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Abstract. Let β ≡ {βi}i∈Zd
+,|i|≤2n denote a real d-dimensional multisequence of degree 2n,

with moment matrix M(n), and let V ≡ V (M(n)) denote the associated algebraic variety. For
the case v ≡ card V < +∞, we prove that β has a representing measure if and only if r ≡
rank M(n) ≤ v and there exists a positive moment matrix extension M ≡ M(n + v − r + 1)
satisfying rank M ≤ card V (M). For the class of recursively determinate moment matrices
M(n), we present a computational algorithm for establishing the existence (or nonexistence) of an
extension M as above and, in the positive case, for computing a minimal representing measure for
β. We also show that for the case r < v < +∞, it is possible for β to admit a representing measure

µ with card supp µ < v; equivalently, in this case supp µ may be a proper subset of V (M(n)).

1. Introduction

Let β ≡ β(2n) = {βi}i∈Z
d
+,|i|≤2n denote a real d-dimensional multisequence of degree 2n. The

truncated moment problem for β concerns necessary and sufficient conditions for the existence of a
positive Borel measure µ on R

d such that βi =
∫

Rd x
i dµ, |i| ≤ 2n (here, for x ≡ (x1, . . . , xd) ∈ R

d

and i ≡ (i1, . . . , id) ∈ Z
d
+, we set xi := xi1

1 · · ·xid

d and |i| = i1 + · · · + id ). Conditions for such
a representing measure µ are usually expressed in terms of positivity and extension properties of
the moment matrix M(n) ≡ M(n)(β) corresponding to β, or conditions on the algebraic variety
V ≡ V (M(n)) associated to β (cf. Theorems 1.1 and 3.1). Positivity, extension, and variety are
also prominent themes in the classical full moment problem (cf. [Akh] [PV] [ST] [Sch] [Sto1] [SZ]);
a result of Stochel [Sto2] shows that a full moment sequence β(∞) admits a representing measure
supported in a closed set K ⊂ R

d if and only if each truncation β(2n) admits such a measure. In
the present note, we solve certain cases of the truncated moment problem algorithmically. For these
cases, we do not have a set of necessary and sufficient conditions in the traditional sense, but we
can nevertheless test an individual sequence β to determine whether or not it admits a representing
measure and, if so, we can explicitly compute a finitely atomic representing measure having the
fewest atoms possible.

As we discuss in Section 2, a sequence β ≡ β(2n) has a representing measure if and only if
there is some integer k ≥ 1 such that M(n) admits a positive moment matrix extension M(n+ k)
satisfying rank M(n + k) = rank M(n + k − 1). The crux of the truncated moment problem is
to predict the existence and estimate the minimal value of such an integer k. Linear dependence
relations in the columns of M(n) determine both its rank and its variety V ≡ V (M(n)), and in
the sequel we study interrelationships between the column structure of M(n) and the variety. For
the case when v ≡ card V < +∞, in Theorem 2.1 we show that β has a representing measure if
and only if r ≡ rank M(n) ≤ v and M(n) admits successive positive moment matrix extensions
M(n + 1), . . . ,M(n + v − r + 1) such that rank M(n + v − r + 1) ≤ card V (M(n + v − r + 1));
in this case, we can take k (as above) with k ≤ v − r + 1. For the class of recursively determinate
moment matrices with finite variety, we show that the existence (or nonexistence) of a convergent
extension sequence and a representing measure (as above) can be completely determined from the
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dependence relations in the columns of M(n) in at most v − r + 1 extension steps (Theorem 4.3
and Algorithm 4.10). In these results, it is not necessary to explicitly compute the points of V ;
it is sufficient to know that the variety is finite. Further, a version of the algorithm applies to an
arbitrary recursively determinate M(n), and the algorithm can also be used to decide whether an
arbitrary M(n) is recursively determinate (cf. Remark 4.11).

Representing measures µ always satisfy card supp µ ≥ rankM(n) (cf. (1.2) below). Theorem
3.2 provides a test for the existence of rankM(n)-atomic (minimal) representing measures in cases
where β has finite variety. This allows us to exhibit for the first time a sequence β, with finite variety
V , having a representing measure whose support is a proper subset of V (Example 3.3); equivalently,
this example shows that it is possible to have a rank M(n)-atomic representing measure in a case
where r < v < +∞. More generally, Theorem 3.10 implies the existence of rank M(n)-atomic
representing measures in cases in which v < +∞ and v − r is arbitrarily large, and in all of these
cases we can take k (as above) with k = 1. The truncated moment problem has applications in
multivariable cubature [EFP] [FP] and polynomial optimization [Las1] [Las2] [Lau1] [Lau2] [Lau3].
With a view toward such applications, we provide several numerical examples which illustrate how
to implement our methods with concrete moment data (cf. Examples 3.3, 3.9, 3.11 4.15, 4.17, 4.18).

Let P ≡ R[x1, . . . , xd] denote the algebra of real valued d-variable polynomials, and for
m ≥ 1, let Pm denote the subspace of polynomials p with deg p ≤ m; we note for future reference

that dim Pm =
(
d+m
m

)
. For p(x) ≡ ∑

|i|≤m aix
i ∈ Pm, let p̂ ≡ (ai) denote the coefficient

(column) vector of p relative to the basis for Pm consisting of the monomials in Pm in degree-
lexicographic order. Corresponding to β we have the Riesz functional Λ ≡ Λβ : P2n �−→ R, which
assigns to p(x) ≡ ∑

|i|≤2n aix
i the value Λ(p) :=

∑
|i|≤2n aiβi; if µ is a representing measure for β,

then clearly Λ(p) =
∫
p dµ. Following [CF1] [CF5], we associate to β the moment matrix M(n) ≡

M(n)(β), with rows and columns X i indexed by the monomials of Pn in degree-lexicographic order;
for example, with d = 3, n = 2, the columns of M(2) are 1, X1, X2, X3, X2

1 , X1X2, X1X3,
X2

2 , X2X3, X2
3 . The entry in row X i, column Xj of M(n) is βi+j , so M(n) is a real symmetric

matrix characterized by 〈M(n)p̂, q̂〉 = Λ(pq) (p, q ∈ Pn). If µ is a representing measure for β, then
〈M(n)p̂, p̂〉 = Λ(p2) =

∫
p2 dµ ≥ 0, and since M(n) is real symmetric, it follows that M(n) is

positive semidefinite (M(n) � 0).
Let CM(n) denote the column space of M(n). Corresponding to p(x) ≡∑

|i|≤n aix
i ∈ Pn is the element p(X) of CM(n) defined by p(X) :=

∑
|i|≤n aiX

i; thus, p(X) =
M(n)p̂. If β admits a representing measure µ, then

(1.1) for p ∈ Pn, p|supp µ ≡ 0⇐⇒ p(X) = 0 [CF1, P rop.3.1] [CF6, P rop.2.10]

and

(1.2) r ≡ rank M(n) ≤ card supp µ [CF1, Cor.3.7] [CF6, Cor.2.12].

We say that a representing measure µ is minimal if card supp µ ≤ card supp ν for every representing
measure ν; (1.2) shows that a rank M(n)-atomic representing measure is minimal. The following
result of [CF1] is our basic tool for constructing rankM(n)-atomic minimal representing measures.

Theorem 1.1. (Flat Extension Theorem, Part 1 [CF1, Thm. 7.10] [CF6, Thm. 2.19] ) β ≡ β(2n)

admits a rank M(n)-atomic representing measure if and only if M(n) � 0 and M(n) admits an
extension to a moment matrix M(n+ 1) satisfying rank M(n+ 1) = rank M(n).

In the sequel, we refer to a rank-preserving extension M(n + 1) as a flat extension of M(n) (cf.
[CF1] [CF6])).

Following [CF1], we define the algebraic variety of β (or ofM(n)) by V (M(n)) :=
⋂

p∈Pn,p(X)=0 Z(p),
where Z(p) := {w ∈ R

d : p(w) = 0}. It is straightforward to check that if {qi}s
i=1 is a linear basis

for Nn ≡ {p ∈ Pn : p(X) = 0}, then V (M(n)) =
⋂

1≤i≤s Z(qi). In view of (1.1), it is clear that if
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µ is a representing measure for β, then

(1.3) supp µ ⊂ V (M(n)),

whence

(1.4) r ≤ card supp µ ≤ v ≡ card V (M(n)).

The extremal case of the truncated moment problem, when r = v, has been solved in [CFM]; in this
case, β(2n) has a representing measure if and only ifM(n) is positive and β is consistent (cf. Section
3). In the present note we focus primarily on the more general case when M(n) has finite variety,
i.e., v < +∞. The following result provides the main tool for explicitly computing a representing
measure associated with a flat extension.

Theorem 1.2. (Flat Extension Theorem, Part 2 [CF6, Thm. 1.2]) Suppose M(n) is positive
semidefinite and admits a flat extension M(n+1). Then card V (M(n+1)) = r ≡ rankM(n), and
suppose V (M(n + 1)) ≡ {wj}r

j=1 ⊂ R
d. Suppose B ≡ {X i1, . . . , X ir} is a basis for CM(n) and let

UB denote the r× r matrix whose element in row k, column j is wik

j . Then UB is invertible, and the
unique representing measure for M(n+1) is of the form µ ≡∑r

j=1 ρjδwj , where ρ ≡ (ρ1, . . . , ρr) is
uniquely determined from UBρT = (βi1 , . . . , βir )

T .

Acknowledgment The author is very grateful to the referee for several suggestions which improved
the form and content of the paper. In particular, the use of the factorization (3.4), suggested by
the referee, considerably simplified the proof of Theorem 3.10, and the referee’s questions about the
scope of Algorithm 4.10 led to the discussion in Remark 4.11(iii).

2. Representing measures in the finite variety case.

In this section we characterize the existence of representing measures for β ≡ β(2n) in terms of
moment matrix extensions. Theorem 1.1 shows that ifM(n) (� 0) admits a flat extensionM(n+1),
then β certainly has a representing measure. In cases where M(n) does not have a flat extension,
β may nevertheless admit a representing measure, and in the sequel we study this phenomenon. In
[CF2, Thm. 1.5]] we proved that β has a finitely atomic representing measure if and only if M(n)
has a positive extensionM(n+k−1) (for some k ≥ 1) such thatM(n+k−1) admits a flat extension
M(n+ k). A recent result of Bayer and Teichmann concerning multivariable cubature [BT] readily
implies that if β admits a representing measure, then β actually has a finitely atomic representing
measure (cf. [Lau3]). Thus, the above extension criterion is both necessary and sufficient for the
existence of representing measures for β(2n).

Let k ≥ 1 and suppose that M(n + 1), . . . ,M(n + k) is a sequence of successive positive
extensions of M(n) such that M(n + i) is a rank-increasing extension of M(n + i − 1) if k > 1
and 1 ≤ i ≤ k − 1, and M(n + k) is a flat extension of M(n + k − 1). We refer to such a
sequence as a convergent extension sequence of length k, which we denote by M(n) −→ · · · −→
M(n + k). [CF6] implies that in this case M(n + k) admits unique successive positive extensions
M(n+ k+1), M(n+ k+2), . . ., all of which are flat extensions. Further, Theorem 1.2 implies that
M(n + k) admits a unique representing measure ν, which is clearly a representing measure for β,
and which is characterized by supp ν = V (M(n+ k)) and card supp ν = rank M(n+ k)).

We begin with the following characterization of the existence of representing measures in the
finite variety case.

Theorem 2.1. Suppose v < +∞. β ≡ β(2n) admits a representing measure if and only if r ≤ v and
M(n)(β) has a positive moment matrix extensionM(n+v−r+1) satisfying rankM(n+v−r+1) ≤
card V (M(n+ v − r + 1)). In this case, M(n) has a convergent extension sequence with length at
most v − r + 1.

