
SOLUTION OF THE TRUNCATED PARABOLIC MOMENT PROBLEM

RAÚL E. CURTO AND LAWRENCE A. FIALKOW

Abstract. Given real numbers β ≡ β(2n) = {βij}i,j≥0,i+j≤2n, with γ00 > 0, the truncated parabolic
moment problem for β entails finding necessary and sufficient conditions for the existence of a positive
Borel measure µ, supported in the parabola p(x, y) = 0, such that βij =

∫
yixj dµ (0 ≤ i + j ≤ 2n).

We prove that β admits a representing measure µ (as above) if and only if the asociated moment
matrix M (n) (β) is positive semidefinite, recursively generated and has a column relation p(X, Y ) =
0, and the algebraic variety V(β) associated to β satisfies cardV(β) ≥ rankM (n) (β). In this case,
β admits a rankM (n)-atomic (minimal) representing measure.

1. Introduction

Given complex numbers γ ≡ γ(2n) : γ00, γ01, γ10,..., γ0,2n,..., γ2n,0, with γij = γ̄ji, the Truncated
Complex Moment Problem (TCMP) for γ entails finding conditions for the existence of a positive
Borel measure µ, supported in the complex plane C, such that

γij =
∫

z̄izj dµ (0 ≤ i + j ≤ 2n).

In [CuFi1], [CuFi3] and [CuFi4], we initiated a study of TCMP based on positivity and extension
properties of the moment matrix M (n) ≡ M (n) (γ) associated to γ ≡ γ(2n). As we describe
below, corresponding to each polynomial p(z, z̄) with deg p ≤ n, there is an element p(Z, Z̄) in the
column space of M(n); under this correspondence, each column dependence relation in M(n) can
be expressed as p(Z, Z̄) = 0 for a suitable polynomial p. We define the algebraic variety of γ by
V(γ(2n)) :=

⋂
p(Z,Z̄)=0,deg p≤nZ(p), where Z(p) denotes the zero set of p. We say that M(n) is

recursively generated if whenever p(Z, Z̄) = 0 and deg pq ≤ n, then (pq)(Z, Z̄) = 0. In order for
γ(2n) to have a representing measure it is necessary that M(n) be positive, recursively generated, and
satisfy rankM(n) ≤ cardV(γ(2n)). Remarkably, to date there are no known examples of singular
M(n) for which these necessary conditions are not also sufficient. In the present paper, we establish
that these necessary conditions are indeed sufficient for truncated moment problems subordinate to
parabolic curves in the plane.

In [CuFi6] we characterized existence and uniqueness of representing measures in the singular
quartic moment problem, the case of TCMP with n = 2 for which M(2) is singular. The singularity
of M(2) forces nontrivial dependence relations in its columns which correspond to second-degree
algebraic relations in the support of any representing measure. Indeed, a representing measure for
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γ(4) must be supported in the algebraic variety V(γ(4)), defined (as above) as the intersection of the
zero sets of all second-degree polynomials corresponding to column dependence relations in M(2).
In the present note we generalize some of the results in [CuFi6] so as to characterize the existence and
uniqueness of representing measures for any M(n)(γ) (n ≥ 2) which has a parabolic-type dependence
relation in its columns.

Recall from [CuFi1, Corollary 3.7] that if γ(2n) admits a representing measure µ, then M (n)
is positive semidefinite (M (n) ≥ 0), recursively generated, and card suppµ ≥ rank M (n). The
main result of [CuFi1] shows that γ(2n) has a rankM (n)-atomic (minimal) representing measure if
and only if M (n) ≥ 0 admits a flat extension, i.e., an extension to a moment matrix M (n + 1)
satisfying rankM (n + 1) = rankM (n) [CuFi1, Theorem 5.13] . In particular, if M (n) is flat, i.e.,
rank M(n−1) = rank M(n), then M(n) admits a flat extension [CuFi1, Theorem 5.4]. Let us denote
the successive columns of M(n) lexicographically, by 1 , Z, Z̄, ..., Zn, Z̄Zn−1, ..., Z̄n. Results of [CuFi2]
imply that for n ≥ 2, if M (n) ≥ 0 is recursively generated and

{
1 , Z, Z̄, Z2

}
is dependent in CM(n)

(the column space of M (n)), then M (n) admits a flat extension M (n + 1) (and a corresponding
rank M (n)-atomic (minimal) representing measure) (cf. Theorems 1.2 and 1.4 below). Other
concrete sufficient conditions for flat extensions M (n + 1) were obtained in [CuFi3] and [CuFi6], but
a complete solution to the Flat Extension Problem remains unknown.

In our analysis of the quartic moment problem in [CuFi6], to study column relations in M(2)(γ),
we reduced the problem to four cases, naturally associated to the real conics x2 + y2 = 1, y = x2,
xy = 1 and xy = 0. To facilitate this approach using real conics, we replaced M(2)(γ) with an
equivalent real moment matrix M (2) (β). In the present note we use a similar approach. We
replace M(n)(γ) with an associated real moment matrix M (n) ≡ M (n) (β), where β ≡ β(2n) is a
real sequence βij (0 ≤ i + j ≤ 2n) naturally corresponding to γ(2n) (cf. [CuFi6]). The columns
of M (n) are indexed by 1, X, Y, X2, Y X, Y 2, ..., Xn, ..., Y n, and we focus on a column relation of
the form Y = X2; indeed, the general truncated moment problem for measures supported in a
parabola can be reduced to this case [CuFi6, paragraph following Lemma 5.1]. Our main result
(Theorem 1.4) shows that β(2n) admits a representing measure supported in y = x2 if and only if
M (n) is positive, recursively generated, has a column relation Y = X2, and satisfies the condition
cardV(β) ≥ rankM (n) (β). In proving Theorem 1.4, we occasionally refer to results for TCMP and
M(n)(γ). Due to the equivalence of M(n)(γ) and M (n) (β), the results for M(n)(γ) have exact
analogues for M (n) (β). In the sequel we repeatedly exploit this equivalence, often without further
reference.

Part of the motivation for the present study comes from the Full Moment Problem. For β ≡
β(∞) ≡ {βij}i,j≥0, let M ≡ M (∞) (β), and for a polynomial p ∈ R[x, y], let p(X, Y ) denote the
corresponding element of CM, the column space of M. In order to have a representing measure for
β supported in Z(p) ≡ {(x, y) : p(x, y) = 0}, it is necessary that M≥ 0 and p(X, Y ) = 0. Following
J. Stochel [Sto1], we say that p is of type A if the conditions M≥ 0 and p(X, Y ) = 0 imply that β(∞)

has a representing measure (necessarily supported in Z(p)). In [Sto1, Theorem 5.4], Stochel proved
that if deg p ≤ 2, then p is of type A, and Stochel and Szafraniec [StSz1, Theorem 4] showed that
there exist type A polynomials of arbitrarily large degree. By contrast, Stochel [Sto1] proved that
there exist polynomials of degree 3 (e.g., y(y−x2)) that are not of type A. The present work is part
of an attempt to develop an analogue of type A for the truncated moment problem. In particular,
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following [Fia3], we are studying whether every polynomial p in x and y of degree at most n satisfies

β(2n) has a representing measure supported in Z(p) if and only if

M (n) ≥ 0, M (n) is recursively generated,

p(X, Y ) = 0 and rankM(n) ≤ cardV(β(2n)). (A′n)

(Of course, (A′n) can also be formulated for p(z, z̄), γ(2n) and M(n)(γ).) Note that the properties in
(A′n) can be verified using only elementary linear algebra and tools for solving polynomial equations.
Thus, if a polynomial p satisfies (A′n), then any M(n) moment problem subordinate to p(x, y) = 0
can be resolved by entirely elementary methods.

In the present paper, we prove that any parabolic polynomial p satisfies (A′n) for n ≥ 2 (cf.
Theorem 1.4), and we use this result to recover Stochel’s degree 2 theorem in the case of parabolas
(cf. Theorem 2.3). In the forthcoming paper [CuFi8] we establish (A′n) for hyperbolic polynomials.
These results, together with those in [CuFi2] and [CuFi6], show that any polynomial of degree at
most 2 satisfies (A′n) for n ≥ 2, which implies a new proof of [Sto1, Theorem 5.4] (cf. [CuFi8]). To
motivate Theorem 1.4, we next review some of the results of [CuFi2], [CuFi6] and [Fia3]. For a
truncated moment problem whose associated moment matrix M(n) is positive, recursively generated
and satisfies an analytic linear column relation Z = c1, it is easy to see that µ := δc is the unique
representing measure. For complex lines, we have the following result.

Theorem 1.1. ([CuFi2, Theorem 2.1]) If M(n) is positive, recursively generated, and satisfies Z̄ =
a1+bZ (b 6= 0) in CM(n), then γ(2n) admits infinitely many rank M(n)-atomic (minimal) representing
measures, each supported in the line z̄ = a + bz.

In [CuFi2] we established the existence of a rank M(n)-atomic representing measure whenever
M(n) is positive, recursively generated and has a column relation Zk = q(Z, Z̄), where deg q <

k ≤ [n
2 ] + 1. (This is actually the unique representing measure for γ(2n) [CuFi7, Proposition 4.2].)

In particular, [CuFi2, Theorem 3.1] implies that if M(n) is positive, recursively generated, and
Z2 = a1 + bZ + cZ̄, then γ(2n) admits a unique rankM(n)-atomic representing measure.

In [CuFi6] we treated the case when
{
1 , Z, Z̄

}
is independent and Z̄Z = a1 + bZ + cZ̄; this case

encompasses measures supported in a circle.

