TRUNCATED K-MOMENT PROBLEMS
IN SEVERAL VARIABLES

RAUL E. CURTO AND LAWRENCE A. FIALKOW

ABSTRACT. Let 8 = 3" be an N-dimensional real multi-sequence of degree 2n, with associated
moment matrix M(n) = M(n)(3), and let r := rank M(n). We prove that if M(n) is positive
semidefinite and admits a rank-preserving moment matrix extension M(n+ 1), then M(n+1) has a
unique representing measure u, which is r-atomic, with supp p equal to V(M (n + 1)), the algebraic
variety of M(n + 1). Further, 8 has an r-atomic (minimal) representing measure supported in
a semi-algebraic set Ko subordinate to a family Q = {¢:}i~; C Rlt1,...,tn] if and only if M(n)
is positive semidefinite and admits a rank-preserving extension M (n + 1) for which the associated
localizing matrices Mg, (n + [%D are positive semidefinite (1 < ¢ < m); in this case, p (as
above) satisfies supp u C Ko, and p has precisely rank M(n) — rank Mg, (n + [%
Z(g)={teRY :q;(t) =0}, 1 <i<m.

]) atoms in

1. INTRODUCTION

Given a finite real multisequence g = 27 = {Bi}z‘ezﬁ li|<2n and a closed set K C RV, the

truncated K-moment problem for 3 entails determining whether there exists a positive Borel measure
pon RY such that

Bi = / fdu(t), i€zl Jil < 2n, (L1.1)
RN

and

supp p C K; (1.2)
a measure p satisfying (1.1) is a representing measure for [3; p is a K-representing measure if it
satisfies (1.1) and (1.2).

In the sequel, we characterize the existence of a finitely atomic K-representing measure having the
fewest possible atoms, in the case when K is semi-algebraic. This is the case where Q = {¢;};-, C
RV [t] = R[t1,...,tn] and K = Kg := {(ti,...,tn) € RN 1 gi(t1,...,tn) = 0,1 <7 <m}. Our exis-
tence condition (Theorem 1.1 below) is expressed in terms of positivity and extension properties of
the moment matriz M(n) = M (n)(8) associated to 3, and in terms of positivity of the localizing
matriz Mg, corresponding to each ¢; (see below for terminology and notation). In Theorem 1.2 we
provide a procedure for computing the atoms and densities of a minimal representing measure in any
truncated moment problem (independent of K).

If p is a representing measure for 3 (or, as we often say, a representing measure for M(n)),
then card supp u > rank M(n); moreover, there exists a rank M(n)-atomic (minimal) representing
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measure for 4 if and only if M(n) is positive semidefinite (M(n) > 0) and M(n) admits a rank-
preserving (or flat) extension to a moment matrix M(n + 1); in this case, M(n + 1) admits unique
successive flat moment matrix extensions M(n +2), M(n +3),... (Theorem 2.19). For 1 <i < m,
suppose deg ¢; = 2k; or 2k; — 1; relative to M(n + k;) we have the localizing matriz Mg, (n + k;) (cf.
Section 3).

Our two main results, which follow, characterize the existence of rank M (n)-atomic (minimal)
K o-representing measures for 3 and show how to compute the atoms and densities of such measures.

Theorem 1.1. An N-dimensional real sequence 8 = 33" has a rank M (n)-atomic representing
measure supported in Kgo if and only if M(n) > 0 and M(n) admits a flat extension M(n+1) such
that Mg,(n+k;) >0 (1 <i <m). In this case, M(n + 1) admits a unique representing measure L,
which is a rank M(n)-atomic (minimal) Kg-representing measure for (3; moreover, u has precisely
rank M(n) — rank Mg, (n + k;) atoms in Z(g;) = {t e RN : ¢;(t) =0}, 1 <i <m.

The uniqueness statement in Theorem 1.1 actually depends on our next result, which provides a
concrete procedure for computing the measure p. As described in Section 2, the rows and columns
of M(n) are indexed by the lexicographic ordering of the monomials ¢* (i € Z%, |i| < n), and are
denoted by T* (|i| < n); a dependence relation in the columns of M(n) may thus be expressed as
p(T) = 0 for a suitable p € RV[¢] with degp < n. We define the variety of M(n) by V(M(n)) :=
(perN 1], deg p<n 2 (P), where Z(p) := {t € RY : p(t) = 0}. Let r :=rank M(n) and let B = {T%*}7_,
p(T)=0
denote a maximal linearly independent set of columns of M(n). For V = {t; };Zl C RV, let Wgy

denote the r X r matrix whose entry in row k, column j is t;’“ (1<k,j<m).

Theorem 1.2. If M(n) = MY (n) > 0 admits a flat extension M(n + 1), then V := V(M(n + 1))
satisfies cardV = r (= rank M(n)), and V = {t;};_; forms the support of the unique representing
measure p for M(n+1). If B={T*},_, is a mazimal linearly independent subset of columns of
M(n), then Wgy is invertible, and pp =Y ;_, pjdt;, where p = (p1,..., pr) is uniquely determined by

pt = W[;,)l}(ﬁzlv "'7/8ir)t'

Theorem 1.2 describes p in terms of V(M(n+1)). To compute the variety of any moment matrix
M(n), we may rely on the following general result. Given n > 1, write J = J(n) :={j € Z]f ) <
n}. Clearly, size M(n) = card J(n) = (N:[d) = dim{p € RY[t] : degp < n}.

Proposition 1.3. Let M(n) = MY (n) be a real moment matriz, with columns T7 indexed by j € J,
let r :=rank M(n), and let B = {T"};c; be a mazimal linearly independent set of columns of M(n),
where I C J satisfies card I = r. For each index j € J \ I, let q; denote the unique polynomial in
lin.span {t'}icr such that T9 = q;(T), and let rj(t) ==t/ — q;(t). Then V(M(n)) is precisely the set
of common zeros of {rj}jcy\ 1-

Cases are known where 3™ has no rank M (n)-atomic K g-representing measure, but does have a
finitely atomic K g-representing measure (cf. [CuFi6], [CuFi9], [Fia3]). It follows from Theorem 1.1
that 3(>") has a finitely atomic representing measure supported in K¢ if and only if M(n)(3) admits
some positive moment matrix extension M(n+j), which in turn admits a flat extension M(n+j+1)
for which the unique successive flat extensions M(n+j+k) satisfy Mg, (n+j+k;) >0 (1 <i < m).
We may estimate the minimum size of j as follows.

Corollary 1.4. The N-dimensional real sequence 5™ has a finitely atomic representing measure

supported in Ko if and only if M(n)(B) admits some positive moment matriz extension M(n + j),
2



wit(hj < Q(Q”JJ\);N) —n, which in turn admits a flat extension M(n+j+1) for which My, (n+j+k;) >
0 (1 <1< m).

If the conditions of Corollary 1.4 hold, then the atoms and densities of a finitely atomic Ko-
representing measure for 5 may be computed by applying Theorem 1.2 and Proposition 1.3 to the
flat extension M(n+j+1). It is an open problem whether the existence of a representing measure p
for 3(27) implies the existence of a finitely atomic representing measure; such is the case, for example,
if ;1 has convergent moments of degree 2n + 1 (cf. [CuFi8, Theorem 1.4], [Put3], [Tch]).

We view Theorem 1.1 as our main result concerning existence of minimal K o-representing mea-
sures, and Theorem 1.2 primarily as a tool for computing such measures (cf. Example 1.5 below).
Note that Theorem 1.2 applies to arbitrary moment problems, not just the K-moment problem.
Although Theorem 1.2 can also be regarded as an existence result, it may be very difficult to utilize
it in this way in specific examples. To explain this viewpoint, we recall a result of [EFP]. Let w
denote the restriction of planar Lebesgue measure to the closed unit disk D and consider 3 = 3(6) [w]
and M = M(3)(8); then rank M = 10. Flat extensions M (4) of M exist in abundance and corre-
spond to 10-atomic (minimal) cubature rules v of degree 6 for w. In [EFP] it is proved that no such
rule v is “inside,” i.e., with suppr C D. The proof in [EFP] first characterizes the flat extensions
M(4) in terms of algebraic relations among the “new moments” of degree 7 that appear in such
extensions. These relations lead to inequalities which ultimately imply that, in Theorem 1.1, M (4)
cannot be positive semi-definite, where p(x,7) := 1 — 22 — 2. One could also try to establish the
nonexistence of 10-atomic inside rules directly from Theorem 1.2, without recourse to Theorem 1.1.
In this approach one would first compute general formulas for the new moments of degree 7 in a flat
extension M (4), use these moments to compute the general form of V(M(4)), and then show that
V(M(4)) cannot be contained in D. As a practical matter, however, this plan cannot be carried out;
the new moments comprise the solution of a system of 6 quadratic equations in 8 real variables, and
at present a program such as Mathematica seems unable to solve this system in a tractable form.
For a problem such as this, Theorem 1.1 seems indispensable. We illustrate the interplay between
Theorem 1.1, Theorem 1.2 and Proposition 1.3 in Example 1.5 below.

For measures in the plane (N = 2), Theorem 1.1 is equivalent to [CuFi4, Theorem 1.6], which
characterizes the existence of minimal K-representing measures in the semi-algebraic case of the
truncated complex K-moment problem (with moments relative to monomials of the form z'z7). In
[CuFi4] we remarked that [CuFi4, Theorem 1.6] extended to truncated moment problems in any
number of real or complex variables. In [Lasl], Lasserre developed applications of [CuFi4, Theorem
1.6] to optimization problems in the plane. These applications also extend to RY (N > 2) (cf.
[Lasl|, [Las2], [Las3]), but they require the above mentioned generalization of [CuFi4, Theorem 1.6]
that we provide in Theorem 1.1. Lasserre’s work motivated us to revisit our assertion in [CuFi4];
we then realized that there were unforeseen difficulties with the generalization, particularly for the
case when N is odd. The purpose of Theorem 1.1 is to provide the desired generalization.

The proofs of Theorem 1.1 and Corollary 1.4 appear in Section 5. In Theorem 5.1 we characterize
the existence of minimal K-representing measures in the semi-algebraic case of the truncated complex
K-moment problem for measures on C". The equivalence of this result to the “even” case of Theorem
1.1 (N = 2d) is given in the first part of the proof of Theorem 5.2; this is based on the equivalence
of the truncated moment problem for C% with the truncated real moment problem for R?? (cf.
Propositions 2.15, 2.16, 2.17 and 2.18). The proof of Theorem 1.1 for N = 2d — 1, given in the
second part of the proof of Theorem 5.2, requires an additional argument, based on the equivalence
of a truncated moment problem for R??~! with an associated moment problem for R4,
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We prove Theorem 1.2 and Proposition 1.3 in Section 2. Theorem 1.2 is new even for N = 2.
Previously, for N = 2 we knew that the measure p of Theorems 1.1 and 1.2 could be computed with
supp p = V(M(r)) [CuFil, p. 33], where r := rank M(n) satisfies r < W; but for r > n+1
this entails iteratively generating the extensions M(n +2),..., M(r). For N > 2, we previously had
no method for computing p. In order to prove Theorem 1.2 we first obtain some results concerning
truncated complex moment problems on C?. Let M (n) = M%(n)(y) denote the moment matrix for
a d-dimensional complex multisequence v of degree 2n, and let V(M (n)) denote the corresponding
algebraic variety. In Theorem 2.4 we prove that if M(n) > 0 admits a flat extension M(n + 1),
then the unique successive flat moment matrix extensions M(n + 2), M(n+ 3), ... (cf. Theorem 2.2)
satisfy V(M (n+ 1)) = V(M (n+2)) = ... . This result is used to prove Theorem 2.3, which is the
analogue of Theorem 1.2 for the complex moment problem. The proof of Theorem 1.2 is then given
in Theorem 2.21, using Theorem 2.3 and the “equivalence” results cited above.