As a practical matter, the extension M(n + v − r + 1) is determined via successive intermediate
extensions M(n + 1), . . . ,M(n + v − r). Thus, v − r, which we refer to as the gap in M(n)(β),
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provides a measure of the complexity of determining the existence of a representing measure in the
finite variety case. Let β be an arbitrary sequence, possibly with infinite variety. A modification
of the proof of Theorem 2.1 shows that if β has a representing measure, then it has a convergent
extension sequence with length at most dim P2n−r+1 (cf. Proposition 2.3). Part of our motivation
for focusing on the finite variety case can be seen from examples. In Example 4.15 we have a planar
M(5) with v − r = 6 and dim P10 − r = 47, and in Example 4.17 we have a 3-dimensional M(4)
with v − r = 7 and dim P8 − r = 138.

The upper estimate v− r+1 for the length of some convergent extension sequence for M(n)
is sharp in the following sense. If M(n)(β) is extremal, i.e., v = r, and β admits a representing
measure (cf. Theorem 3.4), then (1.3) and Theorem 1.1 imply that M(n) admits a flat extension
M(n+1), so in this case the minimal length of a convergent extension sequence is precisely v− r+1
(= 1). Further, [CF7] illustrates cases of the truncated moment problem for measures supported
in an hyperbola, with v − r = 1 and where the minimal length convergent extension sequence has
length 2 (= v− r+1). On the other hand, in Example 4.15 we have v− r+1 = 7, with a convergent
extension sequence of length 3. The most dramatic divergence of v− r+1 from the minimal length
of a convergent extension sequence is described by Theorem 3.10 and the remarks immediately
preceding it.

For the proof of Theorem 2.1 we require certain facts about positive extensions of moment
matrices. Consider a moment matrix extension

M(n+ 1) ≡
( M(n) B(n+ 1)
B(n+ 1)T C(n+ 1)

)
.

A result of Smul’jan [Smu] implies that M(n + 1) � 0 if and only if M(n) � 0, there exists
a matrix W such that B(n + 1) = M(n)W (equivalently, Ran B(n + 1) ⊂ Ran M(n) [D]), and
C(n+1) �WTM(n)W . In this case,M(n+1) is a flat extension, i.e., rankM(n+1) = rankM(n),
if and only if C(n+1) = WTM(n)W . SupposeM(n+1) ≥ 0 and let p ∈ Pn; the Extension Principle
of [F1] shows that if p(X) = 0 in CM(n), then p(X) = 0 in CM(n+1), i.e., column dependence relations
inM(n) extend toM(n+1). It follows that ifM(n+1) ≥ 0, then V (M(n+1)) ⊂ V (M(n)). In this
case, we note for future reference that in computing V (M(n+ 1)), we may ignore any dependence
relation in CM(n+1) of the form (pq)(X) = 0, where p ∈ Pn, pq ∈ Pn+1, and p(X) = 0 in CM(n).
Indeed, it is clear that V (M(n)) ⊂ Z(pq), so the relation (pq)(X) = 0 in CM(n+1) cannot subtract
from V (M(n)) in computing V (M(n+ 1)) .

Proof of Theorem 2.1. Suppose r ≤ v andM(n)(β) has a positive extensionM(n+v− r+1)
satisfying rank M(n + v − r + 1) ≤ card V (M(n + v − r + 1)). We have r ≡ rank M(n) ≤
rankM(n+1) ≤ · · · ≤ rankM(n+ v− r+1). SinceM(n+ v− r+1) ≥ 0, the Extension Principle
implies that card V (M(n + v − r + 1)) ≤ · · · ≤ card V (M(n + 1)) ≤ card V (M(n)) ≡ v. Since
rankM(n+ v− r+1) ≤ card V (M(n+ v− r+1)), if each extensionM(n+ i) (1 ≤ i ≤ v− r+1) is
strictly rank increasing, then it follows that v ≥ card V (M(n+v−r+1)) ≥ rankM(n+v−r+1)≥
r + (v − r + 1) = v + 1, a contradiction. Thus, there exists i, 1 ≤ i ≤ v − r + 1, such that
rankM(n+ i− 1) = rankM(n+ i), whence the existence of a rankM(n+ i)-atomic representing
measure follows from Theorem 1.1.

Conversely, suppose β admits a representing measure ν. (1.4) shows that r ≤ v. Since
supp ν ⊂ V (M(n)) (cf. (1.3)) and v < +∞, then ν is finitely atomic, and thus has finite moments
of all orders. Now M(n) ≡ M(n)[ν] (computed using βi :=

∫
xi dν) admits positive extensions

M(n+ i)[ν] for every i ≥ 1. In particular, since M(n+ v− r+ 1)[ν] admits a representing measure
(namely, ν), (1.4) implies that rank M(n+ v − r + 1)[ν] ≤ card V (M(n+ v − r + 1)[ν]). �

In Section 4 we show how to verify the existence of the extensions in Theorem 2.1 for M(n)
recursively determinate. Theorem 2.1 shows that in the finite variety case, v − r is an upper bound
on the minimal length of a convergent extension sequence. For this reason, it would be desirable if
v − r were bounded, but the following result shows that this is not the case.
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Proposition 2.2. Let d = 2. For n > 0, there exists M(n) (having a representing measure) with
v < +∞ and v − r ≥ (n− 1)(n− 2)/2.

Proof. Recall from Bezout’s Theorem [CLO1] that if M(n) has finite variety, then v ≤ n2. Let
p(x, y) and q(x, y) denote polynomials of degree n having exactly n2 common zeros in the plane.
For example, let p(x, y) = y − (x − x1) · · · (x − xn) for distinct x1, . . . , xn and let q(x, y) = (y −
y1) · · · (y − yn) for distinct y1, . . . , yn sufficiently close to 0. Let V = Z(p)

⋂Z(q) and let µ be a
positive measure with supp µ = V . Consider M = M(n)[µ]. Since n2 = card Z(p)

⋂Z(q) ≥ v ≥
card supp µ = n2, we have v = n2. Further, (1.1) implies that p(X,Y ) = 0 and q(X,Y ) = 0 in CM ,
so r = rank M ≤ dim Pn − 2 = (n+ 1)(n+ 2)/2− 2, whence the result follows. �

We conclude this section with a partial analogue of Theorem 2.1 for an arbitrary sequence
β(2n), which may have infinite variety.

Proposition 2.3. If β ≡ β(2n) has a representing measure, then there is a convergent extension
sequence M(n)(β) −→ . . . −→M(n+ k) with k ≤ dim P2n − r + 1.

Proof. Since β has a representing measure, [BT] implies that there is a representing measure ν
with card supp ν ≤ dim P2n. If, for some j, we have a strictly rank increasing extension sequence
M(n)(β) ≡ M(n)[ν], . . . ,M(n + j)[ν], then, with r = rank M(n), we have r + j ≤ rank M(n +
j)[ν] ≤ card supp ν ≤ dim P2n. Thus, j ≤ dim P2n−r, and if j = dim P2n−r, thenM(n+j+1)[ν]
is a flat extension of M(n+ j)[ν] �

Remark 2.4. (i) For the case of the plane (d = 2), Proposition 2.3 implies a convergent extension
sequence with length at most dim P2n−r+1, where dim P2n = (2n+1)(n+1). For planar moment
matrices with finite variety, Theorem 2.1 gives the improved estimate v − r + 1, since in this case
v ≤ n2 (by Bezout’s Theorem).
(ii) In [CF2, Theorem 1.5], for the truncated complex moment problem in the plane, the existence
of a finitely atomic representing measure for a complex sequence γ(2n) is shown to be equivalent
to the existence of a convergent extension sequence of complex moment matrices of length at most
2n2 + 7n+ 7.

3. Flat extensions in the case r ≤ v < +∞.

In this section we study the existence of flat extensions in the finite variety case. Our motiva-
tion comes from the following solution to the truncated moment problem on planar curves of degree
1 or 2.

Theorem 3.1. ( [F3] [CF4] [CF5] [CF7]) Let d = 2 and suppose deg p(x, y) ≤ 2. β(2n) has a
representing measure supported in the curve p(x, y) = 0 if and only ifM(n) has a column dependence
relation p(X,Y ) = 0 and M(n) is positive semidefinite, recursively generated, and satisfies r ≤ v.
Under the conditions of Theorem 3.1, whenever v = +∞, then M(n) admits a flat extension. By
contrast, in every case in which r < v < +∞, then it transpires that v = r + 1 and a minimal
representing measure corresponds to a positive, rank-increasing extension M(n + 1) followed by a
flat extension M(n+2). Thus, in the finite variety case of Theorem 3.1, each representing measure
µ satisfies supp µ = V (M(n)). In the sequel we examine whether such rigidity is a general feature
of the truncated moment problem in the finite variety case.

We begin with a computational test for the existence of flat extensions M(n+1) in the case
when M(n) ≡ M(n)(β) has finite variety and the elements of V (M(n)) are known exactly. Let
V ≡ {w1, . . . , ws} be a finite subset of R

d. Following [CFM], we define the matrixWm[V ] with s rows
and with columns X j indexed by the monomials in Pm in degree-lexicographic order. The entry of
Wm[V ] in row i (1 ≤ i ≤ s), column X j (j ∈ Z

d
+, |j| ≤ m) is wj

i ; we further set Um[V ] = Wm[V ]T (the

transpose). In the sequel we set τ(m) := dim Pm =
(
m+ d
m

)
and we let p1, . . . , pτ denote the list
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of monomials in Pm in degree-lexicographic order. Given M(n)(β), let τ ≡ τ(2n), r = rank M(n),
v = card V (M(n)), and set Lβ := (Λβ(p1), . . . ,Λβ(pτ ))T ∈ R

τ . Let B ≡ {X i1 , . . . , X ir} denote a
basis for CM(n), the column space ofM(n). For the case when V (as above) is a subset of V (M(n)),
let WB[V ] denote the compression of Wn[V ] to columns X i1 , . . . ,X ir and let UB[V ] = WB[V ]T .

Theorem 3.2. For β ≡ β(2n), suppose M(n) ≡ M(n)(β) ≥ 0 and let r = rank M(n). β admits
an r-atomic representing measure µ (equivalently, M(n) admits a flat extension M(n + 1)) if and
only if there exists an r-element subset V of V (M(n)) for which Lβ ∈ Ran U2n[V ]. In this case, if
V ≡ {w1, . . . , wr} and if B ≡ {X i1, . . . , X ir} is a basis for CM(n), then we can take µ :=

∑r
i=1 ρiδwi ,

where the densities ρ ≡ (ρ1, . . . , ρr) are uniquely determined by UB[V ]ρT = (βi1 , . . . , βir )T ; a flat
extension of M(n) is then M(n+ 1)[µ].

There is no requirement in Theorem 3.2 that V (M(n)) be finite, and examples of [CF5] [CF7]
illustrate flat extensions in cases where the variety is infinite. However, since Theorem 3.2 entails
testing the r-element subsets of V (M(n)), it is of practical interest primarily in the case when
v < +∞ and v is close to r. We illustrate Theorem 3.2 with an example in which v = r + 1. This
appears to be the first example in the literature of a flat extension in a case with r < v < +∞. It
also provides the first example in the finite variety case of a representing measure whose support is
a proper subset of V (M(n)).

Example 3.3. Consider M(3)(β) defined as M(3) :=
( M(2) B(3)
B(3)T C(3)

)
, where

M(2) :=




8 0 0 78 1446 32838
0 78 1446 0 0 0
0 1446 32838 0 0 0
78 0 0 1446 32838 794886

1446 0 0 32838 794886 19651398
32838 0 0 794886 19651398 489352326



,

B(3) :=




0 0 0 0
1446 32838 794886 19651398
32838 794886 19651398 489352326

0 0 0 0
0 0 0 0
0 0 0 0



,

and

C(3) :=




32838 794886 19651398 489352326
794886 19651398 489352326 12216629958

19651398 489352326 12216629958 305262005766
489352326 12216629958 305262005766 7630169896518


 .

