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THE TRUNCATED MOMENT PROBLEM ON PARALLEL LINES
LAWRENCE A. FIALKOW

ABSTRACT. Let = 89 denote a bivariate real sequence of degree 24, and let My
denote the assoclated moment matrix. We prove that £ admits a representing mea-
sure supported in the union of two parallel lines (the variety of a suitable quadratic
polynomial p{x, ) if and anly £ 1) My is posititve semidefinite, iy M is recursively
generated, iii} the variety ¥ of M, satisfies vank M, < card ¥, and iv) there is a depen-
dence relation p(X, ¥) = (in the columns of M,

1. INTRODUCTION

Let f= 24 = {Bi}iczr jiixaa denote a real n-dimensional multisequence of degree
2d, and let K denote a closed subset of R". The Truncated K -Moment Problem (TKMP)
for B concerns the existence of a positive Borel measure g, supported in K, such that

ﬁj::j;(xidju. ez lil<2d). 1L.1)

(Here, for x = (xy,...,%,) € R" and i = (i1,...,0,)} € Z7, we set [il = i1 +++- + i, and
xt =kl xjr) A measure as in (1.1} is a K -representing measure for f; for K = RY,
we refer to TKMP as The Truncated Moment Problem (TMP) and to y simply as a rep-
resenting measure. Two general, but abstract, solutions to the truncated K-moment
problem are known; one involves flat extensions of positive moment matrices [CE8]
(cf. Theorem 1.4 below for K = R9), the other entails extensions of K -positive linear
functionals [CF10]. {For general references to moment problems, see [Akh] [AK] {KN]
[STT; for the connection between the Full Morment Problem and TMP see [Sta2])

By a concrete solution to TKMP we mean a set of conditions for K-representing mea-
sures that can be effectively tested in numerical examples. Concrete solitions to the
truncated K-moment problem are known in only a few cases, including, forn=1, K =
R, [0, +o0), Or u?;l [a;i, b;] {cf. [AK] [KN] [CFP1]), and, for n = 2, the case when K is an al-
gebraic curve p(x, y) =0 with deg p < 2 (cf. [CF9, Theorem 1.2], Theorem 1.1 (below)),

Let My = M, () denote the moment matrix associated with 8 (see below for termi-
nology and notation}. The rows and columns of M are denoted by X* and are indexed
(in degree-lexicographic order} by the monomials x! in 2, = { PERX, ..., k5] degp =
d}. Corresponding to p = ¥jezn jjj<q @i X' € P, is the element p(X) = ¥ a; X' of Col My,
the column space of My; My is recursively generated if whenever p, g, pg € &, and
p(X} = 0, then {(pg)(X) = 0. Positive semidefiniteness and recursiveness of M, are
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necessary conditions for representing measures [CF2] {F1]. For p € @y, My is p-pure
if the only dependence relations in Col My are those of the form {(pg)(X) = 0 (qge
@d_degp) [F3]. Let ¥ = ¥ (M) denote the algebraic variety corresponding to My, ie.,

V= N Z(p) (where Z(p} = {x € R": p(x} = 0}}. A necessary condition for rep-
pePy, p{X}=0
resenting measures is the “variety condition"”, r = rank My < v = card V{My) (cf. [CFg,

Corollary 2.12)).

Now let n = 2. For a polynomial p(x, y}, let K= Z (p) := {{x, 1) € B®: p{x, ) = 0}. For
degp(x,) =1, itis proved in [CF3} that § = %% has a Z (p)-representing measure if
and only if My; is positive, recursively generated, and has a column relation p(X, ¥) = 0.
Consider the following solution to TKMP for K = Z (p) with deg p{x, y) = 2.

Theorem 1.1, (/CF9, Theorem 2.1]) Let d = 2 and supposedegp(x, y) = 2. § = % has
a representing measure supported in Z (p) if and only if My = M4(8) is positive semidef-
inite, recursively generated, satisfies the variety condition, and has a column dependence
relation p(X,Y) =10,

The conditions of the theorem are “concrete” in that they can be verified using ele-
mentary linear algebra, or, for card ¥ (M), estimated with the aid of computer algebra
sysfems.

In {CF6], R.E. Curto and the author showed that the existence of representing mea-
sures in the Truncated Complex Moment Problem (TCMP) is stable under invertible
degree one mappings, and also that TCMP is equivalent to TMP. As discussed in {F4},
in TMP invertible degree one mappings 7 : > — R? are of the form 7{x, y) = (@ + ax +
¥y b+dx+Ay), with ad ~yd # 0. It is well-known that under such a mapping, the
degree 2 carve pix, y} = 0 may be transformed into one of the following nine basic va-
rieties: ¥+ y? =1L y=x", xy=1 xy=0x2=1, x> =0, = -1, 22+ % = 0, and
x% 4+ y* = 1 (cf. [SH, p. 405)). In a series of papers, we proved Theorem 1.1 for each
of the first four varieties, corresponding to a circle [CF6], parabola {CF7], hyperbola
{CF9], or degenerate hyperbola (intersecting lines) {CF9].

In [F4] the author noted that the preceding analysis of Theorem 1.1 is incomplete,
since it does not consider all nine of the varieties. However, in {F4} we showed that if
My is positive, then the column relations X* = ~1 and X2+ y* = ~1 cannot occur, Fur-
ther, we showed in {F4] that if M,; = 0 and either X* = 0 or X2+ Y2 = 0, then rank M, = 3.
In this case, if rank A = 3, then it follows from [CF8} that rank M, = rank M; == 3 and
that My has a unique representing measure. In the subcase when rank M) < 3, it fol-
lows from [CF3] that My has a measure if and only if it is recursively generated. Thus,
to complete the analysis of Theorem 1.1, it remains to consider the variety x* = 1, cor-
responding to two parallel lines. The purpose of this note is to establish Theorem 1.1
in this case, thereby validating Theorem 1.1 for any polynomial of degree 2.

