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Abstract

Let =g @n) — {Bi}}i)<on denote a d-dimensional real multisequence, let K denote a closed subset
of R?, and let Por i=1{p € Rlxq,...,x4]: degp < 2n}. Corresponding to B, the Riesz functional L =
Lg : Py, — Ris defined by L(} ajx') = > a;B;i. We say that L is K -positive if whenever p € P,,, and
plg =0, then L(p) = 0. We prove that 8 admits a K-representing measure if and only if Lg admits a
K -positive linear extension L : P2j,+2 — R. This provides a generalization (from the full moment problem
to the truncated moment problem) of the Riesz—Haviland theorem. We also show that a semialgebraic set
solves the truncated moment problem in terms of natural “degree-bounded” positivity conditions if and
only if each polynomial strictly positive on that set admits a degree-bounded weighted sum-of-squares
representation.
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1. Introduction

Let 8 = B> = {Bi}; ezt denote a d-dimensional real multisequence and let K denote a

closed subset of R?. The full K -moment problem asks for conditions on g such that there exists
a positive Borel measure p, with suppu € K, satisfying g; = [x'du (i € Zi) (here x' :=
xi'oexd, for x = (x1,...,x7) € RY and i = (i1, ...,iq) € Z9). In the truncated K-moment

problem of degree m (where 1 < m < 00), the data are restricted to g = g™ = {IBi}ieZi,|i|<m'

A theorem of J. Stochel [49, Theorem 4] shows that 8> has a K -representing measure 1 (as
above) if and only if for each m, B has a K -representing measure. In this sense, the truncated
moment problem is more general than the full moment problem, and several results from [20,
Section 4] and [16, Section 6] illustrate how the truncated moment problem can be used to solve
the full moment problem in special cases (cf. Remark 2.16(ii)). By contrast, existence theorems
for the full moment problem cannot simply be “truncated” to give valid results for the truncated
moment problem (cf. Example 2.1). In this note we study analogues for the truncated moment
problem of known existence theorems for representing measures in the full moment problem.
Let P :=R[xy,...,xq] and for p = Za,-xi € P, let p = (a;) denote the coefficient vector
of p with respect to the basis for P consisting of the monomials in degree-lexicographic order.
Corresponding to g = B>, the Riesz functional L = Lg:P — Ris defined by L(}_ aix’) =
> a;B;. We say that L is K -positive if whenever p € P and p|g >0, then L(p) > 0;if L is K-
positive for K = R?, we say simply that L is positive. K -positivity is a necessary condition for
the existence of a K -representing measure j, since if p € P satisfies p[g > 0, then p|suppy = 0,
whence L(p) = f pdu = 0. Conversely, the classical theorem of M. Riesz [37] (d = 1) and
Haviland [23] (d > 1) provides a fundamental existence criterion for K -representing measures.

Theorem 1.1 (Riesz—Haviland theorem). B = B°) admits a representing measure supported in
the closed set K € R? if and only if L g is K-positive.

In the truncated moment problem for S (2n) it follows as above that the existence of a K-
representing measure implies that the Riesz functional L B : P2y — R is K-positive, i.e., p €
P, plk 20=L P (p) = 0. A result of V. Tchakaloff [51, Théoreme II, p. 129] implies that
the converse is true in case K is compact. However, we show in Section 2 that in general it is not
true that 84 has a K -representing measure whenever L gen 18 K -positive, so the most direct
analogue of Theorem 1.1 for the truncated moment problem is false (cf. Example 2.1). Instead,
the appropriate analogue of the Riesz—Haviland theorem for the truncated K-moment problem,
which is our main result, assumes the following form.

Theorem 1.2. 8 = 8% admits a K -representing measure if and only if L g admits a K -positive
linear extension L : P42 — R.

Note that Theorem 1.2 actually implies Theorem 1.1. Indeed, given g = (>, if L g is K-
positive, then for each n, L B2n+2) is a K-positive extension of L B - Theorem 1.2 then implies
that for each n, B®® has a K -representing measure, whence Stochel’s theorem implies that 8
has a K -representing measure. We note also that Theorem 1.2 remains true if 8*" is replaced
by B@"*D: this is clear from the proof of Theorem 1.2 in Section 2 (cf. Theorem 2.4). In the
sequel, we focus on B rather than on S**1 primarily because the data for f*® define a
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complete real moment matrix M(n) (as described below), so it is notationally more convenient
to treat B2,

Let Q={q0:=1, q1,....,9n} € P and let Ko denote the semialgebraic set {x € R:
qgi(x) 2 0 (1 <i < m)}. Our main application of Theorem 1.2 is Theorem 1.6, which shows
that if each polynomial that is strictly positive on K o admits a “degree-bounded” weighted sum-
of-squares representation, then the truncated moment problem on K¢ can be solved in terms of
positivity for the localizing matrices associated to each ¢;. In Section 2 we present some concrete
conditions for representing measures related to the algebraic variety V = V(M (n)) associated
to A In particular, V-positivity for L pen implies the existence of V-representing measures

for B @) when d = 1 (Proposition 2.15); when d =2, n > 2 and V is a subset of a planar curve
p(x,y) =0 with deg p < 2 (Proposition 2.17); when V is compact (Proposition 2.18); or when
card V = rank M (n) (Proposition 2.19).

We note that positivity for L:=L pen+2) 1s in general a much stronger condition than pos-
itivity for the corresponding moment matrix M (n 4+ 1). For this reason, in general it is quite
difficult to directly verify that an extension I::Pzn+2 — R is K-positive. One approach to
establishing K-positivity or the existence of representing measures is through extensions of
moment matrices. For simplicity, consider the case K = R? (the case of a general semialge-
braic set is discussed following Theorem 1.4). [15] implies that 8 admits a finitely atomic
representing measure if and only if for some k > 0, M(n) has a positive semidefinite exten-
sion M(n + k), which in turn admits a flat (i.e., rank-preserving) extension M((n + k + 1).
The generalization of this result to measures with finite moments up to at least degree 2n + 1
follows from [35] or [13], and the extension to general measures follows from a recent result
of [2] (cf. Section 2). When the extension M (n + k) (as above) exists, we may always take k <
min{card V —rank M (n), dim P,, —rank M (n)} [21, Proposition 2.3], and examples of [19] and
[21] illustrate cases where k > 0 is required. Corresponding to the flat extension M(n + k + 1)
is a computable rank M (n + k)-atomic representing measure 1 for 8™, so in this approach we
circumvent K -positivity (though the Riesz functional associated to M (n + 1)[u] is clearly a pos-
itive extension of Lg). Various sufficient conditions for flat extensions appear in [8,9,14,16,17,
30]; perhaps the basic condition is M (n) > 0 and rank M (n) = rank M (n — 1) [7]. Theorem 1.2
shows that, in principle, the existence of an extension M (n 4 k) (as above) is completely deter-
mined by a choice of M (n + 1) for which the corresponding Riesz functional L?"*+? is positive.

A second approach to positivity for an extension L: P2n+2 — R concerns the structure of pos-
itive polynomials. Note that the main difficulty associated with Theorem 1.1 is that for a general
closed set K € R there is no concrete representation theorem for polynomials that are nonneg-
ative on K, so there may be no practical test to check whether Lg is K-positive. In this sense,
Theorem 1.1 is an “abstract” solution to the moment problem, and, similarly, Theorem 1.2 is an
abstract solution to the truncated moment problem. In the case when K is a compact semialge-
braic set, a celebrated theorem of K. Schmiidgen [42, Theorem 1] provides a concrete test for the
K-positivity of Lgeo (cf. Theorem 1.3 below). In Section 3 we will derive certain analogues of
Schmiidgen’s results for the truncated moment problem.

Let © ={q0,91,.--,q9m} € P (with go = 1) and consider the semialgebraic set

Kog={xeR" ¢;x)>0(1<i<m}.
Moreover, let Q" denote the set of products of distinct polynomials in Q, that is,

Q" :=1{qi,"+qi,: ¢i; €Q, 0<iyp <---<ig<m, 1<s<m+ 1}
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observe that Q C Q7 and that Kg = Ko~ . Let Q denote any set satisfying Q C Q C Q7 so that
Ko=K 5 In our applications, we will specify Q =Qor Q = O as needed.

