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Abstract

If � is a representing measure for 
 � 

(2n) in the Truncated Complex Moment Problem


ij =
R
�zizj d� (0 � i + j � 2n), then card supp � � rank M(n), where M(n) � M(n)(
) is

the associated moment matrix. We present a concrete example of 
 illustrating the case when

card supp � > rank M(n)(
) for every representing measure �. This example is based on an

analysis of moment problems in which some analytic column Z
k of M(n) can be expressed as a

linear combination of columns �Zi
Z

j of strictly lower degree.

1 Introduction

Given n � 1 and a sequence of complex numbers


 � 

(2n) : 
00; 
01; 
10; :::; 
0;2n; 
1;2n�1; :::; 
2n�1;1; 
2n;0;

the Truncated Complex Moment Problem (TCMP) entails determining whether there exists a pos-

itive Borel measure � on the complex plane such that


ij =

Z
�zizj d� (0 � i+ j � 2n):

Although no complete criterion for solubility of TCMP is known at present, in [CF2] [CF3] [CF4]

R.E. Curto and the author developed various necessary or su�cient conditions for the existence of

representing measures; these are expressed as positivity and extension properties of the moment

matrix M(n) � M(n)(
) associated to 
 (see below for terminology and notation). If � is a repre-

senting measure for 
, then card supp � � rank M(n) [CF2, Corollary 3.7] [F1]; moreover, there

exists a rank M(n)-atomic (minimal) representing measure for 
 if and only if M(n) � 0 and M(n)
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admits an extension to a moment matrix M(n+ 1) satisfying rank M(n + 1) = rank M(n) [CF2,

Theorem 5.13]. The existence of such a 
at (i.e., rank-preserving) extension has been established

in a variety of cases [CF3] [CF4] (described below), but in 1995 J.E. McCarthy [McC] proved that

there exist 
 � 

(10) for which every representing measure � satis�es card supp � > rank M(n)(
).

McCarthy further showed that such 
 are in a sense generic among moment sequences having repre-

senting measures; nevertheless, the literature apparently contains no concrete example of a moment

sequence displaying this feature. In the present note we provide such a concrete example. For

n = 3, we exhibit a speci�c 

(6) with rank M(3)(
) = 8 and card supp � = 9 for the unique

minimal representing measure � (Theorem 3.1). We establish this example within the framework of

solving TCMP for moment matrices M(n) in which some analytic column Zk can be expressed as a

linear combination of columns �ZiZj of strictly lower degree. For a moment matrix M(n) with such

an analytic constraint, Section 2 provides an algorithmic procedure for determining whether or not



(2n) admits a �nitely atomic representing measure. If such a measure exists, there exists a unique

minimal representing measure, which is not necessarily associated with a 
at extension M(n + 1),

but rather with �nite sequence of successive extensions M(n + 1); : : : ;M(n + d);M(n + d + 1), of

which the �rst d are rank-increasing and the last is 
at (cf. Theorem 1.2 below).

We devote the remainder of this section to terminology, notation, and a survey of some results

that we require concerning extensions of moment matrices. The moment matrix M(n) that we

introduced in [CF2] [F1] hasm(n) � (n+1)(n+2)=2 rows and columns, labelled lexicographically by

1; Z; �Z; : : : ;Zn
;Zn�1�Z; : : : ;Z�Zn�1

; �Zn; the entry in row �ZiZj, column �ZkZl is 
j+k;i+l. Alternately,

for 0 � i; j � n, let Bij denote the (i+ 1) x (j + 1) matrix

Bij =

0
BBB@


ij 
i+1;j�1 : : : 
i+j;0


i�1;j+1 
ij : : : 
i+j�1;1

...
... � � �

...

0;i+j 
1;i+j�1 : : : 
ji

1
CCCA

(note that Bij is constant on diagonals); then M(n) admits the block decomposition M(n) =

(Bij)0�i;j�n.

For k � 0, let Pk denote the complex polynomials p(z; �z) =
P

aij �z
i
z
j of total degree at most k.