Theorem 1.2, Letn =2, d = 2. Supposedegp(x, y) =2 and Z(p) consists of 2 parallel
lines. Then 3 = §@% has a representing measure supported in Z (p) if and only if My is
positive semidefinite, recursively generated, satisfies the variety condition, and p(X, ¥} =
0 in the column space of M.

We note that for d = 2, Theorermn 1.2 was proved in [F4] using an approach based
in part on computer algebra calculations. The proof of Theorem 1.2 presented in the
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sequel uses a different approach, and does not depend on computer algebra, Theorem
1.1 cannot be extended to planar curves of degree 3; this was shown in {CFM] with an
example of My in which Z(p) consists of three parallel lines, A complete solution to
TKMP for K = Z{y - x°) appears in [F3}, but for the variety of a general degree 3 curve,
TKMP is largely unsolved, In a different direction, in [Sto1}, J. Stochel proved that if
degp(x, y} = 2, then a full moment sequence f° has a representing measure sup-
ported in Z (p) if and only i the corresponding moment matrix M, is positive semij-
definite and satisfies p(X, ¥) = 0 in its column space. As noted in {CR8}, this result can
be derived from Theorem 1.1 by applying [Sto2}, which connects the full and truncated
moment problems.

We conclude this section with some terminology and background results that we
will employ in the sequel. Unless otherwise stated, we are in the general case, i.e.,
nzl. For p= Yiepninad aix' € 9, let p = (a;) denote the coefficient vector of P
relative to the basis 22, of monomials in 2; in degree-lexicographic order. Define A g
Pog— Rby ALY, ax') = > a;f;. Following [CF2] [CF8}, we associate to § = f&@

jil<2d
the moment matrix Mg = Mg{p), with rows and columns X" indexed by the elements
of %8;3. The entry in row X!, column X7/ of Mg is Biwy (7€ Z1, L1 5 d), so My
is a real symmetric matrix characterized by (Mgp, §) = Ag(pg) (p.ge ). fpisa
representing measure for B, then (My B, Py = Ag{p®} = [ p?*dp = 0, and since My is real
symmetric, it follows that My is positive semidefinite (M, = 0).

For p(x) = ¥ a;x! € P4, we have the column space element p(X) = ¥ a; X', and a
calculation shows that p{X) = My . In the sequel, we often write {p(X}, g(X}) to de-
note (M4 P, g}, even though, strictly speaking, (p(X), ¢(X)) means (M, 5, M;§). Thus,
we often denote fi;; ; by (X' X7, i fadmits a representing measure g, then

forpePPy, suppu s Zip) <= p(X)=0(cf. [CF8, Prop.2.10]). {1.2)
It follows from (1.2} that supp g € ¥ (M), whence
r=rank My < cardsuppp = v = card ¥V (My) (cf [CF8, Cor. 2.12}). (1.3

In the sequel we will frequently cite the following basic result of {CF2} [CF8] concerning
the existence of a “minimal” representing measure, a representing measure y satisfying
cardsupp p = rank M.,

Theorem 1.3, (Flat Extension Theorem, ¢f. [CF8, Thm. 1.1-1.2) B = B*P has arank M-
atomic represeniting measure if and only if Mg = 0 and My admits a flat moment ma-
trix extension, i.e., a moment matrix extension Mg, satisfying rank My, = rank M.
In this case, f**% admits a unique representing measure, i = [iyy,,,, and p satisfies
suppp = ¥ (Mg} and card supp y = rank My. Further, My, admils unigue successive
positive extensions Myio, Mgy, ..., and these are flar extensions.

Note that for the case of flat data (M > 0 and rank M, = rank M{d — 1)}, Theorem 1.3
(applied to M(d ~ 1)) implies the existence of a unique (rank M)}-atomic representing
measure for 24,

Suppose M, is positive and admits a flat extension My, ;. The unique representing
measure for My, referred to in Theorem 1.3 may be explicitly computed as follows (cf.
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{CF8, Theorem 1.21). Let r = rank My, so that card ¥ (Mg, ) = rand ¥ (My.,) = {wit]_,.
Let 8 ={X1,..., X'} denote a hasis for Col My, and consider the Vandermonde-type
matrix

wy' )

VeVgi=| Co . (1.4)

Then V is invertible, and {CF8] shows that 529%2 has the unique representing measure
M= pag,,,, of the form u = 3! | p;d,,, where §,, is the unit-mass atomic measure
with support {w;}, and p = (p1,..., p,} is determined by p? = V=1(By,,..., 5;,) (where
-1 denotes transpose}. ({CF8] shows that 2 is independent of 28.)

We next recall some properties of positive moment matrix extensions that we will
refer to in the sequel. A key ingredient in our proofs is a result of Bayer and Teichmann
[BT], which generalizes the classical theorem of Tchakaloff [Tch] coneerning multivari-
able cubature, The result of Bayer and Teichmann implies that if § = 29 admits a K-
representing measure, then § admits a finftely afomic K-representing measure v. Since
v has convergent power moments of all orders, it follows that My {= Myiv]) admits
successive positive, recursively generated extensions, namely, Mg,11v], Maia[v],....

By combining Theorem 1.3 with [BT], we have the following solution of the trun-
cated K-moment problem for K = R, expressed in terms of moment matrix exten-
sions. A generalization to the case when K is a closed basic semialgebraic subset of RB?
appears in [CF8, Cor. 1.4].