Recall from [9] and [15] the moment matrix M = M (c0)(B) associated with g = (>, de-
fined by (M f, 8) := Lg(fg) (f,g € P). For p € P, the localizing matrix M, = M ,(0) is
defined by (/\/lpf, g) = Lg(fgp) (f,g € P); observe that M| = M. If u is a representing
measure for 8, then for f € P, (/\/lf, f) =Lg (f3) = f f2du >0, so M is positive semidefi-
nite (M > 0). Similarly, if p is a representing measure supportedin Kg andr =g¢;, ---gq;, € 97,
then (M, f, f) = Lg(rf?) = [ qi, -+~ qi, f>du > 0 (since g, lsupp > 0), whence M, > 0. The
results in [42] are presented in terms of positive multlsequences here we give an equivalent
reformulation in terms of moment matrices.

Theorem 1.3. (K. Schmiidgen [42].) Suppose K o is compact and Q= Q7. The sequence f =
B has a representing measure supported in K o if and only if M, > 0 for each polynomial

reo.

The conclusion of Theorem 1.3 also holds for certain semialgebraic sets that are not compact.
Consider the following property for a semialgebraic set Ko and an associated Q:

(S) B =B has a representing measure supported in K¢ if and only if M, > 0 for each
polynomial r € Q.

Hamburger’s theorem for the real line R is equivalent to the assertion that (S) holds with d =1,
Q= Q = {1}, and Stieltjes’ theorem for the half-line [0, +00) is equivalent to the statement that
(S) holds whend =1, Q = 0= {1, x} (cf. [1,46]). Moreover, a theorem of J. Stochel [48] is
equivalent to the statement that if d =2 and deg p < 2, then (S) holds for the algebraic set K g,
where O = Q = {1, p, —p}. Other algebraic sets satisfying (S) are described in [33,39,43,48,50].

In [42], for the case when K ¢ is compact, Schmiidgen used Theorem 1.3 to establish a struc-
ture theorem for polynomials that are strictly positive on K g. Consider the convex cones in P
defined by

Yai= {pEP: p:ijz—l-Zrng,%j: fi gkj €P, rkeé}. (1.1)
J J

k

For Q = Q (respectively O7) we denote EQ by Yo (respectively ¥ gr). In [42, Corollary 3],
Schmiidgen proved that if K¢ is compact, then each polynomial that is strictly positive on K g
belongs to X'or ; this result is generally referred to in the literature as Schmiidgen’s Positivstel-
lensatz. The converse of Schmiidgen’s Positivstellensatz is also true, and holds for general K o.
For suppose that each polynomial that is strictly positive on K¢ belongs to EQ. To show that

Ko and Q satisfy (S), let g = ,B(OO) be given and assume that M, > 0 for each r € Q To
prove that 8 has a K g-representing measure, we will verify that L = Lg is Kg-positive. For
p € P with Plkg 2 0, and for ¢ > 0, we have p + ¢ > 0, so p + € belongs to EQ. Thus,

pHe= ZJ. sz + > i Tk Zj g,%j (asin (1.1)), whence
L(p)+eL()=L(p+e)= L(Z f7+ Zrk Zg,%j)

_ZMfJ’f] +ZZ re8kj» 8kj) = 0. (1.2)
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Since ¢ > 0 is arbitrary, it follows that L(p) > 0. Thus, L is Kg-positive, so the existence of
a Ko-representing measure follows from Theorem 1.1. Since the converse implication in (S)
is always true, Ko and Q satisfy (S). We thus have the following result for the full moment
problem on semialgebraic sets.

Theorem 1.4. (Cf. [42, Corollary 3], [33, Corollary 3.1].) If Ko is compact, then each poly-
nomial that is strictly positive on Ko belongs to X g=. Conversely, for arbitrary Ko, if each
polynomial that is strictly positive on K g belongs to EQ, then K g satisfies (S) with Q.

Consider a (necessarily compact) K g with the following property:

(P) There exists R > 0 such that R — (xl2 + -4 xﬁ) € Xg.

In [34], M. Putinar proved that if K¢ satisfies (P), then K¢ satisfies (S) with O = Q, and that
each polynomial that is strictly positive on Ko belongs to X'g. For other results related to [42],
see [26,33,39,40], and the references cited therein.

In Section 3 we establish analogues of Theorem 1.4 for the truncated moment problem. To
motivate these results, we first recall a general existence criterion for representing measures.
Let 8 = B and define the associated moment matrix M (n) = M(n)(B) by (M(n)p,§) :=
Lg(pq)(p,q € Pp) [8,15]; M(n) is a square matrix, of size dim P,, with columns X' (li| < n).
Let Ko be as above and let deggq; = 2k; or 2k; — 1 (1 <i < m). For s € P, with degs = 2k or
2k — 1, recall from [15] the localizing matrix M (n) = M (n)(B), defined by (M;(n)p, q) :=
Lg(spq) (p,q € Pu—i); the size of M (n) is dimP,_i. Also recall from [15] that if M(n)
(= 0) admits a flat extension M (n 4 1), then M (n 4+ 1) admits unique successive flat extensions
M(n+2), M(n+3),.... The existence criterion of [15, Theorem 1.1] states that 8 has a finitely
atomic K g-representing measure if and only if M (n) admits a positive extension M (n 4 k) (for
some k > 0), which in turn admits a flat extension M (n + k + 1) such that M, (n +k +k;) >0
(1 <i <m). (An estimate for k and an extension to general measures follow as above for the
case Kg = Rd.) In Section 3 we study cases where the conditions of [15] can be relaxed, as we
next describe.

Let Ko be as above and choose n so that 2n > degg; fori =0, ..., m. For k > 0, consider
the following properties for K o:

(Snx) BP has a K o-representing measure if and only if M(n) admits a positive extension
M(n + k) such that My, (n+k) >0fori=1,...,m

and

Rux) B @M has a K o-representing measure if and only if M (n) admits a positive, recursively
generated extension M (n + k) such that My, (n +k) >0fori =1,...,m.

In the preceding properties we have dropped the requirement for a flat extension, which is fre-
quently difficult to establish. Observe that for fixed n and k, (S, x) implies (R, ;). Note also that
(R, k) implies (S, x+1); this follows from the fact that if M (n 4k + 1) is positive, then M (n + k)
is positive and recursively generated [7, Theorem 3.14]. In verifying property (S, x) or (R, k),
one direction is always true. For, suppose 8 = f*®) has a K o-representing measure (. [2] then
implies that B admits a finitely atomic K g-representing measure v (cf. Section 2). Since v has
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moments of all orders, for each k, M(n + k)[v] is a positive and recursively generated extension
of M(n), and since suppv C Kg, then My, (n +k)[v] >0 (0 <i <m).

Whereas Schmiidgen works with the cone Yo~ N P,,, we focus on the sub-cone Yo ,, de-
fined by

Lo = {pepzn: P=) _fort @) fi+ - tam ) fois qif € P O<i <m)}.
j j j

It follows from an application of Carathéodory’s theorem described in [51, pp. 126, 127] that
the total number of terms g; fl? in such a representation of p can always be taken to be at most
dim P, (cf. Lemma 3.3). In the sequel we consider the property for K¢ that for some n and k,
each p € P,, with p| Ko >0 admits a degree-bounded weighted sum-of-squares representation,
in the sense that p € X'g ;. In Section 3 we obtain the following analogue of one direction of
Theorem 1.4 for the truncated moment problem.

Theorem 1.5.

(i) Assume that Ko satisfies (S, k) for some n and k. Then every polynomial in P, that is
strictly positive on K g belongs to X k.

(i1) Assume that Ko satisfies (R, ) for some n and k. Then each polynomial in Py, that is
strictly positive on K g belongs to X0 p4k+1-

Theorem 1.5 provides a sufficient condition for finite convergence in the polynomial opti-
mization method of J. Lasserre [27]; indeed, if the conditions of Theorem 1.5(i) hold, then for
f € Py, the optimal value f* :=inf{f(x): x € Ko} is realized at the (n 4 k)th Lasserre re-
laxation (cf. Proposition 3.2). In Theorem 3.18 we show that Theorem 1.5 can be extended to
nonnegative polynomials in those cases where the cone X' ;4 is closed in P2, 4). In Section 3
we also establish the following converse of Theorem 1.5, an analogue to the converse direction
in Theorem 1.4.

Theorem 1.6.

(1) If k > 1 and each polynomial in P, > that is strictly positive on K g belongs to X g 1,
then K g satisfies (Sy k).

(i1) Ifk =0, Ko is compact, and each polynomial in P>, that is strictly positive on K g belongs
to X g n, then K g satisfies (Sy,0).