In Section 3 we study the localizing matrix Mg(n) corresponding to a complex moment matrix
M¢%(n) and a polynomial p € C§,[z,z]; Theorem 3.2 provides a computational formula for M¢(n) as
a linear combination of certain compressions of M%(n) corresponding to the monomial terms of p; an
analogous formula holds as well for real localizing matrices (cf. Theorem 3.6). In Section 4, we show
that a flat extension M%(n + 1) of M%(n) > 0 induces flat extensions of positive localizing matrices.
Indeed, the flat extension M%(n + 1) has unique successive flat extensions M%(n + 2), M%(n + 3), ...,
and in Theorem 4.1, for p € C%z, z], degp = 2k or 2k — 1, we prove that if Mg(n + k) > 0,
then Mg(n + k + 1) is a flat, positive extension of Mg(n + k). In proving Theorem 4.1 we follow
the same general plan as in the proof of [CuFi4, Theorem 1.6] (for moment problems on C), but
we have streamlined the argument somewhat, placing more emphasis on the abstract properties
of flat extensions and less emphasis on detailed calculations of the extensions; such calculations
unnecessarily complicated the argument given in [CuFi4]. Theorem 4.1 is the main technical result
that we need to prove Theorem 1.1.

In the following example, we show the interaction of Theorem 1.1, Theorem 1.2 and Proposition
1.3 in a 3-dimensional cubature problem.

Example 1.5. We consider the cubature problem of degree 2 for volume measure y = ugs on the
closed unit ball B3 in R? (cf. [Str]). Thus 8 = 3 = {5(i7j7k)}i7j7k207 irjinczr Whete B jp =

fBS Uciyjzk du, i.e., 5(0,0,0) = 4%7 /8(1,0,0) = ﬁ(o,l,o) = 5(0,0,1) =0, 5(2,0,0) = 5(0,2,0) = /3(0,0,2) = %7
B(1,1,0) = B1,01) = Bo,1,1) = 0. The moment matrix M?3(1)(B) has rows and columns indexed by 1,
X, Y, Z; for i = (i1,i2,13), j = (j1,J2,J3) € Z3 with |i|, |j| < 1, the entry in row X"1Y*2Z" column
XNY2Z35 38 B, 4y intis,istjs)- Thus we have M = M3(1)(8) = diag (4, 3%, 95, 15)-  We will
use Theorem 1.1 to construct a rank M-atomic representing measure for 3 supported in K = B3.

A moment matrix extension M(2) of M admits a block decomposition M(2) = ( B’?;l)t lgg; ),

where B(2) includes “new moments” of degree 3 and C(2) is a moment matrix block of degree 4;
the rows and columns of M(2) are indexed by 1, X, Y, Z, X2, YX, ZX, Y2, ZY, Z* (see Section
2 below). Clearly, M is positive definite and invertible, so a flat extension M (2) is determined by
a choice of moments of degree 3 such that B(2)!M~1B(2) has the form of a moment matrix block
C(2) (cf. the remarks following Theorem 2.3). Due to its complexity, we are unable to compute the
general solution B(2) to

C(2) = B(2)! M~ 1B(2). (1.3)
4



Instead, we specify certain moments of degree 3 as follows:

Bon = Beio = Bay = Bozy = Boiz =0, -
11255(21 2.0) — 1672 1672
B3,00) = 1250020 B2 = 112580120,

(Observe that we have left 3(12.0), B0,3,0) and B3 free.) With these choices, B(2)!M™1B(2) is
a moment matrix block of degree 4, and M(2) = M(2){B1,2,0)> B0,3,0), B(0,0,3)} (defined by (1.3))
is a flat extension of M. To show that § admits a 4-atomic K-representing measure, we consider
p(z,y,2) =1 — (2% + y* + 2?), so that K = K, (where by K, we mean Ko with Q = {p}). Since
degp = 2, in Theorem 1.1 we have n = k = 1; it thus suffices to show that the flat extension
M(2) corresponding to (1.4) satisfies Mp(2) > 0. As we describe in Section 3 below, M,(2) =
Mi(2) = (My2(2) + M,2(2) + M2(2)), where M;(2) = M, M,2(2) is the compression of M(2)
to rows and columns indexed by X, X% Y X, ZX, M,2(2) is the compression of M(2) to rows and
columns indexed by Y, Y X, Y2, ZY, and M,2(2) is the compression of M(2) to rows and columns
indexed by Z, ZX, ZY, Z%. From these observations, and using (1.3)-(1.4), it is straightforward
to verify that

% —20(3.,0,0) —50,3,0) —B0,0,3)
158 B 4
—20(3,0,0) f(B120)) —— 120 (030 ﬁ
MP(2) = 158 . ’
Bz — w 9(B(1,2,0), B(0,3,0)) 0
_ 47B0,0,3) 0 L
/8(0’0’3) 758(1,2,0) (ﬁ(l,Z,O)? ﬁ(0,0,B))
where
) = — (112512 — 3007 4 167%)(1125r2 + 3007 + 1672)
o 168750772 ’
225012 + 112552 — 6472
glr,s) := = 3007 ’
h(r,t) = —— 2000w%r% 4 5127 + 1265625122
n= 3375007712 ’

and that M, (2) is positive semi-definite if 5o 30) = B(0,0,3 = 0 and %\/gﬂ' < Bazo) < %\/gﬂ'.
Under these conditions, Theorem 1.1 now implies the existence of a unique 4-atomic (minimal)
representing measure 7 for M(2), each of whose atoms lies in the closed unit ball. Theorem 1.2
implies that suppn = V := V(M(2)). To compute the atoms of 1 via Proposition 1.3, observe

that in the column space of M(2) we have the following linear dependence relations: X2 = %1 +
D200 197y _ Wluzoy xz - iz y2 1y 4 B0a0x vy o and 22 —
3007‘(‘5(1’2’0) ) 4m ’ 75ﬁ(172’0) ) 5 4m ) )

%1 — ﬁX ; thus, V is determined by the polynomials corresponding to these relations. A
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calculation shows that V = {PZ-}?:O, where P; = (z;,y;, 2;) satisfies

P0:<155(1,2,0) B 0) P1:<15ﬂ(1,2,0) 5 0)
47‘(’ Y 4\/57.(_7 ) 47T ’4\/571-’ )

47 s 47 S
P = (- 5 07 - ; P = (- 5 07 5
’ ( 56020 158120 ) ’ < 56(1.2.0) 755(1,2,()))

with s 1= \/1125ﬁ(21,270) + 1672. The measure 7 is thus of the form n = 25’20 p;op,. To compute
the densities p; using Theorem 1.2, consider the basis B := {1, X,Y, Z} for C Mm(1) and let

1 1 1 1
rog I1 T2 X3

Yo Y1 Y2 Y3
20 k1 <2 Z3

W =

Following Theorem 1.2, p = (pg, p1, p2, p3) is uniquely determined by

_ _q (47 ¢
pr=w-! (/B(O,O,O)uﬁ(l,(],o)uﬁ(O,l,O)a/B(O,O,l))t =w! (3, 0,0, 0) ;

and thus
o 3273 B 75080 2,0)7
pO—pl - 3(1125B(2120)+16772)’ p2_p 1125ﬁ120 _|_167T2
For a concrete numerical example, we can take 3120y = \/;ﬂ' and obtain pg = p1 = 27r =

o= gt = (30). 7 = (J250)- 7 = (/B B). i -

< \/110,0 ,/1()) Note that

U‘\OJ

8m 4
5 —15 4m
M) =|  "n 5\[ DOD(55):
_TS\/;W 7%

so rank M(1) — rank M,,(2) = 2, and (as Theorem 1.1 predicts) there are two points, Py and P,
that lie on the unit sphere.

We pause to locate Theorem 1.1 within the extensive literature on the K-moment problem (cf.
[Akh], [BeCJ], [BeMa], [Fug], [KrNu], [Rez], [ShTa], [StSz2]). A classical theorem of M. Riesz
[Rie, Section 5] provides a solution to the full K-moment problem on R, as follows. Given a real
sequence 3 = {f;};=, and a closed set K C R, there exists a positive Borel measure y on R such that

= [t'du (i >0) and supp u C K if and only if each polynomial p € C[t], p(t) = Zi]io a;t’, with
plx > 0, satisfies Efi 0 @i = 0. For a general closed set K C R there is no concrete description of
the case p|x > 0, so it may be very difficult to verify the Riesz hypothesis for a particular S.

In [Hav], Haviland extended Riesz’s theorem to R (N > 1) and also showed that for several
semi-algebraic sets K, the Riesz hypothesis can be checked by concrete positivity tests. Indeed, by
combining the generalized Riesz hypothesis with concrete descriptions of non-negative polynomials
on R, [0,400],[a,b], or the unit circle, Haviland recovered classical solutions to the full moment
problems of Hamburger, Stieltjes, Hausdorff, and Herglotz [Hav]. More recently, for the case of

the closed unit disk, Atzmon [Atz] found a concrete solution to the full K-moment problem using
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subnormal operator theory, and Putinar [Putl] subsequently presented an alternate solution using
hyponormal operator theory.

In [Cas], Cassier initiated the study of the K-moment problem for compact subsets of RY. For the
case when K is compact and semi-algebraic, Schmiidgen [Sch] used real algebraic geometry to solve
the full K-moment problem in terms of concrete positivity tests. Using infinite moment matrices,
we may paraphrase Schmiidgen’s theorem as follows: a full multi-sequence 8 = §(>) = {Bi} izl has

a representing measure supported in a compact semi-algebraic set Ko if and only if MY (c0)(3) >0
and ./\/lév (00)(B) > 0 for every polynomial ¢ that is a product of distinct ¢;. Schmiidgen’s approach,
using real algebra, is to concretely describe the polynomials nonnegative on K¢ (as above) and to then
apply the Riesz-Haviland criterion. Putinar and Vasilescu [PuVa] subsequently provided a reduced
set of testing polynomials ¢ (see also [Dem]). Recently, Powers and Scheiderer [PoSc] characterized
the non-compact semi-algebraic sets Ko for which a generalized Schmiidgen-type theorem is valid.
Indeed, recent advances in real algebra make it possible to concretely describe the polynomials
nonnegative on certain noncompact semi-algebraic sets ([KuMa], [PoRel], [PoRe2], [PoSc], [Pre],
[Put2], [Sche]), so as to establish moment theorems via the previously intractable Riesz-Haviland
approach.

There is at present no viable analogue of the Riesz-Haviland criterion for truncated moment
problems. Theorem 1.1 is motivated by the above results for the full K-moment problem and
also by a recent result of J. Stochel [Sto2] which shows that the truncated K-moment problem is
actually more general than the full K-moment problem. Stochel’s result in [Sto2] is stated for the
complex multidimensional moment problem, but we may paraphrase it for the real moment problem
as follows.

Theorem 1.6. (cf. [Sto2]). Let K be a closed subset of RN (N > 1). A real multisequence 3 =
Bl = {ﬂi}iezf has a K -representing measure if, and only if, for eachn > 0, f?") = {ﬂi}iezf, li|<2n
has a K -representing measure.