Theorem 1.4. (Moment Matrix Extension Theorem, cf. [CF2] [CF8]) B%? has a repre-
senting measure if and only if there is an integer k = 0 such that My admits a positive
rmoment matrix extension My, y, which in turn admits a flat extension My, .1, ie.,
rank My pey = rank My, . In this case, we may take k = dim &, — rank M.

Theorern 1.4 is not, by itself, a conerete solution to TMP but it does provide a frame-
work for obtaining concrete solutions such as Theorem 1.1. Theorem 1.4 was originaily
proved in [CF2] for representing measures having convergent mornents of all orders,
but [BT] shows that this restriction in the hypothesis is unnecessary.

M B
B* C
implies that M = 0 if and only if M = 0, there exists a matrix W such that B = MW
{equivatently, Ran B < RanM [D}}, and C = C’ = WIMW tnote that C° is independent

) M B . ;
of W satisfying B = MW). In this case, the matrix M’ = [M; B} := ( B (b ) is a posi-

Consider a real symmetric block matrix M = [ ) Aresult of Smul’jan [Smu]

tive flat extension of M, i.e., rank M = rank M. Consider a moment matrix extension

Mg Bay )
M, = . .
rl ( B:i{} C‘d"f‘]

If My =0, then Mgy, is a flat (hence positive} extension of My if and only if By, =
MgW tfor some W) and Cyyq = C” = WM, W; equivalently, Mgy = [Myg; Bg+1l. Sup-
pose Mg,y = 0 and let p € 22;; the Extension Principle [F1} shows that if p(X} = 0 in
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Col My, then p(X) =0 in Col M4, ie., column dependence relations in My extend to
Mgy It follows that

Mg 2 0= ¥ (Mg} SV (Mg (1.5)
Finally, for the planar case {d = 2), we consider the block matrix decomposition

My = (M1, jDosi, j=a. where MVi, j] is the matrix with i + 1 rows and j+ 1 columns of
the form

Bivio  Bivj-11 Bivj-22 o Piy
Bisj-11  Bivj-22 o Picn g
Mii, ji=| Pre-ee oo Piajer | (1.6)

Bii  Bij—vivt Bjezivz oo Poisj
Note that M[i, j} has all of the moments in %% of degree i + j and has the Hankel-like
property of being constant on cross-diagonals; in particular, in the extension My,
block Cgiq = Min+1,n+1] is a Hankel matrix. Note that By,q = (Mli,d + 1])geieg.
For 0= k = d, we set [Bgy1ly = (M[i,d+ 1Dp<;<k. Similatly, for0s k= dand i, j =0,
i+ j=d+], wedefine [X'Y )i = (Bij.... Prejjs-or Bi ki), the truncation of column
X'Yitorows X"V S withr+ss k.

2. THE {(x? - 1}-PURE TRUNCATED MOMENT PROBLEM

In this section we establish the existence of representing measures for a positive,
recursively generated (x? — 1)-pure moment matrix My, i.e, a moment matrix My =0
whose column dependence refations are precisely those that can be determined from
X? =1 by recursiveness, including all relations of the form

Xyl XY G200+ jsd-2). (2.1)

Our hypothesis implies that 7 (M) coincides with the union of parallel lines given by
I'={(x,y}: x* = 1}, and that rank M = 2d + 1, with a basis for Col M, of the form

B={LX Y. XY, Y. .., . XYLy xyerl vy,

Theorem 2.1. If M is positive, recursively generated, and (x* —1)-pure, then My admits
infinitely many distinct flat extensions and corresponding (2d + 1) -atomic representing
measures,

The proof that we present is motivated by the analysis of the (x* - y)-pure case in
[F31, but the conclusion that measures always exist in the {(x? ~ 1)-pure case contrasts
with our results in the (x* — 1)-pure case. We begin with the following computational
formula for the moments of Mj; this resuit is valid for any moment matrix satisfying
{(2.1).

Lemma 2.2. ﬁ”,g,j = ﬁjui (L,jz0,i+j+2=<2d).

Proof. Suppose Brap,; = (X*V!, XPY9y with k,[,p,g=0,k+1, p+g=d, k+p=i+2,
I+q=j. Ifkz2 then (2.1) implies X*¥! = X¥2Y7, 50 B, ; = (X*yL XPV9) =
(Xk=2yl xpydy = Bp+k-2i+q = Bij. The case when p = 2 is similar, using
(XkYt,Xqu) = (XPY9 X*¥h . Since k+ p=1i+2 =22 wenay now assume k =
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p=1 whence i = 0. f gz, then Bia;= ;= (XY XV = (M, x2ya-1y =
(X2ya-1l yitly 5 (Y(J—l'yHl.) = Bo,;- Pi1lglly, isz_p =landg=0theni=0,I=j=s
2d 2,80 ﬁHz,j = ,Bz,j = (XY, Xy= (XZYI:D ={¥! 1= IBO.j = ﬁi.j- g

As discussed in Section 1, the existence of a representing measure for 84 implies
that M; admits a positive, recursively generated moment matrix extension
Mg Bga )

Mg = :
d+1 [ Bé+1 Cd+l

We next describe concretely the structure of block By for such an extension. Any
such block Bgy; = (IM[f,d + 11)g< j<g must satisfy the following requirement:

Property 2.3. ForQ < j < d -1, the data in M{j,d+ 1] agrees with the data in M.
In particular, forOsisd+land k120 withk+1< d -1, the element of Bg.y in
row XY and column X'y @H1=1 (Xya+1-l xRy Dy coincides with the “old” moment
Bivkavi-isi 0f Ma.

More generally, throughout block By, ;, the Hankel property of each block M1, d + 1}
must hold (cf. (1.9);:

Property 2,4, (X! Y917 xkyly o (xi-lyd+2=i xkelyl-ly 0 cj=d+1, k20121,
k+l=d).