A calculation using nested determinants reveals thatM(3) is positive semidefinite, with rank
8 and column dependence relations f(X,Y ) = 0 and g(X,Y ) = 0, where f(x, y) := y − x3 and
g(x, y) := 900x− 361x3 − 900y + 399x2y − 39xy2 + y3. It follows that V (M(3)) = Z(f)

⋂Z(g) ≡
{wi}9i=1, where w1 = (0, 0), w2 = (−3,−27), w3 = (−2,−8), w4 = (−1,−1), w5 = (−5,−125),
w6 = (1, 1), w7 = (2, 8), w8 = (3, 27), w9 = (5, 125). Let Vi := V (M(3)) \ {wi} (1 ≤ i ≤ 9).
For 2 ≤ i ≤ 9, calculations show that Lβ �∈ Ran U2n[Vi], so there is no 8-atomic representing
measure for β with support Vi. However, for V1(= {wi}9i=2), we see that Lβ ∈ Ran U2n[V1]. With
the column basis B := {1, X, Y, X2, XY, Y 2, X2Y, XY 2}, Theorem 3.2 implies that β has a
minimal representing measure of the form µ :=

∑8
i=1 ρiδwi+1 , where the densities ρ ≡ (ρ1, . . . , ρ8)

are uniquely determined by UB[V1]ρT = (8, 0, 0, 78 , 1446, 32838, 0, 0)T . A calculation yields ρi = 1
6



(1 ≤ i ≤ 8). Theorem 3.2 now shows that M(4)[µ] is a flat extension of M(3), where

B(4)[µ] =




1446 32838 794886 19651398 489352326
0 0 0 0 0
0 0 0 0 0

32838 794886 19651398 489352326 12216629958
794886 19651398 489352326 12216629958 305262005766

19651398 489352326 12216629958 305262005766 7630169896518
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




,

and C(4)[µ] =


794886 19651398 489352326 12216629958 305262005766
19651398 489352326 12216629958 305262005766 7630169896518
489352326 12216629958 305262005766 7630169896518 190741838947206

12216629958 305262005766 7630169896518 190741838947206 4768434352539078
305262005766 7630169896518 190741838947206 4768434352539078 119209854443408646


 .

Note also that the column relations f(X,Y ) = 0 and g(X,Y ) = 0 show that M(3) is recursively
determinate (cf. Section 4), so the existence of a representing measure can also be approached
through Algorithm 4.10. Indeed, in the language of Section 4, one can construct a recursively
determined extension M(4) by imposing (xf)(X,Y ) = 0 and (yg)(X,Y ) = 0. A calculation shows
that rankM(4) = 8, soM(4) is a flat (hence positive) extension, with a corresponding representing
measure which coincides with µ. �

For the proof of Theorem 3.2, we require some preliminary results and notation. Recall from
[CFM] that β ≡ β(2n) is consistent if

(3.1) p ∈ P2n, p|V (M(n)) ≡ 0 =⇒ Λβ(p) = 0.

Consistency is clearly a necessary condition for representing measures. Consistency plays an es-
sential role in the extremal truncated moment problem, the case when r = v. In this case, if
B ≡ {X i1 , . . . , X ir} is a basis for CM(n) and V ≡ V (M(n)) = {w1, . . . , wr}, let UB[V ] denote the
r × r matrix whose element in row k, column j is wik

j .

Theorem 3.4. ([CFM, Theorem 4.2) Suppose r = v. β ≡ β(2n) has a representing measure if
and only if M(n) is positive semidefinite and β is consistent. In this case, UB[V ] is invertible, and
the unique representing measure for β is of the form µ ≡ ∑r

j=1 ρjδwj , where ρ ≡ (ρ1, . . . , ρr) is
determined from UB[V ]ρT = (βi1 , . . . , βir )T .

The following basic problem of [CFM] remains unsolved:

Question 3.5. If M(n) � 0, r ≤ v, and β is consistent, does β have a representing measure?

Let us compare Theorem 3.4 to the case of Theorem 2.1 when r = v. For this case, Theorem
2.1 shows that β has a representing measure if and only ifM(n) admits a positive extensionM(n+1)
satisfying rank M(n + 1) ≤ card V (M(n + 1)). Since M(n + 1) � 0, we have r = rank M(n) ≤
rankM(n+1) ≤ card V (M(n+1)) ≤ card V (M(n)) = v = r, soM(n+1) must be a flat extension.
Thus, Theorem 2.1 entails a flat extension, whereas Theorem 3.4 entails consistency. (Of course,
if β in Theorem 3.4 is consistent, then the unique representing measure for β also corresponds to
a flat extension M(n + 1) .) Depending on the specific column dependence relations in a given
problem, either consistency or the existence of a flat extension may be easier to check. In the case
when v < +∞ and the points of V (M(n)) are known exactly, our next result provides a simple
computational test for consistency.
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Let V ⊂ V (M(n)). We say that β is V-consistent if p ∈ P2n, p|V ≡ 0 =⇒ Λβ(p) = 0. In
particular, β is consistent if and only if β is V-consistent for V = V (M(n)). Clearly, if β admits a
representing measure µ with supp µ ⊂ V ⊂ V (M(n)), then β is V-consistent. We note that when
β is V-consistent, we can always take V to be finite. Indeed, let τ ≡ τ(2n) and for w ∈ V , let
π(w) = (p1(w), . . . , pτ (w)) ∈ R

τ (where, as above, p1, ..., pτ is a listing of the monomials in P2n

in degree-lexicographic order). Let {π(w1), . . . , π(ws)} (1 ≤ s ≤ τ) denote a maximal independent
subset of {π(w) : w ∈ V}, and let V ′ = {w1, . . . , ws}. If p ∈ P2n and p|V ′ ≡ 0, then 〈p̂, π(wi)〉 = 0
(1 ≤ i ≤ s), whence 〈p̂, π(w)〉 = 0 for w ∈ V , i.e., p|V ≡ 0. Now, p|V ≡ 0 =⇒ Λβ(p) = 0, so
β is V ′-consistent. The following reformulation of V-consistency shows that in the case when V is
finite, to establish V-consistency, we need not verify the defining property, but can instead rely on
a simpler test.

Proposition 3.6. Let V ≡ {w1, . . . , ws} ⊂ V (M(n))(β). β is V-consistent if and only if Lβ ∈
Ran U2n[V ]. In particular, if v < +∞, β is consistent if and only if Lβ ∈ Ran U2n[V (M(n))].

Proof. Let τ ≡ τ(2n); for S ⊂ R
τ , let S⊥ = {t ∈ R

τ : 〈t, s〉 = 0 ∀s ∈ S}. β is V-consistent if
and only if p ∈ P2n, p|V ≡ 0 =⇒ Λβ(p) = 0. Now p|V ≡ 0 ⇐⇒ W2n[V ]p̂ = 0, and Λβ(p) = 0 ⇐⇒
〈p̂, Lβ〉 = 0. Thus, β is V-consistent if and only if ker W2n[V ] ⊂ {Lβ}⊥ (relative to R

τ ). Since
ker W2n[V ] = (Ran U2n[V ])⊥, it follows that β is V-consistent if and only if (Ran U2n[V ])⊥ ⊂ {Lβ}⊥,
or, equivalently (since the underlying spaces are finite dimensional), Lβ ∈ Ran U2n[V ]. �
Remark 3.7. For the case r = v and V = V (M(n)), the condition of Theorem 3.2 that Lβ ∈
Ran U2n[V ] is equivalent to the condition that β be consistent. Thus, in this case, Theorem 3.2
is equivalent to [CFM, Thm. 4.2], although the condition Lβ ∈ Ran U2n[V ] in Theorem 3.2 is
apparently easier to verify than is the original consistency condition in [CFM]. The idea of using
duality to reformulate consistency is due to H. M. Möller and is used in the proofs of [CFM, Lemmas
2.2-2.3].

Proof of Theorem 3.2. Suppose first that V ≡ {w1, . . . , wr} ⊂ V (M(n)(β)) satisfies Lβ ∈ Ran U2n[V ].
Proposition 3.6 shows that β is V-consistent. Let ρ ≡ (ρ1, . . . , ρr) satisfy U2n[V ]ρT = Lβ, so that
Λβ(pi) =

∑r
j=1 ρjpi(wj) (where, as above, p1, . . . , pτ is a listing of the monomials in P2n). If we

define the r-atomic measure µ by µ :=
∑r

j=1 ρjδwj , then clearly µ interpolates all of the moments
of β, i.e., βi =

∫
xidµ(x) (|i| ≤ 2n). To complete the proof it suffices to show that µ ≥ 0, i.e.,

ρj > 0 (1 ≤ j ≤ r). To this end, let B ≡ {X i1 , . . . , X ir} denote a maximal independent set
of columns of M(n). Let WB[V ] denote the compression of Wn[V ] to the columns, X i1 , . . . ,X ir ,
indexed by the same monomials which index B. We claim that WB[V ] is invertible. Indeed, for
p ≡ a1x

i1 + · · · + arx
ir (∈ Pn), WB[V ]p̂ = 0 ⇐⇒ p|V ≡ 0. In this case, for each q ∈ Pn, we have

pq ∈ P2n and pq|V ≡ 0, so V-consistency implies that Λβ(pq) = 0. Now, 〈M(n)p̂, q̂〉 = Λβ(pq) = 0
(q ∈ Pn), so

∑r
j=1 ajX

ij =M(n)p̂ = 0, whence p̂ = 0 (since B is a basis for CM(n)).
Consider U ≡ UB[V ] = WB[V ]T . Since U2n[V ]ρT = Lβ, then UρT = (βi1 , . . . , βir )T , and since

U is invertible, this relation uniquely determines ρ. For 1 ≤ k ≤ r, let Uk ≡ Uk(x) denote the
matrix obtained from U by replacing wk (in column k) by the variable x ∈ R

d, and define gk ∈ Pn

by gk(x) := det Uk(x). Now, gk(wj) = δkjdet U (1 ≤ k, j ≤ r). Since g2
k ∈ P2n and µ interpolates all

of the moments of β, we have 0 ≤ 〈M(n)ĝk, ĝk〉 = Λβ(g2
k) =

∫
g2

kdµ =
∑r

j=1 ρjg
2
k(wj) = ρk(det U)2.

Since det U �= 0, it follows that ρk ≥ 0, and since card supp µ ≥ r (by (1.2)), then ρk > 0.
Now µ is a representing measure for β with supp µ = V , so (1.2) implies that r ≡ rank M(n) ≤
rank M(n+ 1)[µ] ≤ card supp µ = card V = r, whence M(n+ 1)[µ] is a flat extension of M(n).

Conversely, let µ denote an r-atomic representing measure for β. Let V = supp µ (⊂
V (M(n))). For p ∈ P2n, if p|V ≡ 0, then Λβ(p) =

∫
pdµ = 0. Thus β is V-consistent, so the

conclusion that Lβ ∈ Ran U2n[V ] now follows from Proposition 3.6. �
In the sequel we will establish a general framework for constructing examples of M(n) satis-

fying r ≤ v < +∞ and having flat extensions M(n + 1) . To motivate this, we recall from [CFM]
that β is weakly consistent if p ∈ Pn, p|V (M(n)) ≡ 0 =⇒ p(X) = 0 in CM(n); (1.1) shows that
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weak consistency is a necessary condition for representing measures, and [CFM, Prop. 2.1] shows
that β consistent =⇒ β weakly consistent =⇒M(n) recursively generated (cf. Section 4). In [CFM,
Theorem 5.2] we presented the first example of a positive, weakly consistent moment matrix sat-
isfying r ≤ v but having no representing measure (cf. Theorem 3.1). In this example, M(3) is
weakly consistent and extremal, and the choice of data is motivated by considerations from alge-
braic geometry. The proofs of weak consistency and of the nonexistence of a representing measure
are also established using techniques from algebraic geometry. In Example 3.9 (below) we provide
a numerical instance of this example, with a new proof based entirely on moment matrix methods.
For this, we require the following reformulation of weak consistency in the finite variety case.