Theorem 1.2. ([CuFi6, Theorem 2.1]) If M (n) is positive, recursively generated,
{
1 , Z, Z̄

}
is

independent in CM(n), and Z̄Z = a1 + bZ + cZ̄, then γ(2n) admits a rank M(n)-atomic representing
measure, necessarily supported in the circle

∣∣z − b̄
∣∣2 = a+|b|2 (> 0). Moreover, rank M (n) ≤ 2n+1,

and if rank M (n) ≤ 2n, then γ(2n) has a unique representing measure. If rank M (n) = 2n + 1,
then M (n) admits infinitely many (2n + 1)-atomic representing measures (supported in the above
mentioned circle).

When we consider M(n) with a relation Z̄Z = a1 + bZ + cZ̄ + dZ2 (d 6= 0), the variety condition
cardV(γ) ≥ rank M(n) appears for the first time.

Theorem 1.3. ([Fia3, Theorem 1.1, Theorem 1.3]) Suppose M(n) is positive and recursively gener-
ated, and Z̄Z = a1 + bZ + cZ̄ + dZ2, d 6= 0. The following are equivalent for γ ≡ γ(2n):
(i) γ admits a representing measure;
(ii) γ admits a rank M(n)-atomic representing measure;
(iii) there exists γn,n+1 ∈ C such that

γn+1,n ≡ γ̄n,n+1 = aγn,n−1 + bγn,n + cγn+1,n−1 + dγn,n+1;

(iv) rank M(n)(γ) ≤ cardV(γ).
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(For n = 2, we established in [CuFi6, Theorem 3.1] the equivalence of (ii), (iii) and (i′) γ admits a
finitely atomic representing measure.)

To complete the analysis of the truncated moment problem with a degree 2 relation, it would suffice
to treat the case when M(n) is positive and recursively generated, {1, Z, Z̄, Z2, Z̄Z} is independent,
and Z̄2 ∈

〈
1, Z, Z̄, Z2, Z̄Z

〉
. A direct attack on this problem seems difficult. Instead, we recall from

[CuFi6, Proposition 1.7 and Section 5] that the truncated moment problem with a degree 2 relation
can be reduced to the case of a real moment matrix with a column relation corresponding to one of
the basic conics, x2 + y2 = 1, y = x2, xy = 1, or xy = 0. The circle case is subsumed by Theorem
1.2 and the hyperbolic cases will be analyzed in [CuFi8]. Our aim here is to treat the case y = x2;
our main result, which follows, parallels Theorem 1.3 in its use of the variety condition.

Theorem 1.4. Let β ≡ β(2n) : β00, β01, β10, ..., β0,2n, ..., β2n,0 be a family of real numbers, β00 > 0,
and let M (n) be the associated moment matrix. β admits a representing measure supported in y = x2

if and only if M(n) is positive, recursively generated, satisfies Y = X2, and rankM (n) ≤ cardV(β).
In this case, M(n) admits a flat extension M(n + 1) and β admits a rankM (n)-atomic (minimal)
representing measure.

Corollary 1.5. If p(x, y) = 0 is a parabola, then p satisfies (A
′
n) for each n ≥ 2.

Example 1.6. We define

M (3) (β) :=



1 0 a a 0 b 0 b 0 c
0 a 0 0 b 0 b 0 c 0
a 0 b b 0 c 0 c 0 d
a 0 b b 0 c 0 c 0 d
0 b 0 0 c 0 c 0 d 0
b 0 c c 0 d 0 d 0 e
0 b 0 0 c 0 c 0 d 0
b 0 c c 0 d 0 d 0 e
0 c 0 0 d 0 d 0 e 0
c 0 d d 0 e 0 e 0 f


.

With a > 0, b > a2, c > b2

a , and d > b3−2abc+c2

b−a2 , we have M (2) ≥ 0 and rankM (2) = 5. With

e =
−c3 + 2bcd− ad2

b2 − ac
and f ≥ F := −bc4 − b2c2d− 2ac3d− b3d2 + 4abcd2 − a2d2

(b2 − ac)2
,

we have M (3) ≥ 0, Y = X2 in CM(3),
{
1, X, Y, Y X, Y 2

}
linearly independent in CM(3), and Y 2X =

σX + τY X, where σ := −c2+bd
b2−ac

and τ := bc−ad
b2−ac

. Thus, 5 ≤ rankM (3) ≤ 6; in particular, M (3) is
recursively generated. We will show by a direct calculation that β(6) has a representing measure if
and only if cardV(β) ≥ rank M(3) or, equivalently, if and only if f = F .

To compute V(β), consider the relation Y 2X = σX +τY X. At the base space level for a potential
representing measure, we must have x(y2 − τy − σ) = xy2 − (σx + τyx) = 0, and we assert that
Ψ(y) := y2 − τy − σ has distinct positive roots. For, consider the discriminant

τ2 + 4σ ≡ λ(d) := a2d2 + (4b3 − 6abc)d + 4ac3 − 3b2c2.

The equation λ(d) = 0 has no real roots since its discriminant is (4b3− 6abc)2− 4a2(4ac3− 3b2c2) =
16(b2 − ac)3 < 0. Since

λ(0) ≡ 4ac3 − 3b2c2 = c2(4ac− 3b2) > 3c2(ac− b2) > 0,
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we obtain that λ(d) > 0 for all real d. This shows that Ψ has distinct real roots. To show that
these roots are positive, it suffices to verify that −σ (= Ψ(0))> 0 and that τ > 0 (since the minimum
for Ψ occurs at τ

2 > 0). To this end, note that since b4 − 2ab2c + a2c2 = (b2 − ac)2 > 0, then
b3−2abc+c2

b−a2 > c2

b , whence d > c2

b . Thus, σ ≡ −c2+bd
b2−ac

< 0. Also, ac > b2, so d > c2

b > bc
a , whence

τ ≡ bc−ad
b2−ac

> 0.
Since y2 − τy − σ = 0 has distinct positive roots, say y1 and y2, it follows that

V(β) ⊆ V := {(x, y) : y = x2}
⋂
{(x, y) : x(y2 − τy − σ) = 0}

= {(0, 0), (
√

y1, y1), (−
√

y1, y1), (
√

y2, y2), (−
√

y2, y2)}.

If f > F , then rankM (3) = 6 > 5 ≥ cardV(β), so β admits no representing measure. Suppose
now that f = F . Then Y 3 = σY + τY 2 and rankM (3) = 5. One might expect that this new
column relation would cause V(β) to be a proper subset of V , but this is not the case. Indeed, since
Y 3 = σY +τY 2 corresponds to y(y2−τy−σ) = 0, then V(β) = V

⋂
{(x, y) : y(y2−τy−σ) = 0} = V ,

whence cardV(β) = rankM (3) = 5. In this case, since M (3) is flat, then β admits a unique
representing measure, which is 5-atomic.

For a numerical example, let a = 1, b = 2, c = 5, d = 14, e = 41 and f = 122. Then V(β) =
{(0, 0), (−1, 1), (1, 1), (−

√
3, 3), (

√
3, 3)}, and the corresponding 5-atomic representing measure is µ =

1
3δ(0,0) + 1

4(δ(−1,1) + δ(1,1)) + 1
12(δ(−

√
3,3) + δ(

√
3,3)). �

The remainder of this section is devoted to notation and basic results concerning real moment
matrices. Given a collection β(2n) : β00, β01, β10, ..., β0,2n, ..., β2n,0, we can build an associated moment
matrix M(n)(β) := (M[i, j](β))n

i,j=0, where

M[i, j](β) :=


β0,i+j β1,i+j−1 · · · βj,i

β1,i+j−1 β2,i+j−2 · · · βj+1,i−1
...

...
. . .

...
βi,j βi+1,j−1 · · · βi+j,0

 .

We denote the successive rows and columns of M(n)(β) by 1 , X, Y, X2, Y X, Y 2, ..., Xn, ..., Y n; ob-
serve that each block M[i, j](β) is of Hankel type, i.e., constant on cross-diagonals. The matrix
M ≡ M(n)(β) gives rise to a semi-inner product that we next describe. Let PR

n denote the real
polynomials q (x, y) ≡

∑
aijy

ixj of total degree at most n, and for q ∈ PR
n , let q̃ := (aij) denote the

coefficient vector of q with respect to the basis
{
yixj

}
0≤i+j≤n

of PR
n (ordered lexicographically: 1, x,

y, x2, yx, y2, . . . , xn, . . . , yn). For r, s ∈ PR
n , define 〈r, s〉M(n) := (M(n)r̃, s̃); 〈·, ·〉M(n) is a semi-

inner product on PR
n . For p ∈ PR

2n, p (x, y) ≡
∑

0≤i+j≤2n bijy
ixj , let Lβ (p) :=

∑
0≤i+j≤2n bijβij ;

Lβ is the Riesz functional associated to β. Note that M (n) (β) is the unique matrix (of size
m(n) := (n+1)(n+2)

2 ) such that 〈
M (n) f̂ , ĝ

〉
= Lβ (fg) (f, g ∈ PR

n ). (1.1)

Note also that the row Y kX`, column Y iXj entry of M (n) is equal to〈
M (n) ỹixj , ỹkx`

〉
= Lβ

(
yi+kxj+`

)
= βi+k,j+`.
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For example, with n = 1, the Quadratic Moment Problem for β(2) : β00, β01, β10, β02, β11, β20

corresponds to

M (1) =

 β00 β01 β10

β01 β02 β11

β10 β11 β20

 ,

and for n = 2, the Quartic Moment Problem for β(4) corresponds to

M (2) =


β00 β01 β10 β02 β11 β20

β01 β02 β11 β03 β12 β21

β10 β11 β20 β12 β21 β30

β02 β03 β12 β04 β13 β22

β11 β12 β21 β13 β22 β31

β20 β21 β30 β22 β31 β40

 .