Example 2.1 (below) shows that the compactness hypothesis cannot be dropped in Theo-
rem 1.6(ii). Given Q such that Q C Q C Q7 consider the convex cone X S = ={pePy: p=

Yty j fl%, ri € 0, ri fl? € Po,}. Let (Sn,k) be the property that ,3(2”) has a K g-representing
measure if and only if M (n) admits a positive extension M (n + k) such that M, (n + k) > 0 for
every r € Q. Itis straightforward to modify the proofs of Theorems 1.5 and 1.6 so as to obtain
analogues where (S, i) is replaced by (Sn,k) and Xg 4 1s replaced by X Oontk

In the classical literature, the truncated moment problem was solved concretely only for the
interval [a, b], for finite unions of closed intervals, for the circle, and for some cases of the line
R and the half-line [0, 4-00) (cf. [1,25,46]). These results were proved using the representations
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of positive polynomials for these sets, and thus illustrate Theorem 1.6 (cf. Section 3). Addi-
tional examples of this approach, for planar curves of the form y = f(x) or yf(x) = 1, appear
in the forthcoming article [22] (cf. Remark 3.21). An alternate approach to truncated moment
problems is through extensions of moment matrices. In [6] we used recursiveness of moment
matrices to complete the one-dimensional results for the line and half-line, and also in [8,11] and
[16] to solve the truncated moment problem for lines, circles, and ellipses. In [14] and [16] we
used recursiveness and the variety condition rank M (n) < card V(M (n)) to solve the truncated
moment problem for the other conics (parabolas and hyperbolas). These results, together with
Theorem 1.5, yield “degree-bounded” weighted sum-of-squares representations for polynomi-
als that are positive on these sets (cf. Section 3). These representations are apparently new for
parabolas and hyperbolas (and possibly for lines and ellipses). Despite the preceding results, the
applicability of weighted sums of squares to truncated moment problems (as in Theorems 1.5
and 1.6) seems limited. Indeed, by contrast with Schmiidgen’s results for the full moment prob-
lem (cf. Theorems 1.3 and 1.4), the proof of [41, Example 5.1] implies that if d > 2 and K ¢ has
nonempty interior, then for every n > 3 and every k > 0, K g fails to satisfy (S, ). In the case of
the closed unit disk, (S; ) is satisfied [11, Theorem 1.8(iv)], but whether the disk satisfies (S2 x)
for some k > 0 appears to be open.

2. An analogue of the Riesz—Haviland theorem for the truncated moment problem

We begin with an example which shows that the truncated moment problem does not admit
the most direct analogue of the Riesz—Haviland theorem.

Example 2.1. For d = 1 and K = R (the real line), we will exhibit 8 = 8™ for which L = Lg is
K -positive, but 8 admits no representing measure. Define 84 by Bo = B1 = fo = B3 :=1 and
Ba =2, so that

DN = =

1
M2)=1|1 1
1

A calculation shows that M(2) > 0. Indeed, a partitioned real symmetric matrix M = ( ;T g)
is positive semidefinite if and only if A > 0 and there exists a matrix W such that B = AW and

C > WTAW (cf. [47], [9, Proposition 2.2]). In the present case, A = (1 1) B = (11), C =),

and we may take W = (0). In this case, Lg is defined by L(ag +ajx + arx? + a3x3 + asx?) =
ap + ay + a + az + 2a4. To see that L is R—positive recall that if p € P, satisfies p|r = 0,
then there exist f,g € P, such that p = f 2 + g2 [32, Solution 44, p. 259]. Now L(p) =
L(f24+g) =M F, f)+ (M(@2)g, &) > 0; thus, L is R-positive. Assume that jx is a rep-
resenting measure for 8. Since f(x —1)?dpu=Lx%*—=2x+1)= B2 —2B1 + Bo =0, it follows
that (x — 1) |supp « = 0. We thus have (x — Dx3|upp = 0,500 = [(x — Dx*dp = L(x* —x3) =
Ba — B3 =1, a contradiction. Thus L is K-positive, but 8 has no representing measure.

We will return to Example 2.1 in the sequel. We now turn to the proof of Theorem 1.2, which
we restate for ease of reference.

Theorem 2.2. 8 = 8% admits a K -representing measure if and only if L g admits a K -positive
extension L : P47 — R.
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We require some preliminary results and notation. Let X be a locally compact Hausdorff
space. A continuous function f: X — R vanishes at infinity if, for each € > 0, there is a compact
set C, € X such that X \ C, C {x € X: | f(x)| < €}. Let Co(X) denote the Banach space of all
functions on X which vanish at infinity, equipped with the norm || f |0 := sup,cx | f (x)|. The
space C.(X) of continuous functions with compact support is norm dense in Co(X) [5, III.1,
Exercise 13]; when X is compact, Co(X) = C.(X) = C(X), where C(X) denotes the space of
continuous real-valued functions on X equipped with the || - || norm. The Riesz representation
theorem [5, C.18] states that Co(X)*, the dual space of Cy(X), is isometrically isomorphic to
M (X), the space of finite regular Borel measures on X (equipped with the norm ||| := |©|(X));
under this duality, corresponding to u € M (X) is the functional i on Cy(X) defined by fi(f) :=
[ f du. For the case when X C R?, B1(Co(X)*), the closed unit ball of Co(X)*, is weak-*
compact and metrizable [5, Theorems V.3.1 and V.5.1]. The following result is due to J. Stochel
[49], where it is stated in terms of complex variables and the complex moment problem.

Proposition 2.3. (Real version of [49, Proposition 1].) Let K be a nonempty closed subset of R?
and let p be a nonnegative continuous function on K. Assume that {|iy,}wes IS a net of finite
positive Borel measures on K and | is a finite positive Borel measure on K such that

() limyee [ fdpo = [ fdu (f € Ce(K)), and
(i) sup,eq [x P dpe < +00.

Then [ pdp < supyeqo [ pdpw and [ fpdu =limee [ frdie (f € Co(K)). More-
over, if the set {x € K: p(x) < r}is compact for some r > 0, then fK fdp =limy,egn fK fdug

forevery f:K — R such that f/(1+ p) € Co(K).
The next result is our main tool for proving Theorem 2.2.

Theorem 2.4. Let B = 8P and let K be a nonempty closed subset of RY. If the Riesz functional
Lg is K-positive, then ,3(2”_1) has a K -representing measure.

Proof. Let f1 =1, f,..., fy denote a listing of the monomials in P, in degree-lexicographic

order; thus 8 = {/S(f,-)}f\':l, where B(fj) = Lg(f;), and we set {g = (B(f1),..., B(fn)). For
xeK,let¢c(x) :=(fix),..., fn(x)) € RY, and let C(K) :={¢(x): x € K}. Let cone¢(K)
denote the convex cone in RY generated by ¢ (K), i.e.,

k
cone £ (K) = {Zai;“(xi): k>1,a; >0, x; € K}.

i=1

If ¢g € cone¢(K), then B has a finitely atomic K-representing measure. Indeed, if {g =
Zf:l a;¢(x;) (forsome k >1,a; >0, x; € K (1 <i<k)),let u:= 25;1 a;8y;, (where 8y is
the unit-mass measure supported at x). Clearly,

k k
ffjdu=2aif,~<x,->=[Zai;(m} =[gpl; =B(f) (A<j<N),
i=1 j

i=1 J

so i is a K -representing measure for S.
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Next, consider the closed convex cone C = cone¢(K). We will show below that ¢g € C,
but we first show that if {g € C, then B 2n=1) has a K -representing measure. To see this, sup-

. k k
pose ¢ =1limy s 400 ) .0 aips(xip) (kp =2 1,a;p 20, x;p € K). Let up, =3 .7, aipdy;,, so that

f fj dﬂp = Zi‘{il aipfj(xip) = [Zfil aipf(xip)]j- Now,

lim ffjdup=[zﬁ]j:ﬁ(fj) (1<j<N). @.1)

p—>+00

In particular, lim,_, ;o |pll = imp o0 [ fidup = B(f1), s0 {1} is bounded in Co(K)*.
Since the unit ball of Co(K)* is compact and metrizable, it follows that some subsequence
(which we also denote by {1 ,}) is weak-* convergent, i.e., there exists A € Co(K)* such that
limp_>+ooffd,up = A(f) (f € Co(K)). Since each ), > 0, the Riesz representation theo-
rem implies that A(f) = [ fdu (f € Co(K)) for some positive finite regular Borel measure
w with suppp € K. Let o, = [ llx |2 dpp and set o = sup, o). Since p(x) = Ix]1?" € Pa,
(2.1) implies that {o},} is convergent, whence o < +00. Proposition 2.3 now implies that
limy— oo [ fdpp = [ fdu for every f such that £/(1+ ||x||*") € Co(K). It follows exactly
as in the proof of [13, Proposition 3.2] that for f € Pa,—1, f/(1 + |x]|*") € Co(K). Thus, for
each f; satisfying deg f; <2n — 1, we have limp_ 4o [ fjdu, = [ fj du, while (2.1) implies
lim,_, 4o [ fjdpp = B(fj). Thus B(fj) = [ fjdn whenever deg f; < 2n — 1, whence pu is a
K -representing measure for gD,

