be a convex cone in R
m such that C − C := {f − g: f,g ∈

C} = R
m. Then the interior of C is nonempty (relative to the Euclidean topology on R

m).

Proof. Let B ≡ {f1, . . . , fr} be a maximal linearly independent subset of C. We first claim
that B is a basis for Rm. Consider the subspace W of Rm generated by B, and let h ∈ W .
Then h = Σr

i=1aifi , where ai ∈ R (i = 1, . . . , r). Write {1, . . . , r} ≡ I ∪ J := {i: ai � 0} ∪
{i: ai < 0}. Since C is a convex cone, it follows that h = f − g, where f := Σi∈I aifi ∈ C and
g := −Σi∈J aifi ∈ C. It follows that h ∈ C − C, and thus W = C − C = R

m. Therefore, r = m

and B is a basis for R
m.

To complete the proof it suffices to show that C has nonempty interior. Since B is a basis
for R

m, and all norms on R
m are equivalent [5, Theorem III.3.1], we may endow R

m with the
norm ‖∑m

i=1 aifi‖ := max1�i�m |ai |. Now let f := ∑m
i=1 aifi , where ai > 0 (1 � i � m). If

g ≡ ∑m
i=1 bifi ∈ R

m satisfies ‖f −g‖ < min1�i�m ai , then for each i, |bi −ai | � ‖f −g‖ < ai ,
so bi > 0 (1 � i � m), whence g ∈ C. Thus, f ∈ intC. �
Lemma 3.5. Let m � 1, let A be an open convex cone in R

m (endowed with the usual Euclidean
topology), and let q /∈ A. Then there exists a continuous linear functional L : Rm → R such that
L|A > 0 and L(q) � 0.

Proof. Since A is a convex set and q /∈ A, Hahn–Banach separation (cf. [3, 30.6] and its proof)
implies that there is a continuous linear functional L on R

m such that α := inf{L(a): a ∈ A}
satisfies L|A � α � L(q). Further, since A is open, [3, 30.5(3)] implies that L|A > α. To com-
plete the proof, we show that α = 0. For suppose first that α < 0. By the definition of α, we
may choose a0 ∈ A with L(a0) < 0. Since A is a convex cone, for each positive t ∈ R we have
ta0 ∈ A, so tL(a0) = L(ta0) > L(q), a contradiction (since L(a0) < 0). Thus α � 0. Further, for
a ∈ A, the cone property gives 1

n
a ∈ A, and L( 1

n
a) = 1

n
L(a) → 0, whence α � 0. It follows that

α = 0, as desired. �
Remark 3.6. Observe that Lemma 3.5 remains true if the singleton {q} is replaced by any convex
subset C disjoint from A, as a straightforward modification of the above proof shows.

Proof of Theorem 3.1. (i) We adapt part of the proof of [42, Corollary 3] (cf. Theorem 1.4),
which, in turn, is based on the proof of [4, Théorème 4]. In the sequel, we view P2n as the Eu-
clidean space Rm (m := dim P2n), endowed with the usual Euclidean topology. Assume that KQ
satisfies (Sn,k). We first show that P2(n+k) = ΣQ,n+k −ΣQ,n+k . Indeed, we may express a mono-
mial p ∈ P2(n+k) as p = xi1 · · ·xi�xi�+1 · · ·xi�+m

, where �,m � n + k and each ij ∈ {1, . . . , d}.
Since ΣQ,n+k contains all squares of polynomials in Pn+k (here is where we use the hypothesis
that q0 ≡ 1), we have

2xi1 · · ·xi�xi�+1 · · ·xi�+m

= (xi1 · · ·xi� + xi�+1 · · ·xi�+m
)2 − (

(xi1 · · ·xi�)
2 + (xi�+1 · · ·xi�+m

)2) ∈ ΣQ,n+k − ΣQ,n+k.
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For a general element of P2(n+k), apply this argument separately to the terms with positive co-
efficients and to the terms with negative coefficients. If we view P2(n+k) as a finite-dimensional
Euclidean space, then since P2(n+k) = ΣQ,n+k − ΣQ,n+k , it follows from Lemma 3.4 if m � 1
and ΣQ,n+k has nonempty interior (relative to P2(n+k)).