If β admits a representing measure µ, then for f ∈ PR
n ,〈

M (n) f̃ , f̃
〉

= Lβ

(
f2

)
=

∫
f2 dµ ≥ 0,

whence M (n) ≥ 0.
Recall that M (n) has size m(n) ≡ (n+1)(n+2)

2 . For any matrix M of this size, [M ]k denotes the
compression of M to the first k rows and columns and

〈
Y iXj , Y kX l

〉
M

denotes the entry in row
Y kX l and column Y iXj . Similarly, for a vector v, [v]k denotes the compression of v to the first
k entries. We also consider compressions of M to a set E of rows and columns, and denote such
compressions by [M ]E . In the sequel, unless otherwise stated, we always assume that β(2n) satisfies
β00 = 1; this amounts to rescaling the total mass, and has no effect as to existence, uniqueness or
support of representing measures.

We next recall from [CuFi1] some additional necessary conditions for the existence of representing
measures. Let CM(n) denote the column space of M (n), i.e., CM(n) = 〈1 , X, Y, . . . , Xn, . . . , Y n〉 ⊆
Rm(n). For p ∈ PR

n , p ≡
∑

aijy
ixj , we define p(X, Y ) ∈ CM(n) by p(X, Y ) :=

∑
aijY

iXj . Given
p(X, Y ) ∈ CM(n) with deg p ≤ n − 1, we let p(X, Y )X := (xp)(X, Y ) and p(X, Y )Y := (yp)(X, Y ).
If µ is a representing measure for β, then for p ∈ PR

n ,

p(X, Y ) = 0 ⇔ suppµ ⊆ Z(p) := {(x, y) ∈ R2 : p(x, y) = 0}

([CuFi1, Proposition 3.1]). As a consequence, the following condition holds: if µ is a representing
measure for β, then

card suppµ ≥ rankM (n) ([CuFi1, Corollary 3.5]).

In [CuFi1] we actually formulated the last two results only for the case of TCMP, where M(n)(γ)
admits column relations of the form p(Z, Z̄) = 0; the validity of these equivalent statements for
the real moment problem follows from [CuFi4, Proposition 1.12]. Similarly, the main result of
[CuFi1] ([CuFi1, Theorem 5.13]), properly translated to the context of real moment matrices, shows
that β(2n) admits a rankM (n)-atomic (minimal) representing measure if and only if M (n) ≥ 0
and M (n) admits an extension to a (necessarily positive) moment matrix M(n + 1) satisfying
rankM(n + 1) = rankM (n).

A theorem of Smul’jan [Smu] shows that a block matrix

M =
(

A B
B∗ C

)
(1.2)
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is positive if and only if (i) A ≥ 0, (ii) there exists a matrix W such that B = AW , and (iii)
C ≥ W ∗AW (since A = A∗, W ∗AW is independent of W satisfying B = AW ). Note also that if
M ≥ 0, then rankM = rankA if and only if C = W ∗AW ; conversely, if A ≥ 0 and there exists
W such that B = AW and C = W ∗AW , then M ≥ 0 and rankM = rank A. In the sequel, for
A ≥ 0, we refer to M as an extension of A, and as a flat extension if rank M = rankA. Thus, a flat
extension of a positive matrix A is completely determined by a choice of block B satisfying B = AW
and C = W ∗AW for some matrix W ; we denote such an extension by [A ; B]. An immediate
consequence of the condition rankM = rankA and of the Extension Principle [Fia1, Proposition 2.4]
is that any column dependence relations valid in (A B) extend to the columns of M .

For an (n + 1) × (n + 2) moment matrix block Bn,n+1, representing “new moments” of degree
2n + 1 for a prospective representing measure of β(2n), let

B(n + 1) :=


B0,n+1

...
Bn−1,n+1

Bn,n+1

 .

By Smul’jan’s theorem, M (n) ≥ 0 admits a (necessarily positive) flat extension

[M (n) : B] =
(
M (n) B

B∗ C

)
in the form of a moment matrix M (n + 1) if and only if

B = B(n + 1) and B = M (n) W for some W
(i.e., Ran B ⊆ RanM (n) [Dou]); and
C := W ∗M (n) W is Hankel
(i.e., C has the form of a moment matrix block Bn+1,n+1).

(1.3)

We also recall from [CuFi1] and [Fia1] that M (n) ≥ 0 is recursively generated if the following
property holds:

p, q, pq ∈ PR
n , p (X, Y ) = 0 =⇒ (pq) (X, Y ) = 0. (RG)

If M (n) ≥ 0 admits a flat extension M (n + 1), then M (n + 1), and all of its successive flat
extensions M(n + 1 + d) are recursively generated [CuFi1, Remark 3.15-ii)]. More generally, if β(2n)

admits a representing measure, then M (n) is recursively generated [CuFi1, Corollary 3.4].
Acknowledgment. Some examples, and portions of the proofs of some results in this paper, were

obtained using calculations with the software tool Mathematica [Wol].

2. The Parabolic Moment Problem

Recall Theorem 1.4: β(2n) has a representing measure supported in the parabola y = x2 if and only
ifM (n) (β) is positive, recursively generated, has the column relation Y = X2, and rankM (n) (β) ≤
cardV(β). The necessity of the conditions is clear from Section 1. In this section, we prove the
main step toward sufficiency, which is the following result.

Theorem 2.1. Let β ≡ β(2n) : β00, β01, β10, ..., β0,2n, ..., β2n,0 be a family of real numbers, β00 > 0,
and let M (n) be the associated moment matrix. Assume that M(n) is positive, recursively generated,
and satisfies Y = X2 and rank M(n) ≤ card V(β). Then M(n) admits a flat extension M(n + 1).

In Section 3 we will use Theorem 2.1 to prove the following result, which includes the sufficiency
part of Theorem 1.4.
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Theorem 2.2. Let β ≡ β(2n) : β00, β01, β10, ..., β0,2n, ..., β2n,0 be a family of real numbers, β00 > 0,
and let M (n) be the associated moment matrix. Assume that M(n) is positive, recursively generated,
and satisfies Y = X2. The following statements are equivalent.
(i) β admits a representing measure (necessarily supported in y = x2).
(ii) β admits a representing measure with moments of order up to 2n + 2 (necessarily supported in
y = x2).
(iii) β admits a rankM (n)-atomic representing measure (necessarily supported in y = x2).
(iv) M (n) admits a positive, recursively generated extension M (n + 1).
(v) M (n) admits a flat extension M (n + 1).
(vi) rank M(n) ≤ card V(β).

In Section 5 we will use Theorem 2.2 to obtain a new proof (for parabolas) of J. Stochel’s solution
to the full moment problem on curves of degree ≤ 2 (cf [Sto1]); we may formulate this result as
follows.

Theorem 2.3. (cf. [Sto1]) The sequence β ≡ β(∞) admits a representing measure supported in the
parabola y = x2 if and only if M (∞) ≥ 0 and Y = X2.

Of course, Theorems 2.1 - 2.3 extend to general parabolas in the plane.
By [CuFi2, Theorem 2.1], we know that M (n) admits flat extensions when {1 , X, Y } is linearly

dependent in CM(n). Thus, hereafter we will assume that {1 , X, Y } is linearly independent. Toward
the proof of Theorem 2.1, we begin with an elementary lemma that exploits the fact that M (n) is
recursively generated. For 1 ≤ k ≤ n let

Sn(k) := {1, X, Y, Y X, Y 2, Y 2X, Y 3, ..., Y k−1X, Y k} ⊆ CM(n).

Lemma 2.4. For n ≥ 2, let M (n) be positive and recursively generated, and assume that Y = X2.
Then Sn(n) spans CM(n), and therefore rankM (n) ≤ 2n + 1; moreover, each column of M (n) is
equal to a column in Sn(n).

Proof. The proof is by induction on n ≥ 2. For n = 2 the statement is clearly true, so assume it holds
for n = k. Suppose M (k + 1) is positive and recursively generated, with Y = X2 in CM(k+1). Con-
sider a column in M (k + 1) of the form Y k+1−jXj , with 2 ≤ j ≤ k+1. Let q(x, y) := y−x2 and let
pij(x, y) := yixj , so that Y k+1−jXj = pk+1−j,j(X, Y ). Also, let rij(x, y) := yk+2−jxj−2 − yk+1−jxj .
Since j ≥ 2, it is straightforward that rij(x, y) ≡ yk+1−jxj−2(y − x2) = pk+1−j,j−2(x, y)q(x, y).
Since M (k + 1) is recursively generated and q(X, Y ) = 0, it follows that rij(X, Y ) = 0, that
is, Y k+1−jXj = Y k+2−jXj−2 in CM(k+1). By induction, [Y k+2−jXj−2]m(k) ∈ lin.span Sk(k),
and since M (k + 1) ≥ 0, it follows from the Extension Principle [Fia1, Proposition 2.4] that
Y k+2−jXj−2 ∈ lin.span Sk+1(k). Thus Y k+1−jXj (= Y k+2−jXj−2) ∈ lin.span Sk+1(k) ⊆lin.span
Sk+1(k + 1), as desired. �

We next divide the proof of Theorem 2.1 into five cases, based on possible dependence relations
among the elements of Sn(n). Section 4 contains examples illustrating these cases. In the se-
quel, unless stated otherwise, we are always assuming that M (n) is positive, recursively generated,
{1, X, Y } is linearly independent, Y = X2, and rankM (n) ≤ cardV(β).

Proposition 2.5. (Case I: For some k, 2 ≤ k < n − 1, Sn(k) is linearly independent and Y kX ∈
lin.span Sn(k)) Assume that M(n)(β) is positive, recursively generated, and satisfies Y = X2. In
Sn(n), assume that the first dependence relation occurs at Y kX, with 2 ≤ k < n − 1. Then M(n)
is flat and, a fortiori, it admits a unique flat extension M(n + 1).
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Proof. Write
Y kX = pk(Y ) + qk−1(Y )X, (2.1)

where deg pk ≤ k, deg qk−1 ≤ k− 1. Since Y kX corresponds to a monomial of degree at most n− 1,
and since Y = X2 and M (n) is recursively generated, we must have Y k+1 = pk(Y )X + qk−1(Y )Y .
Substituting from (2.1) for the Y kX term in pk(Y )X, we see that both Y kX and Y k+1 are linear
combinations of columns corresponding to monomials of degree at most k. It now follows from
recursiveness and from Lemma 2.4 that M (n) is flat, so there exists a (unique) flat extension
M (n + 1) [CuFi1, Theorem 5.4]. �

Proposition 2.6. (Case II: The first dependence relation occurs at a column of the form Y k with
k < n) Assume that M(n)(β) is positive, recursively generated, and satisfies Y = X2. In Sn(n),
assume that Y k is the location of the first dependence relation, with k < n. Then M(n) is flat, and
thus admits a unique flat extension M(n + 1).