Note that within a block M{j, d + 11, in any band of consecutive columns, Property 2.3
implies Property 2.4.

Positivity of M., also entails Ran B;+, € Ran My, so we must show that the block
that we construct satisfies this range inclusion, Positivity of M4, and the Extension
Principle imply that the column relations (2.1) must hold in Col My,. The desired re-
cursiveness of My, ; then implies thatin { My By, ) we musthave column dependence
relations of the form

Xd-i-} - Xd—l, XdY: X(i"‘“ZY,”.'XZYd*l - Yﬂ'“l; (2-2}

thus, columns X9*!, x4v,..., x*v9 !in B,,, inherit the required Hankel property
(Property 2.4) from the band of columns X4, X4 2y,..., Y9! in M,. Moreover,
these columns satisty Property 2.3: for d+1=i=22, k120, k+1sd-1, we have
(Xiyd+l—i'Xkyl> . (Xt—z Yd+1—i,XkYi) - )Giw-ZHC,d-H—HI - 161‘+Ic,d+l—f+l {from Lemma
2.2). Next, we use “old” moments to define block Mi{i,d+ 11 (0= <d-1)in columns
XY%and Y9! ie., in By,

Xy xRyl = B s OS2, Lkz0l+ksd=-1),  (2.3)
Thus, all of the blocks M{j,d+ 11 {0 = j = d - 1) satisty Properties 2,3 and 2.4,

To complete the definition of By, |, we next define the elements of columns X¥%
and Y91 in block M{d, d + 1] (cf. (2.5) below). To insure moment matrix structure in
this block, we propagate the elements of the previously defined column X*¥ 9! along
the cross diagonals of Bld,d + 1], as follows. For k=0, land {, j= ¢ with i + j = d and
0= j=d-2+k wedefine

(Xkyd‘*’l"klxl Yj) = (XZYd_I,Xk+i_2Yj—k+Z> (2'4)
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(= (YA XFHRy iy o By g ok (from (2.2))), To complete the definition of
Bld,d+1],wechoose r,s € Randset (XV?, ¥9) = (v9+} Xv9 Yy .= r and (v9+!, vy =
s. Thus, Bid, d + 11 is of the form

Baasro  Bean - . . . : : Ba.ar1
B2a1
: ) 2.3)
Baz2d-1
. . - e e ,62,2,1_1 r
Bavia Baga - - o Prada r 5

with Bi2g:1-1 = Bi-22q41-1 2Sis2d+1),

Having defined By, = By, r 5] to be consistent with recursiveness for My, ;, we
next establish the range inclusion Ran B,y € Ran M. [tis clear from (2.2) that columns
x4t x?y91 of By, belong to the column space of My, which coincides with
Ran M, so it suffices to consider columns X Y4, and ¥4*!, Let  denote the compres-
sion of M, to rows and columns indexed by the elements of basis 28; thus, J is positive
definite (J > 0). For k,I = 0 with k+1 = d+1, let {X*Y']5 denote the compression
of column X*Y? of { My Ba.i ) to the rows indexed by the elements of 8. Note
that the columns of J are of the form [XPY %)z (in degree-texicographic order) with
pgz=0, p+gsd p=1. Since Jisinvertible, for0=i<land j=d+1-i we may
express [X'Y 7]z as a linear combination of the columns of J, i.e.,

Xvg= ¥ X0V ) €R). 2.6)
XPYie®

We claim that the same relation holds in the full columns of (| My Bgey }.

Lemma25. InCol( My Bay ), X'Y/= Y IPxPv9@sisl, j=d+i-i.
XP¥aeR

To prove Lemma 2.5 it suffices to show that for k,! 2 0, k+ [ = d, in columns Xf v/
of By, 0sisl, j=d+1-1},

Xivixbyh= Y SPxPyd xFyh. @7
XPYdeid

We note that (2.6) already shows that (2.7) holds for the rows indexed by 2:
(2.7) holds whenever k, 1 =0, k+1=d, k=1, (2.8)

To establish (2.7), we begin with the following reductions, which we will also use in
Section 3.

Lemma 2.6, [frowX ky! of {Mg Bg.1 ) is a linear combination of rows X Kyl for which
(2.7} holds, then (2.7) holds forrow X* Y,

Proof. Suppose row X*V! =¥ app rowX¥ v7, e,

XYY XYY = Y app (XYY XE Y (v 0 utvsd 1)
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ij

Now X'V, X*V") = L app (XY, X¥ Y7y = Zapr Loy,

XPyq x¥yl
e i pva vE v v T pepva vkl ksl
=L gy (XPYL XYY =X ey (XPYT, X5V, s0 (2.7) holds for row X*Y*. [

Lemma2.7. Jn{ My Bgi1), towX* 2V =rowX Y k120, k+1+2 < 4d),

Proof. Since M, is real symmetric, it follows from (2.1) that the result holds in the rows
of M. It then follows from (2.2} that the result holds for the rows of { My Bgyq Jin
columns X491, .., X2Y % 1 of By, ;. It thus remains to prove that in columns X ¥¢ and

Yd+1,
(xtydii-i y2rkyly o xlydel=f xkyh (1201 k120, k+[+2<d). (2.9)
We consider first the case when 2+ L+ =< d -1, From (2.3),
YA XYy = B g in
= (XPHRFy -1 v dy (i My since 24 kv i, L4 1—i20, Q+k+i)+ 0+ 1) <d)
= (XFriyttI-l ydy thom (2.1))
= Breifeloied = (XIV40 YD (from (2.3), since k+ 1 < d - 3).
In the remaining case we have 2 + k+ I = d. From (2.4),
(X!'Yaurlfi X2+kyl> - <X2Ya'v-],Xk+iyf+2—i>
= (¥4 xkriy B2ty ifam (2.2))
= )Bk+i,d+l+1—z‘ {in My)

= (XTydti-f xkyly (fram (2.3), since k+[=d-2), [

Proof. (Proof of Lemma 2.5}. It remains to prove (2.7) for k, 1 = 0, k+ [ = d, and for this
we use induction on p = k+ 1. For p =0, 1, the resuit follows from (2.8}, since in these
cases, k = 1. Assume (2.7} holds whenever p < k' + ' (K',]' 20, k' + I' < d}. Consider
X*y with k120, k+ 1=K+ If k<1, then the result follows from (2.8). If k = 2,
then Lemma 2.7 shows that row X¥ v/ = row X% 2 v/, By induction, (2.7) holds for row
X2yt 50 the result follows from Lemma 2.6. -

The preceding discussion yields the following result.