To complete the proof we will show that g € C. For otherwise, since C is a closed cone
in RY, the Minkowski separation theorem (cf. [S1, p. 124], [3, (34.2)]) implies that there exists
a=(aj)i<j<y € RY such that (a,v) >0 (v €C) and (a, {g) < 0. Let p(x) =Y 7 a; fj(x) €

Po,. For x € K, since ¢ (x) € C, then p(x) = Z;V:l ajfj(x)={a,(x)) =20,s0 p|lg > 0. Since
Lg is K-positive, it follows that Lg(p) > 0. On the other hand, since Lg(p) = (a, {g) <0, we
have a contradiction. Thus ¢z € C and B@ D has a K -representing measure. [J

Let n denote a positive Borel measure on R? having convergent moments up to at least de-
gree m, and let B[] denote the sequence of moments of ., defined by f; := f xtdp (i) < m).
A cubature rule for 1 of degree m is a finitely atomic representing measure for ™ [11]. A clas-
sical result of Tchakaloff [51, Théoreme II; p. 129] shows that if supp n 1s compact, then for
each m, pu has a cubature rule v of degree m with suppv C supp i and cardsuppv < dimP,,.
Extensions of this result to the case where supp i is unbounded appear in [35] and [13], but the
cubature rules in these papers only extend to degree m — 1. Recently, Bayer and Teichmann (2,
Theorem 2] obtained the full extension of Tchakaloff’s theorem: pu always has a cubature rule
v of degree m such that suppv C supp n (and satisfying card suppv < 1 4 dim Py, ). This result
has an important consequence for the truncated moment problem, for it implies that if 8**) has a
K -representing measure, then 8> has a finitely atomic K -representing measure. By combining
this result with Theorem 2.4, we obtain our proof of Theorem 2.2, as follows.

Proof of Theorem 2.2. Let 8 = " and suppose that Lg admits a K-positive extension
L :Pr,42 — R. Theorem 2.4 implies that there is a positive Borel measure p supported in
K such that L(p) = fpd,u (p € Pay+1). In particular, for |i| < 2n, B; = Lﬁ(xi) = L(x) =
1A xidup, so u is a K-representing measure for B. Conversely, suppose B3 admits a K-
representing measure. The Bayer—Teichmann theorem [2] implies that ) admits a finitely
atomic K -representing measure v. Since v has convergent moments of all orders, we may define
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B=p+D by B := [x'dv (|i| <2n+2). Now suppv C K, so it follows immediately that
LB : Pan+2 — R is K-positive, and since ,5,- = B; (li| <2n), Lﬁ is an extension of Lg. O

Since each nonnegative polynomial on R is a sum of two squares, for d = 1 positivity of the
Riesz functional Lgem is equivalent to positivity of the corresponding moment matrix M (m),
which can be checked by concrete tests. For d > 1, positive polynomials are not necessarily
sums of squares, so it is difficult to directly verify that Lgem) is positive. In the remainder of
this section and in Section 3 we study several concrete criteria which guarantee the existence of
K -positive extensions (and K -representing measures). We begin by recalling some concrete (i.e.,
computable) necessary conditions for representing measures in the truncated moment problem.
As in the full moment problem, the basic necessary condition for a representing measure for
B is positivity of the moment matrix. Indeed, if 1 is a representing measure, then for p € P,,,
(M) p, p) = L,g(pz) = fp2 dp > 0. Note that M(n) > 0 is equivalent to the condition that
Lg is square positive, i.e., for p € Py, Lg (p?) > 0. Let CM(n) denote the column space of
M(n). For p(x) = ngn a;x' € Py, we denote by p(X) the element of Cpq(,) defined by
p(X) = ngn a; X'; note that p(X) = M(n)p. Each dependence relation in the columns of
M(n) may be expressed as p(X) = 0 for some p € P,. Let V =)V (M(n)) denote the variety of
M(n), defined by V := ﬂpep”’ »(x)=0Z(p), where Z), :={x € R%: p(x) =0} (cf. [9, p. 6]).

Proposition 2.5. (Cf. [7, Proposition 3.1 and Corollary 3.7].) Suppose B = B has a repre-
senting measure (.

(1) p € Py satisfies p(X) =0 in Caqy) if and only if supp u € Z(p);
(ii) supppu € V(M(n));
(iii) rank M (n) < cardsupp u < card V(M (n)).

Remark 2.6. Note that if 8 = 8 admits a representing measure , then L g 1s V-positive;
for, if p € P2, and ply > 0, then plsupp, = 0 from Proposition 2.5(ii), so L(p) = f pdu = 0.
We may also introduce the variety in the full moment problem for B V(M(0)) =
N peP. px)=0 2(p). If B> admits a representing measure u, then supp u € V(M (c0)). In-
deed, if p € P and p(X) =0 in Cprq(c0), then with n =deg p, u is a representing measure for
B and p(X)=0in CM(n)» so Proposition 2.5 implies supp u € Z(p).

Theorem 1.1 now admits the following reformulation.

Proposition 2.7. Let K € R? be a nonempty closed set. The following are equivalent for

B =p:

(1) B admits a K -representing measure;
(i1) Lg is K-positive;
(iii) Lgis K NV (M(00))-positive.

Proof. Clearly, (iii) implies (ii), so in view of Theorem 1.1, it suffices to show that (i)
implies (ii1). Suppose p is a K-representing measure for f and suppose f € P satisfies
FlknV(M(oo)) = 0. Since suppu € K N V(M(00)) by Remark 2.6, then f|supp, = 0, so we
have L(f)= [ fdr>0. O
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Returning to the truncated moment problem for g = ®”), the same argument as in the preced-
ing proof shows that if 8 admits a K -representing measure, then Lg is K N V(M (n))-positive.
Motivated by Example 2.1 and Proposition 2.7, in the sequel we study whether the analogue of
Proposition 2.7(iii) = (i) holds for the truncated moment problem. In particular, for K = R¢, we
consider the following question.

Question 2.8. Let 8 =B8@" and V = V(M ®)). If L g is V-positive, does B have a representing
measure (necessarily supported in V)?

Suppose M (n) > 0 (M(n) is positive definite), so that V(M (n)) = R?. In view of Theo-
rem 1.2, in this case Question 2.8 is equivalent to the following question.

Question 2.9. If M (n) > 0 and L is positive, does L g admit a positive extension L : P, 17 — R.

In Question 2.9, the hypothesis that Lg is positive is essential. Indeed, [8] illustrates a case
with d =2 where M (3) > 0, but there is no representing measure. In this example, the Riesz
functional is not positive.

Remark 2.10. Theorem 2.2 implies that a linear functional L : P;,, — R admits a K -representing
measure if and only if L admits a K-positive extension to Pp,2. It is natural to ask whether
other forms of extended K -positivity lead to representing measures. One possibility is to define
L to be mK -positive if whenever P = (p; j);?f i1 is an m x m matrix of polynomials in Py,
the pointwise positivity of P on K implies that L(P) := (L (pij)):?szl > 0. We say that L is
completely K -positive if L is m K -positive for all m > 1. It is not difficult to check that complete
K -positivity of L is a necessary condition for the existence of a K-representing measure. At
first sight, this notion may appear to be stronger than K -positivity, but Prof. Vern Paulsen has
pointed out to us that an adaptation of the proof of [31, Proposition 3.8] shows that complete
K -positivity is actually equivalent to K -positivity. Thus, complete K -positivity, while allowing
matrix polynomials of all sizes to occur, apparently cannot account for increases in polynomial
degree, as needed for the existence of a representing measure.