Proof. Write
Y k = pk−1(Y ) + qk−1(Y )X, (2.2)

where deg pk−1,deg qk−1 ≤ k − 1. Since k < n, Y = X2, and M (n) is recursively generated,
we must have Y kX = pk−1(Y )X + qk−1(Y )Y . We thus see that Y kX is a linear combination of
columns in Sn(k). On the other hand, from (2.2) it follows that Y k+1 = pk−1(Y )Y + qk−1(Y )Y X.
If deg qk−1 = k − 1, we may apply (2.2) to the Y k term in qk−1(Y )Y , and also use Y = X2, to see
that Y k+1 is a linear combination of columns in Sn(k). It now follows (via recursiveness and Lemma
2.4) that M (n) is flat; thus M (n) admits a unique flat extension M (n + 1). �

Proposition 2.7. (Case III: The first dependence relation occurs at a column of the form Y n−1X)
Assume that M(n)(β) is positive, recursively generated, and satisfies Y = X2 and rank M(n) ≤
card V(β). In Sn(n), assume that the first dependence relation occurs at Y n−1X. Then M(n) is
flat, and thus admits a unique flat extension M(n + 1).

Proof. Write Y n−1X = pn−1(Y ) + qn−2(Y )X, with deg pn−1 ≤ n − 1, deg qn−2 ≤ n − 2, and let
r(x, y) := yn−1x− (pn−1(y) + qn−2(y)x) and s(x, y) := y − x2. It follows that V(β) ⊆ Z(r)

⋂
Z(s).

Now observe that if we substitute y = x2 in r(x, y) = 0, we obtain a polynomial equation in x of degree
at most 2n− 1. It then follows that card V(β) ≤ 2n− 1, so that rank M(n) ≤ card V(β) ≤ 2n− 1.
Then Sn(n− 1) ≡ {1, X, Y, Y X, Y 2, Y 2X, Y 3, ..., Y n−2X, Y n−1} is a basis for CM(n), whence Y n is a
linear combination of the columns in Sn(n − 1). Since, by recursiveness, the columns Y iXj , with
i + j = n and j ≥ 2, coincide with columns of lower degree, it now follows that M (n) is flat, and
thus admits a unique flat extension M (n + 1). �

Proposition 2.8. (Case IV: The first dependence relation occurs at Y n) Assume that M(n)(β)
is positive, recursively generated, and satisfies Y = X2. In Sn(n), assume that the first dependence
relation occurs at Y n. Then M(n) admits a unique flat extension M(n + 1).

Under the hypotheses of Proposition 2.8, write

Y n = pn−1(Y ) + qn−1(Y )X, (2.3)

where deg pn−1,deg qn−1 ≤ n − 1. (The expression pn−1(Y ) + qn−1(Y )X is shorthand notation
for (pn−1 + xqn−1)(X, Y ).) To build a flat extension M (n + 1), we define the first n columns of
a prospective B block by exploiting the relation Y = X2, as follows: Xn+1 := Y Xn−1, Y Xn :=
Y 2Xn−2, ... , Y n−1X2 := Y n. Also, using (2.3), we let

Y nX := pn−1(Y )X + qn−1(Y )Y ∈ CM(n) (2.4)
9



(where pn−1(Y )X + qn−1(Y )Y = (xpn−1 + yqn−1)(X, Y )) and, using (2.3) and (2.4), we let

Y n+1 := pn−1(Y )Y + qn−1(Y )Y X ∈ CM(n) (2.5)

(where pn−1(Y )Y + qn−1(Y )Y X = (ypn−1 + xyqn−1)(X, Y )). (Observe that these defining relations
are all required if one is to obtain a positive recursively generated moment matrix extension for
M (n).) Since the columns (2.3) - (2.5) belong to CM(n), we have B = M (n) W for some matrix
W . Thus, a flat extension M := [M(n) ; B] is uniquely determined by defining the C-block as
C := W ∗M (n) W (cf. Section 1). To complete the proof that M is a moment matrix M (n + 1),
it suffices to show that block B is of the form (Bi,n+1)n

i=0 and that block C is of the form Bn+1,n+1.
To this end, we require some additional notation and several preliminary results. Recall that for

i + j, k + ` ≤ n, we have 〈
Y iXj , Y kX`

〉
≡

〈
Y iXj , Y kX`

〉
M(n)

= βi+k,j+`.

For p, q ∈ PR
n , p(x, y) ≡

∑
0≤i+j≤n aijx

jyi, q(x, y) ≡
∑

0≤i+j≤n bk,`x
`yk, we define

〈p(X, Y ), q(X, Y )〉 :=
∑

0≤i+j≤n
0≤k+`≤n

aijbk`

〈
Y iXj , Y kX`

〉
=

∑
0≤i+j≤n
0≤k+`≤n

aijbk`βi+k,j+`.

The following result follows directly from the preceding definitions.

Lemma 2.9. (i) For p, q ∈ PR
n ,

〈p(X, Y ), q(X, Y )〉 = 〈q(X, Y ), p(X, Y )〉 .

(ii) For p, q ∈ PR
n , i, j ≥ 0, i + j ≤ n, and deg p, deg q ≤ n− (i + j),〈

p(X, Y )Y jXi, q(X, Y )
〉

=
〈
p(X, Y ), q(X, Y )Y jXi

〉
.

(iii) If p, q, r ∈ PR
n with p(X, Y ) = q(X, Y ) in CM(n), then 〈r(X, Y ), p(X, Y )〉 = 〈r(X, Y ), q(X, Y )〉.

We next extend the notation 〈p(X, Y ), q(X, Y )〉 to the case when deg p = n+1, deg q ≤ n. Indeed,
using the definitions of the columns of B, for i, j ≥ 0, i + j = n + 1, there exists pij ∈ PR

n with
Y iXj = pij(X, Y ), and we define〈

Y iXj , q(X, Y )
〉

:= 〈pij(X, Y ), q(X, Y )〉 .

Now if p(x, y) ≡
∑

0≤k+`≤n+1 ak`x
`yk, we define

〈p(X, Y ), q(X, Y )〉 :=
∑

0≤k+`≤n+1

ak`

〈
Y kX`, q(X, Y )

〉
.

It is easy to check that Lemma 2.9(iii) holds with deg r = n + 1.

Lemma 2.10. Assume i + j = n + 1, s ≥ 2, and r + s ≤ n. Then〈
Y iXj , Y rXs

〉
=

〈
Y iXj , Y r+1Xs−2

〉
. (2.6)
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Proof. Fix i and j with i + j = n + 1. We know that there exists a polynomial p ∈ PR
n such that

Y iXj = p(X, Y ) ≡
∑

k+`≤n ak,`Y
kX`. Then〈

Y iXj , Y rXs
〉

=
∑

k+`≤n

ak,`

〈
Y kX`, Y rXs

〉
=

∑
k+`≤n

ak,`

〈
Y rXs, Y kX`

〉
(because M (n) is self-adjoint)

=
∑

k+`≤n

ak,`

〈
Y r+1Xs−2, Y kX`

〉
(using Y = X2)

=
∑

k+`≤n

ak,`

〈
Y kX`, Y r+1Xs−2

〉
(using again the self-adjointness of M (n) )

=
〈
Y iXj , Y r+1Xs−2

〉
,

as desired. �

Corollary 2.11. Assume i + j = n + 1, with j ≥ 1, and assume that the Hankel property〈
Y iXj , Y rXs

〉
=

〈
Y i+1Xj−1, Y r−1Xs+1

〉
(2.7)

holds for all Y rXs ∈ Sn(n) with r ≥ 1. Then (2.7) holds for all r and s such that 1 ≤ r + s ≤ n,
r ≥ 1.

Proof. Fix i and j with i + j = n + 1. We do induction on t := r + s, where 1 ≤ r + s ≤ n, r ≥ 1.
For t = 1 the result is clear, since Y ∈ Sn(n), and for t = 2 the result follows from the fact that Y X
and Y 2 are in Sn(n). Assume the statement is true for t = u ≥ 2, and consider the case t = u + 1.
For Y rXs with r + s = u + 1, we may assume Y rXs 6∈ Sn(n), whence s ≥ 2. Now,〈

Y iXj , Y rXs
〉

=
〈
Y iXj , Y r+1Xs−2

〉
(by (2.6))

=
〈
Y i+1Xj−1, Y rXs−1

〉
(by the inductive step and (2.7))

=
〈
Y i+1Xj−1, Y r−1Xs+1

〉
(by (2.6) again),

as desired. �

Lemma 2.12. For k = 0, ..., n− 2,〈
Y nX, Y k

〉
=

〈
Y n, Y kX

〉
. (2.8)

Proof. 〈
Y nX, Y k

〉
=

〈
pn−1(Y )X + qn−1(Y )Y, Y k

〉
(by (2.4))

=
〈
pn−1(Y ), Y kX

〉
+

〈
qn−1(Y ), Y k+1

〉
(by Lemma 2.9(ii))

=
〈
pn−1(Y ), Y kX

〉
+

〈
qn−1(Y ), Y kX2

〉
(using Y = X2, since k ≤ n− 2, and Lemma 2.9(iii))

=
〈
pn−1(Y ), Y kX

〉
+

〈
qn−1(Y )X, Y kX

〉
(by Lemma 2.9(ii))

=
〈
pn−1(Y ) + qn−1(Y )X, Y kX

〉
=

〈
Y n, Y kX

〉
(by (2.3)),
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as desired. �

Proof of Proposition 2.8. The first part of the proof is devoted to showing that the B block,
as defined above, is of the form {Bi,n+1}n

i=0. To this end, and since the first n columns of B are
taken, as a package, from columns in M (n), it suffices to prove that the last three columns of B,
namely Y n−1X2, Y nX and Y n+1, satisfy the proper Hankel conditions. From Corollary 2.11, we
can restrict attention to rows corresponding to monomials of the form Y kX (k = 1, ..., n − 1) and
Y k+1, for k = 0, ..., n− 1. We shall establish that


(i)

〈
Y n−1X2, Y kX

〉
=

〈
Y nX, Y k−1X2

〉
(1 ≤ k ≤ n− 1)

(ii)
〈
Y n−1X2, Y k+1

〉
=

〈
Y nX, Y kX

〉
(0 ≤ k ≤ n− 1)

(iii)
〈
Y nX, Y kX

〉
=

〈
Y n+1, Y k−1X2

〉
(1 ≤ k ≤ n− 1)

(iv)
〈
Y nX, Y k+1

〉
=

〈
Y n+1, Y kX

〉
(0 ≤ k ≤ n− 1).