For p 2 P2n, let �(p) =
P

aij
ij , and for p 2 Pn, let p̂ � (aij) 2 Cm(n) denote the coe�cient vector

of p with respect to the basis f�zizjg of Pn (ordered lexicographically). M(n) is uniquely determined

by

hM(n)f̂ ; ĝi = �(f�g) (f; g 2 Pn);
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moreover, if there exists a representing measure � for 
, then hM(n)f̂ ; f̂i = �(jf j2) =
R
jf j2 d� �

0 (f 2 Pn), so M(n) � 0 [CF2, Ch. 3, page 15]. For p(�z; z) =
P

aij �z
i
z
j 2 Pn, we de�ne an element

p(Z; �Z) of CM(n) (the column space ofM(n)) by p(Z; �Z) =
P

aij
�ZiZj. If � is a representing measure

for 
, then supp � � Z(p) � fz : p(z; �z) = 0g if and only if p(Z; �Z) = 0 [CF2, Proposition 3.1],

whence

rank M(n) � card supp � � card

\
p2Pn;p(Z;�Z)=0

Zp

(cf. [CF4, Ch. 1, page 6]). The following result is the main tool for establishing the existence of

representing measures in [CF2] [CF3] [CF4].

Theorem 1.1 ([CF2, Theorem 5.13]) There exists a rank M(n)-atomic representing measure for


 if and only if M(n) � 0 admits a 
at extension M(n+ 1).

By combining Theorem 1.1 with a result of M. Putinar [P, Theorem 2], in [CF4] we established

the following criterion for the existence of �nitely atomic representing measures.

Theorem 1.2 ([CF4, Theorem 1.5]) The following are equivalent for 

(2n)

: i) There exists a rep-

resenting measure with convergent moments of all orders; ii) There exists a representing measure

having convergent moments up to (at least) order 2n + 2; iii) There exists a �nitely atomic repre-

senting measure; iv) There exists k � 0 such that M(n) admits a positive extension M(n+k), which

in turn admits a 
at extension M(n+ k + 1).

(The equivalence of ii) and iii) is due to M. Putinar [op. cit.]; it remains unknown whether the

existence of a representing measure implies the existence of a �nitely atomic representing measure.)

Can we always take k = 0 in Theorem 1.2-iv)? Equivalently, if there exists a �nitely atomic

representing measure for 

(2n), does there exist a representing measure whose support consists

precisely of rank M(n)(
) atoms? The answer is a�rmative for truncated moment problems on

the real line [CF1] [F1]; for the Quadratic Moment Problem (n = 1) [CF2, Theorem 6.1]; for the

case of Flat Data (when M(n) � 0 and rank M(n) = rank M(n� 1)) [CF2, Theorem 5.4]; for the

case when there is a linear relation �Z = �1 + �Z in CM(n) [CF3, Theorem 2.1]; and for the only

known minimal quadrature rules of even degree for Lebesgue measure restricted to the square, disk,

or triangle (rules of degree 2 or 4) [CR] [F2] [Str].

Despite this positive evidence, and in response to our a�rmative conjecture [CF2], Prof. John

E. McCarthy proved that there exist minimal representing measures which do not correspond to 
at
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extensions, as follows.

Theorem 1.3 (J.E. McCarthy [McC]) There exist moment sequences 

(10)

admitting �nitely atomic

representing measures, but not admitting rank M(5)-atomic representing measures.

McCarthy's proof of Theorem 1.3 (which appears in [CF4, Theorem 5.2]) depends on a topo-

logical embedding and dimensionality argument. This proof shows, moreover, that the sequences of

Theorem 1.3 form a topologically \large" subset of the sequences 
(10) having representing measures;

nevertheless, since the proof is nonconstructuve, it seems di�cult to display such sequences or to

construct their minimal representing measures.

Following [CF2] [F1], we say that a positive moment matrix M(n) is recursively generated if it

satis�es the following property:

(RG) p; q; pq 2 Pn; p(Z; �Z) = 0 =) (pq)(Z; �Z) = 0:

If 
 admits a representing measure, then M(n) is positive and recursively generated [CF2,

Remark 3.15]. Although the converse is false [CF4], we have the following result of [CF3] which is

the basis for Sections 2 and 3.

Theorem 1.4 ([CF3, Theorem 3.1]) Suppose M(n) is positive and recursively generated. If Zk =

p(Z; �Z) for some p 2 Pk�1, where 1 � k � [n=2] + 1, then M(n) admits a unique 
at extension

M(n+ 1).