Proposition 3.8. Suppose V ≡ V (M(n)) is finite. β ≡ β(2n) is weakly consistent if and only if
RanM(n) ⊂ Ran Un[V ]; equivalently, there exists a matrix Z such that M(n) = Un[V ]Z.

Proof. Recall that β is weakly consistent if and only if p ∈ Pn, p|V ≡ 0 =⇒ p(X) = 0 in CM(n).
Now for p ∈ Pn, p|V ≡ 0 ⇐⇒ Wn[V ]p̂ = 0, and p(X) = 0 ⇐⇒ M(n)p̂ = 0. Thus, β is weakly
consistent if and only if ker Wn[V ] ⊂ ker M(n), or equivalently (since the underlying spaces are
finite dimensional), [kerM(n)]⊥ ⊂ [ker Wn[V ]]⊥. Since the underlying spaces are finite dimensional
andM(n) is real-symmetric, the latter inclusion is equivalent to RanM(n) ⊂ Ran Un[V ], which in
turn is equivalent to the existence of a factorization M(n) = Un[V ]Z [D]. �

Example 3.9. We use moment matrix methods to discuss a numerical instance of the example of

[CFM, Section 5]. Consider M(3)(β) defined as M(3) :=
( M(2) B(3)
B(3)T C(3)

)
, where

M(2) :=




14 7
2

−67
8

79
4

1055
16

18195
64

7
2

79
4

1055
16

−67
8

−1935
32

−43115
128

−67
8

1055
16

18195
64

−1935
32

−43115
128

−926695
512

79
4

−67
8

−1935
32

1055
16

18195
64

336151
256

1055
16

−1935
32

−43115
128

18195
64

336151
256

6407195
1024

18195
64

−43115
128

−926695
512

336151
256

6407195
1024

124731423
4096




,

B(3) :=




−67
8

−1935
32

−43115
128

−926695
512

1055
16

1895
64

336151
256

6407195
1024

18195
64

336151
256

6407195
1024

124731423
4096

−1935
32

−43115
128

−926695
512

−19736547
2048

−43115
128

−926695
512

−19736547
2048

−419176415
8192

−926695
512

−19736547
2048

−419176415
8192

−8894873563
32768




,
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C(3) :=




18195
64

336151
256

6407195
1024

124731423
4096

336151
256

6407195
1024

124731423
4096

2469281827
16384

6407195
1024

124731423
4096

2469281827
16384

49568350247
65536

124731423
4096

2469281827
16384

49568350247
65536

1006568996907
262144



.

Calculations with nested determinants show thatM(3) is positive semidefinite, with a column basis
B ≡ {1, X, Y, X2, XY, Y 2, X2Y, XY 2} and column dependence relations

(3.2) X3 = Y

and

(3.3) Y 3 = 3X +
45
4
Y − 13X2 +

65
4
XY − 13

4
Y 2 − 22X2Y +

35
4
XY 2.

Thus V ≡ V (M(3)) = Z(f)
⋂Z(g), where f(x, y) = y − x3 and g(x, y) = y3 − (3x+ 45

4 y − 13x2 +
65
4 xy − 13

4 y
2 − 22x2y + 35

4 xy
2). A calculation shows that V consists of the following 8 points wi ≡

(xi, yi) (1 ≤ i ≤ 8): w1 = (0, 0), w2 = (−1,−1), w3 = (−2,−8), w4 = (1
2 (−1 +

√
13),−5 + 2

√
13),

w5 = (1, 1), w6 = (2, 8), w7 = (1
2 (−1−√13),−5− 2

√
13), w8 = (1

2 ,
1
8 ). Thus, M(3) is positive and

extremal, with r = v = 8.
A calculation (for example, in Mathematica, using Z = LinearSolve[Un[V ], M(3)]) shows

that there is a factorizationM(3) = Un[V ]Z, so Proposition 3.8 implies that β is weakly consistent.
A futher calculation shows that Lβ /∈ Ran U2n[V ], so Proposition 3.6 implies that β is not consistent,
and thus admits no representing measure. In particular,M(3) admits no flat extension M(4). �

Note that (3.2) and (3.3) imply that M(3) is recursively determinate (cf. Prop. 4.2). In Section 4
we will use Algorithm 4.10 to provide an alternate proof that β admits no representing measure, by
showing that M(3) admits no positive, recursively generated extension M(4) and, in particular, no
flat moment matrix extension (cf. Example 4.18). We next provide a general result which implies
that in this example, if µ is a positive measure with supp µ = V , then M(3)[µ] has the same rank
and variety as M(3), but does admit a flat extension M(4). More generally, the next result, when
combined with Proposition 2.2, shows that flat extensions can occur with moment matrices having
arbitrarily large gaps v − r.
Theorem 3.10. Let M̃ =M(n)(β̃) and suppose that r ≤ v < +∞ and β̃ is weakly consistent. There
exists an r-element subset V of Ṽ ≡ V (M̃), such that if µ is a positive measure with supp µ = V,
then M ≡ M(n)[µ] satisfies rank M = r and V (M) = Ṽ, so M and M̃ have the same gap, and
M has a flat extension M(n+ 1).

Proof. Let w1, . . . , wv denote the distinct points of Ṽ . Let B ≡ {X i1 , . . . , X ir} be a maximal
independent set of columns of M̃. Let WB ≡ WB[Ṽ] denote the compression of Wn[Ṽ ] to the
columns X i1 , . . . ,X ir (indexed by the same monomials which index B). We assert that the columns
of WB are independent. For otherwise, there is a nonzero polynomial p(x) =

∑r
j=1 ajx

ij ∈ Pn such
that WBp̂ = 0, i.e., p|Ṽ ≡ 0. Since β̃ is weakly consistent, it follows that p(X) = 0 in CM̃, whence∑r

j=1 ajX
ij = 0, contradicting the independence of the elements of B. Now, row rank WB =

column rank WB = r; it follows that there exists an r-element subset of Ṽ, say V ≡ {wj1 , . . . , wjr},
such that WB[V ], the compression of WB to rows indexed by wj1 , . . . , wjr , is invertible.

Let µ be a positive measure with supp µ = V , i.e., µ is of the form µ =
∑r

i=1 aiδwji

with each ai > 0. Let β ≡ β(2n)[µ] be the corresponding moment sequence of degree 2n, and
consider M ≡ M(n)(β) (= M(n)[µ] � 0). We will show that rank M = r and V (M) = Ṽ . Let
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D = diag(a1, . . . , ar). Since supp µ = V , a calculation (cf. [Lau1, Lemma 2.4] [CFM, Lemma 2.5])
shows that

(3.4) M = Wn[V ]TDWn[V ].

Now M = WTW , where W = D1/2Wn[V ], so it follows that rank M = rank W = rank Wn[V ] =
rank WB[V ] = r. Note also that if p ∈ Pn and M̃p̂ = 0, then p|Ṽ ≡ 0, so it follows from (3.4) that
p|V ≡ 0 =⇒Wn[V ]p̂ = 0 =⇒Mp̂ = 0. Thus, ker M̃ ⊂ kerM. Since rank M = rank M̃, we have
ker M = ker M̃, whence V (M) = V (M̃). Finally, M(n + 1)[µ] is a flat extension of M(n)[µ],
since, using (1.2), we have r = rank M(n)[µ] ≤ rank M(n+ 1)[µ] ≤ card supp µ = r.

�

Example 3.11. We illustrate Theorem 3.10 with a continuation of Example 3.9. Recall that
M(3)(β) is positive and extremal, with r = v = 8, and β is weakly consistent, but β has no
representing measure. Since r = v, the content of Theorem 3.10 in this case is that if µ is a positive
measure with supp µ = V ≡ V (M(3)), then M ≡M(3)[µ] satisfies rank M = 8, V (M) = V , and
M has a flat extension M(4). With {wi}8i=1 as in Example 3.9, let µ =

∑8
i=1 ρiδwi , where ρi = i

except that ρ4 = ρ7 = 1. We have M(3)[µ] :=
( M(2) B(3)
B(3)T C(3)

)
, where

M(2) :=




36 12 18 52 365
2

5897
8

12 52 365
2 18 153

4
801
16

18 365
2

5897
8

153
4

801
16

−17343
64

52 18 153
4

365
2

5897
8

99521
32

365
2

153
4

801
16

5897
8

99521
32

1719041
128

5897
8

801
16

−17343
64

99521
32

1719041
128

30274049
512




,

B(3) :=




18 153
4

801
16

−17343
64

365
2

5897
8

99521
32

1719041
128

5897
8

99521
32

1719041
128

30274049
512

153
4

801
16

−17343
64

−893439
256

801
16

−17343
64

−893439
256

−27228159
1024

−17343
64

−893439
256

−27228159
1024

−709193727
4096




,

C(3) :=




5897
8

99521
32

1719041
128

30274049
512

99521
32

1719041
128

30274049
512

543551489
2048

1719041
128

30274049
512

543551489
2048

9954181121
8192

30274049
512

543551489
2048

9954181121
8192

185950830593
32768



.

Calculations with nested determinants show that M is positive semidefinite, with a column
basis B ≡ {1, X, Y, X2, XY, Y 2, X2Y, XY 2}, and column dependence relations f(X,Y ) = 0
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and g(X,Y ) = 0 (with f and g as in Example 3.9). It follows readily that r = 8 and that V (M) =
Z(f)

⋂Z(g) = V . To show that M(4)[µ] is a flat extension of M(3)[µ], note that V (M(4)[µ]) ⊂
V (M(3)[µ]), whence (via (1.2)) 8 = rank M(3)[µ] ≤ rank M(4)[µ] ≤ card V (M(4)[µ]) ≤
card V (M(3)[µ]) = card V = 8. �

4. An algorithmic solution to the recursively determinate truncated moment
problem

For a general sequence β, it may be very difficult to verify the condition of Theorem 2.1. In
this section we introduce the class of recursively determinate moment matrices; for this class, it is
possible to determine the existence of extensions M(n + 1), . . . ,M(n + v − r + 1) algorithmically,
in a purely mechanical fashion (cf. Algorithm 4.10). To this end, we recall from [CF2] that M(n)
is recursively generated if the following property holds:

(4.1) p, q, pq ∈ Pn, p(X) = 0 =⇒ (pq)(X) = 0.

It follows from (1.1) that recursiveness is a necessary condition for representing measures. It is
straightforward to verify recursiveness: it suffices to check that whenever the column relation X i =
p(X) expresses column X i as a linear combination of columns to its left inM(n) (for some p ∈ Pn),
thenX i+j = (xjp)(X) whenever |j| ≤ n−|i|. Note, in particular, that ifM(n−1) is nonsingular, then
(vacuously) M(n) is recursively generated. Roughly speaking, the recursively determinate matrices
comprise the largest class for which the existence of a convergent extension sequence can be detected
solely by imposing recursiveness. We next motivate the definition of recursive determinancy with a
basic example.

Example 4.1. Let d = 2 (the plane). Suppose M(n) has column dependence relations of the form

(4.2) Xn = p(X,Y ) (p ∈ Pn−1)

and

(4.3) Y n = q(X,Y ) (q ∈ Pn is free of the term yn).

We will show that the preceding relations determine any possible positive, recursively generated
moment matrix extensionsM(n+1), M(n+2), . . .. Indeed, any extensionM(n+1) is of the form

M(n+ 1) ≡
( M(n) B(n+ 1)
B(n+ 1)T C(n+ 1)

)
,

and since d = 2, columns Xn+1 and Y n+1 of
(
B(n+ 1)
C(n+ 1)

)
contain all of the “new moments” of

degrees 2n + 1 and 2n + 2 (see below). Since M(n + 1) is to be positive, the Extension Principle
[F1] (cf. Section 2) implies that relations (4.2) and (4.3) must hold for the columns of M(n + 1).
The requirement of recursiveness in M(n+ 1) then implies that in CM(n+1) we must have

(4.4) Xn+1 = (xp)(X,Y )

and

(4.5) Y n+1 = (yq)(X,Y ).