(2.9)

We first consider rows of B corresponding to monomials of total degree at most n− 1. To establish
(2.9)(i) for k ≤ n− 2, we calculate

〈
Y n−1X2, Y kX

〉
=

〈
Y n, Y kX

〉
=

〈
Y nX, Y k

〉
(since Y n−1X2 = Y n, and by (2.8))

=
〈
Y nX, Y k−1X2

〉
(by (2.6)).

To verify (2.9)(ii) for k ≤ n− 2, we have

〈
Y n−1X2, Y k+1

〉
=

〈
Y n, Y k+1

〉
=

〈
pn−1(Y ) + qn−1(Y )X, Y k+1

〉
(by (2.3))

=
〈
pn−1(Y ), Y k+1

〉
+

〈
qn−1(Y )X, Y k+1

〉
=

〈
Y k+1, pn−1(Y )

〉
+

〈
qn−1(Y )X, Y k+1

〉
(by Lemma 2.9(i))

=
〈
Y kX2, pn−1(Y )

〉
+

〈
qn−1(Y )X, Y k+1

〉
(using Y = X2)

=
〈
pn−1(Y ), Y kX2

〉
+

〈
qn−1(Y )X, Y k+1

〉
(by Lemma 2.9(i))

=
〈
pn−1(Y )X, Y kX

〉
+

〈
qn−1(Y ), Y k+1X

〉
=

〈
pn−1(Y )X, Y kX

〉
+

〈
qn−1(Y )Y, Y kX

〉
=

〈
pn−1(Y )X + qn−1(Y )Y, Y kX

〉
=

〈
Y nX, Y kX

〉
(by (2.4)).
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Next, consider (2.9)(iii) with k ≤ n−2. Write qn−1(Y ) ≡ rn−2(Y )+cn−1Y
n−1, with deg rn−2 ≤ n−2;

then 〈
Y n+1, Y k−1X2

〉
=

〈
pn−1(Y )Y + qn−1(Y )Y X, Y k−1X2

〉
(by(2.5))

=
〈
pn−1(Y ), Y kX2

〉
+

〈[
rn−2(Y ) + cn−1Y

n−1
]
Y X, Y k

〉
(by (2.6))

=
〈
pn−1(Y )X, Y kX

〉
+

〈
rn−2(Y )Y, Y kX

〉
+ cn−1

〈
Y nX, Y k

〉
=

〈
pn−1(Y )X, Y kX

〉
+

〈
rn−2(Y )Y, Y kX

〉
+ cn−1

〈
Y n, Y kX

〉
(by (2.8))

=
〈
pn−1(Y )X +

[
rn−2(Y ) + cn−1Y

n−1
]
Y, Y kX

〉
=

〈
pn−1(Y )X + qn−1(Y )Y, Y kX

〉
=

〈
Y nX, Y kX

〉
(by (2.4)).

Now we prove (2.9)(iv) for k ≤ n− 2. We have〈
Y nX, Y k+1

〉
=

〈
pn−1(Y )X + qn−1(Y )Y, Y k+1

〉
=

〈
pn−1(Y )X, Y k+1

〉
+

〈
qn−1(Y )Y, Y k+1

〉
=

〈
pn−1(Y ), Y k+1X

〉
+

〈
qn−1(Y )Y, Y k+1

〉
=

〈
pn−1(Y )Y, Y kX

〉
+

〈
qn−1(Y ), Y k+2

〉
and 〈

Y n+1, Y kX
〉

=
〈
pn−1(Y )Y + qn−1(Y )Y X, Y kX

〉
=

〈
pn−1(Y )Y, Y kX

〉
+

〈
qn−1(Y )Y X, Y kX

〉
.

Thus, the Hankel condition
〈
Y nX, Y k+1

〉
=

〈
Y n+1, Y kX

〉
is satisfied if and only if〈

Y j , Y k+2
〉

=
〈
Y jY X, Y kX

〉
(0 ≤ j ≤ n− 1).

For j ≤ n− 2, we have〈
Y j , Y k+2

〉
=

〈
Y jX2, Y k+1

〉
=

〈
Y jX, Y k+1X

〉
=

〈
Y jY X, Y kX

〉
,

and for j = n− 1,〈
Y n−1, Y k+2

〉
=

〈
Y n, Y k+1

〉
=

〈
Y n−1X2, Y k+1

〉
(by the definition of Y n−1X2)

=
〈
Y nX, Y kX

〉
(by (2.9(ii) for k ≤ n− 2)

=
〈
Y n−1Y X, Y kX

〉
,

as desired.
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We now consider the case of (2.9) when the rows have total degree n, i.e., k = n− 1. To establish
(2.9)(i) for k = n− 1, we calculate〈

Y n−1X2, Y n−1X
〉

=
〈
Y n, Y n−1X

〉
=

〈
pn−1(Y ) + qn−1(Y )X, Y n−1X

〉
(by (2.3))

=
〈
pn−1(Y )X, Y n−1

〉
+

〈
qn−1(Y )X, Y n−1X

〉
. (2.10)

We next verify that
〈
Y n−1X, Y n−1X

〉
=

〈
Y n−1X2, Y n−1

〉
; indeed,〈

Y n−1X, Y n−1X
〉

=
〈
Y n, Y n−2X2

〉
(since Bn,n is Hankel)

=
〈
Y n, Y n−1

〉
(by Lemma 2.9(iii))

=
〈
Y n−1X2, Y n−1

〉
(by the definition of Y n−1X2).

Now, the expression in (2.10) coincides with〈
pn−1(Y )X, Y n−1

〉
+

〈
qn−1(Y )X2, Y n−1

〉
=

〈
pn−1(Y )X + qn−1(Y )Y, Y n−1

〉
(since Y n−1X2 = Y n)

=
〈
Y nX, Y n−1

〉
=

〈
Y nX, Y n−2X2

〉
(by (2.6)).

For (2.9)(ii) with k = n− 1, note first that〈
Y n−1X2, Y n

〉
= 〈Y n, Y n〉 = 〈pn−1(Y ) + qn−1(Y )X, Y n〉 (by (2.3))

= 〈pn−1(Y ), Y n〉+ 〈qn−1(Y )X, Y n〉 . (2.11)

Next, we claim that 〈
pn−1(Y )X, Y n−1X

〉
= 〈pn−1(Y ), Y n〉 . (2.12)

Indeed, for j ≤ n−2,
〈
Y jX, Y n−1X

〉
=

〈
Y jX2, Y n−1

〉
=

〈
Y jY, Y n−1

〉
=

〈
Y j , Y n

〉
, while

〈
Y n−1X, Y n−1X

〉
=〈

Y n, Y n−1
〉

(as we have shown above, in the proof of (2.9) with k = n− 1). It follows that〈
Y nX, Y n−1X

〉
=

〈
pn−1(Y )X + qn−1(Y )Y, Y n−1X

〉
=

〈
pn−1(Y )X, Y n−1X

〉
+

〈
qn−1(Y )Y, Y n−1X

〉
.

= 〈pn−1(Y ), Y n〉+
〈
qn−1(Y )Y, Y n−1X

〉
(by (2.12)). (2.13)

We thus see from (2.11) and (2.13) that〈
Y n−1X2, Y n

〉
=

〈
Y nX, Y n−1X

〉
(2.14)

if and only if 〈qn−1(Y )X, Y n〉 =
〈
qn−1(Y )Y, Y n−1X

〉
; this reduces to verifying that

〈
Y n−1X, Y n

〉
=〈

Y n, Y n−1X
〉
, which follows from the self-adjointness of M (n).

To verify (2.9)(iii) for k = n − 1 we need to show that
〈
Y nX, Y n−1X

〉
=

〈
Y n+1, Y n−2X2

〉
.

Observe that 〈
Y n+1, Y n−2X2

〉
=

〈
pn−1(Y )Y + qn−1(Y )Y X, Y n−2X2

〉
(by(2.5))

=
〈
pn−1(Y )Y + qn−1(Y )Y X, Y n−1

〉
(by (2.6)) (2.15)

We claim that
〈
Y n−1X, Y n

〉
=

〈
Y nX, Y n−1

〉
; indeed,〈

Y n−1X, Y n
〉

=
〈
Y n, Y n−1X

〉
=

〈
Y n−1X2, Y n−1X

〉
(by the definition of Y n−1X2)

=
〈
Y nX, Y n−2X2

〉
(by (2.9)(i) with k = n− 1)

=
〈
Y nX, Y n−1

〉
(by (2.6)).
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Now, the expression in (2.15) coincides with〈
pn−1(Y )Y, Y n−1

〉
+ 〈qn−1(Y )X, Y n〉 = 〈pn−1(Y ) + qn−1(Y )X, Y n〉

= 〈Y n, Y n〉 =
〈
Y n−1X2, Y n

〉
=

〈
Y nX, Y n−1X

〉
(by (2.14)),

as desired. To complete the case k = n − 1 we need to show condition (iv) in (2.9) holds, that is,
〈Y nX, Y n〉 =

〈
Y n+1, Y n−1X

〉
. We do this as follows:

〈Y nX, Y n〉 = 〈pn−1(Y )X + qn−1(Y )Y, Y n〉 (by (2.4)

= 〈pn−1(Y )X, Y n〉+ 〈qn−1(Y )Y, Y n〉

and 〈
Y n+1, Y n−1X

〉
=

〈
pn−1(Y )Y + qn−1(Y )Y X, Y n−1X

〉
(by (2.5)

=
〈
pn−1(Y )Y, Y n−1X

〉
+

〈
qn−1(Y )Y X, Y n−1X

〉
.