In the sequel we say that M(n) admits an analytic constraint if there exists k, 1 � k � n, such

that Zk = p(Z; �Z) in CM(n) for some p 2 Pk�1. [CF4, Example 4.4] illustrates 
 � 

(6) such that

M(3)(
) (positive and recursively generated) admits an analytic constraint of the form Z3 = ��Z2,

but 
 has no representing measure. In Section 2 we extend Theorem 1.4 so as to solve TCMP for

moment matrices with analytic constraints. For the case when k > [n=2] + 1, Algorithm 2.1 and

Theorem 2.2 together show how to test (within the realm of elementary linear algebra) whether

or not M(n) admits a positive, recursively generated extension M(2k � 2); this is precisely the

criterion for the existence of a �nitely atomic representing measure. If this criterion is satis�ed, then

the unique minimal representing measure may be explicitly constructed using Theorem 1.6 (below).

To verify matrix positivity we will generally employ a criterion due to Smul'jan [Smu]. Consider

a block matrix M =

�
A B

B
�

C

�
.
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Proposition 1.5 M � 0 if and only if A � 0, B = AW for some matrix W (equivalently, Ran B �

Ran A), and C �W
�
AW . In this case, rank M = rank A if and only if C =W

�
AW .

We will have occasion to use the Extension Principle [F1, Proposition 2.4]: If M � 0, then each

linear dependence relation in the column space of A extends to a corresponding relation in the

column space of M .

The following Flat Extension Theorem is our main tool for explicitly constructing minimal

representing measures in the presence of 
at extensions. Observe that an extension of M(n) to

M(n + 1) is completely determined by a choice of \new moments" of degrees 2n + 1 and 2n + 2;

moreover, all of these moments (or their conjugates) appear in column Zn+1 ofM(n+1), soM(n+1)

is determined by M(n) and Zn+1. Let [Zn+1]n denote the truncation of Zn+1 through components

indexed by monomials of degree at most n; this coincides with the left-most column vector of block

B � (Bi;n+1)0�i�n. If M(n + 1) is a positive extension of M(n), then (from Proposition 1.5)

[Zn+1]n 2 Ran M(n), so there exists p 2 Pn such that

[Zn+1]n = p(Z; �Z) in CM(n): (1.1)

Further, if M(n+ 1) is a 
at extension of M(n) � 0, then Proposition 1.5 implies

Zn+1 = p(Z; �Z) in CM(n+1): (1.2)

A 
at extension M(n + 1) of M(n) � 0 is thus completely determined from M(n) by a choice of

new moments of degree 2n+ 1 via the equivalence of (1.1) and (1.2).

Theorem 1.6 ([CF2, Theorem 4.7, Corollary 5.12]) Suppose M(n+1) is a 
at extension of M(n) �

0, determined by a relation Zn+1 = p(Z; �Z) for some p 2 Pn. Then M(n + 1) admits unique

successive 
at (positive) moment matrix extensions M(n+2), M(n+3), ..., where M(n+ d+1) is

determined from M(n+ d) (via (1.1)-(1.2)) by the relation

[Zn+d+1]n+d = (zdp)(Z; �Z) in CM(n+d) (d � 1): (1.3)

Let r = rank M(n); in M(r) there is a relation of the form Zr = a01+a1Z+ � � �+ar�1Z
r�1

. The r

distinct roots of z
r�(a0+ � � �+ar�1z

r�1), z0, ..., zr�1, comprise the support of an r-atomic minimal

representing measure for 
, with densities �0; : : : ; �r�1 determined by the Vandermonde equation

V (z0; : : : ; zr�1)(�0; : : : ; �r�1)
t = (
00; 
01; : : : ; 
0;r�1)

t
: (1.4)
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We note that if r > 2n + 1, then some of the analytic moments 
0;j in (1.4) are \new" moments,

which are recursively generated for M(r) via (1.3).

Acknowledgment Many of the calculations associated with Theorem 3.1 were carried out

using the software tool Mathematica [Wol].

2 Solution of TCMP for moment matrices with analytic con-

straints

Let M(n) be a positive, recursively generated moment matrix with an analytic constraint. Thus

there exists k, 1 � k � n, such that Zk = p(Z; �Z) in CM(n) for some p 2 Pk�1. To solve TCMP for



(2n), we �rst describe an algorithm which determines (in a �nite sequence of steps) whether or not

M(n) admits a positive, recursively generated extension M(n+ 1).