Proposition 2.8. If M is positive and recursively generated, with column relations de-
termined entirely from X* = 1 by recursiveness, then My admits a moment matrix block
Bai1 = By lr, s] compatible with a recursively generated extension Mgy, and any such
block By, satisfies Ran By, © RanMy. '

For the (x® — 1)-pure case, having just described the structure of block By, for a
positive, recursively generated moment matrix extension My, =
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( Mg Bys

Bfi-}—} Crar
1,d +1} for such an extension. Since Ran By, € Ran My (Proposition 2.8), there exists
amatrix W such that By, = My W. As discussed in Section 1, My, = 0 if and only if

}, we next consider conditions for the existence of block Cy.,, = M[d +

Cas1 =C' =B W (= W MW, (2.10)

Further, M. is a {lat extension of My if and only if C* has the form of a moment matrix
block Cyg.y and Cgyq = C°.

Since M. is to be positive, the Extension Principle implies that each of the column
relations in (2.1) persists in M.,.;. From this and the required recursiveness in M, ,, it
foltows that each of the column relations in (2.2} must hold in My, 1; in particular, these
relations must hold in the columns of { IH Cg+1 ). The construction of [M; By

shows that relations (2.2) also holdin ( B, C" },50 Cyy1 agrees with C* in columns

X4t X?y@-1 From (2.2}, these columns agree with columns X1, ..., Y9! of the
moment matrix block B}, , so these columns form a Hankel band in €. Since " =

(C? Plsijsd+z 18 positive, hence real symmetric, it follows that C° has the form of a
morment matrix block Cy.1, L.e., C is Hankel, if and only if

Civaa = Carvae (2.11)

We next compute c? explicitly so as to analyze (2.11), As above, let J = [M4]z denote
the compression of M, to the rows and columns indexed by basis 9, so that /> 0. Let

us write
M x
]:{ x A J

where M is the compression of My to the rows and columns indexed by the elements
of basis % except for Y (the final basis element in the degree-lexicographic ordering)

and {X}

is the compresqson of column ¥Y# in M to rows indexed by %; thus, A
= (MyY4, ¥ = Po2q- Since J> 0, then M >0 and A> x "M x. Thus we have

)6(},2;1 > Jﬁg_zd =x'M'x

-1 . P v
)

1
P=MY1+exx’M™Y, v=eeM™! ) € e [ )],
( } et Y

To compute C%, let W = J}[By.1la, where (Bl is the cornpression of By, to the
rows indexed by 28; thus, [Md]@W = {Bg+1le. We next define a matrix W, with the
same number of rows as My and the same number of columns as W. I X/V/ is in
basis 2, then row X'V’ of W coincides with row X'Y/ of W. If X'¥/ is not in 2,
then row XY/ of W is a row of zeros. Lemma 2.5 implies that Bg., = Mg W, s0 (2,10}

A calculation shows that

where
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implies C* = B,

441 W. Astraightforward calculation shows that B, || W = [Barly W, so
we have

C” = Byl W. (2.12)
Turning to (2.11), note that

Chya = (Cann®yd=L yit ) = (Mg yd 8yl = (B ydo 1 pd-1y = By )

Le.,
Chioa = Boza- 2.13)
u
Letii:=[XY% = {(where m = {card ) — 1}. From (2.12),
U;n
g = (Capd xydy =@ V0, 2.14)

Recall thatin column X ¥, elements in rows of degree at most d—1 are “old momentis",
while those from rows of degree d come from (2.4) (except in row ¥4, where r appears).

By
i Bou
We thus have u = : = : (where all but the final element are “old”
Um ﬁl,ZdAi
Bozd-1
moments and the final element is computed using (2.4)}.
L35]
To compute C7 | ., explicitly, let v:=| |, and let p; denote the i - th row of
Vin
P(1si<m) Then
b " .
Cd+1,d+1 = {J7u )
14 vy Uy iy
= { - : 3
Pm Um Um U
vi e ¥
{pr,w +unr iy
- : , : y
{(Pm, U+ Vil lm
viu+er r

= ((prnw+wninu+ o+ (P U+ v Dum + (Ve +enr
= ert+2vtur+ (Pu,uy = win,

ie.,
Chivanr = W) (2.15)
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Thus, from (2,13} and {2.15), the flathess condition (2.11} is equivalent to the existence
of r such that

Boza = yir). (2.16}
Viewing w(r} as a quadratic in r, whose lead coefficient is positive, the minimum vaiue

et
of (1) 0CCUrs at rpmiy 1= =L and

(' wy?

Y(Tinin) = (Pu, u) -
We claim that

Y (Tmin) = By og(= £ M7 x). (2.173
Since P = M™1(1 +exx*M™%), then (Pu, 1) = (1 +exx'M u, M~

= (e, M7y v el M L, ML = G, M ) + e(x ML),

Thus, (2.17) is equivalent to

(viuy?