It thus suffices to verify that

〈pn−1(Y )X, Y n〉 =
〈
pn−1(Y )Y, Y n−1X

〉
and

〈qn−1(Y )Y, Y n〉 =
〈
qn−1(Y )Y X, Y n−1X

〉
.

The first equality follows from
〈
Y jX, Y n

〉
=

〈
Y j+1, Y n−1X

〉
(0 ≤ j ≤ n−2) and from

〈
Y n−1X, Y n

〉
=〈

Y n, Y n−1X
〉

(by the self-adjointness of M (n)). To prove the second equality, note first that in
CM(n), 〈

Y j+1X, Y n−1X
〉

=
〈
Y j+1X2, Y n−1

〉
=

〈
Y j+1Y, Y n−1

〉
=

〈
Y j+1, Y n

〉
for 0 ≤ j ≤ n− 3. Further,〈

Y n−1, Y n
〉

=
〈
Y n, Y n−1

〉
=

〈
Y n, Y n−2X2

〉
=

〈
Y n−1X, Y n−1X

〉
(2.16)

(by the Hankel property in M (n)). Finally,〈
Y nX, Y n−1X

〉
=

〈
Y n−1X2, Y n

〉
(by (2.14))

= 〈Y n, Y n〉 (by the definition of Y n−1X2). (2.17)

The proof that block B is of the form {Bi,n+1}n
i=0 is now complete.

To finish the proof of Proposition 2.8 it now suffices to show that C := W ∗M (n) W is Hankel.

Observe that in M := [M (n) B] =
(
M (n) B

B∗ C

)
, we may compute inner products of the form

〈p(X, Y ), q(X, Y )〉 where p, q ∈ PR
n+1. Note also that since M is a flat extension, dependence

relations in the columns of
(
M (n) B

)
extend to column relations in

(
B∗ C

)
. In particular,

the first n columns of C coincide with the last n columns of B∗; since B has the Hankel property, so
does B∗, and thus the first n columns of C have the Hankel property. Further, columns Y nX and
Y n+1 of C are defined as in (2.4) and (2.5), respectively. To verify that C is Hankel it now suffices
to focus on the last three columns of C, namely Y n−1X2, Y nX and Y n+1. We will first compare
the entries of Y n−1X2 and Y nX, and later those of Y nX and Y n+1. To this end, we need three
preliminary facts.

Claim 1. For 0 ≤ i ≤ n− 1,〈
Y n−1X2, Y iXn+1−i

〉
=

〈
Y n−1X2, Y i+1Xn−1−i

〉
(2.18)
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Proof. 〈
Y n−1X2, Y iXn+1−i

〉
=

〈
Y n, Y iXn+1−i

〉
(by the definitions of the columns of C)

=
〈
Y iXn+1−i, Y n

〉
(since M = M∗)

=
〈
Y i+1Xn−1−i, Y n

〉
(by the definition of the columns of C)

=
〈
Y n, Y i+1Xn−1−i

〉
(since M = M∗)

=
〈
Y n−1X2, Y i+1Xn−1−i

〉
(by the definitions of the columns of C).

Claim 2. For 0 ≤ i ≤ n− 1,〈
Y nX, Y iXn+1−i

〉
=

〈
Y nX, Y i+1Xn−1−i

〉
(2.19)

Proof. 〈
Y nX, Y iXn+1−i

〉
=

〈
pn−1(Y )X + qn−1(Y )Y, Y iXn+1−i

〉
(by (2.4))

=
〈
Y iXn+1−i, pn−1(Y )X + qn−1(Y )Y

〉
(since M = M∗)

=
〈
Y i+1Xn−1−i, pn−1(Y )X + qn−1(Y )Y

〉
(by the definition of the columns of C)

=
〈
pn−1(Y )X + qn−1(Y )Y, Y i+1Xn−1−i

〉
(since M = M∗)

=
〈
Y nX, Y i+1Xn−1−i

〉
(by (2.4)).

Claim 3. For 0 ≤ i ≤ n− 1,〈
Y n+1, Y iXn+1−i

〉
=

〈
Y n+1, Y i+1Xn−1−i

〉
(2.20)

Proof.〈
Y n+1, Y iXn+1−i

〉
=

〈
pn−1(Y )Y + qn−1(Y )Y X, Y iXn+1−i

〉
(by (2.5))

=
〈
Y iXn+1−i, pn−1(Y )Y + qn−1(Y )Y X

〉
(since M = M∗)

=
〈
Y i+1Xn−1−i, pn−1(Y )Y + qn−1(Y )Y X

〉
(by the definition of the columns of C)

=
〈
pn−1(Y )Y + qn−1(Y )Y X, Y i+1Xn−1−i

〉
(since M = M∗)

=
〈
Y n+1, Y i+1Xn−1−i

〉
(by (2.5)).

Comparison of Y n−1X2 and Y nX. We will establish that〈
Y n−1X2, Y iXn+1−i

〉
=

〈
Y nX, Y i−1Xn+2−i

〉
(1 ≤ i ≤ n + 1).

Case 1. (1 ≤ i ≤ n− 1):〈
Y n−1X2, Y iXn+1−i

〉
=

〈
Y n−1X2, Y i+1Xn−1−i

〉
(by (2.18))

=
〈
Y nX, Y iXn−i

〉
(because B is Hankel)

=
〈
Y nX, Y i−1Xn+2−i

〉
(by (2.19)).

Case 2. (i = n) This is straightforward from the self-adjointness of C.
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Case 3. (i = n + 1) We need to prove that〈
Y n−1X2, Y n+1

〉
= 〈Y nX, Y nX〉 (2.21)

Observe that〈
Y n−1X2, Y n+1

〉
=

〈
Y n, Y n+1

〉
(by the definition of the columns of C)

=
〈
Y n+1, Y n

〉
(since M = M∗)

= 〈pn−1(Y )Y + qn−1(Y )Y X, Y n〉 (by (2.5))

Similarly,
〈Y nX, Y nX〉 = 〈pn−1(Y )X + qn−1(Y )Y, Y nX〉 .

It follows that to verify (2.21) it suffices to establish

〈pn−1(Y )Y, Y n〉 = 〈pn−1(Y )X, Y nX〉 (2.22)

and
〈qn−1(Y )Y X, Y n〉 = 〈qn−1(Y )Y, Y nX〉 . (2.23)

For (2.22), we will verify that for 0 ≤ j ≤ n− 1,〈
Y j+1, Y n

〉
=

〈
Y jX, Y nX

〉
. (2.24)

We have 〈
Y j+1, Y n

〉
=

〈
Y n, Y j+1

〉
=

〈
pn−1(Y ) + qn−1(Y )X, Y j+1

〉
and 〈

Y jX, Y nX
〉

=
〈
Y nX, Y jX

〉
=

〈
pn−1(Y )X + qn−1(Y )Y, Y jX

〉
.

To establish (2.24), it now suffices to prove that〈
Y k, Y j+1

〉
=

〈
Y kX, Y jX

〉
(0 ≤ k ≤ n− 1, 0 ≤ j ≤ n− 1) (2.25)

and 〈
Y kX, Y j+1

〉
=

〈
Y k+1, Y jX

〉
(0 ≤ k ≤ n− 1, 0 ≤ j ≤ n− 1). (2.26)

For (2.25), we have〈
Y kX, Y jX

〉
=

〈
Y jX, Y kX

〉
=

〈
Y j+1, Y k−1X2

〉
(by the Hankel property in M (n) )

=
〈
Y j+1, Y k

〉
(via recursiveness and self-adjointness in M (n) )

=
〈
Y k, Y j+1

〉
.

For (2.26), first consider the case when j, k ≤ n− 2; then〈
Y kX, Y j+1

〉
=

〈
Y kX, Y jX2

〉
=

〈
Y kX2, Y jX

〉
=

〈
Y k+1, Y jX

〉
.

Now consider (2.26) with j = n− 1, k ≤ n− 1; we have〈
Y k+1, Y n−1X

〉
=

〈
Y n−1X, Y k+1

〉
=

〈
Y n, Y kX

〉
(by the Hankel property in M (n) )

=
〈
Y kX, Y n

〉
.
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Finally, for (2.26) with k = n− 1, j ≤ n− 1, note that
〈
Y n−1X, Y j+1

〉
=

〈
Y n, Y jX

〉
, by the Hankel

property in M (n). Thus, we have established (2.26), whence (2.22) follows. We next prove (2.23);
to do so, it suffices to establish that〈

Y j+1X, Y n
〉

=
〈
Y j+1, Y nX

〉
(0 ≤ j ≤ n− 1). (2.27)

Consider first the case when j ≤ n− 3; then〈
Y j+1, Y nX

〉
=

〈
Y nX, Y j+1

〉
=

〈
Y n, Y j+1X

〉
(by (2.8))

=
〈
Y j+1X, Y n

〉
.