We devote the remainder of this section to illustrating cases where Question 2.8 has a posi-
tive answer, and to this end we require some preliminary results. Let 8 = 8 and recall from
[18] and [7] that M (n) is recursively generated if whenever p, q, pg € P, and p(X) =0 in
CM(n), then (pg)(X) = 0. Motivated by the proof of Example 2.1, and by a suggestion from
Prof. Michael Moller, we say that L = Lg is strongly recursively generated if the following prop-
erty holds: if p € P,, L(p?) =0, and g € P satisfies pg € P»,, then L(pg) = 0. We next show
that strong recursiveness is a necessary condition for representing measures. In Example 2.1, L is
not strongly recursively generated, since L((1 — x)?) =0but L((x — 1)x3) #£0.

Proposition 2.11. If B = B®Y has a representing measure, then L g is strongly recursively gen-
erated.

Proof. Suppose p € P,, Lﬁ(pz) =0, and g € P satisfies pg € P>,. Since B has a repre-
senting measure, M(n) > 0, so 0 = Lg (p?) = (M) p, p) = [IMn)'/?p|?, whence p(X) =
M(n)'2(M(n)!/? p) = 0. Proposition 2.5(i) implies that supp it € Z(p), i.e., plsuppp = 0. Now
Pqlsuppp =0,50 Lg(pg) = [ pgdpn=0. O
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Proposition 2.12. For = %", if L=L g is strongly recursively generated, then M (n) is
recursively generated.

Proof. Suppose p,q,pq € P, and p(X) = 0. Since M(n)p = p(X) =0, then L(p?) =
(M(n)p, p) =0. Let r € Py, so that pgr € Pa,. Since L is strongly recursively generated,
we have (M(n)pq,r) = L(pgr) = 0. Thus, (Mn)pg,7) =0 (all r € P,), so (pg)(X) =
M(n)pg =0, as desired. O

Recall from [17] that B is consistent if whenever p € P>, and ply =0, then Lg(p) =0.

Proposition 2.13. Let = %Y and V =V(M0)). If L= L g is V -positive, then B is consis-
tent, M(n) = 0, L is strongly recursively generated, and r := rank M (n) < v := card supp V.

Proof. Suppose L is V-positive. If p € Py, satisfies p|y = 0, then V-positivity implies L(p) > 0
and L(—p) > 0, whence L(p) = 0; thus B is consistent. For p € P,, V-positivity implies
that L(p?) >0, so (M(n)p, p) > 0, whence M(n) > 0. To show that L is strongly recur-
sively generated, let p € P, with L(p2) = 0. Since M(n) > 0, we have ||/\/l(n)1/213||2 =
(M) p, M2 p) = (M(n)p, p) = L(p*) =0, whence p(X) = M(n)p = Mmn)'/* x
(M@)?2p) =0. Thus, V C Z(p), ie., ply =0. Now for g € P such that pg € P,, since
pqly =0, V-positivity for L implies that L(pg) = 0; thus L is strongly recursively generated.

To complete the proof, we will show that r < v. The linear map ¥ : Caqn) — Paly, given
by ¥ (p(X)) := ply (p € Pp), is well defined (by the definition of V). Since L is V-positive,
B is consistent, hence weakly consistent (cf. [17)), i.e., if p € P, and p|y =0, then p(X) =
0 € Cpmn- Thus, ¥ is one-to-one, whence r = dimCaq(,) < dim’P,|y. Since we may assume
that v < 400, then dim P, |y < dimR" = v (where we view a polynomial restricted to ) as the
sequence of its values at the points of V); thus, r <v. O

In the proof of Proposition 2.17 we will need the following result.

Corollary 2.14. Let V :=V(M(n)). If Lg is V-positive and V C Z(p) for some p € Py, then
p(X) =0in C./\/l(n)-

Proof. Proposition 2.13 implies that 8 is consistent, so [17, formula (2.2) in Lemma 2.2] im-
plies that M(n) is weakly consistent, i.e., g € Py, qly =0 = g(X) =0 (in Cpq(,)). Since by
hypothesis V C Z(p), we must have p|y, = 0, so the result follows. O

The preceding results show that V(M (n))-positivity for Lges implies many of the known
necessary conditions for representing measures. Using these results we next present some cases
where Question 2.8 has an affirmative answer.

Proposition 2.15. (Truncated Hamburger moment problem.) Let d = 1 (one real variable). The
following are equivalent for g = B

(1) B has a representing measure;

(i) M(n)(B) is positive semidefinite and recursively generated,
(iii) B has a rank M (n)-atomic representing measure;
(iv) Lg is V(M(n))-positive.
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Proof. The equivalence of (i), (ii), and (iii) is established in [6, Theorem 3.9], and (i) = (iv) was
derived in Remark 2.6. Finally, (iv) = (ii) follows from Propositions 2.12 and 2.13. O

Remark 2.16. (i) Theorem 1.2 can be used to give an alternate proof of (ii) = (i) in Proposi-
tion 2.15. Indeed, if M (n) is positive and recursively generated, then [6, Theorem 2.6] shows that
M(n) admits a positive extension M (n + 1). Since M (n + 1) > 0, the sum-of-squares repre-
sentation for nonnegative polynomials on R [32] implies that the Riesz functional corresponding
to M(n + 1) is positive, whence Theorem 1.2 implies that 8*") admits a representing measure.

(i1) Proposition 2.15 can be used to illustrate that the truncated moment problem is more
general than the full moment problem. Hamburger’s theorem for d = 1 states that 8> has a
representing measure supported in R if and only if M (oc0) > 0 (cf. [23, p. 166], [46, p. 5]). To
prove this via the truncated moment problem, note that if M (co) > 0, then for each n, M(n) >0
and M (n) is recursively generated (cf. [20, Proposition 4.2]). Proposition 2.15 thus implies that
B3 has a representing measure for each n, so the existence of a representing measure for g
follows from Stochel’s theorem [49].

We next resolve Question 2.8 for the case when d =2 and V(M (n)) C Z(p), where deg p <
2 < n.

Proposition 2.17. (The truncated moment problem on planar curves of degree at most 2.) Let
d = 2. Suppose deg p(x,y) <2 < n and V(M(n)) C Z(p). The following are equivalent for
p=pC":

(1) B has a representing measure;

(i) B has a finitely atomic representing measure;
(iii) M(n) is positive and recursively generated, and r < v;
(iv) Lg is V(M (n))-positive.

Proof. Corollary 2.14 shows that (iv) implies p(X, Y) =0 in C4(,). Under this condition, [16,
Theorem 1.2] implies that (i), (ii) and (iii) are equivalent, and (i) always implies (iv). Since
Propositions 2.12, 2.13 show that (iv) implies (iii), the proof is complete. O

We next consider the case when d > 1 and V(M (n)) is compact.

Proposition 2.18. Let d > 1 and suppose V = V(M (n)) is compact. If Lg is V-positive, then f3
admits a V-representing measure [t with card supp pu < dimPyy,.

Proof. The proof is implicit in the proof of Tchakaloff’s theorem, concerning the existence of
cubature rules over compact sets in R¢ [51, Théoreme II, p. 129]. The present formulation in
terms of V-positivity is a special case of [13, Proposition 3.6] (adapted to real moment prob-
lems). O

We conclude this section by resolving Question 2.8 for the case when M (n) is extremal, i.e.,
r:=rank M (n) and v := card V satisfy r = v (where V := V(M (n))).

Proposition 2.19. Let d > 1 and suppose r = v. If Lg is V-positive, then B admits a V-re-
presenting measure.
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Proof. Proposition 2.13 implies that M (n) > 0 and 8 is consistent, so since r = v, the existence
of a unique representing measure p, with supp © =V, follows from [17, Theorem 4.2]. O

3. An equivalence for truncated moment problems on semialgebraic sets

In this section we establish analogues of Theorem 1.4 for the truncated moment problem. The
following result (which restates Theorem 1.5) is an analogue of the “only if”” part of Theorem 1.4,
but without the requirement of compactness.

Theorem 3.1.

(i) Assume that Ko satisfies (S, k) for some n and k. Then every polynomial in P, that is
strictly positive on K g belongs to X9 4.