Now let q be a polynomial in P2n that is strictly positive on KQ, and suppose q /∈ ΣQ,n+k .
Let A := intΣQ,n+k . Since A is a nonempty open cone and q /∈ A, Lemma 3.5 implies that
there exists a continuous linear functional L : P2(n+k) → R such that L|A > 0 and L(q) � 0.
Continuity implies that L|ΣQ,n+k

� 0. Consider the sequence β ≡ β(2n+2k) defined by βi :=
L(xi) (|i| � 2n + 2k), so that Lβ = L. For an arbitrary element p of ΣQ,n+k , consider the
decomposition p = ∑m

i=0 qi

∑
j g2

ij (qig
2
ij ∈ P2(n+k)). We have L(p) � 0 and, as in (1.2),

L(p) = ∑
i

∑
j 〈Mqi

(n)ĝij , ĝij 〉. Since the gij are arbitrary polynomials in Pn−ki
(so that

2 deg gij + deg qi � 2(n + k)), it follows that M(n + k) � 0 and that Mqi
(n + k) � 0 for

i = 1, . . . ,m. Property (Sn,k) now implies that β(2n) has a KQ-representing measure μ. Since q

is strictly positive on KQ, this leads to the contradiction L(q) = Lβ(2n) (q) = ∫
q dμ > 0. Thus,

q ∈ ΣQ,n+k .
(ii) The result follows immediately from (i) and the fact that (Rn,k) implies (Sn,k+1). �

Remark 3.7. We have noted previously that our proof of Theorem 3.1 is motivated by the proof
of Schmüdgen’s Positivstellensatz in [42, Corollary 3], which in turn uses the technique of
G. Cassier [4]. The referee has kindly pointed out that subsequent to [42], alternate proofs of
Schmüdgen’s Positivstellensatz were developed, based on properties of Archimedean quadratic
modules. The approach of T. Wörmann appears in M. Marshall’s monograph [29], and a unified
exposition of this approach appears in K. Schmüdgen’s recent expository paper [44]. In response
to the referee’s question, we believe that this alternate approach to Schmüdgen’s Positivstellen-
satz cannot be adapted to give a simplified proof of Theorem 3.1. There are two basic reasons
for this belief. First, the quadratic module Qπ is Archimedean if and only KQ is compact (cf.
[44, Proposition 17]), and, indeed, Schmüdgen’s Positivstellensatz applies to all compact KQ.
By contrast, Theorem 3.1 does not apply to all compact semialgebraic sets, but does apply to var-
ious noncompact algebraic varieties, as we describe below. Second, the proof of Schmüdgen’s
Positivstellensatz in [44] involves polynomials of arbitrarily large degree, whereas in the proof
of Theorem 3.1 we must remain in the framework of P2(n+k), where polynomials have bounded
degree. We also note that although the proof of Theorem 3.1 uses some of Cassier’s methods,
it does not require the full strength of Cassier’s technique [4, Théorème 4], which involves a
delicate extension of a separating linear functional from P2n to all of P . The alternate approach
to Schmüdgen’s Positivstellensatz in [44] is designed to circumvent this particular extension, but
in our case there is no need for the extension at all.

We next present several examples of semialgebraic sets KQ and corresponding Q̃ which
satisfy (Sn,k) or (Rn,k) for certain n and k. For these sets, Theorem 3.1 immediately yields cor-
responding representations for polynomials that are strictly positive on KQ. Combining each
example with the following proposition yields a corresponding result for the full moment prob-
lem.

Proposition 3.8. Suppose that for each n � 1 there exists kn � 0 such that KQ satisfies (Sn,kn).
Then KQ satisfies (S) with Q̃ = Q.
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Proof. Suppose M(∞) � 0 and Mqi
(∞) � 0 for i = 1, . . . ,m. Then M(n + kn) is a positive

and recursively generated extension of M(n), and Mqi
(n+kn) � 0. Property (Sn,kn ) implies that

M(n) has a KQ-representing measure. The result now follows from Stochel’s theorem [49]. �
We begin the examples by illustrating Theorem 3.1 in the setting of a closed interval on the

real line.