For (2.27) with j = n− 2, we have〈
Y n−1, Y nX

〉
=

〈
Y nX, Y n−1

〉
=

〈
pn−1(Y )X + qn−1(Y )Y, Y n−1

〉
=

〈
pn−1(Y )X, Y n−1

〉
+

〈
qn−1(Y )Y, Y n−1

〉
=

〈
pn−1(Y ), Y n−1X

〉
+

〈
qn−1(Y )X, Y n−1X

〉
(using (2.16))

=
〈
pn−1(Y ) + qn−1(Y )X, Y n−1X

〉
=

〈
Y n, Y n−1X

〉
=

〈
Y n−1X, Y n

〉
.

Finally, (2.27) with j = n − 1 follows from self-adjointness in M: 〈Y nX, Y n〉 = 〈Y n, Y nX〉. This
concludes the proof of (2.27); thus (2.23) is established and the proof of Case 3 is complete.

Comparison of Y nX and Y n+1. We will establish that
〈
Y nX, Y iXn+1−i

〉
=

〈
Y n+1, Y i−1Xn+2−i

〉
(1 ≤ i ≤ n + 1).

Case 1 (1 ≤ i ≤ n− 1):〈
Y nX, Y iXn+1−i

〉
=

〈
Y nX, Y i+1Xn−1−i

〉
(by (2.19))

=
〈
Y n+1, Y iXn−i

〉
(by the Hankel property in B)

=
〈
Y n+1, Y i−1Xn+2−i

〉
(by (2.20)).

Case 2. (i = n) This is (2.21).
Case 3. (i = n + 1) This is straightforward from the self-adjointness of C.
This concludes the proof of Proposition 2.8. �

Proposition 2.13. (Case V: rankM (n) = 2n + 1) Assume that M(n) is positive, recursively
generated, and satisfies Y = X2. Assume also that Sn(n) is a basis for CM(n). Then M(n) admits
a one-parameter family of flat extensions M(n + 1).

Proof. Since Y = X2, and to guarantee that M (n + 1) is recursively generated, we define the first
n columns of a proposed B block for M(n + 1) as [Xn+1]m(n) := Y Xn−1 ∈ CM(n), [Y Xn]m(n) :=
Y 2Xn−2 ∈ CM(n), ... ,

[
Y n−1X2

]
m(n)

:= Y n ∈ CM(n). Moreover, if we wish to make Bn,n+1 Hankel,
it is clear that all but the last entry in the column [Y nX]m(n) must be given in terms of the entries
in M (n), and that all but the last entry in

[
Y n+1

]
m(n)

must be given in terms of the entries in
[Y nX]m(n); concretely, 〈

Y nX, Y k
〉

:= βn+k,1 (0 ≤ k ≤ n− 1)
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and 〈
Y nX, Y i+1Xj

〉
:=

〈
Y n−1X2, Y i+1Xj−1

〉
=〈

Y n, Y i+1Xj−1
〉
≡ βn+i+1,j−1 (i ≥ 0, j ≥ 1, i + j ≤ n).

To handle the last entry of [Y nX]m(n), we introduce the parameter
p ≡ 〈Y nX, Y n〉M(n+1). Similarly, we let〈

Y n+1, Y k
〉

:= βn+1+k,0 (0 ≤ k ≤ n− 1),〈
Y n+1, Y iXj

〉
:=

〈
Y nX, Y i+1Xj−1

〉
(i ≥ 0, j ≥ 1, i + j ≤ n),

and q :=
〈
Y n+1, Y n

〉
.

Claim 1. 〈
Y nX, Y iXj+2

〉
=

〈
Y nX, Y i+1Xj

〉
(i + j + 2 ≤ n).

Proof. Assume first j ≥ 1. Then〈
Y nX, Y iXj+2

〉
=

〈
Y n, Y i+1Xj+1

〉
=

〈
Y n, Y i+2Xj−1

〉
(since Y = X2)

=
〈
Y nX, Y i+1Xj

〉
.

If j = 0, 〈
Y nX, Y iX2

〉
=

〈
Y n, Y i+1X

〉
= βn+i+1,1 =

〈
Y nX, Y i+1

〉
.

Claim 2. 〈
Y n+1, Y iXj+2

〉
=

〈
Y n+1, Y i+1Xj

〉
(i + j + 2 ≤ n).

Proof. Assume first j ≥ 1. Then〈
Y n+1, Y iXj+2

〉
=

〈
Y nX, Y i+1Xj+1

〉
=

〈
Y nX, Y i+2Xj−1

〉
(by Claim 1)

=
〈
Y n+1, Y i+1Xj

〉
.

If j = 0, 〈
Y n+1, Y iX2

〉
=

〈
Y nX, Y i+1X

〉
=

〈
Y n, Y i+2

〉
= βn+i+2,0 =

〈
Y n+1, Y i+1

〉
.

Repeated application of Claims 1 and 2 show that the each row of B is identical to a row whose
associated monomial corresponds to a column in the basis Sn(n), a property clearly present in M (n).
This will be crucial in establishing that both [Y nX]m(n) and

[
Y n+1

]
m(n)

are in the range of M (n).
Since N := M(n)S(n) > 0, there exist vectors f ,g ∈ R2n+1 such that N f = [Y nX]Sn(n) and

Ng =
[
Y n+1

]
Sn(n)

. Let F,G ∈Rm(n) be given by

〈
F, Y iXj

〉
:=

{ 〈
f , Y iXj

〉
if Y iXj ∈ Sn(n)

0 otherwise

and 〈
G, Y iXj

〉
:=

{ 〈
g, Y iXj

〉
if Y iXj ∈ Sn(n)

0 otherwise .
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We claim that M (n)F = [Y nX]m(n). Indeed, for Y iXj ∈ Sn(n), we have〈
M (n)F,Y iXj

〉
=

∑
Y kX`∈CM(n)

〈
Y kX`, Y iXj

〉 〈
F,Y kX`

〉
=

∑
Y kX`∈Sn(n)

〈
Y kX`, Y iXj

〉 〈
f ,Y kX`

〉
+

∑
Y kX` 6∈Sn(n)

〈
Y kX`, Y iXj

〉
· 0

=
〈
[Y nX]Sn(n) , Y iXj

〉
=

〈
[Y nX]m(n) , Y iXj

〉
.

Further, for Y iXj ∈ CM(n) \ Sn(n), there exist i′, j′ such that Y iXj = Y i′Xj′ ∈ CM(n) and Y i′Xj′ ∈
Sn(n). Since M (n) is self-adjoint, row Y iXj of M (n) coincides with row Y i′Xj′ . Now,〈

M (n)F,Y iXj
〉

=
∑

Y kX`∈CM(n)

〈
Y kX`, Y iXj

〉 〈
F,Y kX`

〉
=

∑
Y kX`∈CM(n)

〈
Y kX`, Y i′Xj′

〉 〈
F,Y kX`

〉
=

〈
M (n)F,Y i′Xj′

〉
=

〈
[Y nX]m(n) , Y i′Xj′

〉
(from the preceding case)

=
〈
[Y nX]m(n) , Y iXj

〉
(by Claim 1).

Thus M (n)F = [Y nX]m(n), and a similar argument (using Claim 2) shows that M (n)G =[
Y n+1

]
m(n)

. Since
[
Y iXj

]
m(n)

= Y i+1Xj−2 ∈ CM(n) for i + j = n + 1, j ≥ 2, it follows that
Ran B ⊆ Ran M (n); thus there exists W such that M (n) W = B.

To show that the flat extension M≡ [M (n) ;B] is of the form M (n + 1), it now suffices to show
that C := W ∗M (n) W is Hankel. We have

M =
(
M (n) B

B∗ C

)
;

recall that dependence relations in
(
M (n) B

)
extend to corresponding relations in

(
B∗ C

)
.

Now B∗ =
(
∗ B∗

n,n+1

)
, where

B∗
n,n+1 =


∗ · · · ∗ ∗ ∗
...

. . .
...

...
...

∗ · · · ∗ ∗ ∗
∗ · · · ∗ ∗ p
∗ · · · ∗ p q


(n+2)×(n+1)

.

Since, in the column space of
(
M (n) B

)
, we have Xn+1 = Y Xn−1, ...,

Y n−1X2 = Y n, it follows that C is of the form C =
(

B̃∗
n,n+1 ∗

)
(n+2)×(n+2)

, where B̃∗
n,n+1 is

obtained from B∗
n,n+1 by deleting its leftmost column. Thus, since B̃∗

n,n+1 is Hankel and C = C∗,
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we have

C =



∗ · · · ∗ ∗ ∗ ∗
...

. . .
...

...
...

...
∗ · · · ∗ ∗ ∗ p
∗ · · · ∗ ∗ p q
∗ · · · ∗ p Cn+1,n+1 u
∗ · · · p q u v


,

for some u, v ∈ R, and where each cross-diagonal that is not shown is constant. Observe that by
the flat extension construction, Cn+1,n+1 = [Y nX]tm(n) F. Since [Y nX]m(n) is independent of q, so
is f = N−1 [Y nX]Sn(n), whence F is also independent of q. Thus Cn+1,n+1 does not depend on q

(though it does depend on p). For each p, if we let q := Cn+1,n+1(p), it follows that M = [M (n) ;B]
is a flat moment matrix extension of the form M (n + 1). The proof is now complete. �

3. Proof of Theorem 2.2

We now turn to the proof of Theorem 2.2, which we restate for the sake of convenience; note that
Theorem 1.4 follows from Theorem 3.1(i) ⇔ (vi).

Theorem 3.1. Let β ≡ β(2n) : β00, β01, β10, ..., β0,2n, ..., β2n,0 be a family of real numbers, β00 > 0,
and let M (n) be the associated moment matrix. Assume that M(n) is positive, recursively generated,
and satisfies Y = X2. The following statements are equivalent.
(i) β admits a representing measure (necessarily supported in y = x2).
(ii) β admits a representing measure with moments of order up to 2n + 2 (necessarily supported in
y = x2).
(iii) β admits a rankM (n)-atomic representing measure (necessarily supported in y = x2).
(iv) M (n) admits a positive, recursively generated extension M (n + 1).
(v) M (n) admits a flat extension M (n + 1).
(vi) rank M(n) ≤ card V(β).