(i1) Assume that K g satisfies (R, i) for some n and k. Then each polynomial in P, that is
strictly positive on Kg belongs to X9 p4+1-

Theorem 3.1 provides a sufficient condition for boundedly finite convergence in the poly-
nomial optimization method of J. Lasserre [27], as we now show. For Q = {qo, ..., g}, with
qo =1, let n satisfy 2n > degqg; (0 <i <m).Let f € P2, and let f* :=inf{ f(x): x € Kg}. For
k > 0, define the (n + k)th Lasserre relaxation by

[ i=inf{La(f): B= BP0 satisfies Lg(1) =1 and
Mg (n+k)(B) =0 (0<i <m)},

Then n*—}—k < [k S0 < fF[27], and if Ko satisfies (P), then limg— oo n*+k = f* [27]
(cf. [28, Lemma 7.10 and Proposition 7.11]). The Lasserre relaxations can be explicitly com-
puted within the framework of semidefinite programming, for example, by using the software
SeDuMi [24] (cf. [28, (7.5)]). It is thus of interest to identify conditions for finite convergence
in Lasserre’s method (cf. [28, Section 7]), and the following result shows that property (S, x) is

such a condition.

Proposition 3.2. Suppose K o satisfies (S, i) for some n satisfying 2n > degq; (0 <i <m) and
some k > 0. Then for f € Py, [*= f;
Proof. Fore > 0,let g := f — f*+e¢. Clearly, g|g, > 0. From Theorem 3.1, g admits a decom-
position g =), g; Zj gl.zj, with deg qigl.zj < 2n + 2k If B = B@"+20 gatisfies Lg(1) = 1 and
Mg +K)(B) >0 (0 <i <m), then Ly(g) = ¥; (M, (n + k)(B)ij. &ij) > 0. whence
Lg(f) = f* —e. It now follows that f* = f," ,, so we have convergence after k steps. O

The next result, adapted from [51, p. 126], shows that in Theorem 3.1, an element in any of
the cones X' , can be expressed using at most dim P,,, generators (cf. [38, Theorem 17.1]).

Lemma 3.3. Let W be a finite-dimensional real vector space and let m := dimW. Let C be a
convex cone in VW generated by vectors { fy}qer, i.e., C = {Z?zl ai fo;: n =1, a; = 0}. Then
each element [ of C has a representation as above with n < m.
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To prove Theorem 3.1 we will need the following two results, which are part of Cassier’s
technique [4] and are also implicit in [36] and [42]. Since it is difficult to find explicit statements
and proofs in the literature, we include those here for the reader’s convenience.

Lemma 3.4. Let m > 1 and let C be a convex cone in R™ such that C — C :={f —g: f,g €
C} =R™. Then the interior of C is nonempty (relative to the Euclidean topology on R™).

Proof. Let B = {f1,..., fr} be a maximal linearly independent subset of C. We first claim
that BB is a basis for R™. Consider the subspace W of R™ generated by 3, and let h € W.
Then h = X7_,a; fi, where q; € R (i =1,...,r). Write {1,...,r}=1UJ :={i: q 20} U
{i: a; < 0}. Since C is a convex cone, it follows that h = f — g, where f := Xicja; fi € C and
g :=—Xicya; fi € C. It follows that h € C — C, and thus WW = C — C = R"™. Therefore, r =m
and B is a basis for R"”.

To complete the proof it suffices to show that C has nonempty interior. Since B is a basis
for R™, and all norms on R™ are equivalent [5, Theorem II1.3.1], we may endow R with the
norm || Y 1" a; fill := maxgim lai|. Now let f:= "7 a; f;, where ¢; >0 (1 <i <m). If
g=> i, bifi € R" satisfies || f — g|| < minj<;<m ai, then foreach i, |b; —a;| < || f — gl < ai,
sob; >0 (1 <i<m),whence g € C.Thus, feintC. 0O

Lemma 3.5. Let m > 1, let A be an open convex cone in R™ (endowed with the usual Euclidean
topology), and let g ¢ A. Then there exists a continuous linear functional L :R"™ — R such that
Ly >0and L(g) <0.

Proof. Since A is a convex set and ¢ ¢ A, Hahn—Banach separation (cf. [3, 30.6] and its proof)
implies that there is a continuous linear functional L on R such that o := inf{L(a): a € A}
satisfies L|4 = o > L(q). Further, since A is open, [3, 30.5(3)] implies that L|4 > «. To com-
plete the proof, we show that o = 0. For suppose first that « < 0. By the definition of «, we
may choose ag € A with L(ap) < 0. Since A is a convex cone, for each positive ¢ € R we have
tap € A, sotL(ag) = L(tag) > L(q), a contradiction (since L(ag) < 0). Thus o > 0. Further, for
a € A, the cone property gives %a € A, and L(rlla) = %L(a) — 0, whence o < 0. It follows that
o =0, asdesired. O

Remark 3.6. Observe that Lemma 3.5 remains true if the singleton {¢g} is replaced by any convex
subset C disjoint from A, as a straightforward modification of the above proof shows.

Proof of Theorem 3.1. (i) We adapt part of the proof of [42, Corollary 3] (cf. Theorem 1.4),
which, in turn, is based on the proof of [4, Théoreme 4]. In the sequel, we view P, as the Eu-
clidean space R (m := dim P, ), endowed with the usual Euclidean topology. Assume that K o
satisfies (S; x). We first show that Py, 4k) = X9 4k — 20 n+k- Indeed, we may express a mono-
mial p € Pyuqx) @S p = Xjy -+ XiyXipy -+ Xigy,,» Where £,m <n +k and each i; € {1,...,d}.
Since X' 4+« contains all squares of polynomials in P, (here is where we use the hypothesis
that go = 1), we have

25y XigXigyy o Kigy

2 2 2
= (X o Xy Xy o X)) — ((xil e Xi) T Wiy X)) € otk — Ltk
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For a general element of P»(,4x), apply this argument separately to the terms with positive co-
efficients and to the terms with negative coefficients. If we view P>, 1) as a finite-dimensional
Euclidean space, then since P2i4k) = X Q ntk — 2 Q.n+k- it follows from Lemma 3.4 if m > 1
and X g 4« has nonempty interior (relative to Py(,4x))-

Now let g be a polynomial in Py, that is strictly positive on K g, and suppose g ¢ X9 ,+«-
Let A :=int ¥ g ,4¢. Since A is a nonempty open cone and ¢ ¢ A, Lemma 3.5 implies that
there exists a continuous linear functional L :P5(,4x) — R such that L[4 > 0 and L(g) < 0.
Continuity implies that L|x,,,, > 0. Consider the sequence 8 = 8" "2%) defined by g; :=
L(x") (|i| < 2n + 2k), so that Lg = L. For an arbitrary element p of Xg ,.«, consider the
decomposition p = > 7" gi Zj gizj (q,-gizj € Pam+k))- We have L(p) > 0 and, as in (1.2),
L(p) = >_; > j{Mg (n)gij, &j). Since the g;; are arbitrary polynomials in P,—, (so that
2deg gij +deg g; < 2(n + k)), it follows that M(n + k) > 0 and that M, (n + k) > 0 for
i =1,...,m.Property (S, ) now implies that 8 27 has a K o-representing measure (. Since ¢
is strictly positive on Ko, this leads to the contradiction L(g) = L BOn (q9) = f gdp > 0. Thus,

qge Q.n+k-
(i1) The result follows immediately from (i) and the fact that (R, ) implies (S, x+1). O

Remark 3.7. We have noted previously that our proof of Theorem 3.1 is motivated by the proof
of Schmiidgen’s Positivstellensatz in [42, Corollary 3], which in turn uses the technique of
G. Cassier [4]. The referee has kindly pointed out that subsequent to [42], alternate proofs of
Schmiidgen’s Positivstellensatz were developed, based on properties of Archimedean quadratic
modules. The approach of T. Wormann appears in M. Marshall’s monograph [29], and a unified
exposition of this approach appears in K. Schmiidgen’s recent expository paper [44]. In response
to the referee’s question, we believe that this alternate approach to Schmiidgen’s Positivstellen-
satz cannot be adapted to give a simplified proof of Theorem 3.1. There are two basic reasons
for this belief. First, the quadratic module Q" is Archimedean if and only K¢ is compact (cf.
[44, Proposition 17]), and, indeed, Schmiidgen’s Positivstellensatz applies to all compact K.
By contrast, Theorem 3.1 does not apply to all compact semialgebraic sets, but does apply to var-
ious noncompact algebraic varieties, as we describe below. Second, the proof of Schmiidgen’s
Positivstellensatz in [44] involves polynomials of arbitrarily large degree, whereas in the proof
of Theorem 3.1 we must remain in the framework of P>(,4), where polynomials have bounded
degree. We also note that although the proof of Theorem 3.1 uses some of Cassier’s methods,
it does not require the full strength of Cassier’s technique [4, Théoreme 4], which involves a
delicate extension of a separating linear functional from P, to all of P. The alternate approach
to Schmiidgen’s Positivstellensatz in [44] is designed to circumvent this particular extension, but
in our case there is no need for the extension at all.