We denote a moment matrix extension M(n+ 1) by the block decomposition

M(n+ 1) =

�
M(n) B

B
�

C

�
; (2.1)

where B = (Bi;n+1)0�i�n and C = Bn+1;n+1. The Extension Principle implies that if M(n+1) � 0,

then Zk = p(Z; �Z) in CM(n+1). If, in addition, M(n+ 1) is recursively generated, then

Zn+1 = (zn+1�kp)(Z; �Z) in CM(n+1); (2.2)

whence

[Zn+1]n = (zn+1�kp)(Z; �Z) in CM(n): (2.3)

Note also that [Zn+1]n is independent of the analytic constraint; indeed, if we also have Zj =

q(Z; �Z) in CM(n), where 1 � j � n and q 2 Pj�1, then the Extension Principle and property (RG)

imply that (zn�j+1q)(Z; �Z) = Zn+1 = (zn�k+1p)(Z; �Z) in CM(n+1), whence [(zn+1�jq)(Z; �Z)]n =

[(zn+1�kp)(Z; �Z)]n in CM(n).

Algorithm 2.1 Test for existence of positive, recursively generated extensions of moment matrices

with analytic constraints.

i) To construct a positive, recursively generated extension M(n + 1), we begin by de�ning

[Zn+1]n via (2.3). This de�nition uniquely determines (up to conjugation) all \new" moments of

degree 2n+1, and thus determines block Bn;n+1 and the corresponding block B of (2.1). If Ran B
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is not contained in Ran M(n), then, by Proposition 1.5, there is no positive, recursively generated

extension M(n+ 1).

ii) Suppose Ran B � Ran M(n) and let W satisfy B = M(n)W (cf. Proposition 1.5). Since

M(n + 1) is to be positive and recursively generated, we use the Extension Principle and block

B
� to de�ne Zn+1 for M(n + 1) by Zn+1 = (zn+1�kp)(Z; �Z) in the column space of

�
M(n)
B
�

�
.

This relation uniquely determines (up to conjugation) all new moments of degree 2n+ 2, and thus

uniquely determines C � Bn+1;n+1. From (2.1) and Proposition 1.5, the resulting extensionM(n+1)

is positive if and only if C �W
�
M(n)W . If M(n+1) is not positive, then M(n) admits no positive,

recursively generated moment matrix extension.

iii) If M(n+ 1) is positive, we then determine whether or not it is recursively generated. Since

M(n) is recursively generated, to make this determination, the Extension Principle implies that it

su�ces to consider relations in CM(n+1) of the form

�ZiZj = s(Z; �Z); where i+ j = n and s 2 Pn: (2.4)

In order that M(n + 1) satisfy (RG) it is necessary and su�cient to verify that for each such

relation, �Zi+1Zj = (�zs)(Z; �Z) and �ZiZj+1 = (zs)(Z; �Z). Moreover, by considering a basis for

CM(n+1) consisting of a maximal independent subset of f�ZiZjg0�i+j�n+1, it su�ces to consider a

relation as in (2.4) in which s(Z; �Z) is expressed as a linear combination of basis elements of degree

at most n. Since there are at most �nitely many such relations, it is possible to check for property

(RG) in a �nite number of steps. 2

If M(n + 1) (as just de�ned) is positive and recursively generated, then it is the unique such

extension, and is called the analytic extension of M(n); if such an extension does not exist, then 


admits no �nitely atomic representing measure (cf. Theorem 1.2).

Theorem 2.2 Suppose M(n) is positive, recursively generated, and has an analytic constraint Zk =

p(Z; �Z), where 1 � k � n and p 2 Pk�1. Then 

(2n)

admits a �nitely atomic representing measure

if and only if k � [n=2] + 1, or k > [n=2] + 1 and M(n) admits successive analytic extensions

M(n+1); : : : ;M(2k� 2) as determined by Algorithm 2.1. In this case, 

(2n)

has a unique minimal

representing measure, which is rank M(n)-atomic if k � [n=2]+ 1 and is rank M(2k� 2)-atomic if

k > [n=2] + 1.

Proof. Suppose � is a �nitely atomic representing measure for 
(2n). Then � has convergent

moments of all orders, and the successive moment matricesM(n+1)[�]; M(n+2)[�]; : : : are positive
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and recursively generated (since � is a representing measure for each). Since M(n) has an analytic

constraint, it follows from Algorithm 2.1 that the extensions M(n + j)[�] (j � 1) are the unique

successive analytic extensions of M(n).

For the converse, let d = n if k � [n=2] + 1 and let d = 2k � 2 if k > [n=2] + 1. The hypothesis

implies that in CM(d) we have Z
k = p(Z; �Z) for p 2 Pk�1, where k � [d=2]+1. SinceM(d) is positive

and recursively generated, Theorem 1.4 implies that M(d) has a unique 
at extension M(d + 1),

and Theorem 1.1 yields a corresponding rank M(d)-atomic representing measure for 
(2n).