For the semi-algebraic case (K = Kg), Theorem 1.1 addresses the existence of finitely atomic
K-representing measures for 32" with the fewest atoms possible. Concerning the existence of a flat
extension MY (n 4+ 1) in Theorem 1.1, there is at present no satisfactory general test available, so
in this sense Theorem 1.1 is “abstract.” However, in certain special cases, concrete solutions to the
flat extension problem have been found ([CuFi2], [CuFi3]). For example, consider the case of the
parabolic moment problem, where g(z,y) = 0 represents a parabola in R2.  Theorem 1.1 implies
that 5(>®) has a rank M?(n)-atomic representing measure supported in Z(q) if and only if M?(n)(3)
is positive and admits a flat extension M?(n+ 1) for which M2(n+1) = 0. In [CuFi7] we obtained
the following concrete characterization of this case.

Theorem 1.7. ([CuFi7, Theorem 2.2]) Let q(x,y) = 0 denote a parabola in R%.  The following
statements are equivalent for 8 = /).

(i) B has a representing measure supported in Z(q);

(ii) B has a (minimal) rank M?(n)(B3)-atomic representing measure supported in Z(q) (cf. Theorem
1.1);

(iii) M?(n)(B) is positive and recursively generated (cf. Section 2), there is a column dependence
relation ¢(X,Y) = 0, and card V(M?(n)(8)) > rank M?(n)(B).

Analogues of Theorem 1.7 for all other curves of degree 2 appear in [CuFi5], [CuFi6], [CuFi9], [Fia3].
The full moment problem on a curve of degree 2 had previously been concretely solved in [Stol] (cf.
[StSz1]); an alternate solution appears in [PoSc].
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2. MOMENT MATRICES
Let C? [z, z] denote the space of polynomials with complex coefficients in the indeterminates z =

(21, ..., 24) and 2 = (%1, ..., Z4), with total degree at most 7; thus dim C? [z, 2] = n(d,r) := ( " ;jd )

For i = (i1,...,1q) € Z‘i, let |i| := i1 + ... + iqg and let 2* := zil . -‘sz. Given a complex sequence
v =A0) = {%j}i,jeZi7 li| +17] < s, the truncated complex moment problem for ~ entails determining

necessary and sufficient conditions for the existence of a positive Borel measure v on C¢ such that
Yij = /Zizj dv (= /Zi1 vzt 2 dv(z, o, 2a, 21 - 2a)) (]G] < 0s). (2.1)

A measure v as in (2.1) is a representing measure for ~8): if K C C%is a closed set and suppv C K,
then v is a K -representing measure for v(9).

In the sequel we focus on the case when s is even, say s = 2n. In this case, the moment data
~(") determine the moment matriz M(n) = M¢9(n)(v) that we next describe. The size of M(n) is
n(d,n), with rows and columns {Z’ZJ}i,jezi,ungm indexed by the lexicographic ordering of the
monomials in C§ [z, 2]; for d = 2,n = 2, this ordering is 1, Z1, Zy, Z1, Za, 23, 2122, Z1 21, Z2Z0, 23,
212, 2279, 23, Z1 22, Z2. The entry of M(n) in row Z°Z7, column Z*¥Z* is v 01 (|i] + |4], k| +
|| <n). By a representing measure for M(n) we mean a representing measure for -.

For p € C4 [z, 2], p(z,2) = Zr,sezi,|r\+|s|§n arsZ" 2%, we set p := (as); p is the coefficient vector of
p relative to the basis for C& [z, Z] consisting of the monomials {z2/ }ijezd jij+|j|<n i lexicographic or-
der. We recall the Riesz functional A = A, : C4, [2, 2] — C, defined by A(ZnSGZi,ITHISIS% brsZ"2%) 1=

Zr,seZi,\rlﬂs\Qn brsyrs. The matrix M%(n)(v) is uniquely determined by
(M) (3)£,3) = A,(£9), f.9 € Ca [2,2]. (2:2)

If v has a representing measure v, then A,(fg) = [ fg dv; in particular, <Md(n)(y)f, f> =
J |f|? dv >0, so M%(n)(v) is positive semidefinite in this case.

Corresponding to p € C& [z, 2], p(z, 2) = a,s2"2° (as above), we may define an element in Cri(n)
the column space of M (n), by p(Z,Z) :=_ arsZ" Z*; the following result will be used in the sequel
to locate the support of a representing measure.

Proposition 2.1. ([CuFil, (7.4)]) Suppose v is a representing measure for 'y(zi‘), let p € Cl [z, 2],
and let Z(p) :={z € C?: p(z,2) =0}. Then suppv C Z(p) if and only if p(Z, Z) = 0.

It follows from Proposition 2.1 that if Y™ has a representing measure, then M%(n)(v) is recur-
sively generated in the following sense:
p.¢,pq € C. [2,2),p(Z,2) = 0 = (pq)(Z, Z) = 0. (2.3)
We define the variety of M(n) by V(M(n)) := (\pecilszp(2,2)=0 Z(P); Wwe sometimes refer to
V(M(n)) as V(7). Proposition 2.1 implies that if v is a representing measure for 4(>®), then
supp v C V() and, moreover, that

card V() > cardsupp v > rank M%(n)(y) (cf. [CuFil, (7.6)]). (2.4)
8



The following result characterizes the existence of “minimal,” i.e.,
rank M (n)-atomic, representing measures.

Theorem 2.2. ([CuFil, Corollary 7.9 and Theorem 7.10]) v®™ has a rank M%(n)(v)-atomic rep-
resenting measure if and only if M(n) = M9%(n)(v) is positive semidefinite and M(n) admits an
extension to a moment matriv M(n + 1) = M (n + 1)(3) satisfying rank M (n + 1) = rank M (n).
In this case, M(n + 1) admits unique successive rank-preserving positive moment matriz extensions
M(n+2),M(n+3),..., and there exists a rank M (n)-atomic representing measure for M (co).

Various concrete sufficient conditions are known for the existence of the rank-preserving extension
M (n+1) described in Theorem 2.2, particularly when d = 1 (moment problems in the plane) [CuFil],
[CuFi2], [CuFi3], [CuFi5], [CuFi6], [CuFiT7], [CuFi9]; for general d, an important sufficient condition
is that M%(n)(y) is positive semidefinite and flat, i.e., rank M%(n)(y)
= rank M%(n — 1)(y) [CuFil, Theorem 7.8].

We now present the complex version of Theorem 1.2.

Theorem 2.3. If M(n) = M%n) > 0 admits a rank-preserving extension M(n + 1), then V :=
V(M(n + 1)) satisfies cardV = r (= rank M (n)), and V = {w;}i_; forms the support of the unique
representing measure v for M(n+1). IfB = {Z%* ij}zzl 1s a mazimal linearly mdependent subset of
columns of M (n), then the r x r matric Wgy (whose entry in row m, column k is w;"wi™ ) is invert-
ible, and v = >7"_, pjd.;, where p = (p1, ..., py) is uniquely determined by pt = Wzggl;(%'l,ju ooy Yimrjir ) -

Toward the proof of Theorem 2.3, we begin with some remarks concerning positive matrix exten-
él* g be a block matrix. A result of Smul’jan [Smu] shows that A > 0 if
and only if A > 0 and there exists a matrix W such that B = AW and C' > W*AW. In this case,

W*AW is independent of W satisfying B = AW, and the matrix [A4; B] := < A B ) is

sions. Let A =

B* W*AW
positive and satisfies rank[A; B] = rank A; conversely, any rank-preserving positive extension Aof A
is of this form. We refer to such a rank-preserving extension as a flat extension of A. Now, a mo-
M(n) B(n+1) \.
Bn+1)* C(n+1) > thus
a positive moment matrix M (n) admits a flat (positive) moment matrix extension M (n + 1) if and
only if there is a choice of moments of degree 2n + 1 and a matrix W such that B(n+ 1) = M (n)W
and W*M (n)W has the form of a moment matrix block C(n+1), i.e., [M(n); B(n + 1)] is a moment
matrix.
Consider again a positive extension A of A (as above). The Extension Principle ([CuFil, Propo-
sition 3.9], [Fial, Proposition 2.4]) implies that each linear dependence relation in the columns of A

ment matrix M?(n + 1) admits a block decomposition M (n + 1) = (

extends to the columns of < él* in A. In the case when M(n+1) is a positive extension of M (n),

it follows that V(M (n + 1)) € V(M (n)); we will use this relation frequently in the sequel, without
further reference.

Now recall from Theorem 2.2 that if M (n) > 0 admits a flat extension M (n + 1), then M (n + 1)
admits a unique flat extension M (n +2). Indeed, every column of M (n + 1) of total degree n+ 1 is
a linear combination of columns corresponding to monomials of total degree at most n; we can write
this as

77 = pij(2,2) (pig € CLlz25 il + il = n +1). (2.5)
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Then the unique flat extension M (n + 2) is given by

Zigi _ { (ngiyjig(g))(z7 __) if j > 1 for some £ =1,...,d (2.6)

(ZkPi-e(k),0)(Z,Z) if j =0 and iy > 1 for some k =1,...,d

(lil + |7] = n + 2), where (¢) := (0, ...,0, {,0, ..,0). (Z'Z7 is independent of the choice of j; or iy;
cf. [CuFil, Theorem 7.8].)

Suppose M (n) > 0 admits a flat extension M (n + 1); the following result implies that the unique
rank-preserving extensions M (n+2), M (n+3), ..., are also variety-preserving; this is a key ingredient
in the proof of Theorem 1.2 and may be of independent interest.

Theorem 2.4. Assume that M(n) = M%(n) > 0 admits a flat extension M(n +1). Then
V(M(n+2)) =V(M(n+1)).

Proof. Recall that V(M (n + 2)) € V(M(n + 1)); to prove the reverse inclusion, it suffices to show
that if w € V(M(n+1)), and f € ng 2, 2] satisfies f(Z,Z) = 0 in Cps(n42), then f(w,@) =0. As
discussed above, the flat extension M (n + 2) admits a decomposition

M(n+1) M(n+1)W
W*M(n+1) W*Mn+1)W )’
Write f = g+ h, where g € C_ | [2,2], and h(z,2) = Z|i|+|j|=n+2 h;;z'27. Recall that f e Cndnt2)
and § € C14n+1) denote the coefficient vectors of f and g relative to the bases of monomials in
lexicographic order. Let h € Cndn+2)—n(dnt+l) denote the coefficient vector of h relative to the

M(n—|—2):(

monomials of degree n + 2 in lexicographic order; thus f = ( ‘% ) Now,

_ s M(n+1)§+ M(n+1)Wh

Z,72)=M 2)f = -
[(2,2) = M{n+2)f ( W*M(n+1)§+W*M(n+ O)Wh )’
so f(Z,Z) = 0 implies

M(n+1)(g+ Wh)=0. (2.7)
We seek to associate § + Wh with the coefficient vector G of some polynomial q € (C‘;lL +12,2], and to
this end we first describe an explicit formula for W.