Proposition 3.9. (Truncated Hausdorff moment problem [25, Theorem II.2.3].) Let d = 1.
For a < b, let q(x) := (x − a)(b − x) and Q := {1, q}, so that KQ = [a, b]. For n � 1,
KQ satisfies (Sn,0). Given β ≡ β(2n) = {βi}2n

i=0, M(n) is the Hankel matrix (βi+j )
n
i,j=0 and

Mq(n) = Δ := (a + b)H(n − 1) − K(n − 1) − abM(n − 1), where H(n − 1) = (βi+j+1)
n−1
i,j=0

and K(n − 1) = (βi+j )
n
i,j=1. Thus, β has a representing measure supported in [a, b] if and only

if M(n) � 0 and (a + b)H(n − 1) � K(n − 1) + abM(n − 1).

This formulation of the truncated Hausdorff moment problem is given in [25, Theorem II.2.3],
although the fact that Mq(n) coincides with Δ depends on a calculation based on [15, Theo-
rem 3.6]. The special case a = 0, b = 1 is given in [1, p. 74], and the case when a = −1, b = 1 is
treated in [46, Theorem 3.1, p. 77]. In the setting of an interval [a, b], the statement, from (Sn,0)

and Theorem 3.1, that ΣQ,n contains each polynomial in P2n that is strictly positive on [a, b], ad-
mits a stronger formulation. Indeed, the Markov–Lukács theorem shows that a polynomial p(x)

of degree 2n that is nonnegative on [a, b] admits a representation p(x) = r(x)2 + q(x)s(x)2,
where r ∈ Pn and s ∈ Pn−1 (cf. [46, p. 77]). A proof of this result for [−1,1] appears in [32,
Problem 47, pp. 78, 259], and the general case follows by a simple change-of-variables argument.

The interval [a, b] admits a different presentation as KQ if we take Q := {1, q1, q2}, where
q1(x) := x − a and q2(x) := b − x. In this case, we can establish that for every n � 1, KQ
satisfies (Sn,1). Indeed, if M(n) admits a positive extension M(n+1) satisfying Mq1(n+1) � 0
and Mq2(n + 1) � 0, then the conditions of [6, Theorem 4.1(iv)] are satisfied, whence β admits
a representing measure supported in [a, b].

For the case of the unit circle T, we have the following result.

Proposition 3.10. Let p(x, y) := 1 − x2 − y2 and let Q := {1,p,−p}, so that KQ = T. For
every n � 2, T satisfies (Rn,0).

Proof. Suppose M(n) is positive, recursively generated, Mp(n) � 0 and M−p(n) � 0. Then
Mp(n) = 0. We now appeal to the equivalence between the real and complex truncated moment
problems [15, Propositions 2.17–2.19] (cf. also the proof of [15, Theorem 5.2]). The corre-
sponding complex moment matrix M(n)[γ ] is positive and recursively generated, and satisfies
M1−ZZ̄(n) = 0. [10, Proposition 3.9(i)] now implies that ZZ̄ = 1 in the column space. Since
M(n)[γ ] is recursively generated, it follows that γi,j = γi+1,j+1 (i, j � 0, i + j � 2n − 2).
[11, Theorem 3.5] now implies that γ has a representing measure supported in T, and by equiv-
alence, this measure corresponds to a representing measure for β supported in T. �

We next consider lines in the plane.

Proposition 3.11. Let q ∈ P1 be given by q(x, y) ≡ ax + by + c and let Q := {1, q,−q}. Then
KQ ≡ {(x, y): ax + by + c = 0} satisfies (Rn,0) for all n � 2.
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Proof. Assume that M(n) � 0 is positive and recursively generated, Mq(n) � 0 and
M−q(n) � 0. It follows that Mq(n) = 0, so we conclude that q(X,Y ) ≡ aX + bY + c1 = 0,
using the real version of [10, Proposition 3.9(i), (ii)]. Since M(n) is positive, recursively gen-
erated, and q(X,Y ) = 0, we can appeal to the real version of [8, Theorem 2.1] to conclude that
M(n) admits a flat extension M(n + 1). Thus, there exists a representing measure for M(n),
which is necessarily supported in KQ. �
Remark 3.12. If we set a = 0, b = 1, c = 0 in Proposition 3.11, we see that the x-axis satis-
fies (Rn,0) for all n � 1. If we let q(x, y) := y and Q := {1, q,−q}, Theorem 3.1(ii) implies
that every polynomial p ∈ P2n that is strictly positive on KQ ≡ {(x,0): x ∈ R} belongs to
the cone ΣQ,n+1, that is, p admits a representation of the form p(x, y) = ∑

i[fi(x, y)]2 +
y

∑
i{[gi(x, y)]2 −[hi(x, y)]2}. Note that this generalizes the well-known result for one-variable

polynomials, strictly positive on R. For, given such a polynomial r , we may define R(x, y) :=
r(x). The above representation, when evaluated at y = 0, yields r(x) = ∑

i[fi(x,0)]2, as de-
sired.