We next present several examples of semialgebraic sets Kg and corresponding Q which
satisfy (S, x) or (R, x) for certain n and k. For these sets, Theorem 3.1 immediately yields cor-
responding representations for polynomials that are strictly positive on Kg. Combining each
example with the following proposition yields a corresponding result for the full moment prob-
lem.

Proposition 3.8. Suppose that for each n > 1 there exists k, > 0 such that K o satisfies (S i, )-
Then K g satisfies (S) with Q = Q.
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Proof. Suppose M(oc0) > 0 and M, (00) >0 fori =1,...,m. Then M(n +k,) is a positive
and recursively generated extension of M(n), and M, (n+k,) > 0. Property (S, x,) implies that
M(n) has a K g-representing measure. The result now follows from Stochel’s theorem [49]. O

We begin the examples by illustrating Theorem 3.1 in the setting of a closed interval on the
real line.

Proposition 3.9. (Truncated Hausdorff moment problem [25, Theorem 11.2.3].) Let d = 1.
For a < b, let q(x) := (x —a)(b —x) and Q :={1,q}, so that Kg = [a,b]. For n > 1,
Ko satisfies (Sp,0). Given = g = {,Bi}izio, M(n) is the Hankel matrix (,Bi+j),r-ij=o and

Mym)y=A:=@+b)Hn—1)—Kn—1)—abMn — 1), where H(n — 1) = (IBiHH)Z;iO
and K(n — 1) = (Bi+ J')?, =1 Thus, B has a representing measure supported in [a, b] if and only
ifMm)>0and (a+b)Hn—1)>Kn —1)+abM(n —1).

This formulation of the truncated Hausdorff moment problem is given in [25, Theorem I11.2.3],
although the fact that M, (n) coincides with A depends on a calculation based on [15, Theo-
rem 3.6]. The special case a =0, b =11is givenin [1, p. 74], and the case whena = —1,b = 11s
treated in [46, Theorem 3.1, p. 77]. In the setting of an interval [a, b], the statement, from (S, o)
and Theorem 3.1, that X'g ,, contains each polynomial in P, that is strictly positive on [a, b], ad-
mits a stronger formulation. Indeed, the Markov—Lukécs theorem shows that a polynomial p(x)
of degree 2n that is nonnegative on [a, b] admits a representation p(x) = r(x)% + q(x)s(x)z,
where r € P, and s € P, (cf. [46, p. 77]). A proof of this result for [—1, 1] appears in [32,
Problem 47, pp. 78, 259], and the general case follows by a simple change-of-variables argument.

The interval [a, b] admits a different presentation as K g if we take Q := {1, q1, g2}, where
q1(x) :==x —a and q2(x) := b — x. In this case, we can establish that for every n > 1, K¢
satisfies (S, 1). Indeed, if M (n) admits a positive extension M (n + 1) satisfying M, (n+1) >0
and My, (n + 1) > 0, then the conditions of [6, Theorem 4.1(iv)] are satisfied, whence B admits
a representing measure supported in [a, b].

For the case of the unit circle T, we have the following result.

Proposition 3.10. Let p(x,y) :=1 — x> — y? and let Q := {1, p, —p}, so that Ko =T. For
everyn > 2, T satisfies (R, 0).

Proof. Suppose M(n) is positive, recursively generated, M ,(n) > 0 and M_,(n) > 0. Then
M, (n) = 0. We now appeal to the equivalence between the real and complex truncated moment
problems [15, Propositions 2.17-2.19] (cf. also the proof of [15, Theorem 5.2]). The corre-
sponding complex moment matrix M (n)[y] is positive and recursively generated, and satisfies
M,_,5(n)=0. [10, Proposition 3.9(1)] now implies that Z Z =1 in the column space. Since
M (n)[y] is recursively generated, it follows that y; ; = vi11,j+1 (i, j 2 0,i + j <2n —2).
[11, Theorem 3.5] now implies that y has a representing measure supported in T, and by equiv-
alence, this measure corresponds to a representing measure for 8 supported in T. O

We next consider lines in the plane.

Proposition 3.11. Let g € Py be given by q(x,y) =ax + by + c and let Q :={1,q, —q}. Then
Ko ={(x,y): ax + by + ¢ =0} satisfies (R, o) foralln > 2.
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Proof. Assume that M(n) > 0 is positive and recursively generated, M, (n) > 0 and
M_4(n) = 0. It follows that M, (n) =0, so we conclude that g(X,Y) =aX + bY +c1 =0,
using the real version of [10, Proposition 3.9(i), (ii)]. Since M (n) is positive, recursively gen-
erated, and g(X, Y) =0, we can appeal to the real version of [8, Theorem 2.1] to conclude that
M(n) admits a flat extension M (n + 1). Thus, there exists a representing measure for M (n),
which is necessarily supportedin Kg. O

Remark 3.12. If we set a =0, b = 1, ¢ = 0 in Proposition 3.11, we see that the x-axis satis-
fies (R, 0) for all n > 1. If we let g(x,y) :=y and Q := {1, q, —q}, Theorem 3.1(ii) implies
that every polynomial p € P, that is strictly positive on Kg = {(x,0): x € R} belongs to
the cone X' ,1, that is, p admits a representation of the form p(x,y) =) ;[ fi(x, I? +
y Zi {lgi(x, y)]2 —[h; (x, y)]z}. Note that this generalizes the well-known result for one-variable
polynomials, strictly positive on R. For, given such a polynomial r, we may define R(x, y) :=
r(x). The above representation, when evaluated at y = 0, yields r(x) = >_.[ fi(x, 0)]?, as de-
sired.

Proposition 3.13. Let p € R[x, y| be a quadratic polynomial such that Z(p) is an ellipse in the
plane, that is, for Q := {1, p, —p}, the set Ko is an ellipse. Then K g satisfies (R, o) for n > 2.

Proof. Assume n > 2 and let 8 = 8> be given, for which the associated moment matrix M (1)
is positive, M, (n) > 0, and M_,(n) > 0. Now M, (n) =0, and it follows as in the proof of
Proposition 3.11 that p(X, Y) = 0. We consider two cases.

Case 1. Assume M(1) is invertible. Here we appeal to the strategy in [12, pp. 348, 349] to
convert the given truncated moment problem into an equivalent problem, for which the column
relation becomes X2 + Y2 = 1, that is, K o is the unit circle T. This is accomplished via an affine
transformation ¢ : R> — R?, which transforms the original ellipse into the unit circle. Once this
is done, we can appeal to Proposition 3.10 to first obtain a measure on T, and a fortiori a Ko-
representing measure for S.

Case 2. Assume M(1) is singular. Without loss of generality, we can assume that M (1) admits
a column relation of the form a X +bY +c1 =0, witha, b, c € R, (a, b, c) # (0, 0, 0). By the Ex-
tension principle [18], we then have aX +bY +c1 =0 in C4(,). We now apply Proposition 3.11
to obtain a representing measure, which will necessarily be supported in the intersection of the
line and the ellipse Kg. O

Proposition 3.14. Let p € Rx, y], suppose Z(p) is a parabola or hyperbola, and set Q =
{1, p, —p}. Then K := K g satisfies (R, 1) forn > 2.

Proof. Given g = ", suppose M (n) admits a positive, recursively generated extension
M(n + 1) with M,(n+1) >0 and M_,(n + 1) > 0. Then M ,(n + 1) =0. Since n > 2
and deg p < 2, the real version of [10, Proposition 3.9(i)] implies that p(X, Y) = 0. By [14, The-
orem 2.2] (if K is a parabola) or [16, Theorem 1.5] (if K is a hyperbola), we see that  admits a
K -representing measure. [

Proposition 3.14 and Theorem 3.1(ii) together imply that polynomials that are positive on
parabolas or hyperbolas admit degree-bounded representations, a result that seems to be new.
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Combining Propositions 3.10, 3.11, 3.13 and 3.14 with Proposition 3.8 we also recover a result
of J. Stochel [48] that if d =2 and M (c0) > 0 with p(X,Y) =0 in Caq(0) (Where deg p < 2),
then B(° has a representing measure supported in Z(p).

For truncated complex moment problems, one can define the obvious analogues of properties
(Sn.x) and (R, x); since it will be clear from the context whether we are dealing with real or
complex moment problems, we use the same notation for both situations.