(MY +ex M Tw? = +x My (2.18)

Since v'u = —ex! M1y, then {2.18} is equivalent to

Zrotng-1, 02
e“{x'M
M Y+t My = eleM w wx My,
or
e, M7y = (o, M) (2.19)
Consider the compression of M to consecutive rows Y/, X¥7/ (0 < j= d-1) and
consecutive columns ¥4, XV  0=i<d-1):

Miji=( Boiey  Brivj )A[ Boivj  Privy )

Brivj Brisj 1\ Privj Boisj

4
letU= ( 1 é ) and set % = U'¥ {the direct sum of d copies of U}, Then % =% =
Y and %~ 'M% = M, whence % 1M~ % = M. Note that

Bo.d
B1,a

X o=

Boza1
B124-1
so that %/ x = u. We have

(e, M7y = @, M7 U x) = e, UM U x) = (e, U M7 e x) = (e, M.
This establishes (2.19) and thus proves (2.17). Now, g 24 > ,ﬁg 2g = ¥ (rmin). Thus, there

exists 1 such that ¥ (r) = p 4. With this choice of r (and any s}, (2.16) holds, so C” is
Hankel, and thus
My Bairln sl
Binlr s}t c )
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is a flat moment matrix extension of M. This completes the proof of Theorem 2.1.
We conclude this section with an example illustrating Theorem 2,1,

Example 2.9. Consider M3 defined by

100 1 010000
01 66606010 1 0
00 1 000010 a
100t 0100 00
00001000 0 b )
M=l 1 6 01 0a00 b ol (2.20)
01 000010 1 0
000 10000 1 0 a
01 000 b 10 a0
0 0 a 0 B 0 0 a 0 e

with 2~ 1> b>0and e = a® + b* + 1. A calculation shows that Mz is {x ~ 1)-pure, with
rank My = 7 and column basis 8 = {1, X, Y, XV, Y?, X¥?, ¥} Following the proof of
Theorem 2.1, wecompute #=(0, 0, b, @, 0, G, 1) (831 5:= ) and

yir) = 12 ~dabr+a® + B+ 1a° b2

Now fgs=e= a’+b* + 1, so one solution to w{r} = e is r = 1 +2ab. With this value for
r, we see that in a flat extension My we must have the column relation

XY3=(—a+hY+a-bhXY+ V3,

and we define Q(x, y) i= xy° — {(—a+ by + (a- B)xy + y*). Further, for fixed s € B, if we
define By7 := 5, then we find that in the corresponding flat extension My we have the
column relation

=] -
Y4MWI+WX—QSY—E?SXY
l~a+a@+ab_, 1-b+b"+ab
a+hb-1 a+b—1

Xy2+sY3,
and we define

Sx,y) 1=y = (o5 + S~ x—asy - bsxy

I—a+a*+ab , 1-b+b +ab
a+b-1 a+b-1

xy? + 593,

The support of a 7-atomic measure for Mz thus consists of the common zeros of x° -1,
Q{x, ¥), and S(x,y}. With x = 1, we see that every y satisfies {1,y) = 0, and [CF8,
Theoremn 1.2} insures that S{1, y) = 0 has 4 distinct real roots. (For example, with b= 1,
a=3,e=11,5=10, these 4 roots are t""*g/’ﬁ and i”gﬂﬁ.) With x = —1, we see that the
Jrootsof Q(~1,y) =0are y =0, y = £va— b, while 5{-1, ¥} = 0 has an additional root,
y = s, Thus there are exactly 7 common zeres for p, @, and S (4 on the line x =1, 3 on
the line x = ~1), and there is a unigue representing measure for Mz supported on these
points; the densities for the measure can be computed as described in Section 1.
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3. THE TRUNCATED MOMENT PROBLEM ON PARALLEL LINES

In this section we prove Theorem 1.2, which we restate in an equivalent form (as
discussed in Section 1), Let p(x,y) := x> — 1, so that T’ = Z(p) consists of the parallel
lines x=1and x=—1.

Theorem 3.1. Letd =2. = % has a representing measure supported inT if and only
if My is positive semidefinite, recursively generated, satisfies the variety condition v s r,
and has a column dependence relation X* = 1.

The necessity of the conditions is clear from the discussion in Section 1, so we focus
on sufficiency. We assume that M} is positive and recursively generated, with the col-
umn relation X2 = 1. If M, is singular, the existence of a representing measure follows
from {CF3], so we assume in the sequel that My > 0. If M,; is p-pure, then ¥ (M)} =T, so
v > r, and the existence of representing measures follows from Theorem 2.1. We may
thus assume that My is not p-pure, Suppose next that M; has a nontrivial column de-
pendence relation of the form Y/ = g(X,Y), where 0 = j = d, degg < j, and ¢ has no
y4 term. Then since we also have X* = § with i = 2, My; is recursively determinate in the
sense of [F2]. Since i+ j~2 = j = d, it follows from [CF11, Corollary 2.4] that M; hasa
unique flat extension (and a corresponding representing measure),

We may thus assume that M, is not recursively determinate. In the remaining case,
there is a minimal {, 2 = { = d such that M, has a column relation of the form

XY =apl+biX+ay ¥+ + b XV ¥ e by Xy gy 3.1)

Setting S(x, y) = ag+ by x+ay y+--+brxy’ +a;yt, and gix, y) = xy' = S(x, ), we have
g(X,¥)=0in Col My, and thus

VMV M) eZpinZigis Viuvs, (3.2)
where Vy = {(1,3) 1 g(1,¥) =0} and Vo = {(~1,)) : g(~1,3) = 0}. In this case, we have a
basis for Col M,z of the form
B=, X, Y, xyLyH L xyEl vyl vk vy (3.3)
Let