These relations, when applied to the columns of
( M(n) B(n+ 1)

)
, completely determine block

B(n+ 1). To see this, consider the moments of degree 2n+ 1 in B(n+ 1), which form the block

Mn,n+1 ≡




β2n+1,0 β2n,1 . . . βn+2,n−1 βn+1,n βn,n+1

β2n,1 β2n−1,2 . . . βn+1,n βn,n+1 βn−1,n+2

β2n−1,2 β2n−2,3 . . . βn,n+1 βn−1,n+2 βn−2,n+3

...
...

...
...

...
...

βn+1,n βn,n+1 . . . β2,2n−1 β1,2n β0,2n+1



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(with columns Xn+1, XnY, . . . , XY n, Y n+1). Since deg p ≤ n − 1, relation (4.4) uniquely de-
termines column Xn+1 in block B(n + 1) as a linear combination of columns of M(n). Thus the
moments β2n+1,0, β2n,1, . . . , βn+1,n, which define column Xn+1 in Mn,n+1, are determined, and
these moments propagate through the upper left triangle of Mn,n+1. Now assume deg q = n. In the
first row of Mn,n+1, the moments transposed from column Xn+1 by moment matrix structure are
used with (4.5) to determine βn,n+1 in column Y n+1. Then, in the second row, these moments and
βn,n+1 are used with (4.5) to determine βn−1,n+2. In row 3, βn,n+1 and βn−1,n+2 are used with the
earlier moments and (4.5) to determine βn−2,n+3, etc. In this manner we successively determine all
of the moments of column Y n+1 in block Mn,n+1. In case deg q < n, column Y n+1 in block B(n+1)
is determined from (4.5) simply as a linear combination of columns of M(n).

Having determined B(n+ 1), when relations (4.4) and (4.5) are then applied to the columns
of

(
B(n+ 1)T C(n+ 1)

)
, the above method yields all of the moments of degree 2n+ 2 needed

to determine block C(n+ 1) (which is a Hankel matrix, since d = 2). In this way we complete the
construction of an extensionM(n+1). IfM(n+1) is positive and recursively generated, then (4.4),
(4.5), and recursiveness can be used (as above) to uniquely determine an extension M(n+ 2), and
recursiveness in M(n + 2) uniquely determines M(n + 3), and so on. We illustrate this procedure
in Example 4.15 (below). �

Example 4.1 encompasses any extremal planar M(3) satisfying Y = X3. Indeed, it is shown in
[CFM, Sections 4-5] that extremality implies that Y 3 = q(X,Y ) where q ∈ P3 is free of the term
y3, so conditions (4.2) and (4.3) are satisfied. Theorem 3.1 describes the solution of the truncated
moment problem for measures supported in a planar curve p(x, y) = 0 with deg p ≤ 2. [CFM]
is related to the truncated moment problem for y = x3, which remains unsolved. More generally,
little is known about the truncated moment problem for y = xn with n > 2, but Example 4.1 (and
Proposition 4.2 and Theorem 4.3 below) provide a framework for generating examples and testing
hypotheses (cf. Example 4.18).

We now procede to define recursive determinancy formally. Consider a proposed extension
M(n+1) in which B(n+1) and C(n+1) are as yet undetermined, and consider also a finite family
of column dependence relations in M(n),

(4.6) pi(X) = 0 (deg pi = n, 1 ≤ i ≤ s).
Suppose further that there are corresponding monomials of degree 1, xj1 , . . . , xjs , such that in the
column space of

( M(n) B(n+ 1)
)
, the formal system

(4.7) (xjipi)(X) = 0 (1 ≤ i ≤ s)
determines all new moments of degree 2n + 1, leaving no “free” choices. Since (4.7) is a system of
linear equations in variables representing the new moments of degree 2n+ 1, the requirement that
there are no free choices implies that the moments of degree 2n+1 are uniquely determined by (4.7).
Using these moments, we may form block B(n + 1). Consider now the formal system (4.7) in the
column space of

(
B(n+ 1)T C(n+ 1)

)
, and suppose that this system determines all moments

of degree 2n+2 for C(n+1), with no free choices. As above, since there are no free choices and the
system is linear in the moments of degree 2n+2, these moments are uniquely determined. Defining
C(n+ 1) in this way, we say that the resulting extension M(n+ 1) is recursively determined. Note
that there can be only one recursively determined extensionM(n+1) that is recursively generated,
because in such an extension, all systems (4.7) must be valid simultaneously.

M(n) is recursively determinate if it enjoys the following property: for each i ≥ 0, ifM(n+ i)
is a positive, recursively generated extension ofM(n), thenM(n+i) admits a recursively determined
extensionM(n+i+1). In this definition, we do not presuppose thatM(n+i+1) is itself recursively
generated or positive semidefinite. For i = 0, we consider M(n) to be a (trivial) extension of itself,
so ifM(n) is recursively determinate, positive, and recursively generated, then the definition entails
a recursively determined extension M(n + 1). Note that if M(n) is recursively determinate and
M(n+ i) (i > 0) is a positive and recursively generated extension, thenM(n+ i) is also recursively
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determined. Indeed, the Extension Principle [F1] implies thatM(n+i−1) is positive and recursively
generated, so M(n+ i− 1) has a recursively determined extension, which must then coincide with
M(n+ i).

The fundamental example of a recursively determinate moment matrix concerns the case of
flat data, whereM(n) � 0 satisfies rankM(n) = rankM(n−1). In this case, for each i ∈ Z

d
+ with

|i| = n, there exists pi ∈ Pn−1 such that X i = pi(X) in CM(n). The main result of [CF2] (closely
related to Theorem 1.1) is that in this case, the formal system X i+j = (xjpi)(X) (|i| = n, |j| = 1)
admits a unique solution, leading to a unique flat, positive, recursively generated extensionM(n+1).
Further, Theorem 1.2 implies that in this case, v = r, so the existence of a flat extension M(n+ 1)
is consistent with Theorem 4.3 (below). We next identify a family of recursively determinate planar
moment matrices; instances of this family appear in Examples 3.3, 3.9, 4.15, 4.18.

Proposition 4.2. Let d = 2. M(n) is recursively determinate if it has column relations of the form
Xn = p(X,Y ), with deg p < n, and Y n = q(X,Y ), where deg q ≤ n and q is free of the term yn.

The proof of Proposition 4.2 is essentially contained in Example 4.1; observe that if M(n + i) is
a positive, recursively generated extension of M(n), then in CM(n+i) we have Xn+i = (xip)(X,Y )
and Y n+i = (yiq)(X,Y ), so (as in Example 4.1) we may define a recursively determined extension
M(n+i+1) via the relationsXn+i+1 = (xi+1p)(X,Y ) and Y n+i+1 = (yi+1q)(X,Y ). A modification
of the argument in Example 4.1 shows that Proposition 4.2 also holds if the roles of p and q are
reversed.

The main result of this section, which follows, shows that for the class of recursively deter-
minate moment matrices with finite variety, we can refine Theorem 2.1 so as to detect minimal
representing measures.

Theorem 4.3. Suppose M(n)(β) is recursively determinate, with r ≤ v < +∞. The following are
equivalent:
i) β has a representing measure;
ii) There exists i, 0 ≤ i ≤ v − r, such that M(n) admits successive positive, recursively determined
extensions M(n+ 1), . . . ,M(n+ i+ 1), and M(n+ i+ 1) is a flat extension of M(n+ i).
If the preceding conditions hold, and if i is minimal with respect to the flat extension property for a
particular extension sequence satisfying ii), then the unique representing measure for M(n+ i+ 1)
(cf. Thm. 1.2) is a minimal representing measure for β.

As with Theorem 2.1, a version of Theorem 4.3 holds for the case when the variety is not necessarily
finite (cf. Remark 4.11). Theorem 4.3 shows that if M(n) (with finite variety) is recursively deter-
minate and has a representing measure, then a minimal representing measure always corresponds to
minimum-length convergent extension sequence. Whether this behavior holds for arbitraryM(n) is
a question that we discuss further below (cf. Question 4.13 and Example 4.14). In Algorithm 4.10
we describe a computational procedure for verifying whether the conditions of Theorem 4.3(ii) are
satisfied.

For the proof of Theorem 4.3 we require several preliminary results. We begin by deriving
another necessary condition for the existence of a positive moment matrix extension M(n + 1) ≡( M(n) B(n+ 1)
B(n+ 1)T C(n+ 1)

)
. In the sequel, for a vector h with components indexed by the monomials

in Pn+1 in degree-lexicographic order, let [h]n denote the projection of h onto the components indexed
by the monomials in Pn.

Proposition 4.4. Suppose M(n + 1) � 0 and let p ∈ Pn with p(X) = 0 in CM(n). For each
polynomial q with deg q ≤ n+ 1− deg p,
(i) [(pq)(X)]n = 0 in the column space of

( M(n) B(n+ 1)
)
, and

(ii) if M(n+ 1) is recursively generated, then (pq)(X) = 0 in CM(n+1).

We require the following lemma.
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Lemma 4.5. Suppose M(n + 1) ≥ 0 and let p ∈ Pn−1 with p(X) = 0 in CM(n). If |j| = 1, then
(xjp)(X) = 0 in CM(n).

Proof. SinceM(n+1) � 0 and p(X) = 0 in CM(n), the Extension Principle implies that p(X) = 0 in
CM(n+1), i.e.,M(n+1)p̂ = 0. Since deg p < n and |j| = 1, then for s ∈ Pn, 〈M(n) ˆpxj , ŝ〉 = Λ(pxjs)
= 〈M(n+ 1)p̂, x̂js〉 = 0, whence (pxj)(X) =M(n) ˆpxj = 0 in CM(n). �

Proof of Proposition 4.4. (i) Let k = deg q (≤ n + 1 − deg p), so that q(x) =
∑

|j|≤k ajx
j . Since

[(pq)(X)]n =
∑

|j|≤k[aj(pxj)(X)]n, we may assume that q is a monomial, of the form q(x) = xj

for some j with |j| = k. Consider first the case when deg p = n and k = 1. Since p(X) = 0
in M(n) and M(n + 1) ≥ 0, the Extension Principle implies that p(X) = 0 in M(n + 1), and
thus 〈M(n + 1)p̂, û〉 = 0 for every u ∈ Pn+1. In particular, for each s ∈ Pn, if u = xjs, then
0 = 〈M(n+ 1)p̂, x̂js〉 = Λ(pxjs) = 〈M(n+ 1) ˆpxj , ŝ〉, whence [(pxj)(X)]n = 0.

Now suppose k > 1 and write xj = xj1 · · ·xjk , where |ji| = 1, 1 ≤ i ≤ k. If k + deg p ≤ n,
we may apply Lemma 4.5 successively to conclude that in CM(n), (xj1p)(X) = 0, (xj1xj2p)(X) = 0
,..., (xjp)(X) = (xj1 · · ·xjkp)(X) = 0. In the remaining case, k + deg p = n + 1. We may apply
Lemma 4.5 successively (as above) to derive (xj2 · · ·xjkp)(X) = 0 in CM(n), and then apply the first
case (when deg p = n and k = 1) to conclude that [(xjp)(X)]n = [(xj1(xj2 · · ·xjkp))(X)]n = 0. This
completes the proof of (i).