Proposition 3.15. For m > 1, let q(z,2) := 7" — p(z, 2), where p € Cz,z] and degp <m — 1.
Let Q :={1,q,—q}. Then for every n > 2 such that m <[5]+ 1, Kg ={z € C: ¢(z,2) =0}
satisfies (R, o).

Proof. Assume that M (n) is positive and recursively generated, and that M, (n), M_,(n) > 0.1t
follows that M, (n) = 0. By [10, Proposition 3.9(1)], p(Z, Z) = 0 in the column space Cp(»)- By
[8, Theorem 3.1], M (n) admits a flat extension M (n + 1), and therefore there exists a representing
measure for y, necessarily supported in Z(g)(= Kg). O

We now establish suitable converses of the statements in Theorem 3.1. We begin with Theo-
rem 1.6, which we restate for ease of reference.

Theorem 3.16.

(1) If k > 1 and each polynomial in P, > that is strictly positive on Kg belongs to X g 1k,
then K o satisfies (S, k).

(i1) If k =0, Kg is compact, and each polynomial in P>, that is strictly positive on K o belongs
to X o ,, then Ko satisfies (Sy.0).

Proof. (i) By hypothesis, each polynomial p in P, that is strictly positive on K¢ belongs to
% Q n+k» and thus admits the structure p =3, q; ) _; gl.zj (gi gl.zj € Pan+k)). We aim to establish
that K g satisfies (S, ). To this end, assume that M (n)(8) admits a positive extension M (n + k)
such that M, (n+k) >0 (i =1, ..., m). Corresponding to M(n+k), we set L' := Lgon+an . Let

B = ,3(2”+2), so that L := ng = L/|7)2n+2. We claim that L is K o-positive. For, let p € Pa,42,

Plkg > 0. We have p =3 ,qi ) _; gizj (as above), so L(p) = L'(p) = L'(}_;qi )_; gizj) =
Y2 {Mg;(n + k)gij, gij) = 0. It follows by continuity that L is K g-positive. We now ap-
ply Theorem 1.2 to conclude that B has a representing measure supported on K g.

(i1) Here we assume that K¢ is compact and that every polynomial in P, that is strictly
positive on K g belongs to X ,. To prove that Ko satisfies (S,,0), assume that M(n)(8) > 0.
As in the proof of (i) above, it follows that the Riesz functional L = Lg is K g-positive. Since
Ko is compact, Tchakaloff’s theorem [51, Théoreéme II, p. 129] (or as reformulated in [13,
Proposition 3.6]) implies that 8 admits a finitely atomic K g-representing measure. [

Note that each of the results in Propositions 3.10, 3.11, 3.13-3.15 can be “turned around” to
illustrate Theorem 3.16.

Remark 3.17. (i) Although we do not know of a non-compact K¢ that satisfies (S, 0), we can
illustrate a non-compact K¢ such that Yo , contains each polynomial in P,, that is strictly
positive on K. Consider first the real line, withd =1, Q = {1}, and K9 = R. As noted earlier,
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if p € Py, and p|r > 0, then there exist r, s € P, such that p = r? 4 52 [32, Problem VI1.44],
so that p € ¥g ,,. Note that Ko does not satisfy (S, o). Indeed, the single condition of (S, o)
is M(n) = 0, but Proposition 2.15 shows that this condition is not always sufficient for a repre-
senting measure (cf. Example 2.1). Note that Proposition 2.15 shows that R = Ko does satisfy
(Rn,O)-

(ii) Next, consider the half-line, withd =1, Q = {1, x}, Ko = [0, +00). It follows from [32,
Problem 45, pp. 78, 259] that if p € Py, satisfies p|o,+o0) = 0, then there exist r, s € P, and
u,v € P,_1 such that p(x) = r(x)® + s(x)? + x(u(x)?> + v(x)?), whence p € 29.n- Now the
matrix conditions of (S, o) entail M(n) >0 and H(n — 1)(= My (n)) > 0, but [6, Theorem 5.3]
shows that the existence of a representing measure requires, in addition to these properties, the
condition (Bp41,...,B2wm)T € RanH(n — 1). In Example 2.1 we have M(2) > 0 and H(1) =
(} 11) >0,butw: (,83 BT = (1,2)T does not satisfy w € Ran H(1).

When the cone Yo ;4 is closed we can sharpen Theorem 1.5.

Theorem 3.18.

(i) Assume that K g satisfies (S, k) for some n and k, and that the cone X 1y is closed in
Pa(n+k)- Then every polynomial in P>, that is nonnegative on K g belongs to X9 4.

(i1) Assume that K g satisfies (R, i) for some n and k, and that the cone X' g ,, 1 is closed in
Parn+k)- Then each polynomial in P,, that is nonnegative on K g belongs to X9 k1.

As in Theorem 3.1, the total number of terms g; flg in the representations of elements of
20 n+k in Theorem 3.16 can always be taken to be at most dim Py, 42k (cf. Lemma 3.3).

Proof. We focus on the proof of (i) above; the proof of (ii) is entirely similar. Let m := dim P,,,.
In the sequel we view P,, as the Euclidean space R equipped with the usual inner product
topology; for this, we identify a polynomial p(x) = Z| i1<2n a;x" with its vector of coefficients
p = (a;) (with respect to the basis for P, consisting of the monomials in degree-lexicographic
order). We assume that K g satisfies (S, ) and that the convex cone X'g ,, 4 1s closed in P2, 44).
Suppose p € Py, satisfies p|xky = 0, but p ¢ X9 ;1. The Minkowski separation theorem (cf.
[51, p. 124], [3, (34.2)]) implies that there is a polynomial g € P2(,+k) such that (g,5) > 0
for every s € Z’Q nt+k and (g, p) < 0. Consider the linear functional L : P>,4+x) — R defined
by L(f) := (4. f). Define B = ﬂ@””k) by Bi == L(x") (li| <2n + 2k). Let B := @7, so
that Lg = L|p,,. Since L|x,,,, = 0, it follows exactly as in the proof of Theorem 3.1 that
M (n)(B) admits the positive extension M(n + k) (8) >0, and that Mym+k)y=0ifm > 1
and i = 1,...,m. The assumption that K¢ satisfies (S, x) now implies that 8 admits a Ko-
representing measure 4, whence (¢, p) = L(p) = Lg(p) = [ pdu > 0, a contradiction. Thus,
PEXQntk- O

Corollary 3.19. If K g has nonempty interior and satisfies (Sy ) for some n and k, then every
polynomial that is nonnegative on K g belongs to X g i (with at most dim Py, 11 terms).

Proof. A result of V. Powers and C. Scheiderer [33] (cf. [28, Theorem 3.33], [45]) shows that if
K ¢ has nonempty interior, then for every n > 1 and k > 0, X g ,, 1 is closed in Py, 44), so the
result follows from Theorem 3.18. O
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In Section 1 we noted that the closed unit disk fails to satisfy (S3 ) for every k > 0. By
contrast, the disk does satisfy (S; ), so we have the following result.

Proposition 3.20. Each polynomial p € P, satisfying ply = 0 admits a representation p =
Z?:] fi2 +a(l —x2 — y?), where deg fi<l1(A<i<5anda >0.

Proof. For d =2 and Q = {1,1 — x> — y?}, we have Ko = D. Let g(x,y) = 1 — x% — y2.
A calculation using [15, Theorem 3.6] shows that M, (1) = (Boo — B20 — Bo2), and [11, Theo-
rem 1.8(iv)] implies that Ko satisfies (S1,0). (The resultin [11] is given in terms of the truncated
complex moment problem for measures on C, but the complete equivalence of this problem to
the real truncated moment problem for measures on R? is established in [15].) Since dim P, = 6,
the result follows from Corollary 3.19. O

It appears to be open whether the disk satisfies (S x) for some k > 0.

Remark 3.21. A forthcoming paper [22], completed after this paper, contains some new exam-
ples of varieties which satisfy property (S, x) (via Theorem 3.16). Let p(x,y) :=y — q(x), for
g € R[x] with degg > 1. [21, Proposition 6.3] implies that if f € P2, and f|z(, > 0, then
feXgm, withm :=(2n +2)degg — deg p. Similarly, let p(x, y) := yq(x) — 1, for g € R[x]
with degg > 1. [21, Proposition 6.4] implies that if f € P>, and f|z,) > 0, then f € Xg ,,
withm := (2n +2)(2+degqg) — (1 +degq).
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