Qi(y) = gLy =0 -any = {ag+ b))+ a1+ by +-+ (@ + by )
and
Q= ql-Lyi=—0+ady +bi—a; 1)y ™+ + (b1 — a).
For j=1,2, if Q; # 0, then card V; = card Z{Q;) = {. Thus, if Q1 # 0 and @ # 0, then
v=card ¥ {My} < card V' (M; ) = 21 < 2{ + 2 =rank M; ) < rank My, so M, fails to sat-
isfy the variety condition (and thus has no measure). it follows that if M, satisfies the
variety condition, i.e., r = v, then Q1 =0 or J» = 0. We will show that in this case M,
admits a flat extension My, ;, and thus has a representing measure (necessarily con-
tained in I'). The proofs of the cases when Q; = 0 and when @, = 0 are very similar, so
we will consider only the former case.
In the sequel we assume (=0, or, equivalently,

gy = _blr 23] m~b21 il = '"b.l,'p iy = 1. (3.4}
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To construct block By, for a flat extension, we begin by propagating the relation X? =
1 to determine columns X%, x?y41 a5in (2.2). Thus, as discussed in Section 2,
this band of columns satisfies Properties 2.3 and 2.4. Further, we propagate relation
(3.1) to define

XY=y X M =apY e XV e Y e b XY f Y (35)

At this point, we must verify that X¥9 is Hankel with respect to column X?v9-1
which coincides with ¥4 by (2.2), Thus, it is sufficient to show that

vl = sy, ), 3.6

since (Sxy? H(X, V) is readily seen to be Hankel with respect to (Sy9~ (X, V) (=
X v, Indeed, for this last assertion, denoting S(X,¥) = Z ar X'V fork=1,1=0,

k+1<d,wehave e
’ <{Sydmi)(XJ ¥y, X%yl = (T a, XTVSd-i xkyl
=¥ g, (XY std-iL yk-lylly
= {Sxy® iy X, vy, XE1y iy, 3.7

To establish (3.6}, we begin with
Sxy TN Y) = apX Yl b Y L g Xyl byl s g, XY AL
o g XY R ve R g x YL (3.8)
Further, by recursiveness in M,
Xyt = Sy X Y) = ag VI by X YA g YA 4 by XY gy i
o ap YO e p XY 4 gyt 3.9)
Since a; = 1, (3.8) and (3.9} imply
Sxy XY = ao + PY T T e XYY g + by (YE i+ XYl 4
ot (i A YR 4 XYY 4yl (3.10)

It now follows from (3.4} that (Sxy?~ "1 (X, ¥} = Y. Thus, X2 V9! is well-defined
and B, satisfies Property 2.4 in columns X9+ XZy4-! xv4,
We next verify that Property 2.3 holds in column X Y%, We must show that

Fork,1z0, k+Il=d-~1, (XY X"V’ = frir g (3.11)
By definition of XY¥, we have _
XY XEYYy = quv @ XYl 2 b (XY XY 4 gyt xEyig )
+h XY XEY Yy 4 ap (v XEY D e b XYY XYY 4 v xR YD,
Now, in Mz we have
Braras = (XYL xEyItly o g ydinl ykylely |y cxyd=i=1 ghyitl,
_{_al(ydﬂ‘,xkyliﬂl) + bg(XYd_i,XkYHl) + ag{ydel,Xn’chﬂ-l)
ok XY R XFY S 4y X Py S 319
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Note that the degree of each column X7 Y™ on the right side of the last equation is
at most d — 1, so in My, (X"V5, X*y¥y = (X"y ¥, X*v"), and thus the expressions
in (3.12} and (3.13) are equal. This completes the proof that columns X9 ,..., Xv¢
satisfy Properties 2.3 and 2.4,

To define column Y9!, we use old moments in blocks M0, d+1],..., Mid—1,d+1],
which insures that Properties 2.3 and 2.4 hold in the portions of Y9*! in these blocks.
To define ¥¢*! in block M(d, d + 1], we use the Hankel requirement to define

(A byl x vy XYY (k21 120,k 4 L= d). (3.14)

To complete Y41 in By, for a € B, we define (Y41, Y4y 1= q.

The preceding discussion shows that By, satisfies Properties 2,3 and 2.4, We will
show below that Ran By 1 & RanMy, so that By = Mg W for some W. Assuming this,
observe that C° ;= W' M, W is necessarily Hankel (i.e., C” is a moment matrix block of
the form Cy.1 ). Indeed, the flat extension construction requires that relations (2.1) and
(3.5) hold in €. Hssentially the same argument that was used to show that X2¥4-! is
well-defined in By, also shows that X* V%! is well-defined in C*. It thus follows as
in the discussion of By, that the band of columns X941, .. X ¥9 is constant on each
cross-diagonal segment within the band. Since ¢ is real symmetric, we thus see that
C” is Hankel.

To complete the proof of Theorem 3.1, it remains to prove that Ran By, & Ran M.
The argument is similar to that given in Section 2, but now using for basis 28 the basis
in (3.3). Note that by definition, columns X+, X¥? of By, belong to Col My (=
Ran M), so it suffices to show that Y4*1 & Col My, Let J:= [Mylg (> 0) and denote

(Y@= ) anlX Vg, (3.15)
X" Voeg
We claim thatin Bgey, Y9 = Y 4,.X"V*. Equivalently, we seek to show that for
X'Ysedd
klz0,k+lsd,
(YL XEYh =0 ¥ a,XTYS xFYh, (3.16)
X'Yset