We next address size and uniqueness of minimal representing measures. For the case k �

[n=2] + 1, it follows directly from Theorem 1.4 that M(n) has a unique 
at extension, so Theorems

1.1 and 1.6 imply that there exists a unique rank M(n)-atomic minimal representing measure.

Suppose next that k > [n=2] + 1; the 
at extension M(2k � 1) of M(2k � 2) corresponds to a

representing measure � for 
 with s � rank M(2k�2) atoms. Let � denote a minimal respresenting

measure for 
 and let r = card supp �; we seek to show that r = s and � = �. Since � is r-atomic,

rank M(r � 1)[�] = r (cf. [CF4, Theorem 4.7]). As above, M(n + j)[�] (j � 1) is a sequence

of successive positive, recursively generated extensions of M(n), so by the uniqueness of analytic

extensions,

M(n+ j)[�] =M(n+ j) (0 � j � 2k � 2� n): (2.5)

Suppose r� 1 � 2k� 2. Then r = rank M(r� 1)[�] � rank M(2k� 2)[�] = rank M(2k� 2) = s �

r. Thus � is a minimal representing measure; uniqueness follows from the uniqueness of analytic

extensions and Theorem 1.6. Finally, suppose r � 1 < 2k � 2. Since � is a representing measure

for the moments of M(r + i)[�] (i � 0), (2.5) implies r = card supp � � rank M(2k � 2)[�] =

rank M(2k� 2) = s � r. Thus � is minimal and uniqueness now follows readily from Theorem 1.6.

2

3 Example of a minimal representing measure not corre-

sponding to a 
at extension.

In this section we use Theorem 2.2 to display a moment sequence 

(6) such that the minimal

representing measure is 9-atomic, while rank M(3)(
) = 8; the minimal measure therefore does not

correspond to a 
at extension of M(3)(
) (cf. Theorem 1.1).

Let � > 0, y 2 R and de�ne 
00 = 1, 
11 = 1, 
22 = 1 + �, 
14 = y, 
33 = 
06 = y
2
=�,


01 = 
02 = 
12 = 
03 = 
13 = 
04 = 
23 = 
05 = 
24 = 
15 = 0. The corresponding moment matrix
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M(3) is of the form

M(3) =

0
BBBBBBBBBBBBBB@

1 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 + � 0 0
0 0 1 0 0 0 0 0 1 + � 0
0 0 0 1 + � 0 0 0 0 y 0
1 0 0 0 1 + � 0 y 0 0 y

0 0 0 0 0 1 + � 0 y 0 0
0 0 0 0 y 0 y

2
=� 0 0 y

2
=�

0 1 + � 0 0 0 y 0 y
2
=� 0 0

0 0 1 + � y 0 0 0 0 y
2
=� 0

0 0 0 0 y 0 y
2
=� 0 0 y

2
=�

1
CCCCCCCCCCCCCCA

;

or, in block form,

M(3) =

�
M(2) B3

B
�

3 C3

�
; (3.1)

where B3 = (Bi;3)0�i�2 and C3 = B3;3.

Since M(2) is positive and invertible, it follows from (3.1) and Proposition 1.5 that M(3) � 0

if and only if y2 � �(1 + �)3, in which case rank M(3) = rank M(2) if and only if y2 = �(1 + �)3.

Thus, if y2 = �(1+ �)3, then M(3) has a unique 
at extension, and 
(6) has a unique �nitely atomic

representing measure, which is 6-atomic (Case of Flat Data [CF2]).

Theorem 3.1 If y
2
> �(1+�)3, then rank M(3) = 8, and the unique minimal representing measure

for 

(6)

is 9-atomic.

Proof. In CM(3) we have

Z3 = �Z3 =
�y

�
1+

y

�
Z�Z; (3.2)

a calculation shows that f1; Z; �Z; Z2
; Z�Z; �Z2

; Z2�Z; Z�Z2g forms a basis for CM(3), so rank M(3) =

8 and M(3) is recursively generated. Now (3.2) shows that M(3) has an analytic constraint with

n = k = 3. To complete the proof, using Theorem 2.2, it thus su�ces to show that M(3) admits an

analytic extension M(4) satisfying rank M(4) = 9, and to this end we follow Algorithm 2.1.