Recall that M(n + 1)W = B(n + 2), and that the columns of B(n + 2) are associated with the
monomials 229 ((|i|+|j| = n+2). For (i,5) € Z% x Z< with |i|+ || = n+2, the (i, j)-th column of
B(n+2) is, on one hand M (n+1)W z'zJ, while on the other hand it equals [(z¢p; j—-(¢))(Z, Z)]n(d nt1)
or [(kai_g(k)70)(Z, Z)]n(d7n+l), by (2.6). Since the polynomials z¢p; j_.(¢) and Zxp;_c(x),0 belong to

Ca 4 [2, 2], we can write

[(Zﬁpi,j—e(é))(z> Z)] n(d,n+1) = M(n + 1)(Z€pi,j—a(€))A
and
[(zkpi—s(k),O)(Za Z)] n(d,n+1) = M(TL + 1)(kai—e(k),0)A'
It follows at once that W can be given by
Wiz
o (ngi,jfs(g))A if jz > 1 for some ¢ = 1, ceey d
| (BkPi—e@i),0)” ifj=0and i >1 for some k =1,....d
10
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We now consider Wh. Since h = D lif+jl=n+2 hi,jgi\z/j, it follows from (2.8) that

Wh = Z hij(zepi j—e(0))” + Z hio(ZkPi—e(k),0)
|i]+5]=n+2,570 |i]=n+2
= Z hijzepij—e(e) + Z hi,0ZkPi—e(k),0) -
13l =n-+2,j70 fij=n+2

Now we set

Q(Z,E) = g(zv 2) =+ Z hi,j(zfpi,j—a(f))(zag)
i+ il =+ 2,520

+ Z hio(Zkpi—e(r),0) (2, 2) € (Cﬁﬂ 2, Z].
li|l=n+2
Observe that in CM(nJrl);

0(2.2)=Mn+1)q=Mun+1)ig+Mun+1[ Y higup
li|+17]=n+2,j70
+ > hioZkPie(n 0l
li|]=n+2
=M(n+1)§g+Mn+1)Wh=Mn+1)(G+Wh)=0 (by (2.7)).
Thus, g € CL., [2,2] and ¢(Z, Z) = 0. Since w € V(M (n+1)), we must have ¢(w,&) = 0. Therefore,

0=g(w,w)+ Z hi jwep; j—e(e) (W, @)
li]+]j]|=n+2,j0
+ Z R 00KPi—e (k) 0 (W, @) (2.9)
li|=n+2
Let r; (2, 2) := 2'29 — p; j(2,2) (|i| +]j| = n+1). Clearly each r;; € C¢_, [2,2] and r; j(Z,Z) =0
by (2.5), so 7 j(w, @) =0 (|i| +[j| =n+1). Multiplying r; j(w,@) = 0 by either wy or @y, it follows
that o
W'w! = (zep; j—er)(w, @) (li] +[jl=n+2, jy>1forsome {=1,...,d
@' = (ZpPi—e(r)0)(w,@)  (lif=n+2, j=0, i >1forsomek=1,...d"
Now (2.9) becomes
0= g(w,c«?) + Z hi,j@iwj + Z hi’o(z)i
|i[+]|=n+2,5#£0 li|=n+2
= 9(w,®) + h(w,®) = f(w,©).
Thus, f(w,w) =0, as desired. O

Lemma 2.5. Assume that M(n) = M%(n) > 0 admits an r-atomic representing measure v, where
r:=rank M(n), and let V :=suppv. If B={Z"Z*}_, is a mazimal linearly independent subset
of columns of M(n), then Wgy is invertible (cf. Theorem 2.3).

Proof. Let Ry, ..., R, denote the rows of Wpy, and assume that Wp ) is singular. Then there exists

scalars c1, ..., ¢, € C, not all zero, such that ¢y Ry +...+¢, R, = 0. Let p(z,2) := 12 FN 4 ezt I

Clearly, plsuppr = 0, so Proposition 2.1 implies that p(Z,Z) = 0. Then ¢;Z4 27 + ... 4+ cZ" ZIr =0

in Cpy(n), contradicting the fact that B is linearly independent. O
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Proof of Theorem 2.3. Let r := rank M (n); we first show that V = V(M (n+ 1)) satisfies cardV = r.
Theorem 2.2 implies that M (n+ 1) admits a unique flat extension M (oc0) and that M (o) admits an
r-atomic representing measure 7. Write suppn = {w1, ..., w, }, and define p € C4,. [z, 2] by p(z, 2) :=
[Ti_, Iz — will® (where, for z = (21, ..., 2a), ||2]|* := Z;-lzl zjzj € C4[z,2]). Clearly, Z(p) = suppn,
and since 7 is a representing measure for M (2r), Proposition 2.1 implies p(Z, Z) = 0 in C M(2r)- Thus
V(M (2r)) C Z(p) and card V(M (2r)) < card Z(p) = r. To show that cardV = r, we consider two
cases. If 2r < n, then, since 7 is a representing measure for M(n + 1), suppn C V(M (n + 1)) C
V(M(n)) CV(M(2r)) C Z(p) = suppn, whence suppn =V and cardV = r. If 2r > n+ 1, repeated

application of Theorem 2.4 implies that V = V(M (n+ 1)) = V(M(n+2)) = ... = V(M(2r)), and
since 7 is a representing measure for M (n + 1), (2.4) implies
r=rank M(n+1) <cardV(M(n+ 1)) = ... = card V(M (2r)). (2.10)

Now, from above, card V(M (2r)) < r, so (2.10) implies that card V = r in this case too.

Now let v be a representing measure for M(n + 1). Then r = rank M (n + 1) < cardsuppr <
cardV = r, and since suppr C V, it follows that suppr = V, whence v = Y., p;d,,, for some
densities py, ..., pr. Since v is a representing measure for M(n), p = (p1, ..., p,) satisfies Wgpp' =
(Yir,jrs s Virjr)'s and since Wgy is invertible by Lemma 2.5, p is uniquely determined. Thus v is
the unique representing measure for M(n + 1). O

In [CuFil, Theorem 7.7] we proved that a finite rank positive infinite moment matrix M = M?(oco)
has a rank M-atomic representing measure; for d = 1 we established uniqueness in [CuFil, Theorem
4.7]. We can now establish uniqueness for arbitrary d.

Corollary 2.6. A finite rank positive moment matriz M = M%(c0) has a unique representing
measure v, and card supp v = rank M.

Proof. Following [CuFil, Theorem 7.7], let  be a rank M-atomic representing measure for M. Let
Jj be the smallest integer such that rank M(j) = rank M (j +1). Theorem 2.3 implies that M (j + 1)
has a unique representing measure v, whence 17 = v and card supp v = rank M. O

Remark 2.7. The measure v in Corollary 2.6 may be computed using Theorem 2.3; indeed, supp v =
V(M () +1)).

In order to study moment problems on RY, we next introduce real moment matrices. Let
CN[t] = C[ty,...,tn] denote the space of complex polynomials in N real variables, and let CN[t]

denote the polynomials of degree at most s; then dim CX[t] = ( N;_ y > . Fort=(t,...,tn) € RN

and ¢ = (i1, ...,in) € Zf, we set t! 1= tzf t?{}] Given a real sequence § = () = {ﬁi}iezﬁ lij<r» the
truncated moment problem for § concerns conditions for the existence of a positive Borel measure
pon RY satisfying

5 = / £ du(t) (= / £ dp(ty, ) (i < 7). (2.11)

A measure y satisfying (2.11) is a representing measure for 3; if, in addition, K C R¥ is closed and
supp pu C K, then u is a K-representing measure for (3.

Let 7 = 2n; in this case > corresponds to a real moment matriz M(n) = MY (n)(8), defined
as follows. Let B = {ti}iezf,mgn denote the basis of monomials in CV[t], ordered lexicographically;

e.g., for N = 3, n = 2, this ordering is 1,t1,tQ,tg,t%,tltg,tltg,t%,tztg,t%. The size of M(n) is
dim CY[t] (= < N;—n )), with rows and columns indexed as {Ti}ieszgn, following the same

12



lexicographic order as above. The entry of M(n) in row T, column 77 is B4, 4,5 € ZL , |i|+|j] < 2n.
Note that for N = 1, M (n)(B) is the Hankel matrix (3;4;) associated with the classical Hamburger
moment problem (K = R) (cf. [Akh]).

For p € CN[t], p(t) = Ziezf,|i|<n a;t', we let p := (a;) denote the coefficient vector of p relative to
B. The Riesz functional Ag : CY [t] — C is defined by Ag(>_ b,t") := > b,5,. Thus, MY (n)(B) is
uniquely determined by

(MN)(8)F.3) = Aslf9) (.9 € CIH): (2.12)

If 327 has a representing measure z, then As(fg) = [ fg du, so MY (n)(B) is positive semidefinite.
For p = Zrezﬁ,mgn ayt", we define an element in C(,) (the column space of M(n)) by p(T') :=
Zrer,lr\gn a;T". Let V(M(n)) := pecnpy Z(p) denote the variety of M(n); we also denote this
p(T)=0
variety by V(8). Let J = J(n) := {j € Z¥ : |j| < n}; thus card J(n) = size M(n). Let s := size
M(n) — rank M(n); the following result, which proves Proposition 1.3, identifies s polynomials in
RN [t] whose common zeros comprise V(M (n)).

Proposition 2.8. Let M(n) be a real moment matriz, with columns T indeved by j € J, let
r := rank M(n), and let B = {T"*}ic; be a mazimal linearly independent set of columns of M(n),
where I C J satisfies card I = r. For each index j € J \ I, let q; denote the unique polynomial in
lin.span {t'}icr such that T9 = q;(T), and let rj(t) ==t/ — q;(t). Then V(M(n)) is precisely the set
of common zeros of {rj}jes\ I-

Proof. Clearly V = V(M(n)) C (;c; Z(rj). For the reverse inclusion, set RN[t] == {p € RV[] :
degp < n} and let ® : RV[t] — Cam(ny denote the map p — p(Z, Z). @ is linear and surjective,
so dimker ® = dim R} [t] — dimCpy(,) = card J — cardI. Observe now that for j € J \ I, since
T7 = qj(T') we have r; € ker ®. Moreover, for j € J \ I, the monomial t/ only appears in r;, so it

is straightforward to verify that {r;};c;\ s is a linearly independent subset of RY[t]. It follows at
once that {r;} e\ 1 is a basis for ker @, whence (;c; Z2(r;) € (yepera 2(p) = V- O

Remark 2.9. Proposition 2.8 admits an exact analogue for complex moment matrices.

We omit the proofs of the following results, which are analogous to the corresponding proofs for
M4 (n)(7).

Proposition 2.10. Suppose p is a representing measure for 3. Forp e CN[t], suppp € Z(p) :=
{t € RN : p(t) = 0} if and only if p(T) = 0.

Corollary 2.11. If %" has a representing measure, then MY (n)(3) is recursively generated, i.e.,
if p.q,pq € CY[t] and p(T) = 0, then (pq)(T) = 0.

Corollary 2.12. If p is a representing measure for 33", then supppu C V(B) and card V(5) >
card supp p > rank M¥ (n)(83).

We devote the remainder of this section to describing an equivalence between truncated moment
problems on R?? and C?. In the sequel, C™ denotes the ordered basis for C%[z, z] consisting of the
monomials, ordered lexicographically by degree. We denote the coefficient vector of p € C%[z, 2]
relative to C(™ by p; thus K™ = {p : p € Cl[z,2]} = C" = C[z,2]. For 0 < j < n, let K
denote the subspace of K™ spanned by elements z7z% with |r|+|s| = j; thus K™ = KD P K, =
Ko®...pKy, and dimK; = (J;;flzd) (0<j<mn).
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Next, let C24[t] = C,[t1, ..., t24] denote the vector space over C of polynomials in real indetermi-
nates t1, ..., tog with total degree at most n. For i = (i1, ...,124) € Zid, li| < n,let t* ;= tlf -...-t;j; thus
q € C24[t] may be expressed as q(t) = 2lij<n bit'. Note that dim C2[t] = n(d,n). In the sequel, B
denotes the ordered basis for C2¢[t] consisting of the monomials, ordered lexicographically by degree;
for d = n = 2, this ordering is 1, t1, ta, t3, ta, t3, tite, t1ts, tits, t3, tots, tats, 3, tsts, t3. Now we set z; :=
t; (1 <i<d)and y; = tirq (1 <i<d),so that C2[t] = Cl[x,y] := Cplx1, ..., 24 Y1, ..., ya]; With
this notation, for d = n = 2 the basis B® assumes the form 1, z1, 29, Y1, Y2, T3, T1T2, Y121, Y221, T3,
Y1T2, YoT2, Y2, Y12, y5. We denote the coefficient vector of ¢ € Cl[z,y] relative to B™ by §; thus
H™ = {G:q e C¥z,y]} =2 C" = CX[t]. For 0 < j < n, let H; denote the subspace of H™
spanned by elements y"z* with |r| + |s| = j; thus HW = HODDPH, = Ho® ... D H,, and

dimM; = (5,729 (0 < j < n).