From (3.15), (3.16) holds if X¥Y! is in 2. If X*Y! satisfies k = 2, then {3.16) hoids by
exactly the same argument as in Section 2 {using Lemmas 2.6-2.7, but with (2.6)-(2.7)
replaced by {3.15)-3.16)). Thus, to establish (3.16) it remains to consider rows X* v/ of
the form XV (0 £ u s d~—{ - 1). To show that (3.16) holds for these rows, Lemma
2.6 {or, rather, an exact analogue with (2.7} replaced by (3.16)) implies that it suffices to
" verify that each such row is a linear combination of rows satisfying (3.16). To this end,
we require a preliminary result. Let us write the column relation in (3.1) as

xvi=y c;xvi+ ¥ vE (3.17)
j<i k<i+l
Lemma3.2. In( My By ),
rowXY =Y corow XY e Y row YR (20, uv i+l . (3.18)

j<i k<i+l
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Proof In Mg, from (3.17) and recursiveness, we have the column relation

XY=y Xyt 3 d v uz=0, uvivisd). (3.19)
j<i k<i+l
Since My is real symimetric, (3.19) implies that (3.18) holds in the rows of M. (2.2) and
(3.5) now imply that (3.18} holds for the rows of the band of columns X9, X¥%. It
remains to prove that (3.18) holds in Y¥*1; we need to prove that

(YCi'i'i|ny+u) - Z Cj(yd+llxyj+lt> + Z dk(Yd+1, Yk+!£> (u = 0’ u+l+i < d)
j<i Je<i+l
(3.20)
We consider first the case i + 1+ 1< d 1. Then (Y4+! Xyit4y = Bradtteicu

o= <YCJ‘,XY':+N'+]> - (Xyi-i--u*-llyd} (in Ma'}

= (Y cj-XYj*”” + Y dp VEFL ¥y (from (3.17) and recursiveness in M)
j<i f<it]

=3 ¢iPjcienrat 2, GrPoksreurd 0 Mg since j+1+u<i+l+usd-1and
Jj<i k<i+l

k+l+u<i+2+us=sd

=Y oy Xyt e Y dy v R (using “old” moments, since T+ j+ 1 <
J<i Je<i+1
I+i+usd-landk+us<i+l+usd-1)}.
We next consider the case { + u+1 = d. From (3.14), we have {¥4*! xyity =
(Xyd Yi+u+l>

=y ¢ (XY=l yiturly g 3 d vy et (from (3.17) and recursiveness in
j<i k<i+l

(Mg Bgii 1)

=3 P jervurd + 2. AiBokiirura (in My, since 1+ j+d—i<l+d k+d—i<
Jj<i k<i+l
i+l+d—i=d+l,andi+u+1l=d)

=3 e ¥ Xyt Y d(v 3 Y9 (using “old” moments, since 14 j+ u <
j<i k<i+l
l+i+u=dandk+u<i+l+u=d). il

Corollary 3.3. Tn{ My By,; ), eachrow XV'** (0 < u< d—i—1) isalinear combination
of rows which satisfv (3.16).

Proof. The proofisbyinductionon u,0 = u < d—i—1. For u =0, Lemma 3.2 shows that
row XY is a linear combination of rows corresponding to elements of basis 98, and
each of these rows clearly satisfies (3.16). Assume the conclusion holds for rows X Y+
(0= w = u—1), so that each such row satisfies (3.16). Since each row Y* also satsfies
(3.16), Lemma 3.2 implies that X Y% is a linear combination or rows satisfying (3.16).

[
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This completes the proof of the range inclusion and so also completes the proof of
Theorem 3.1.

We conclude two examples ilfustrating Theorem 3.1.

Example 3.4. To illustrate the recursively determinate case, we modify Example 2.9
by changing the value of figs from a® + b® + 1 to a* + b%. Then M; is positive, with
rank M3 = 6, and the column relations X = 1 and ¥2 = a¥ + bXY show that M; is
recursively determinate. A unique flat extension is determined by defining X* = X?
and ¥* = a¥?+ bXY? The support of the corresponding 6-atomic measure for M
consists of the common zeros of x* — 1 and y* — ay — bxy. With x = 1, the roots of
y}=ay+byare y=0and y = +Va+ b, With x = —1, the roots of v* = ay - by are
y=0and y = +v'a— b. These § points provide the support of the unique representing
measure for Ms.

The final example concerns a case where Mg is neither (x* - 1)-pure nor recursively
determinate.

Example 3.5. Consider Mj; defined by

1001 9 1 00 0 0
0100 0 0 1 0 1 0
0010 0 6 01 0 2
1001 0 1 006 0 0

10000 1 0 00 0 -1

M=l 1 601 0 2 00 -1 0
0100 0 0 106 1 0
o010 0 0 01 0 2
6100 ¢ -1 106 2 0
0 020 -1 0 0 2 0 6

Then Mz is positive and recursively generated, with column relations generated by
X*=land X¥? =1+ X~ Y2 Setting g(x, ¥} = xy*> — {1+ x— ), we see that g(~1,1) =0,
sa the proof of Theorem 3.1 shows that M3 has infinitely many flat extensions (and 6-
atomic measures), parameterized by a choice for @ = fg7. A calculation based on the
proof of Theorem 3.1 shows that in My we musthave ¥4 = -2.1-X-2aV+a XV +4Y%+
a¥?, so the support of a measure consists of the common zeros of x* - 1, g(x, y) and
rix,y) =yt —(~2-x~2ay+axy+4y* +ay®). For a numerical exatnple, let ¢ = —2.
The roots of #(1,y) =0 are y = 1, y = =1, ¥ = =3, but the latter value is not a root of
g(1, ¥} = 0, so it must be excluded. The roots of r{-1, ¥} = 0 satisfy y = —2.59, = —1,39,
¥ = 0.15, y = 1.83, and these are also roots of g(-1,y) = 0. The resulting 6 points {2
on x = 1, 4 on x = —1) form the support of the unique 6-atomic measure for My corre-
sponding to a = -2.
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