Proposition 3.13. Let p ∈ R[x, y] be a quadratic polynomial such that Z(p) is an ellipse in the
plane, that is, for Q := {1,p,−p}, the set KQ is an ellipse. Then KQ satisfies (Rn,0) for n � 2.

Proof. Assume n � 2 and let β ≡ β(2n) be given, for which the associated moment matrix M(n)

is positive, Mp(n) � 0, and M−p(n) � 0. Now Mp(n) = 0, and it follows as in the proof of
Proposition 3.11 that p(X,Y ) = 0. We consider two cases.

Case 1. Assume M(1) is invertible. Here we appeal to the strategy in [12, pp. 348, 349] to
convert the given truncated moment problem into an equivalent problem, for which the column
relation becomes X2 +Y 2 = 1, that is, KQ is the unit circle T. This is accomplished via an affine
transformation ϕ : R2 → R

2, which transforms the original ellipse into the unit circle. Once this
is done, we can appeal to Proposition 3.10 to first obtain a measure on T, and a fortiori a KQ-
representing measure for β .

Case 2. Assume M(1) is singular. Without loss of generality, we can assume that M(1) admits
a column relation of the form aX+bY +c1 = 0, with a, b, c ∈ R, (a, b, c) 
= (0,0,0). By the Ex-
tension principle [18], we then have aX+bY +c1 = 0 in CM(n). We now apply Proposition 3.11
to obtain a representing measure, which will necessarily be supported in the intersection of the
line and the ellipse KQ. �
Proposition 3.14. Let p ∈ R[x, y], suppose Z(p) is a parabola or hyperbola, and set Q :=
{1,p,−p}. Then K := KQ satisfies (Rn,1) for n � 2.

Proof. Given β ≡ β(2n), suppose M(n) admits a positive, recursively generated extension
M(n + 1) with Mp(n + 1) � 0 and M−p(n + 1) � 0. Then Mp(n + 1) = 0. Since n � 2
and degp � 2, the real version of [10, Proposition 3.9(i)] implies that p(X,Y ) = 0. By [14, The-
orem 2.2] (if K is a parabola) or [16, Theorem 1.5] (if K is a hyperbola), we see that β admits a
K-representing measure. �

Proposition 3.14 and Theorem 3.1(ii) together imply that polynomials that are positive on
parabolas or hyperbolas admit degree-bounded representations, a result that seems to be new.
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Combining Propositions 3.10, 3.11, 3.13 and 3.14 with Proposition 3.8 we also recover a result
of J. Stochel [48] that if d = 2 and M(∞) � 0 with p(X,Y ) = 0 in CM(∞) (where degp � 2),
then β(∞) has a representing measure supported in Z(p).

For truncated complex moment problems, one can define the obvious analogues of properties
(Sn,k) and (Rn,k); since it will be clear from the context whether we are dealing with real or
complex moment problems, we use the same notation for both situations.

Proposition 3.15. For m � 1, let q(z, z̄) := zm − p(z, z̄), where p ∈ C[z, z̄] and degp � m − 1.
Let Q := {1, q,−q}. Then for every n � 2 such that m � [n

2 ] + 1, KQ ≡ {z ∈ C: q(z, z̄) = 0}
satisfies (Rn,0).

Proof. Assume that M(n) is positive and recursively generated, and that Mq(n), M−q(n) � 0. It
follows that Mq(n) = 0. By [10, Proposition 3.9(i)], p(Z, Z̄) = 0 in the column space CM(n). By
[8, Theorem 3.1], M(n) admits a flat extension M(n+1), and therefore there exists a representing
measure for γ , necessarily supported in Z(q)(= KQ). �

We now establish suitable converses of the statements in Theorem 3.1. We begin with Theo-
rem 1.6, which we restate for ease of reference.

Theorem 3.16.

(i) If k � 1 and each polynomial in P2n+2 that is strictly positive on KQ belongs to ΣQ,n+k ,
then KQ satisfies (Sn,k).