For 0 < j < n, we define a linear map L; : K; — H; by Lj(Z/k\zf) = [(x—iy)*(x+iy)"] (k| + ] =
§). Since (z —iy)*(x +iy)’ = (x1 —iy)* - ... (2g — iya) 4 (z1 + 1) - ... - (xqg + iyq)’, the Binomial

Theorem shows that L;(z%2¢) is indeed an element of H;. We now define L = L™ : £ — H™)
by L= @j_o Lk (= LV P L,). For d = n = 2, we have

10 1 0
01 0 1
LO_(1)7 Ll— i 0 —i 0 5
0 i 0 —i
1 01 0 O 0 0 1 0 0
0 1.0 1 0 1 0 0 1 0
2 0 0 0 0 0 0 -2 0 0
0 i 0 —i 0 i 0 0 —i 0
;.| 0 000 1 01 0 o0 1
2= o i 0 i 0 — 0 0 —i 0
0 0 0 0 2 0 0 0 0 -2
-1 0 1.0 0 0 0 -1 0 0
0 -1 0 1 0 1 0 0 -1 0
0 0 00 -1 0 1 0 0 -1

and L3 = Lo@LiPLy = LM @ Ls. To clarify the properties of L we introduce the map
Y RYx R? — C% x C? defined by 1 (x,y) := (z, £), where z = x + iy, 2 =2 — iy € C%. Clearly v is
injective, and we let

7: Ran ¢ — R? x R? denote the inverse map, 7(z,2) 1= (552, 2:2).

Lemma 2.13. (i) Lp := pot (p € Clz,7]).
(ii) L is invertible, with L=(§) = (go7)".

Proof. (i) For p € Cl|z, 2], write p(z, 2) = 2|k <n apez¥2*. Then

LH) = Y aL(F) = > awlle—iy) @ +iy)

[k|+[€|<n [k|+]£|<n
= Z areZ2 o] =1( Z arez*2t) o p] =poh.
|| +[€]<n |k|+[€]<n
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(ii) A calculation shows that R; := L;l . H; — Kj is given by R;(y"z%) := [(52)7(Z£2)])

[(21;{21)7“1.._'.(Zd;fd)'f'd(zlgfl)81..".(Zd<52d)8dr; thus L1 - H(n) N /C(") satisfies L—l(d) — (qOT)A. ]

Our next goal is to associate to a complex sequence y = 7(?") = {,}, €T [r|+|s|<2n with vygp > 0

and 7,5 = Jsr, an “equivalent” real sequence § = 3(2%) = 1B; }Jezid,\ jl<2ns with Bp = v00. We require
the following lemma.

Lemma 2.14. Let p = a,s2"2° € C4,[2, 2] and assume that p is real-valued. Then A (p) is real.

Proof. Recall that Ay(p) = Y arsyrs. Then Ay(p) = D GrsTrs = D arsYsr = Ay(D) = Ay(p), so
A, (p) is real. O

For j € 724, |j|'§ 2n, set =(j) == (J1, .-, ja) and Wygj) = (Jd+1, ...1j2d). For v as above, we now
set B == Ay(y™ v gm=()), where, for z € C?, z := ZTJFZ and y := %3*. Since the operand of A, is
real-valued (as an element of Cg, [z, z]), Lemma 2.14 implies 3; € R. We now set R(7) := f3; note

that

z+Z
2

z —

T )= (9, (2.13)

) (J)(

Bj = Ap(t)) = Ap(y™ D™ D) = A, ((

Proposition 2.15. M(n)(R(y)) = L* ' M(n)(y)L~!.
Proof. 1t suffices to show that for k,¢,r, s € Zi, with |k| + 4], |r| + |s| < n, and for 8 = R(v), w
have (M(n)(B)yFat, g7 ) = (L M(n)(1) L ykat y7a ). Now,

(L M) ()L kel e ) = (M(n) ()L ke, L7y

= (DT T
(by Lemma 2.13)
= M ((EEHr(EE) ), (2.14)

Choosing j € Z2% so that m,(j) = ¢+ s and m,(j) = k +r, we have || = (|k| + [¢]) + (7] + |s]) < 2n,
so (2.13) shows that the expression in (2.14) is equal to Ag(y**"z*+%) = <M(n)(ﬁ)ykmg,y%5 , as
desired. O

~_—

Next, we define an inverse to R. Given a real sequence 3 = 52" = {Bj}jezid lj|<2n with Gy > 0,

we will associate to 8 a complex sequence v = 7(2"). For k., ¢ € Zi, |k| + €] < 2n, let
e = Ag((z — iy)* (z + iy)")
= Ag((tr — itaen)™ - oo v (ta — itag)™ e (t1 + itgyr)™ - oo - (ta + itag)™).

Clearly, vo0 = Ag(1) = Bo > 0, and v, = Jke. We set S(5) := v; we omit the proof of the following
result, which is dual to that in Proposition 2.15.

Proposition 2.16. M(n)(S(8)) = L*M(n)(B)L.

Taken together, Propositions 2.15 and 2.16 show that (R o S)(5) = f and (SoR)(y) =v. We
are now in position to formulate the equivalence between the real and complex truncated moment
problems, as expressed in the following two results.
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Proposition 2.17. Given v =~y let 3 = g% .= R(~).

(i) M(n)(8) = L* M(n)(7)L "

(1) M(n)(B) 2 0 < M(n)(v) = 0.

(11i) rank M(n)(5) = rank M (n)(7).

(iv) M(n)(B) is positive and admits a flat extension M(n+ 1) if and only if M (n)(~y) is positive and
admits a flat extension M(n + 1).

(v) For q € Cylw, 3, a(X,Y) = L ((qo 7)(Z, 2)).

(vi) For g € Cplz,y], Ag(q) =A,(goT)

(vii) If v is a representing measure for vy, then p := v o is a representing measure for (3, of the
same measure class and cardinality of support; moreover, supp = 7(suppv).

Proof. (i) This is Proposition 2.15.
(ii) This follows from (i) and the invertibility of L (Lemma 2.13).
(iii) This also follows from (i) and the invertibility of L.
(iv) Suppose M (n)(7) is positive and admits a flat extension

[ M@)(y) Bm+1)
Mn+1)(7) = < B(n+¥)* C(n+1) >

Proposition 2.15 (using n 4 1) implies that M := (LO™+FD*) =M (n 4 1)(3)(LFD) =1 is of the form
M(n +1)(R(%)), while (i) and the direct sum structure of (L(™+1))~1 show that

M= ( (LU =AM (n) (1) (L)~ ' ) _ < M(n)iR(fy)) . >

*

Since rank M = rank M (n + 1)(¥) = rank M (n)(y) = rank M(n)(5), it follows that M is a flat
extension of M(n)(5) (> 0). The converse is proved similarly, using Proposition 2.16; we omit the
details.

(v) ¢(X,Y) = M(n)(8)§ = L* " M(n)(y)L™'q (by (1)
= L* 'M(n)(y)gor (by Lemma 2.13)
= L*_l(q oT)(Z, Z)
(vi) Straightforward from (2.13).
(vil) For j € Z%4, |j| < 2n,

/tj dp = /y“y(j):c““) d(v o ¥)(x,y)

— /(Z — Z)Try(j)(iz)m(j) dv(z, %)

29 2
= A
=B; (by (2.13));

thus, p is a representing measure for (3, and the other properties of u are clear. O

)m(j))

We omit the proof of the following result, which is dual to Proposition 2.17.

Proposition 2.18. Given 3= 3, let v = v2% .= §(p).
(1) M(n)(y) = L*M(n)(B)L.
(i1) M(n)(7) > 0 & M(n)(5) > 0.
(17i) rank M (n)(y) = rank M(n)(3).
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(iv) M(n)() is positive and admits a flat extension M(n—+ 1) if and only if M(n)(5) is positive and
admits a flat extension M(n + 1).

(v) For p € Culz, 2, p(Z, Z) = L*((po $)(X, Y).

(vi) For p € Cylz, 2], Ay(p) = Ag(po ).

(vii) If p is a representing measure for [3, then v := po T is a representing measure for v, of the
same measure class and cardinality of support; moreover, supp v = ¥ (supp p).

Throughout the sequel, whenever we have equivalent sequences v and (3 (as described by the
preceding results), the context always indicates whether we have 8 = R(y) or v = S(f), so we do
not explicitly refer to R or S.

We next present an analogue of Theorem 2.2 for truncated moment problems on RV,

Theorem 2.19. Let § = @ and let v := rank MN(n)(B8). If p is an r—atomic representing
measure for 3, then MY (n+1)[u] is a flat (positive) extension of M(n) = MN(n)(ﬁ) Conversely,
if M(n) is positive semidefinite and admits a flat extension M(n+1) = MY (n+ 1)(5) then M(n+1)
admits unique flat positive moment matrix extensions MN(n +2)(6), MN(n+3)(B),..., and there
exists an r-atomic representing measure for MN (00)(B) (i.e., a representing measure for 3(>)).

Proof. Suppose p is an r-atomic representing measure for 3, i.e., MY (n)(8) = MY (n)[u]. Since
p is also a representing measure for M (n 4 1)[u], Corollary 2.12 implies that r = card supp u >
rank M" (n + 1)[u] > rank MY (n)[u] = 7, so MY (n + 1)[u] is a flat (positive) extension of M(n).

For the converse, we assume that M®" (n)(8) is positive and admits a flat extension MY (n +
1)(3). We consider first the case when N is even, say N = 2d. In this case, let v = (27 =
S(B). Proposition 2.18 implies that M%(n)(y) is positive and admits a flat extension M%(n + 1)(7).
Theorem 2.2 now implies that M9 (n+1)(7) admits unique successive flat (positive) extensions M%(n+-
2)(7), M4(n+3)(3), ..., and that 4(>) admits an r-atomic representing measure v. Proposition 2.17
(and the direct sum structure of L") (5 > 0)) now imply that M>%(n + 1)(5) admits unique
successive flat extensions {M?¥(n 4 5)(3)};>2, defined by M?*¥(n + 5)(3) := (L+D*)"1Md(n +
$F) (L))~ Proposition 2.17 further implies that v corresponds to an r-atomic representing
measure pu for B,

We now consider the case N = 2d—1. Forz e R?~1 t e R,i ¢ Z%rd_l,j € Zy,weset T := (z,t) €
R2? and 7 := (i,) € Z*%, so that ' = 2°t/. Corresponding to 3 = 3(3") = {/Bi}iezid—l, li] < 2n, we

define a sequence § = 32" = {/éf}iezid7ﬁ|§2n as follows:

3 Bi ifj=0
e :—{ 6 550 (2.15)
Corresponding to M = M24=1(n)(3) we define the moment matrix M = M?2?(n)(3). Since M is
unitarily equivalent to a matrix of the form M @0, we have rank M =rank M, and M >0 if and
only if M > 0. Suppose M = M2~1(n)(8) > 0 and suppose M(n + 1) = M2~1(n +1)(3) is
a flat extension of M. We claim that M(n 4+ 1) = [M(n +1)]" is a flat extension of M. Since
M(n+1) >0, then M(n+1) > 0, and rank M(n+1) = rank M(n+1) = rank M(n) = rank M(n).
Let us denote M(n + 1) as M2¥(n 4 1)(\), for some sequence X. To show that M(n + 1) is an
extension of M(n), it suffices to show that if 7 satisfies 7] < 2n, then Ay = 3. Indeed, if 7 = (4, )
and j = 0, then \y = 3; = 3; = B, while if j > 0, then A\; = 0 = F;. Thus M(n + 1) is a flat

(positive) extension of M(n).
17



Since M(n + 1) = M?4(n + 1)()), the “even” case (above) implies that M(n + 1) has unique
successive flat moment matrix extensions M24(n + j)(A) (j > 2), and that A(>) admits a rank M-
atomic representing measure v. For j > 2 and ¢ € Zidil with |i| < 2(n + j), we set §3; =
)\(170) Then M2 (n+2)(5), M?**(n+3)(j), ..., define the unique successive flat moment matrix
extensions of M2~ 1(n + 1)(8) (indeed, [M?*~1(n + 1)(3)]~ = M%n + 5)(A) (j > 1)). Finally,
if v =3 1_psO(z,t,) (With zy € R2-1 t. € R, ps > 0), then p := > oi_q psdg, is an r-atomic
representing measure for B, O

Remark 2.20. We note the following for future reference. In M(n + 1) = M2 (n + 1)()), since
A; = 0 whenever |i] < 2(n + 1) and j > 0, each column that is indexed by a multiple of ¢ is
identically 0. Further, since () has a representing measure, each of the successive flat extensions
M2A(n 4+ 5)(X) (j > 2) is recursively generated; hence, in ./\/le(n + §)(A), each column indexed by a
multiple of ¢ is identically 0, whence S\(Z-J) = 0 whenever j > 0.