We denote the proposed extension M(4) by

�
M(3) B4

B
�

4 C4

�
, with B4 = (Bi;4)0�i�3 and C4 =

B44. Using (3.2) and (2.3) we de�ne [Z4]3 in CM(3) by

[Z4]3 =
�y

�
Z+

y

�
Z2�Z; (3.3)
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whence the B4 block for M(4) is given by

B4 =

0
BBBBBBBBBBBBBB@

0 0 1 + � 0 0
y 0 0 y 0
0 y 0 0 y

0 y
2
=� 0 0 y

2
=�

0 0 y
2
=� 0 0

y
2
=� 0 0 y

2
=� 0

0 0 w 0 0
w 0 0 w 0
0 w 0 0 w

0 0 w 0 0

1
CCCCCCCCCCCCCCA

; (3.4)

where w = y(y2=��1��)
�

. The conclusion that Ran B4 � Ran M(3) now results from the following

relations in CM(3):

[Z4]3 =
�y

�
Z+

y

�
Z2�Z; [�Z4]3 =

�y

�

�Z+
y

�

�Z2Z; (3.5)

[Z3�Z]3 =
�y

�

�Z+
y

�
Z�Z2; [�Z3Z]3 =

�y

�
Z+

y

�
Z2�Z; (3.6)

[Z2�Z2]3 =
�(1 + �)2 � y

2

�2
1+

y
2 � �(1 + �)

�2
Z�Z; (3.7)

moreover, these relations determine W satisfying B4 =M(3)W .

Using (2.2), (3.2), the Extension Principle, and block B�, we next de�ne Z4 for M(4) by Z4 =

�y

�
Z+y

�
Z2�Z (in the column space of

�
M(n)
B
�

4

�
). Thus Z4 = (0; y; 0; 0; 0; y2=�; 0; w; 0; 0; u; 0; 0; u; 0)t,

where u =
y
2(y2���2�2)

�3
. Moment matrix structure now dictates that block C4(= B44) is of the form

C4 =

0
BBBB@

u 0 0 u 0
0 u 0 0 u

0 0 u 0 0
u 0 0 u 0
0 u 0 0 u

1
CCCCA : (3.8)

From (3.1), (3.4) and (3.8) we see that in CM(4) we have

Z4 =
�y

�
Z+

y

�
Z2�Z; �Z4 =

�y

�

�Z+
y

�
Z�Z2;

Z3�Z =
�y

�

�Z+
y

�
Z�Z2; �Z3Z =

�y

�
Z+

y

�

�ZZ2
;

whence M(4) is recursively generated and 8 = rank M(3) � rank M(4) � 9.

Proposition 1.5 and (3.1) show that M(4) � 0 if and only if C4 �W
�
M(3)W , or

u �
(�(1 + �)2 � y

2)(1 + �)

�2
+

(y2 � �(1 + �)y2

�3
;

which simpli�es to y2 � �(1 + �)3; moreover, rank M(4) = rank M(3) if and only if y2 = �(1+ �)3.

Since y2 > �(1 + �)3, it follows that M(4) is positive, recursively generated and rank M(4) = 9.

The result now follows from Theorem 2.2. 2
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We may compute the unique 9-atomic (minimal) representing measure for 
(6) as follows. Since

the analytic extension M(4) satis�es the conditions of Theorem 1.4 (with n = 4 and k = 3), M(4)

has a unique 
at extension M(5), and Theorem 1.6 implies that M(5) admits unique successive 
at

extensions M(6); : : : ;M(9). A calculation of M(9) using (1.3) implies that in CM(9) we have the

relation

Z9 =
�y3

�3
1� 3

y
2

�2
Z3 +

y
3 � 3�2y

�3
Z6

: (3.9)

The atoms of the minimal representing measure are the 9 distinct roots of the characteristic poly-

nomial corresponding to (3.9) (cf. Theorem 1.6), and the densities may be computed via the Van-

dermonde equation (1.4). We illustrate with a numerical example.

Example 3.2 Let � = 1, y = 3. From (3.9), the atoms of the minimal measure are the roots of

z
9 = �27�27z3+18z6, i.e., z0 � 2:53209, z1 � �0:879385, z2 � 1:3473, z3 � �1:26604�2:19285i,

z4 = �z3, z5 � �0:673648� 1:16679i, z6 = �z5, z7 � 0:439693� 0:76157i, z8 = �z7. The corresponding

densities, determined from (1.4), are �0 = �3 = �4 � 0:0104859, �1 = �7 = �8 � 0:307069,

�2 = �5 = �6 � 0:0157786.
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