(ii) If k = 0, KQ is compact, and each polynomial in P2n that is strictly positive on KQ belongs
to ΣQ,n, then KQ satisfies (Sn,0).

Proof. (i) By hypothesis, each polynomial p in P2n+2 that is strictly positive on KQ belongs to
ΣQ,n+k , and thus admits the structure p = ∑

i qi

∑
j g2

ij (qig
2
ij ∈ P2(n+k)). We aim to establish

that KQ satisfies (Sn,k). To this end, assume that M(n)(β) admits a positive extension M(n+k)

such that Mqi
(n+k) � 0 (i = 1, . . . ,m). Corresponding to M(n+k), we set L′ := Lβ(2n+2k) . Let

β̃ := β(2n+2), so that L̃ := Lβ̃ = L′|P2n+2 . We claim that L̃ is KQ-positive. For, let p ∈ P2n+2,

p|KQ > 0. We have p = ∑
i qi

∑
j g2

ij (as above), so L̃(p) = L′(p) = L′(
∑

i qi

∑
j g2

ij ) =∑
i

∑
j 〈Mqj

(n + k)ĝij , ĝij 〉 � 0. It follows by continuity that L is KQ-positive. We now ap-
ply Theorem 1.2 to conclude that β has a representing measure supported on KQ.

(ii) Here we assume that KQ is compact and that every polynomial in P2n that is strictly
positive on KQ belongs to ΣQ,n. To prove that KQ satisfies (Sn,0), assume that M(n)(β) � 0.
As in the proof of (i) above, it follows that the Riesz functional L ≡ Lβ is KQ-positive. Since
KQ is compact, Tchakaloff’s theorem [51, Théorème II, p. 129] (or as reformulated in [13,
Proposition 3.6]) implies that β admits a finitely atomic KQ-representing measure. �

Note that each of the results in Propositions 3.10, 3.11, 3.13–3.15 can be “turned around” to
illustrate Theorem 3.16.

Remark 3.17. (i) Although we do not know of a non-compact KQ that satisfies (Sn,0), we can
illustrate a non-compact KQ such that ΣQ,n contains each polynomial in P2n that is strictly
positive on KQ. Consider first the real line, with d = 1, Q = {1}, and KQ = R. As noted earlier,
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if p ∈ P2n and p|R � 0, then there exist r, s ∈ Pn such that p = r2 + s2 [32, Problem VI.44],
so that p ∈ ΣQ,n. Note that KQ does not satisfy (Sn,0). Indeed, the single condition of (Sn,0)
is M(n) � 0, but Proposition 2.15 shows that this condition is not always sufficient for a repre-
senting measure (cf. Example 2.1). Note that Proposition 2.15 shows that R ≡ KQ does satisfy
(Rn,0).

(ii) Next, consider the half-line, with d = 1, Q = {1, x}, KQ = [0,+∞). It follows from [32,
Problem 45, pp. 78, 259] that if p ∈ P2n satisfies p|[0,+∞) � 0, then there exist r, s ∈ Pn and
u,v ∈ Pn−1 such that p(x) = r(x)2 + s(x)2 + x(u(x)2 + v(x)2), whence p ∈ ΣQ,n. Now the
matrix conditions of (Sn,0) entail M(n) � 0 and H(n − 1)(= Mx(n)) � 0, but [6, Theorem 5.3]
shows that the existence of a representing measure requires, in addition to these properties, the
condition (βn+1, . . . , β2n)

T ∈ RanH(n − 1). In Example 2.1 we have M(2) � 0 and H(1) =( 1 1
1 1

)
� 0, but w := (β3, β4)

T ≡ (1,2)T does not satisfy w ∈ RanH(1).

When the cone ΣQ,n+k is closed we can sharpen Theorem 1.5.

Theorem 3.18.

(i) Assume that KQ satisfies (Sn,k) for some n and k, and that the cone ΣQ,n+k is closed in
P2(n+k). Then every polynomial in P2n that is nonnegative on KQ belongs to ΣQ,n+k .

(ii) Assume that KQ satisfies (Rn,k) for some n and k, and that the cone ΣQ,n+k is closed in
P2(n+k). Then each polynomial in P2n that is nonnegative on KQ belongs to ΣQ,n+k+1.