We can now give a proof of Theorem 1.2, which we restate here for the reader’s convenience.

Theorem 2.21. If M(n) = MY (n)(8) > 0 admits a flat extension M(n + 1), then V := V(M(n +
1)) satisfies cardV = r (= rank M(n)), and V = {t;}7_; C RN forms the support of the unique
representing measure ji for M(n +1). If B = {T% }ieq is a mazimal linearly independent subset
of columns of M(n), then Wgy is invertible, and p =, pjdt;, where p = (p1, ..., pr) is uniquely

determined by pt = ng(ﬁil, oo ﬁir)t'

Proof. We first consider the support of a representing measure p for M(n+1) (cf. Theorem 2.19). For
N = 2d, let v be the equivalent complex sequence associated to 3 via Proposition 2.18; Propositions
2.17(v) and 2.18(v) imply that V(M(n+1)(5)) and V(M (n+ 1)(v)) are identical when regarded as
subsets of R2¢.  The conclusion that cardV = r and supp s = V thus follows by a straightforward
application of Theorem 2.3 and Propositions 2.17 and 2.18. For N = 2d — 1, one needs to argue as
in the proof of Theorem 2.19, to convert the initial moment problem for 3 into an equivalent one for
3 in R2? (using (2.15)), and to then appeal to the result for N = 2d. We omit the details of this
argument, except to note that in the notation of the proof of Theorem 2.19, V(M (n+1)(3)) x {0} =
V(M(n+1)(A)). As for the uniqueness of p and the calculation of the densities using Wp )y, the
proof is very similar to the argument establishing the uniqueness of v in Theorem 2.3; for this we
use an analogue of Lemma 2.5 for the invertibility of Wp ) in the case of real moment matrices. [J

Remark 2.22. Theorem 2.4 and Corollary 2.6 admit exact analogues for real moment matrices.

3. LOCALIZING MATRICES
Let 0 <k <nandlet p=p(z2) € C¥z 2], degp = 2k or 2k — 1. We next define the localizing
matrix Mg (n) = M]‘f (n) () whose positivity is directly related to the existence of a representing
measure for v = (2" with support in K, = {z €cCl:p(z,2) > 0}. Note that dim (Cfll_k [z,2] =n =
n(d,n—k)= (” k”d) thus C7 = {f :feCl [z, Z]} We define the n x 1 matrix Mg (n) by

(Mg () f.9) = A (0f9)  (F.9 € Ciy[2,2]). (3.1)
If v has a representing measure v supported in /Cp, then < L, (n) f, f> (p ]f\z) = [p|f? dv>
0, whence Mg( ) > 0. Note also the followmg consequences of (3.1):
d d .
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if p=p1 + p2 with degp; < degp (i = 1,2), then
M (n) = [Mgl (n)]77 + [M52 (n)]n. (3.3)

The main result of this section (Theorem 3.2 below) provides a concrete description of Mg (n) as

a linear combination of certain compressions of M? (n) corresponding to the monomial terms of p.
In order to state this result, we require a preliminary lemma and some additional notation.

Lemma 3.1. Forr,s € Z% with |r| + |s| < 2k, there exist i,7 € Z% such that

2 =7 and li| + 4], |r —i] + |s — 4] < k.
Proof. Case (i): |r|,|s| < k; let i = r, j = 0. Case (ii): k < |r|]. We have r = (ry,...,rq)
with |r| = ry + -+ + 74 > k. Choose 7' = (r},...,7) € Z4 so that 0 < 7} < r; (1 < i < d)

and [7'| = ri+---+7), = k. Withi =7/, j = 0 we have |r—i| + |s—j| = |[r—7r'| + |s]
(ri—=r)+-+(ra—rl)) +|s| = |r| +|s] — ] 'l <2k —k =k. Case (ii): k < |s|; similar to Case
(i).

For p(z,z) as above (with § = degp = 2k or 2k — 1), we write p(z,z) = > arsZ" 25,

r,s€LE, r[+|s| <5

Lemma 3.1 shows that for each r, s € Zﬂlr with |r|+|s| < 6, there are tuplesi =i (r, s, k), j = j (r, s, k),
t=t(r,s,k),u=u(r,sk)inZ%, such that i+t =r, j+u=s, [i| + |j|, [t| + |u| < k. In the sequel,
[Z02:1.0] M4 (n) [2:23:10] denotes the compression of M?(n) to the first 1 rows that are indexed by

O%

multiples of Z%Z! and to the first  columns that are indexed by multiples of Z?Z7.
Theorem 3.2. Md(n)= Y ars[ZuZt;l,n]Md (n)[Z,L-Zj;Ln].

nsEZi

[r|+]|s|<d

For the proof of Theorem 3.2, we require several preliminary results. Let 0 < k < n and let
r,s € Z%, with |r| + |s| < 2k. From Lemma 3.1, we have i, j € Z% with |i| + |4],|r — i| +|s — j| < k.

Lemma 3.3. For f,g € Cdf 2, Z],
(Mo () £.9) = <Md (n) (5'7F) ", ("2 7g) " ).

Proof. Let |r| + |s| = 2l or 21 — 1; if | < k, zs (n) has size n(d,n —1); in this case we regard
Cd_, [z,7) as embedded in CZ_, [z, z] and take coeﬂi(nent vectors f, § relative to Cd_, [z, 2); in any
case, 22/ f and 2""'2°"Jg are elements of C, [z,Z], so (z zjf) and ( roigs— Jg) " are computed

relative to Cy, [z, Z]. We have
(M. (n) ,5) = A ("2 fg)
Sz ()
= (M () (7)) ", (7927 0g) ).
g

Proposition 3.4. Let0 < k <n. Letr,s,t,u,q,v € Z satisfy |r|+|s| < 2k, [t|+|u],|q|+|v| < n—Fk.
Then -
<M2 TzS ( )Zqzv’ thu> = Yr4q+u,s+v+t-
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Proof. From Lemma 3.1, we have i, j € Z¢ such that |i|+|j|, |r — i|+|s — j| < k. Lemma 3.3 implies
that

<M§TZS (n )Z/q?f,;?/t-z\“> = <Md (n) (Zizquz”) -, (zr_iis_jitz“) - >

H—qzj-i-v) 3 (Es—i-t—jzr—i-u—i) - >

I
/\

V(it+q)+(r+u—i),(j+v)+(s+t—5) = Vg+r+u,s+v+t-
O
Lemma 3.5. Let 0 < k < n andletn =n(d,n — k). Supposep,q,l,m € Zi satisfy |p|+lql, |U|+]m| <
k and set
M = zm 1) M (n)[Zqu_l K
Then M = [MZ (n)L7 the compression of M

Cosa.5lym to its first n rows and columns.

zzq -Zlzm

Proof. The columns of M are indexed by 2P+ 2917, i j € 74, |i| + |j| < n — k, and the rows are
indexed by Zm+2Z4 a b € 74, |a| + |b| < n — k. The entry in row Z™T¢Z+b column ZPFiZa+
of M is thus

<Md (n) (7i20%9) <2m+azl+b> . > — Vppitlebgtjima

The corresponding entry of M4 (n), in row Z®Z", column Z°Z7, is <Md (n) E/Z'\zj, Zazb>,

ZP24.7lzm ZP24.7lzm
which, by Proposition 3.4, is also equal to Yptiti+b,g+j+m+a-

Proof of Theorem 3.2. We have 0 < k < n and
p=p(z,2) = Z arpsz' 2%,
r,sGZi, [r|+|s|<8

with § = degp (= 2k or 2k — 1). The size of M;f (n) is thus n x n, where n = n(d,n — k). By (3.3)
and the uniqueness of Mg (n), we have

M)y = Y [Mjrzs (n )] - (3.4)
r,sGZi, [r|+|s| <8

From Lemma 3.1, for each r,s € Z‘i with |r| 4+ |s| < §, we have i = i(r,s,k),7 = j(r,s,k),t =
t(r,s,k),u=u(rsk)€Zs withi+t=r,j+u=s, [i|+]j|,|t| +|ul < k. Lemma 3.5 implies that
for each r, s,
(M2 ()] = [ME i ()
n Ui
_ d
_[Z“Zt;l,'f]] M (n)[

so the result follows from (3.4). O

ZiZin)

We conclude this section with an analogue of Theorem 3.2 for real moment matrices. Given a
real moment matrix MY (n) = MY (n)(B), let k < n, and let p € C[ty,...,ty], with degp = 2k or

2k — 1. The localizing matriz M;,V(n) has size 7 = 7(N,n — k) := ( n-k+N and is uniquely

N
determined by

(MY (0)f,5) = Ma(pfa) (f.9€ CY 1) (3.5)
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if 3 has a representing measure supported in K, := {t € RY : p(t) > 0}, then clearly M;)V(n) > 0.
Write p(t) = Ziezg,mgdegp a;t’. For each i, there exist (non-unique) r = (i), s = s(i) in Z7 such
that r+s =14 and |r|, |s| < k; thus p(t) = ZieZﬁ; a;it" D50 Let [TT;LT]MN(TL)[TS;LT] denote

the compression of M% (n) to the first 7 rows that are indexed by multiples of 7" and to the first 7
columns that are indexed by multiples of T°%.

Theorem 3.6- /\/lf,v(n) = ZieZi,|z‘|§degp ai[TT;l,T]MN(n)[TS;l,T}'

i <degp

The proof of Theorem 3.6 follows by formal repetition of the proof of Theorem 3.2; we omit the
details. Example 1.5 illustrates Theorem 3.6 with N =3,n =1,degp = 2.