(ii) SupposeM(n+1) is both positive and recursively generated. Since p(X) = 0 in CM(n), the
Extension Principle implies that p(X) = 0 in CM(n+1), whence recursiveness implies that (pq)(X) = 0
in CM(n+1). �

Corollary 4.6. Suppose M(n+1) is positive and that in CM(n), Xj1 = p1(X) (|j1| ≤ n, deg p1 ≤ n,
p1(x) is free of xj1) and Xj2 = p2(X) (|j2| ≤ n, deg p2 ≤ n, p2(x) is free of xj2). If i1, i2 ∈ Z

d
+

satisfy i1 + j1 = i2 + j2 and |i1| + |j1| = |i2| + |j2| = n + 1, then (xi1p1)(X) = (xi2p2)(X) in
C“ M(n) B(n+ 1)

”. Moreover, if M(n + 1) is also recursively generated, then (xi1p1)(X) =

(xi2p2)(X) in CM(n+1).

For the truncated complex moment problem, an analogue of Proposition 4.4 appears in [CF4,
Thm. 1.6]. We illustrate Proposition 4.4 and Corollary 4.6 with an example of a positive, recursively
generated M(n) with no positive extension M(n+ 1).

Example 4.7. Let d = 2 and consider M(3) of the form


1 0 0 1 0 1 0 0 0 0
0 1 0 0 0 0 α 0 b 0
0 0 1 0 0 0 0 b 0 2− b
1 0 0 α 0 b 0 γ 0 0
0 0 0 0 b 0 γ 0 0 0
1 0 0 b 0 2− b 0 0 0 δ
0 α 0 0 γ 0 e 0 bα 0
0 0 b γ 0 0 0 bα 0 b2

0 b 0 0 0 0 bα 0 b2 0
0 0 2− b 0 0 δ 0 b2 0 f




,

where α = −2+b+4b2

−1+4b , δ = −4b(b − 1), and γ = −4b(b−1)
−1+4b . A calculation with nested determinants

shows that for 0 < b < 1/4 and e and f sufficiently large,M(3) is positive and recursively generated,
with M(2) " 0, rank M(3) = 8, and column relations

(4.8) X2Y = 1 + bY − 1
2
X2 − 1

2
Y 2
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and

(4.9) XY 2 = bX.

Proposition 4.4(i) implies that in any positive extensionM(4) we must have Y +bY 2− 1
2X

2Y − 1
2Y

3 =
X2Y 2 = bX2 in the columns of

( M(3) B(4)
)
. Now the last entry in bX2 is 0, but if f is

sufficiently large, we can insure that the last entry in Y + bY 2 − 1
2X

2Y − 1
2Y

3 is nonzero. Thus
M(3) admits no positive extension M(4). �
In Example 4.7, the system (4.8)-(4.9) recursively determined two different choices for column X2Y 2.
It is clear from Corollary 4.6 that if a system of dependence relations inM(n) leads to such conflicting
choices for moments of degree 2n+ 1, then M(n) admits no positive extension M(n+ 1) (and thus
admits no representing measure). This observation is a basic ingredient in Algorithm 4.10 (below).

Corollary 4.8. Suppose M(n) is recursively determinate. If β has a representing measure, then
M(n) has unique successive recursively determined extensions M(n+ 1), M(n+ 2), . . ., which are
also the unique successive positive, recursively generated extensions of M(n).

Proof. If β has a representing measure, then [BT] implies that β has a finitely atomic representing
measure ν (cf. Section 2), and thus M(n+1)[ν], M(n+2)[ν], . . . are positive, recursively generated
extensions. Suppose M(n + 1) is a recursively determined extension, as determined from some
system (4.6)-(4.7). Proposition 4.4 implies that (4.6)-(4.7) also hold in M(n + 1)[ν], so M(n + 1)
must coincide withM(n+1)[ν] and, in particular,M(n+1) is also positive and recursively generated.
Assume by induction that M(n + i)[µ] is the unique recursively determined extension of M(n) of
degree 2(n+ i). Since M(n) is recursively determinate and M(n+ i)[µ] is positive and recursively
generated, some system S in the column space ofM(n+i)[µ], together with recursiveness, determines
an extensionM(n+ i+1). As above, Proposition 4.4 and S imply thatM(n+ i+1) coincides with
M(n+ i+ 1)[µ]. Thus M(n+ i+ 1)[µ] is the unique recursively determined extension of M(n) of
degree 2(n+ i+ 1) and, clearly, M(n+ i+ 1)[µ] is positive and recursively generated. �
Proof of Theorem 4.3. Suppose β has a representing measure. If follows as in the proof of Theorem
2.1 that there exists a positive, recursively generated extension M(n + v − r + 1) satisfying v ≡
card V (M(n)) ≥ · · · ≥ card V (M(n+ v − r+ 1)) ≥ rank M(n+ v − r + 1) ≥ . . . rankM(n) ≡ r.
[F1] implies that each extension M(n+ i) (1 ≤ i ≤ v− r) is positive and recursively generated, and
is thus recursively determined (see the remarks following the definition of recursive determinancy).
As in the proof of Theorem 2.1, it now follows that for some i, 0 ≤ i ≤ v − r, M(n+ i+ 1) is a flat
extension of M(n + i). Conversely, the existence of such a flat extension, together with Theorem
1.1, immediately implies the existence of a rank M(n+ i)-atomic representing measure for β.

Now suppose (ii) holds and that i is minimal with respect to the flat extension property. Let
µ be the unique representing measure corresponding to the flat extensionM(n+ i+1) (cf. Theorem
1.2), which is rankM(n+ i)-atomic. If ν is a minimal representing measure for β, then ν is finitely
atomic, and the matricesM(n+1)[ν], M(n+2)[ν], . . . are positive and recursively generated. Since
M(n) is recursively determinate, Corollary 4.8 implies that these extensions must coincide with the
positive, recursively generated extensions M(n + 1) (=M(n+ 1)[µ]), M(n+ 2) (=M(n + 2)[µ]),
. . .. It follows from [CF6, Cor. 2.6] that µ = ν, so rank M(n + i) is the size of the support of a
minimal representing measure for β. �
Remark 4.9. An example of recursive determinancy in the truncated complex moment problem is
implicit in [F2]. In the moment problem for a complex sequence γ ≡ γ(2n), suppose the complex
moment matrix M(n)(γ) enjoys a column dependence relation of the form Zn = p(Z, Z̄), deg p < n.
Since column Zn+1 (for a proposed extension M(n+1)) contains all moments of degrees 2n+1 and
2n+ 2 (up to conjugation), we may define an “analytic” extension by imposing Zn+1 = (zp)(Z, Z̄).
In [F2, Thm. 2.2] we proved that such a sequence γ has a finitely atomic representing measure if
and only if M(n)(γ) admits successive positive, recursively generated analytic extensions M(n +
1), . . . ,M(2n− 2) (where each M(n+ j) is determined by Zn+j = (zjp)(Z, Z̄)).

16



Suppose M(n)(β) is recursively determinate, with r ≤ v < +∞. Theorem 4.3 leads immedi-
ately to the following procedure for determining whether or not β has a representing measure and,
in the positive case, for determining a minimal representing measure. For the case when the variety
is not necessarily finite, see Remark 4.11. Remark 4.11 also describes how to use this procedure to
decide whether or not a given moment matrix is recursively determinate.

Algorithm 4.10. Test for representing measures for M(n) recursively determinate with r ≤ v <
+∞.

Algorithm. We may assume that M(n) is positive and recursively generated, for otherwise there is
no representing measure. SinceM(n) is recursively determinate, we may use the column dependence
relations in M(n) to determine data for block B(n + 1) of some recursively determined extension
M(n+1). Proposition 4.4 and Corollary 4.6 show that if the various dependence relations inM(n)
lead to conflicting definitions for the data in B(n + 1), then β has no representing measure. If
B(n + 1) is well-defined, we test whether Ran B(n + 1) ⊂ Ran M(n), or, equivalently, whether
there is a matrix W satisfying B(n + 1) = M(n)W . If such a factorization is impossible, β has
no representing measure, since there cannot be a positive extension in this case (cf. Section 2).
If W does exist, it can be computed using elementary linear algebra. In this case, since M(n) is
recursively determinate, we may use recursive relations in the columns of B(n + 1)T to determine
data for a block C(n+ 1). Indeed, since B(n+1)T = WTM(n), each dependence relation in M(n)
extends to the columns of B(n+1)T . By our assumption thatM(n) is recursively determinate, these
dependence relations propagate so as to determine data for some moment matrix block C(n+1). If
this cannot be done unambiguously, then (as above, using Proposition 4.4 and Corollary 4.6), there
is no representing measure for β.

If M(n + 1) is well-defined, we check whether M(n + 1) � 0, or, equivalently, whether
C(n + 1) � C ≡ B(n + 1)TW . If such is not the case, β has no representing measure. Suppose
M(n+1) � 0. If rankM(n+1) = rankM(n), then the unique representing measure forM(n+1)
is a minimal representing measure for β and may be computed as in Theorem 1.2. SupposeM(n+1)
is not a flat extension. IfM(n+1) is not recursively generated, then Corollary 4.6 implies that there
is no representing measure. If M(n + 1) is recursively generated, then, since M(n) is recursively
determinate, we may repeat the above procedure starting with M(n + 1), so as to construct a
recursively determined extension M(n+ 2) . In general, having constructed a positive, recursively
generated extensionM(n+ i) (as above), if the recursively determined extensionM(n+ i+1) fails
to be positive and recursively generated, then β has no representing measure. On the other hand,
if a recursively determined extension M(n+ i+ 1) is a flat extension of M(n+ i), then the unique
representing measure for M(n+ i+ 1) is a representing measure for β, and a minimal representing
measure for β corresponds to a minimal i with the flat extension property (Theorem 4.3). In the
case when a measure exists, Theorem 4.3 guarantees that there is a flat extension M(n+ i+ 1) for
some i ≤ v − r. Thus, after at most v − r extension steps we are able to conclude whether or not β
has a representing measure, and if a measure exists, we are able to compute a minimal representing
measure using Theorem 4.3 and Theorem 1.2. �
Remark 4.11. (i) In many cases we can expect the preceding algorithm to terminate in far fewer
than v−r steps. To see this, let d = 2 (the plane) and consider a recursively determinateM(n) whose
only column dependence relations are of the form Xn = p(X,Y ) (deg p < n) and Y n = q(X,Y )
(deg q < n). In this case, r = (n+1)(n+2)

2 − 2. Let us assume that f and g have n2 common zeros
in the plane, so that the gap is v − r = n2−3n+2

2 . When we examine how the above dependence
relations propagate in successive recursively determined extensions M(n+ 1), M(n+2) . . ., we see
that in the case where there is a measure, we must achieve a flat extension after at most n−1 steps,
for in the extensionM(2n−1) (=M(n+(n−1))), every column of degree 2n−1 will be recursively
determined. Thus, the actual number of extensions leading to a first flat extension is of order at
most n, as compared to the order n2 estimate from the gap.
(ii) As noted in Section 2, [BT] implies that if β(2n) has a representing measure, then it has a

17



representing measure ν with card supp ν ≤ dim P2n. Using this result, it is not difficult to derive
versions of Theorem 4.3 and Algorithm 4.10 that apply to the case when the variety of β is not
necessarily finite; in such results, we replace the estimate v − r by dim P2n − r (cf. Proposition 2.3
and Remark 2.4).
(iii) When Algorithm 4.10 is applied to a moment matrix M(n) that we know is recursively deter-
minate (e.g., from Proposition 4.2 or Proposition 4.16), then we can be certain that the procedure
will determine whether or not β(2n) has a representing measure. But the procedure of Algorithm
4.10 can actually be applied to an arbitrary moment matrix M(n) to decide whether or not M(n)
is recursively determinate. We explain how this can be done by considering several cases.

First, consider the case when we can follow the steps of Algorithm 4.10 to construct unique
positive recursively determined extensions M(n + 1), . . . ,M(k) (for some k > 0), such that M(k)
is a flat extension of M(k − 1). (In establishing each extension, we are not assuming that M(n)
is recursively determinate; instead, at each stage we recursively propagate the column dependence
relations, and we observe that this leads to a well-defined recursively determined extension.) Using
[CF1], it then follows that there exist unique successive positive, recursively determined (flat) exten-
sions M(k + 1), M(k + 2), . . .. Now, if M is a positive, recursively generated extension of M(n) of
degree 2n+ 2i, then we must have M =M(n+ i), so M has the recursively determined extension
M(n+ i+ 1); thus M(n) is recursively determinate (and has a representing measure).