As in Theorem 3.1, the total number of terms qif
2
ij in the representations of elements of

ΣQ,n+k in Theorem 3.16 can always be taken to be at most dim P2n+2k (cf. Lemma 3.3).

Proof. We focus on the proof of (i) above; the proof of (ii) is entirely similar. Let m := dim P2n.
In the sequel we view P2n as the Euclidean space R

m equipped with the usual inner product
topology; for this, we identify a polynomial p(x) ≡ ∑

|i|�2n aix
i with its vector of coefficients

p̂ ≡ (ai) (with respect to the basis for P2n consisting of the monomials in degree-lexicographic
order). We assume that KQ satisfies (Sn,k) and that the convex cone ΣQ,n+k is closed in P2(n+k).
Suppose p ∈ P2n satisfies p|KQ � 0, but p /∈ ΣQ,n+k . The Minkowski separation theorem (cf.
[51, p. 124], [3, (34.2)]) implies that there is a polynomial q ∈ P2(n+k) such that 〈q̂, ŝ〉 � 0
for every s ∈ ΣQ,n+k and 〈q̂, p̂〉 < 0. Consider the linear functional L : P2(n+k) → R defined
by L(f ) := 〈q̂, f̂ 〉. Define β̃ ≡ β(2n+2k) by βi := L(xi) (|i| � 2n + 2k). Let β := β(2n), so
that Lβ = L|P2n

. Since L|ΣQ,n+k
� 0, it follows exactly as in the proof of Theorem 3.1 that

M(n)(β) admits the positive extension M(n + k)(β̃) � 0, and that Mqi
(n + k) � 0 if m � 1

and i = 1, . . . ,m. The assumption that KQ satisfies (Sn,k) now implies that β admits a KQ-
representing measure μ, whence 〈q̂, p̂〉 = L(p) = Lβ(p) = ∫

p dμ � 0, a contradiction. Thus,
p ∈ ΣQ,n+k . �
Corollary 3.19. If KQ has nonempty interior and satisfies (Sn,k) for some n and k, then every
polynomial that is nonnegative on KQ belongs to ΣQ,n+k (with at most dim P2(n+k) terms).

Proof. A result of V. Powers and C. Scheiderer [33] (cf. [28, Theorem 3.33], [45]) shows that if
KQ has nonempty interior, then for every n � 1 and k � 0, ΣQ,n+k is closed in P2(n+k), so the
result follows from Theorem 3.18. �



Author's personal copy

R.E. Curto, L.A. Fialkow / Journal of Functional Analysis 255 (2008) 2709–2731 2729

In Section 1 we noted that the closed unit disk fails to satisfy (S3,k) for every k � 0. By
contrast, the disk does satisfy (S1,0), so we have the following result.

Proposition 3.20. Each polynomial p ∈ P2 satisfying p|
D̄

� 0 admits a representation p =∑5
i=1 f 2

i + α(1 − x2 − y2), where degfi � 1 (1 � i � 5) and α � 0.

Proof. For d = 2 and Q = {1,1 − x2 − y2}, we have KQ = D̄. Let q(x, y) = 1 − x2 − y2.
A calculation using [15, Theorem 3.6] shows that Mq(1) = (β00 − β20 − β02), and [11, Theo-
rem 1.8(iv)] implies that KQ satisfies (S1,0). (The result in [11] is given in terms of the truncated
complex moment problem for measures on C, but the complete equivalence of this problem to
the real truncated moment problem for measures on R

2 is established in [15].) Since dim P2 = 6,
the result follows from Corollary 3.19. �

It appears to be open whether the disk satisfies (S2,k) for some k � 0.

Remark 3.21. A forthcoming paper [22], completed after this paper, contains some new exam-
ples of varieties which satisfy property (Sn,k) (via Theorem 3.16). Let p(x, y) := y − q(x), for
q ∈ R[x] with degq � 1. [21, Proposition 6.3] implies that if f ∈ P2n and f |Z(p) > 0, then
f ∈ ΣQ,m with m := (2n + 2)degq − degp. Similarly, let p(x, y) := yq(x) − 1, for q ∈ R[x]
with degq � 1. [21, Proposition 6.4] implies that if f ∈ P2n and f |Z(p) > 0, then f ∈ ΣQ,m

with m := (2n + 2)(2 + degq) − (1 + degq).
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