4. FLAT EXTENSIONS OF POSITIVE LOCALIZING MATRICES

In this section we present a flat extension theorem for positive localizing matrices, which provides
the main tool for proving Theorem 1.1. Suppose M? (n) (7) is positive and admits a flat extension
M9 (n +1); thus, there is a matrix W such that M9 (n + 1) admits a block decomposition of the
form

(4.1)

Md(n+1)=< Md(n)  Bi(n+1) )

Bl(n+1)* C¥(n+1)
where B (n+1) = M%(n)W and C?(n+1) = W*M?(n) W. It follows from Theorem 2.2 that
M4 (n 4 1) admits a unique positive flat extension M%(00) and that M?(co) admits a representing
measure v. In particular, M%(n + 1) = M%(n + 1)[v] is positive and recursively generated, and
M4 (n 4 1) admits unique successive positive, flat moment matrix extensions M¢% (n +2) = M%(n +
2)[v], M4 (n+3) = M%n + 3)[v],.... Thus, if p € C?[z,2] and k := [(1 +degp) /2] < n, we may
consider M¢ (n+ k) and Mg (n+k + 1).

Theorem 4.1. Suppose M (n) (y) > 0 admits a flat extension

M®(n) M (n)W
WM< (n) WM (n) W >

Let p € C?[z, Z], with degp = 2k or 2k — 1. IfMg (n+k) >0, then

Mg(n+k) Mg(n%—k)W '
WM (n+k) WMI(n+k)W )’

in particular, M (n+ k + 1) is a flat, positive extension of My (n + k).

Md(n+1):<

Mi(n+k+1)= ( (4.2)

Remark 4.2. In Theorem 4.1, we are not assuming that Mg (n + k) is a moment matrix; rather, in Sec-

tion 5 we will prove that under the hypotheses of Theorem 4.1, both M{ (n + k) and Mg (n + k + 1)
are indeed moment matrices.

The proof of Theorem 4.1 is based on a computational description of Mlﬁl (n+k+ 1), and to derive
this we require some additional notation. For m > 0, let A be a matrix of size 1 (d, m) with rows and
columns {ZaZb}a,beZi, lal-4[b|<m ordered lexicographically. Suppose i, j € Z4, with |i|+|j| < m, and

suppose there are at least 3 columns of A that are indexed by multiples of Z?Z7. Suppose u, t € Zi,
with |u| + [t| < m, and suppose there are at least v rows of A that are indexed by multiples of Z“Z*.
For o < B and p < v, let [Zuztjp’U]A[ZiZjMﬁ] denote the compression of A to the a-th through §-th

consecutive columns indexed by multiples of Z'Z7 and to the p-th through v-th consecutive rows

indexed by multiples of Z*Z!. We omit the proof of the following elementary result.
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Lemma 4.3. ([Zuzt;pﬂ}]A[Zizj;a,B]) ~[ZiZi50.6] (A*)[Zuzt;p,u]'

(Here, the convention is that rows and columns of A* are indexed in the same way as the rows
7 b
and columns of A, as {Z°Z }a,beZi, \a|+|b|§m')

To prove Theorem 4.1, we will first obtain analogues of (4.2) for each monomial term of p. To this
end, let 6 = degp (= 2k or 2k — 1); write p as p(z,2) = > arsz"2°. Recall from Section
r,sEZi, [r|+s| <8
3 that

m=size M (n+k+1)=n(d (n+k+1)—k)=n(d,n+1)=size M (n + 1)

and
m EsizeMg(n—i-k) =n(d,(n+ k) — k) = n(d,n) = size M% (n).

Let p,s = 2" 2% from Lemma 3.1, we have 2" z% = zi(":5:K) 23 (r:s.k) zt(rs.k) ju(rs k) where i = i (r,s,k),j=

j(r,s,k),t =t(r,s,k), and u = u(r,s,k) € Z4 satisfy r = i+ t, s = j +u, |i| + ||, |t| + Ju| < k.
Lemma 3.5 (applied with n replaced by n + k + 1) shows that

[Mg;s (n+k+ 1)} 1y Tlze 2] M (n+k+ Dz 251m] (4.3)

similarly,
22, (0 + k)| ez MO Rz (4.4)
We next use (4.3) and (4.4) to relate [M? (n+k+ 1)}7]2 to [MZ (n+ k)]m via a block de-
composition of [Mgm (n+k+ 1)]7]2. From (4.3), note that the columns of [Mgrs (n+k+ 1)]772 are

compressions of the first 7y columns of M dn+k+ 1_)'tha‘t are indexed by multiples of Z¢Z7; these
monomials are ordered as {Z“qu ZJ+J‘1}Z2:1, where {ZZ‘I ZJ‘I}Z; is the lexicographic ordering of the
first 7o monomials in C¢ [z, z]. In particular, from (4.4) we see that the first 71 of these monomials
also index the columns of [Mgm (n+ k‘)]m. Similarly, the rows of [Mgm (n+k+ 1)]772 are compres-

sions of rows of o A
M?(n+k+1) that are indexed by the sequence {Z"*% Ztﬂ‘I}Zz:l, and the first 7; of these also

index the rows of [Mgrs (n+ k:)]m
[Mgm (n+k+1)] = [Mgm (n+ k‘)]m. It now follows from the preceding observations that
[Mgm (n+k+1)] - admits a block decomposition of the form

Further, from (4.1) and the above remarks, it is clear that

ME (n+k+1), = ( [Dj\glgl(T(ln++kk—|)—]i73 fég EZ j: : j: B ) 7 (4.5)
where
ME (n+ k)] ) MO R g (4.6)
Bl (n+k+1) =(2v2¢1m] M (n+k+ D221 4mm] (4.7)
Dgrs (n+k+1) = (20 2t L] M (n+k+ 1)[Zizj;1m] , (4.8)
Cl (n+k+1) =[Zv2tm+1,m0] MY(n+k+ 1)[2,-Zj;m+1m] . (4.9)

The following lemma is the first step toward proving an analogue of Theorem 4.1 for p,..
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Lemma 4.4. For each r,s € Z with |r| + |s| <4,

([M;@(nm]m)W <Bds(n+k+1)>‘

DE (n+k+1) Cl (n+k+1)

Bl (n+1)
¥ (n+1)
M (n+ 1), and is thus of the form Z¢Z/ € Cpy(n11), with |e| +|f| =n+ 1. If < ((Ib

Proof. For 1 < m < 12 — n1, the m-th column of < ) is the (1 +m)-th column of

)
a,beZ‘i, la]+]b|<n
denotes the m-th column of W, then we have

AV AV A (4.10)
la]+]b]<n

Let {V, (7, 9)

}|a| Hbl<n denote the lexicographic ordering of the columns of (

d
Di (n+k+1)
and let U,, (1, s) denote the m-th column of

( Bl (n+k+1)

Cgrs (n+k+1) > It suffices to show that

Un(r,s)= > o'WWy (r,s). (4.11)

|a|+[b]<n
Since M (n 4 k + 1) is a flat, hence positive, extension of M9 (n + 1), (4.10) also holds in Coard(nthot1)-
Now Uy, (r, s) is the (m1 + m)-th column of [lelrs (n+k+ 1)] o and is thus indexed by the (71 + m)-

th multiple of Z*(ms%) Zzi(k): thus U, (r, s) is indexed by Ze¢+1rsk) z/+i(rsk) -~ Since M4 (n + k 4 1)
is recursively generated, (4.10) implies that in Cpja(,4x41) We have

Ze—i—z(rsk:)Zf—i-] (r,s,k) Z Oé Za—H rsk)Zb—i—j(rsk) (412)

la|+[b]<n
thus, via compression of these columns to rows indexed by the first 73 multiples of Z%Z¢, it follows that
the relation in (4.12) holds as well in the column space of [Mgm (n+k+1)] . Since the compression
of Zetirsk) Zf+i(rsk) is U, (r, s) and the compression of Zo+i(s:k) Zb+i(rsk) g V7, (1 s), we obtain
(4.11), so the result follows. O

Lemma 4.5. For each r,s € ZL with |r| +|s| <,
D¢ (n+k+1)=BL (n+k+1)"=w* [Mgm (k)|

Proof. Applying Lemma 4.4 to p,s (= Z°Z"), we have

By (nt k1) = MY (ntk)] W

- Mg (n+ k)*}m W (by (3.2))

= [ (n—i—k)]* W,

Prs m

23



whence BE (n+k+1)"=W* [MI (n+ k)]m' Now

Dy, (n+k+1) =[zizi1m] M (n+k+ 1)TZuZt;n1+1,n2]

(Lemma 4.3)
d
~[Z°27;1,m] M (n+k+ 1)[2“2’%771—5-1,772]
(since M%(n+k+1) > 0)
= B%“Zt-ZiZj (n+k+1) (by (4.7) applied to Z°Z")
=Bl (n+k+1);
thus Dgrs (n+k+1)= Bgrs (n+ k +1)* and the proof is complete. O

Proof of Theorem 4.1. Using the uniqueness of Mg (n + k) and of

Mg (n+k+ 1), it follows from (4.5)—(4.9) that Mg (n+ k + 1) admits a block decomposition of the
form

Mi(n+k) Bin+k+1)
d — P D
My (n+k+1) <Dg(n+k:+1) Cldn+k+1) )

where

Mitn+k)= 3 an [Mgm (n+ k:)} ,
Irl+1sl <6 "
Bl(n+k+1)= Z arsBL (n+k+1),
[r|+|s]<d
Din+k+1)= > oDl (n+k+1),
[7|4+|s]<d
Cln+k+1)= >  anCi (n+k+1).
Ir|+|s|<é
Lemma 4.4 implies BS (n+k+1) = Mf(n+k)W, and Lemma 4.5 implies D (n+k+1) =
W*MZ (n+ k). Now Lemmas 4.4 and 4.5imply C (n+ k+ 1) = DI (n+k+ 1) W = W*M{ (n + k) W,
whence (4.2) holds. Since Mg (n+ k) is positive, (4.2) implies that Mg (n+ k+ 1) is positive and
that rank M (n + k + 1) = rank M (n + k) (cf. [CuFid]). O

5. EXISTENCE OF MINIMAL REPRESENTING MEASURES SUPPORTED IN SEMI-ALGEBRAIC SETS

We begin with the analogue of Theorem 1.1 for the truncated complex multivariable K-moment
problem. Recall that if M?(n)(y) (> 0) has a flat extension M% (n + 1), then M9 + 1) admits
unique recursive flat (positive) extensions M? (n +2), M?(n + 3), ... (Theorem 2.2).