Next, consider the case when we can follow the steps of Algorithm 4.10 to determine unique
recursively determined extensions M(n + 1), . . . , M(k) (for some k > 0), such that M(k − 1) is
positive and recursively generated, but M(k) fails to be positive and recursively generated. In this
case, M(n) is recursively determinate, but there is no representing measure.

Consider the case when either k = 0, or we have determined unique positive recursively
determined extensions extensions M(n+ 1), . . . ,M(k) (for some k > 0). When we try to construct
an extensionM(k+1) by recursively propagating all of the column relations inM(k), it may happen
that there are some “free” (undetermined) moments of degree 2k + 1 or 2k + 2. In this case, M(n)
is not recursively determinate and Algorithm 4.10 simply does not apply to M(n). Sometimes it
is possible to choose free moments which lead to a representing measure, but this is not done by
Algorithm 4.10. For example, consider the truncated moment problem for planar measures supported
in the parabola y = x2. Theorem 3.1 shows that β(2n) has a representing measure supported in this
curve if and only if M(n) is positive and recursively generated, has a column relation Y = X2,
and satisfies r ≤ v. There are cases where M(n) satisfies these conditions but is not recursively
determinate. In these cases, it is always possible to construct a positive, rank-increasing extension
M(n + 1) which has a flat extension M(n + 2) (yielding a representing measure supported in the
parabola), but this construction is beyond the scope of Algorithm 4.10 and uses special features of
a moment matrix M(n) with a column relation Y = X2.

If we attempt to apply Algorithm 4.10 in a case where M(n) is not recursively determinate,
the results may be inconclusive. For example, if M(n) is invertible, then all of the moments in
block B(n+1) are free choices. Once we select a definite choice for the new moments, this may lead
(via Algorithm 4.10) to successive positive extensions M(n+ 1), . . . ,M(k) (for some k > 0) before
finally leading to the conclusion that M(k) has no representing measure. But this says nothing
about whether M(n) has a measure. One would have to start with another choice for B(n+1) and
try again; since there are infinitely many choices for B(n+1), it is impossible to implement this case
algorithmically. Another possibility is that free choices at each extension step lead to a sequence
of rank-increasing positive extensions M(n + 1), M(n + 2), . . . with no conclusion at each stage.
The ultimate M(∞) may or may not have a measure, and the present theory of the full moment
problem may not be able to decide. Further, if it is possible to determine thatM(∞) does not have
a measure, this conclusion does not necessarily apply toM(n). (It is known that a planarM(1) " 0
always admits a representing measure, but the analogous problem for M(2) " 0 is open. For an
example of a planar M(3) " 0 having no representing measure, see [CF4].)
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We may summarize the preceding discussion as follows. M(n) is recursively determinate if
and only if the following holds: when the steps of Algorithm 4.10 are applied to M(n), we arrive at
a recursively determined extension M(n+ k + 1) of some positive, recursively generated extension
M(n+k), and either i) rankM(n+k+1) = rankM(n+k) (a measure exists), or ii)M(n+k+1)
is not recursively generated (there is no measure). In every other case, within 1 + dim P2n − r
extension steps, some positive, recursively generated extension M(n+ k) fails to have a recursively
determined extension, so M(n) is not recursively determinate. �
Whether the general result of Remark 4.11(ii) is actually needed is unclear, since the following
question is open.

Question 4.12. If M(n) is recursively determinate, is the variety of M(n) finite?

Theorem 4.3 shows that forM(n+1) recursively determinate, minimal representing measures
correspond to minimal-length convergent extension sequences. Recall from Proposition 2.3 that if a
general β(2n) has a representing measure, then it has a convergent extension sequence. It is unclear
how the length of such a sequence is related to the size of the corresponding measure.

Question 4.13. Suppose β ≡ β(2n) has a representing measure. Does a minimal representing
measure always correspond to a minimal-length convergent extension sequence?

In the positive direction (apart from Theorem 4.3), we note that if a minimal-length convergent ex-
tension sequence has length 0 or 1, then the measure corresponding to the terminating flat extension
is rank M(n)-atomic, and is thus a minimal representing measure for β (by (1.2)). On the other
hand, we next show that convergent extension sequences of equal length may lead to representing
measures of differing sizes, which perhaps suggests a negative answer to Question 4.13.

Example 4.14. Let µD denote planar Lebesgue measure restricted to the closed unit disk D. It
is known that µD has a cubature rule ν of degree 8 with 16 nodes [CR] [Co2] [CK]. Consider the
extension sequenceM(4)[ν] (=M(4)[µD]),M(5)[ν],M(6)[ν]. Since the disk has nonempty interior,
rank M(4)[µD] = 15. If rank M(5)[ν] = 15, then M(5)[ν] is a flat extension of M(4)[ν], whence
Theorem 1.2 implies that the unique representing measure forM(5)[ν] is 15-atomic. Since ν is a 16-
atomic representing measure forM(5)[ν], we conclude that 16 ≤ rankM(5)[ν] ≤ card supp ν = 16,
whence rank M(5)[ν] = 16. Similarly, we have 16 = rank M(5)[ν] ≤
rank M(6)[ν] ≤ card supp ν = 16, so M(6)[ν] is a flat extension of M(5)[ν]. Thus M(4)[µD] −→
M(5)[ν] −→ M(6)[ν] is a convergent extension sequence of length 2 leading to a 16-atomic repre-
senting measure for β ≡ β(8)[µD].

We will now show that there also exists a length-2 convergent extension sequence leading to
an 18-atomic representing measure for β. Indeed, it is known that a minimal cubature rule for µD of
degree 9 has 18 nodes (see [Co1] [Co2] [CR] and the discussion and references in [FP, Section 5]). It

is proved in [FP, Cor. 5.11] that each such rule arises by first completing
( M(4)[µD] B(5)[µD]
B(5)[µD]T

)

to a rank 18 M(5) and by then constructing a flat extension M(6). (The result in [FP] is stated in
terms of complex moment matrices, but the corresponding result for real moment matrices follows
from the equivalence of the real and complex truncated moment problems (cf. [CF6, Section 2]).)
The resulting length-2 convergent extension sequence M(4)[µD] −→M(5) −→M(6) thus leads to
an 18-atomic representing measure for β. This example would provide a negative answer to Question
4.13 were it known that the 16-node cubature rule ν cited above is a minimal degree-8 rule for [µD];
however, it remains an open question as to whether M(4)[µD] admits a flat extension M(5) and a
corresponding 15-node minimal rule of degree 8. �

We conclude this section with several examples illustrating Theorem 4.3 and Algorithm 4.10.
For these examples, we explicitly compute the variety of each extension, but this is not really
necessary. Indeed, once we know that v is finite (say, from Bezout’s Theorem), then we know in
advance that Algorithm 4.10 will determine the existence of a measure within v − r + 1 extension
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steps. As noted in Remark 4.11(iii), we can also apply the method of Algorithm 4.10 without
knowing that v is finite or even that M(n) is recursively determinate. In this case, if it is possible
to achieve a recursively determined, positive and recursively generated extensionM(n+k), then we
can use the condition rank M(n + k) = rank M(n + k − 1) as an exit test which guarantees the
existence of a finitely atomic representing measure. Only if we wish to know the atoms and densities
of this measure is it necessary to compute the variety of M(n+ k).

In the sequel, when we consider a planar moment matrix (d = 2), we may describe M(n) via
the block decompositionM(n) = (Mij)0≤i,j≤n, where Mi,j is the (i+1)× (j+1) matrix of the form


βi+j,0 βi+j−1,1 . . . βi+1,j−1 βi,j

βi+j−1,1 βi+j−2,2 . . . βi,j βi−1,j+1

...
...

...
...

...
βj,i βj−1,i+1 . . . β1,i+j−1 β0,i+j


 .

Example 4.15. Let d = 2. We begin by constructing a positive, recursively generated, recursively
determinate M(5) with a gap of 6. Consider β ≡ β(10) defined as follows:
moment of degree 0: β00 = 61;
moments of degree 1: β10 = 84, β01 = 168;
moments of degree 2: β20 = 726, β11 = 228, β02 = 570;
moments of degree 3: β30 = 5046, β21 = 2232, β12 = 774, β03 = 2184;
moments of degree 4: β40 = 45378, β31 = 16356, β22 = 8274, β13 = 3000, β04 = 8994;
moments of degree 5: β50 = 421734, β41 = 157944, β32 = 63138, β23 = 34032, β14 = 12558, β05 =
38808;
moments of degree 6: β60 = 4071426, β51 = 1554648, β42 = 636882, β33 = 267708, β24 =
148530, β15 = 55128, β06 = 173010;
moments of degree 7: β70 = 40134066, β61 = 15765360, β52 = 6478974, β43 = 2773752, β34 =
1195890, β25 = 672432, β16 = 249774, β07 = 790104;
moments of degree 8: β80 = 402564066, β71 = 161892924, β62 = 67511586, β53 = 28774680, β44 =
12609762, β35 = 5513196, β26 = 3119394, β17 = 1157160, β08 = 3675234;
moments of degree 9: β90 = 4094720430, β81 = 1679825112, β72 = 708902562, β63 = 304637616, β54 =
132458718, β45 = 58844664, β36 = 25944498, β27 = 14721552, β18 = 5449518, β09 = 17342808;
moments of degree 10: β10,0 = 42137314386, β91 = 17570281368, β82 = 7493058354, β73 =
3241156524, β64 = 1416559890, β55 = 623436648, β46 = 279382002, β37 = 123845628, β28 =
70358610, β19 = 25985208, β0,10 = 82772850.

A basis B for the columns ofM(5) consists of the columns indexed by P4, together with X4Y ,
X3Y 2, X2Y 3, and XY 4. Calculations with nested determinants show that MB, the compression of
M(5) to rows and columns indexed by B, is positive definite, whence M(5) is positive semidefinite.
Further, the column dependence relations

(4.10) X5 = −12X3 + 8X4 + 12XY − 14X2Y +X4Y + 6Y 2 +XY 2 − 2X2Y 2 + Y 3

and

(4.11) Y 5 = 120 · 1− 274Y + 225Y 2 − 85Y 3 + 15Y 4,

imply that rank M(5) = 19 and that V(M(5)) = Z(u)
⋂Z(s), where

u(x, y) = x5 − p(x, y), with p(x, y) =
−12x3 + 8x4 + 12xy − 14x2y + x4y + 6y2 + xy2 − 2x2y2 + y3(4.12)

and

(4.13) s(x, y) = y5 − q(x, y), with q(x, y) = 120− 274y + 225y2 − 85y3 + 15y4.

A calculation shows that V(M(5)) consists of the following 25 points wi ≡ (xi, yi) (1 ≤ i ≤ 25)
(so the gap is 6): w1 = (7, 1), w2 = (8, 2), w3 = (9, 3), w4 = (10, 4), w5 = (11, 5), w6 = (−1, 1),
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w7 = (1, 1), w8 = (1 −√2, 1), w9 = (1 +
√

2, 1), w10 = (−√2, 2), w11 = (
√

2, 2), w12 = (1 −√3, 2),
w13 = (1 +

√
3, 2), w14 = (−1, 3), w15 = (3, 3), w16 = (−√3, 3), w17 = (

√
3, 3), w18 = (−2, 4),

w19 = (2, 4), w20 = (1−√5, 4), w21 = (1+
√

5, 4), w22 = (−√5, 5), w23 = (
√

5, 5), w24 = (1−√6, 5),
w25 = (1 +

√
6, 5).