Proof. By [CuFi2, Theorem 2.1] and the equivalence of the moment problems for M(n)(γ) and
M (n) (β) [CuFi6, Proposition 1.12], we can assume that the columns 1, X and Y are linearly
independent. Observe first that (iii) ⇒ (ii) ⇒ (i) trivially, that (i) ⇒ (vi) by [CuFi3, (1.7)], and
that (iii) ⇔ (v) by [CuFi1, Theorem 5.13]. Also, (vi) ⇒ (v) by Theorem 1.4, and (v) ⇒ (iv) by
[CuFi2, Lemma 1.9]. Thus, to finish the proof, it suffices to establish (iv) ⇒ (v). We do this
by considering the five cases in the proof of Theorem 1.4. First recall our hypotheses: M (n) is
positive, recursively generated, Y = X2, and M (n) admits a positive recursively generated extension
M (n + 1). We need to show that M (n) admits a flat extension.
Case I. The hypothesis about M (n + 1) is superfluous, as we showed in Proposition 2.5 that M (n)
is already flat, so it obviously admits a flat extension.
Case II. As above, the extra condition on M (n + 1) is superfluous, since we proved in Proposition
2.6 that M (n) is flat.
Case III. Here we have

Y n−1X = pn−1(Y ) + qn−2(Y )X (3.1)
in CM(n), with deg pn−1 ≤ n− 1 and deg qn−2 ≤ n− 2. By the Extension Principle [Fia1], the same
relation must hold in the column space of the positive extension M (n + 1). Since M (n + 1) is
recursively generated, we must also have

Y n ≡ Y n−1X2 = Y n−1XX = pn−1(Y )X + qn−2(Y )XX = pn−1(Y )X + qn−2(Y )Y. (3.2)
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By (3.1), the first term in the last expression of (3.2) has total degree at most n− 1, and so does the
second term. It follows that Y n can be written in terms of columns of total degree at most n − 1.
Since Y = X2 and M (n) is recursively generated, each column Y iXj with i + j = n and j ≥ 2
coincides with a column of total degree at most n − 1. It now follows that M (n) is flat, and thus
admits a flat extension.
Case IV. Observe that since M (n + 1) is recursively generated, we must have Xn+1 = Y Xn−1,
Y Xn = Y 2Xn−2, ..., Y n−1 6 X2 = Y n. By assumption, Y n is a linear combination of columns in
M (n) of total degree at most n − 1. By the Extension Principle [Fia1], the same relation holds
in M (n + 1). Since M (n + 1) is recursively generated, we infer that Y nX and Y n+1 are linear
combinations of columns of degree at most n. Moreover, since M (n + 1) is recursively generated
and Y = X2, the columns Y iXj with i + j = n + 1 and j ≥ 2 coincide with columns of M (n + 1)
of total degree at most n. Thus M (n + 1) is a flat extension of M (n).
Case V. Once again, we can ignore the given extension M (n + 1) and obtain a flat extension from
Proposition 2.13. �

4. Some Examples Illustrating Theorem 2.1

Example 1.6 illustrates Case III of Theorem 2.1. We now present examples corresponding to the
remaining cases of Theorem 2.1.

Example 4.1. (Theorem 2.1, Cases IV and II) We define M(2) by

M(2) :=


1 0 a a 0 b
0 a 0 0 b 0
a 0 b b 0 c
a 0 b b 0 c
0 b 0 0 c 0
b 0 c c 0 d

 ,

where a > 0, b > a2, c > b2

a , and d := b3−2abc+c2

b−a2 . Let σ := b2−ac
b−a2 and τ := c−ab

b−a2 . Then
M(2) ≥ 0, {1, X, Y, Y X} is a basis for CM(2), Y = X2, and Y 2 = σ1 + τY . Following the proof
of Case IV, we define B(3) via column relations X3 := Y X, Y X2 := Y 2, Y 2X := σX + τY X,
and Y 3 := σY + τY 2 = στ1 + (σ + τ2)Y . A calculation shows that [M(2); B(3)] is indeed of the
form M(3). To compute the corresponding 4-atomic representing measure, consider the equation
p(y) := y2 − τy − σ = 0. Since cardV(β(4)) ≥rankM (2) = 4, p must have two distinct positive
roots, say y1 and y2. Explicitly, let ω := (b− a2)2(τ2 + 4σ) ≡ (c− ab)2 − 4(b− a2)(ac− b2). Note
that ω > 0 since

a2ω ≡ [a2(b− a2)− a(c− b2

a
)]2 + (b− a2)2[2a2(b− a2) + (b− a2)2 + 2a(c− b2

a
)],

so y1 := c−ab+
√

ω
2(b−a2)

(> 0) and y2 := c−ab−
√

ω
2(b−a2)

(> 0). Then V(β(4)) = {z1, z2, z3, z4}, where z1 =
(
√

y1, y1), z2 = (−√y1, y1), z3 = (
√

y2, y2) and z4 = (−√y2, y2). The unique 4-atomic representing

measure is µ := ρ1δz1 + ρ2δz2 + ρ3δz3 + ρ4δz4 , where ρ1 = ρ2 = ω−(2a3−3ab+c)
√

ω
4ω and ρ3 = ρ4 =

ω+(2a3−3ab+c)
√

ω
4ω .

For a numerical example, let a = 2, b = 5, c = 13; then y1 = 1
2(3 +

√
5), y2 = 1

2(3 −
√

5),
ρ1 = ρ2 = 1

20(5 +
√

5) ∼= 0.361803, ρ3 = ρ4 = 1
20(5−

√
5) ∼= 0.138197. To illustrate Case II, consider

M(3); the first dependence relation in S3(3) occurs at Y k, with 2 = k < n = 3. �
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Example 4.2. (Theorem 2.1, Cases V and I) In Example 4.1, if we choose d > b3−2abc+c2

b−a2 , then
S2(2) is a basis for CM(2), so M(2) illustrates Case V. Following the proof of Case V, we define
Y 2X and Y 3 for block B(3) by Y 2X := (0, c, 0, 0, d, p)t and Y 3 := (c, 0, d, d, p, q)t, where p, q ∈ R.
Let λ := b3 − 2abc + c2 + a2d − bd (> 0), and let f1 := −(ac − b2)p/λ, f2 := (c2 − bd)/(ac − b2),
f3 := (ab−c)p/λ, f4 := 0, f5 := (ad−bc)/(ac−b2), f6 := −(b−a2)p/λ, and F := (f1, f2, f3, f4, f5, f6)t.
Then Y 2X = M(2)F = f11+f2X +f3Y +f5Y X +f6Y

2, and a flat extension M(3) = [M(2); B(3)]
is uniquely determined by setting q := (Y 2X)tF = f2c + f5d + f6p. To determine the corresponding
5-atomic representing measure µp, observe that 5 ≥ card{x : x5 = f1 + f2x + f3x

2 + f5x
3 + f6x

4} =
card{(x, y) : y = x2 and xy2 = f1 + f2x + f3y + f5xy + f6y

2} ≥ cardV(β) ≥ rankM(2) = 5,
whence V(β) = V := {(x, x2) : x5 = f1 + f2x + f3x

2 + f5x
3 + f6x

4}; in particular, although
Y 3 ∈lin.span{1, X, Y, Y X, Y 2}, the corresponding dependence relation does not cause V(β) to be a
proper subset of V .
For a numerical example, let a = 1, b = 2, c = 5, d = 14, p = 0, q = 41. We find V = {zi}5

i=1, where
z1 = (−1, 1), z2 = (0, 0), z3 = (1, 1), z4 = (−

√
3, 3), z5 = (

√
3, 3), and µ0 = 1

4δz1 + 1
3δz2 + 1

4δz3 +
1
12δz4 + 1

12δz5 . For an example illustrating Case I, note that M(3) (as just described) is flat, and
thus admits a unique flat extension M(4). In S4(4), the first dependence relation occurs at Y kX
with 2 = k < n− 1 = 3, so M(4) illustrates Case I. �

5. An Application to the Full Moment Problem

We conclude with the proof of Theorem 2.3: the sequence β ≡ β(∞) has a representing measure
supported in y = x2 if and only if M (∞) ≥ 0 and Y = X2 in CM(∞).

The following lemma was given in [Fia3] in terms of the complex moment matrix M(∞)(γ), but
it also holds for M (∞) (β).

Lemma 5.1. ([Fia3, Proposition 4.2]) Let β ≡ β(∞) be a full sequence such that M (∞) ≥ 0. Then
M (n) is positive and recursively generated for each n ≥ 1.

The following is equivalent to a special case for K ⊆ C of a result proved by J. Stochel for K ⊆ Cn

(n > 1) [Sto2, Theorem 4].

Theorem 5.2. ([Sto2]) Let K be a closed subset of R2. A full sequence β ≡ β(∞) has a representing
measure supported in K if and only if, for each n ≥ 1, β(2n) has a representing measure supported
in K.

Proof of Theorem 2.3. The necessity of the conditions is clear. For sufficiency, assume
M (∞) ≥ 0 and Y = X2. By Lemma 5.1, M (n + 1) is positive and recursively generated for each
n ≥ 1, so M (n) admits a positive, recursively generated extension, and Y = X2 in CM(n). By
(iv) ⇒ (iii) in Theorem 2.2, β(2n) admits a rankM (n)-atomic measure, necessarily supported in the
parabola y = x2. By Theorem 5.2, β admits a representing measure supported in y = x2. �

The full moment problem on compact semi-algebraic sets in Rn was solved by K. Schmüdgen [Sch].
Recently, the analysis of the semi-algebraic case was extended to non-compact sets by V. Powers
and C. Scheiderer [PoSc] (cf. [KuMa]). The results of [PoSc] include Stochel’s parabola theorem
(Theorem 2.3) as a special case.
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