Theorem 5.1. Let v =2 = {%}iezi, lij<an be a complex sequence and let P = {p;};2; C C9 [z, 2]
with degp; = 2k; or 2k; —1 (1 <i<m). Let M = M?(n) (y) and let v := rank M. There exists a
(minimal) r-atomic representing measure for v supported in Kp if and only if M > 0 and M admits
a flat extension M (n + 1) for which MZ‘,{_ (n+k)>0(1<i<m). Inthis case, M%(n+1) admits
a unique representing measure v, which is an r-atomic (minimal) Kp-representing measure for y;
moreover, v has precisely r — rank MZ‘,{_ (n+ k;) atoms in Z (p;) (1 <i<m).
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Proof. Suppose Mn)(v) is positive and admits a flat extension M¢ (n + 1) for which Ml‘fi (n+ ki) >
0 (1 <i<m). [CuFil, Corollary 7.9] and [CuFil, Theorem 7.7] imply that M?(n + 1) admits a
unique flat (positive) extension M¢ (c0), and that M¢ (co) admits an r-atomic representing measure
v= Z§=1 pj0z;, with p; > 0 and z; € C? (1 < j <r). Theorem 1.2 implies that v is the unique
representing measure for M%(n +1). We will show that suppr C Kp. Fix i, 1 <i < m. Since
M:i- (n+ ki) > 0, repeated application of Theorem 4.1 shows that Mgi (00) is a flat, positive extension
of M2 (n + k;); moreover,

(i) fa) = [mfgan  fgecisz). (1)

Fix 7,1 < j <r, and let

fj (Z7 2) =

= 2 . 2. 2 . 2
lzj — 21"+ llz5 — zj—1ll” 125 — zjall® -+ - 125 — 2]

(where, for z = (z1,...,24), ||2]|° == 3 Zizi € C?[2, 2]). Now f; € C¢[2, %], so by (5.1),

0< <M1§ii (00) fjafj) = /Pi|fj|2 dv

2 2 2 2
Iz =zl llz = 2zl "Iz = 27 - flz = 2|

= Zpkpi (zk, Ek) ‘fg (zka Zk)‘Q

k=1
= pipi (25, %) -
Since p; > 0, then p(z;,%;) > 0. Repeating the preceding argument for 1 <i <mand 1 < j <,
we conclude that suppv C Kp.
We now count the atoms of v that lie in Z(p;). Equations (5.1) and (2.2) show that Mgi (c0)

is the moment matrix corresponding to the measure p; dv, i.e., M;fi (00) = M?(00) [p;dv]. Thus,
[CuFil, Proposition 7.6] implies that
card supp(p;dv) = rank M), (c0) = rank Mgﬁ_ (n+k;).
We have
A; :=rank M? (n) (y) — rank Mz‘i (n+k;)
= card supp v — card supp(p;dv)
= card (suppv N Z (p;)),

whence v has precisely A; atoms in Z (p;) (1 <7< m).
For the converse direction, suppose v is an r-atomic representing measure for v with supprv C Kp.
Since v is a representing measure for M (co) = M%(c0) [v], [CuFil, Proposition 7.6] implies that

r = card supp v = rank M (co)
> rank M (n + 1)[v] > rank M (n)[v] = rank M (n)(vy) = r.
In particular, M (n 4 1) [v] is a flat extension of M4 (n) (), as is

M (n+k;) [v] (1 <i<m);since v is also a representing measure for M% (n + k;) [v] and suppv C
Kp,, then (3.1) implies that M (n+k;) 1] >0 (1 <i < m). O

We next prove Theorem 1.1, the analogue of Theorem 5.1 for moment problems on RY. We
consider a real N-dimensional sequence of degree 2n, 0 = /) — {Bi}ic 7N Jil<2n: and its moment

matrix M = MY (n)(8). Recall from Theorem 2.19 that 3 admits a rank M-atomic (minimal)
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representing measure if and only if M > 0 and M admits a flat moment matrix extension M¥ (n+1),
which in turn admits unique successive flat extensions MY (n +2), MY (n+3),... . For the reader’s
convenience, we restate Theorem 1.1, as follows.

Theorem 5.2. Let 3 = /2" = {ﬂi}ier,mgzn be an N-dimensional real sequence, and let Q =

{g;}m, C CN[t], with deg q; = 2k; or2k;—1 (1 <i < m). Let M := M~ (n)(B) and let r := rank M.
There exists a (minimal) r-atomic representing measure for M supported in Ko if and only if M > 0
and M admits a flat extension M(n + 1) such that Mgy, (n +k;) > 0 (1 < i < m). In this case,
M(n+1) admits a unique representing measure p, which is an r-atomic (mz’m’mal) Ko- representmg
measure for 3; moreover, pi has precisely r —rank Mg, (n+k;) atoms in Z(g;) {t e RV : ¢4 t) = O},
1<e<m.

Proof. Suppose p is a rank M-atomic representing measure for 8 with supppu C Kg. Exactly
as in the proof of Theorem 2.19 (or of Theorem 5.1), M(n + 1)[u] is a flat extension of M (=
MN(n)[u] > 0), with unique successive flat extensions MN(n + 2)[u], MY (n 4 3)[u],...  Since

supppu C Ko, for each f € CXN[t], we have <MN(n+k:)[ > = fqz|f| dp > 0, whence

ME(n+k)[p] >0 (1<i<m).

For the converse and the location of the atoms, we first consider the case when NN is even, say
N = 2d. Suppose M = M?%(n)(j) is positive and has a flat extension M2%(n + 1)(5) for which
Mgf(n +k)(B) >0 (1 <i<m) (cf. Theorem 2.19). Using Proposition 2.18 (and as in the proof
of the “even” case of Theorem 2.19), M corresponds to a complex moment matrix M9 (n)(y) (=

"* ML™), and the successive flat extensions M?®(n + §)(5) of M correspond to successive flat
moment matrix extensions of M%(n)(v) defined by M%(n+75)(3) := LO+D* M2 (n+ 5)(B) L) (5 >

1) (cf. Proposition 2.18).

We will show that M2 (n + k;) (7) > 0, where p; :=qio7 € (CQk [2,2]) (1 <i<m). To this end,
recall from Lemma 2. 13 that 7(2,2) = (x,y), so that ¢; = p; o9 (1 < i < m); further Proposition
2.18(vi) implies that

A5(p) = Aglpov) (p € Cz 2)). (5.2)
We assert that
M (n+ k) (3) = L™ M40 + k) (B)L™ (1 < i < m). (5.3)

Indeed, for f,g € Cl[z,2]) and 1 < i < m, we have
(Mg (n+ k) (D], 3) = Ay (pif9)
= Az((pifg) o) (by (5.2))
= (M2n+ k) (B)f o t,g00)
- <M?I§(n Y E)AILM L<n>g> (by Lemma 2.13)
= (L™ M2+ k) (AL .5,

whence (5.3) follows. Since /\/lgf(n + k;)(B) > 0, then (5.3) implies that Md n+k)(#H)=>0(1<
i <m).

Theorem 5.1 now implies that v has a rank M9(n)(v)-atomic representing measure w, supported
in Kp, and Proposition 2.17 shows that w corresponds to a rank M-atomic representing measure
for B supported in Kg. Theorem 5.1 also implies that M d (n+ 1) (%) admits a unique representing
measure v, which is a rank M9(n)-atomic Kp-representing measure for v having rank M (n) () —
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rankMZ‘fi (n+k;) (5) atoms in Z(p;) (1 < i < m). From Proposition 2.17, v corresponds to
a unique representing measure p = v o ¢ for M?¥(n + 1)(5).  Since, from Proposition 2.17,
suppv = (suppp), Z(p;) = ¥ o Z(q;), and rank M?%(n)(y) = rank M, and since (5.3) implies
rank Mgi (n+ ki) () = rank Mgid (n + k;) (B), it follows that supp u C Kg and that u has precisely
rank M — rank Mé\i’ (n+ k;) (B) atoms in Z(g;) (1 <i < m). The proof of the “even” case is now
complete.

We now consider the case N = 2d — 1. Suppose M = M??~1(n)(3) is positive and has a flat
extension M24—1(n 4+ 1)(f), with unique successive flat extensions M2¥~(n + j)(3) (j > 2) (cf.
Theorem 2.19); we are assuming Mgf_l(n +k)(B) >0 (1 <i<m). Asin the proof of the “odd”
case of Theorem 2.19, M corresponds to the positive moment matrix M~ = ./\/lzd(n)(,é), which has a
sequence of successive flat extensions M2?(n+j)(X) satisfying M24(n+35)(A) = M2 (n+45)(3) (j >
1); the moments of § are related to those of A as in (2.15).

Fix £, 1 < £ < m; for gg = > by t* € CUt] we let g € CHL[t, u] be given by Gu(t,u) = qu(t) (t €
R*~1 4 € R). We claim that M24(n + k¢)(A) > 0. To this end, for i € Z3*™", j € Z,, recall that
i:=(i,7) € Z>?, and for t € R?~1 4 € R, { := (t,u) € R??, so £' = t'u?. We denote f € C,[t,u] by
f) = 2 li<n a;t’, and we define [f] € C,,[t] by [f](t) := 2 lt]<n,j=0 azt'. Now, for f € Cylt,u),

(ME i+ k)], ) = Mgl £17)

= Z be s @iy A(sitit i)

‘S‘Sdeg qlvlﬂvﬁ"ﬁ”

= Z bg,saga;/ﬁ~5+i+i/ (by Remark 2.20)

|s|<deg ge, 2], ¥"| <m,j=j'=0
= Aglae 1) = (ME(n+ k)DL = 0.

Since ngg(n +k)(A) >0 (1 < ¢ < m), by the “even” case (and its proof, above), M2%(n + 1)())
admits a unique representing measure fi, which is a rank M~ -atomic Ko--representing measure for
M~ (where Q@ := {q1, .., 4m}), with precisely rank M~ — rank Mgvf(nqul)(S\) atoms in Z(g;) (1 <
i <m). Write g = > ., PsO(t,uy); it follows that p 1= > i1 psOt, is a representing measure for
M24=1(n+1)(B), with supp u € K¢ and card(supp () Z(¢i)) = rank M —rank M(id(n—i-ki)(ﬁ) (1<
i < m). That p is the unique representing measure for M24~1(n + 1)() follows from Theorem
2.21. O

Proof of Corollary 1.4. Suppose M (n) admits a positive extension M(n+ j) which in turn has a flat
extension M(n + j + 1) satisfying My, (n+j + k;) >0 (1 <i <m). We can apply Theorem 1.1 to
M(n + j) to obtain a finitely atomic K o-representing measure for M(n + j), and hence for M(n).
For the converse, suppose M(n) has a finitely atomic representing measure p with supp up € Ko. We
will estimate the minimum value of j necessary to obtain a positive extension M(n+ j) having a flat
extension M(n+j+ 1) (with a corresponding K o-representing measure). Since p is finitely atomic,
it has convergent moments of degree 2n+1. Thus, [CuFi8, Theorem 1.4] implies that p has an inside
cubature rule 1 of degree 2n, with s := cardsuppn < 1+ dimRY [f] = 1 + (Qn;\;N); in particular,
7 is a representing measure for M(n) and V := suppn C suppp (C Kg). Since cardV = s,
Lagrange interpolation implies that every real-valued function on V' agrees on V with a polynomial

—v:1?
in Ry \[t]. (Indeed, if V = {v1,...,vs}, let fo(t) == i1, suzellt z||2 eRY M (1<<s).
(=0 ITiza,.. suzellti—vill

(s=1)
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Then any function f: V — R satisfies f = >;_; f(v¢)fe.) In particular, if i € ZY with |i| = 25 —1,
there exists p; € Ré\gsil)[t] such that t* — p;(t)]y = 0. By Proposition 2.1, T% = p;(T) in Cr(2s—1)[n)>
and since deg p; < [i], it follows that M (2s —1)[n] is a flat extension of M(2s —2)[n]. Theorem 2.19
implies that M (2s — 1)[n] has unique successive flat moment matrix extensions, and it is clear from
the preceding argument that these extensions are M(2s)[n], M(2s + 1)[n],... . Since V C Ko, it
follows immediately that Mg, (2s —2+k;)[n] >0 (1 <i<m). Ifn <2(s—1), then j:=2(s—1)—n
satisfies our requirements, and j < 2(2";\,“]\[) —n. Ifn>2(s—1), then M(n) = M(2s — 1)[n] or
M(n) is one of the successive extensions of M (2s — 1)[n] listed above, and in this case we can take
j:=0. g

Remark 5.3. (i) In the case N = 2,n > 2, the estimate for j (j < 4n? 4+ 3n + 2) can be improved
to j < 2n? +6n + 6 (cf. [CuFi3, Theorem 1.5]). We also note that in several examples that we
have studied which require j > 0, the flat extension M(n + j + 1) can be realized with j = 1
[CuFi7], [CuFi9], [Fia2], [FiPe]. In particular, if K¢ is a degenerate hyperbola and M(n) has a
K o-representing measure, M(n) might not have a flat extension, but in this case there is always a
positive extension M(n + 1) that has a flat extension M(n + 2) [CuFi9].

(ii) Corollary 1.4 implies an exact analogue for complex moment sequences.
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