From Proposition 4.2 (but reversing the roles of p and q), we see that M(5) is recursively
determinate. We will use Theorem 4.3 and Algorithm 4.10 to determine whether β admits a repre-
senting measure; since v − r = 6, at most 7 extension steps will be required, and it will be possible
to revise this estimate downward as we procede. Following Algorithm 4.10, we first construct a
recursively determined extension M(6), with moments of degrees 11 and 12 determined from the
relations

(4.14) X6 = (xp)(X,Y )

and

(4.15) Y 6 = (yq)(X,Y ).

M(6) is positive semidefinite and recursively generated, with a column basis B′ consisting of the 19
columns in M(6) corresponding to B, together with columns X6, X3Y 3, X2Y 4; thus r = 22. In
M(6), the column relations X5Y = (yp)(X,Y ) and Y 5X = (xq)(X,Y ), together with (4.10)-(4.11)
and (4.14)-(4.15), readily imply that ker M(6) = 〈û, ŝ, x̂u, ŷu, x̂s, ŷs〉, whence V ′ ≡ V(M(6)) =
Z(u)

⋂Z(s) = V(M(5)), so we again have v = 25. Since in M(6) we have v − r = 3 and M(6) is
recursively determinate (by Proposition 4.2), we see that at most 4 additional extension steps are
needed to resolve the existence of a representing measure for β.

We next construct a recursively determined extensionM(7) from the relationsX7 = (x2p)(X,Y )
and Y 7 = (y2q)(X,Y ), and it results that M(7) is positive semidefinite and recursively generated,
with r = 23. Indeed, a column basis B′′ consists of the 22 columns in M(7) corresponding to B′,
together with column X7. To analyze V(M(7)), note that by positivity, the column dependence
relations in M(6) extend to M(7). Next, consider the dependence relations X7 = (x2p)(X,Y ),
X6Y = (xyp)(X,Y ), X5Y 2 = (y2p)(X,Y ), Y 7 = (y2q)(X,Y ), Y 6X = (yxq)(X,Y ), and Y 5X2 =
(x2q)(X,Y ). The common zeros of x2u (= x7 − x2p), xyu (= x6y − xyp), y2u (= x5y2 − y2p),
y2s (= y7 − y2q), xys (= y6x − yxq), y2s (= y5x2 − x2q), and of the polynomials corresponding
to ker M(6), clearly coincide with Z(p)

⋂Z(q) = V(M(5)). However, there is also a dependence
relation X3Y 4 = h(X,Y ), where h(x, y) = −1320+120x+2750y+264x2−250xy−1925y2−24x3−
550x2y+175xy2+550y3+50x3y+385x2y2−50xy3−55y4−35x3y2−110x2y3+5xy4+10x3y3+11x2y4.
Thus, a basis for kerM(7) consists of { ˆxiyjp}i,j≥0,i+j≤2, { ˆxiyjq}i,j≥0,i+j≤2, and ĝ (where g(x, y) =
x3y4 − h(x, y)), so V ′′ ≡ V(M(7)) = Z(u)

⋂Z(s)
⋂Z(g) = {wi}1≤i≤23, whence M(7) is extremal

(with r = v = 23).
At this point, we can procede either by continuing with Theorem 4.3 and Algorithm 4.10

to compute a recursively determined extension M(8), or by applying Theorem 3.4 (concerning the
extremal case). In the first approach, since the gap inM(7) is 0, the next extension step is decisive.
Indeed, we find that M(8), determined using X8 = (x3p)(X,Y ) and Y 8 = (y3q)(X,Y ), is a flat
extension ofM(7), with a corresponding representing measure µ ≡∑23

i=1 ρiδwi that can be computed
as in Theorem 1.2. Alternately, using Theorem 3.2 (and the notation from Section 3), we find that
Lβ(14) ∈ Ran U14[V ′′], so that β(14) is consistent. The unique representing measure for β(14) is thus
of the above form, where ρ ≡ (ρ1, . . . , ρ23) is determined by UB′′ [V ′′]ρT = vT

B′′ ( vB′′ is the vector
of moments corresponding to the monomials in basis B′′ in degree-lexicographic order; cf. Theorem
3.2). Using either approach, we find that ρ1 = ρ2 = 2, ρ3 = ρ4 = ρ5 = 1, and ρi = 3 (6 ≤ i ≤ 23) .
Thus, Theorem 4.3 implies that µ is a minimal representing measure for β. �

The next example concerns d = 3 and requires the following preliminary result, which iden-
tifies, from among the (n + 1)(n + 2)/2 columns of degree n in M(n), a determinate set of n + 2
columns.
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Proposition 4.16. Let d = 3. M(n) is recursively determinate if each of the following columns of
degree n,

Fn : Xn, Xn−iY Zi−1 (1 ≤ i ≤ n− 1), Y n, Zn,

can be expressed as linear combinations of columns of strictly smaller degree.

Proof. We observe first that the columns of Fn contain all moments of degrees 2n−1 and 2n. Indeed,
in block B(n), column Xn contains βjrs with n ≤ j ≤ 2n − 1, r, s ≥ 0 and r + s + j = 2n − 1.
Further, for 1 ≤ i ≤ n − 1, columns Y n, Zn, and Xn−iY Zi−1 contain all moments βn−i,r,s with
r, s ≥ 0 and r + s + n − i = 2n − 1. Columns Y n and Zn together contain the moments β0,r,s

(r + s = 2n− 1, r, s ≥ 0). In block C(n), column Xn contains all moments βjrs with n ≤ j ≤ 2n,
r, s ≥ 0, and r+s+j = 2n. For 1 ≤ i ≤ n−1, the moments βn−i,r,s with r, s ≥ 0 and n−i+r+s = 2n
are located in columns Xn−iY Zi−1, Y n, and Zn. Finally, columns Y n and Zn contain the moments
β0,r,s with r, s ≥ 0 and r + s = 2n.

Now suppose that M(n + i) is a positive, recursively generated extension of M(n). By
applying recursiveness to the columns in Fn (extended into M(n+ i) via positivity), we see that in
the column space of M(n + i), each column in Fn+i can be expressed as some linear combination
of columns of strictly smaller degree. It follows that by propagating these relations into degree
n+ i+ 1 (which can be done in various ways), we can determine columns for Fn+i+1 (first in block
B(n + i + 1), then in block C(n + i + 1)), and thereby define a recursively determined extension
M(n+ i+ 1). �

Example 4.17. We consider a 3-dimensional moment matrixM(4)(β) with a gap of 7. Since there
are 165 distinct monomials xiyjzk in P8, we record the moments of β(8) in an appendix (Section 5).
The size of M(4) is 35 × 35; by using nested determinants, we see that M(2) is positive definite,
i.e., M(2) " 0. In M(3) we have the single column dependence relation

(4.16) X2Y = 5XY − 4Y,

and if we delete from M(3) the row and column corresponding to X2Y , the resulting compression
is positive definite; thus M(3) � 0. In M(4) we have the following degree-4 column relations:

(4.17) X4 = 12X3 − 49X2 + 78X − 40,

(4.18) X3Y = 5X2Y − 4XY,

(4.19) X2Y 2 = 5XY 2 − 4Y 2,

(4.20) X2Y Z = 5XYZ − 4Y Z,

(4.21) XY Z2 = Y Z2 + 4XY − 4Y,

(4.22) Y 4 = 2Y 3 + Y 2 − 2Y,

(4.23) Z4 = 2XZ2 −X2 + 2XZ − 2Z3.

In view of (4.17), (4.18), (4.20)-(4.23) and Proposition 4.16, M(4) is recursively determinate.
Since relations (4.18)-(4.20) correspond to (4.16) via recursiveness, we see that V (M(4))

depends only on (4.16)-(4.17) and (4.21)-(4.23), and consists of the following 34 points: letting
α = −1, 0, 2, 1, we have

(1, α,±1), (1, α,−1±√2), (4, α,±2), (4, 0,−1±√5), (2, 0,±√2),

(2, 0,−1±
√

3), (5, 0,±
√

5), (5, 0,−1±
√

6).(4.24)

If we delete from M(4) the eight pairs of rows and columns corresponding to (4.16)-(4.23), nested
determinants implies that the resulting compression is positive definite. ThusM(4) � 0, with r = 27
and v = 34, leaving a gap of 7.
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Since M(4) is recursively determinate, Algorithm 4.10 permits us to resolve the existence of
a representing measure for β(8) with at most 8 extensions. We see that the recursively determined
extension M(5) is positive and recursively generated. In M(5) all of the columns X5, Y 5, Z5,
X4Y , X3Y Z, X2Y Z2, XY Z3, X4Z, X3Y 2, X2Y 3, X2Y 2Z, XY 2Z2, XY 4, Y 4Z, XZ4, Y Z4 are
recursively determined and we also find the following “nonrecursive” column relation:

Y 2Z3 = −Y Z3 + (−1 +
√

2)Y 2Z2 + (−1 +
√

2)Y Z2 +XY 2Z

+XY Z − (−1 +
√

2)XY 2 + (1 −
√

2)XY.(4.25)

The 31 columns of M(5) complementary to the columns in the preceding 25 dependence relations
define a column basis B, and the compressionMB of M(5) to the rows and columns corresponding
to B satisfies MB " 0. Thus M(5) � 0, rank M(5) = 31, and V (M(5)) consists of the points of
V (M(4)) that are also zeros of

v(x, y, z) := y2z3 + yz3 − (−1 +
√

2)y2z2 − (−1 +
√

2)yz2 − xy2z − xyz
+(−1 +

√
2)xy2 − (1−

√
2)xy = y(1 + y)(−1 +

√
2− z)(x− z2).(4.26)

Comparison of (4.26) with (4.24) shows that V (M(5)) = V (M(4))\{(1, 1,−1−√2), (1, 2,−1−√2)},
so in M(5) we have r = 31, v = 32, and the gap has been reduced to 1, implying that at most 2
additional extensions are needed.

We next use the degree-5 column relations of M(5) to compute the following determinate
set of columns for a positive, recursively generated extension M(6): X6, Y 6, Z6, X5Y , X4Y Z,
X3Y Z2, X2Y Z3, XY Z4. There are 28 new columns (of degree 6) in the resulting M(6). Of
these, 27 are recursively determined from dependence relations in M(5). However, a calculation

shows that column X3Y 3 is linearly independent of the columns in
( M(5)
B(6)T

)
, so rank M(6) =

1+M(5) = 32. A calculation with compressions and nested determinants now shows thatM(6) ≥ 0.
Further, since the only new column dependence relations in M(6) are recursively determined, we
have V (M(6)) = V (M(5)) (see the remarks immediately preceding the proof of Theorem 2.1),
whence M(6) is extremal, with r = v = 32. When we next compute a recursively determined
extension M(7), we see that M(7) is well-defined and that every column is recursively determined
from M(6). Thus M(7) is a flat extension of M(6). Theorem 4.3 now implies that β(8) has a
representing measure and that the unique minimal representing measure µ is 32-atomic. It follows
that supp µ = V (M(7)) = V (M(6)) ≡ {ωi}32i=1, and a calculation as in Theorem 1.2 shows that
µ =

∑32
i=1 δωi . �

In our final example we show how to use Algorithm 4.10 to establish the nonexistence of a
representing measure.

Example 4.18. We consider again M(3) defined as in Example 3.9. Recall that M(3) is positive
and extremal, with r = v = 8 and column dependence relations

(4.27) X3 = Y

and

(4.28) Y 3 = 3X +
45
4
Y − 13X2 +

65
4
XY − 13

4
Y 2 − 22X2Y +

35
4
XY 2.

Proposition 4.2 implies that M(3) is recursively determinate, and we can determine column X4

for block B(4) of any positive, recursively generated M(4) by X4 = XY ; we find β70 = −43115
128 ,

β61 = −926695
512 , β52 = −19736547

2048 , β43 = −419176415
8192 . Using these values and the column relation

Y 4 = 3XY + 45
4 Y

2 − 13X2Y + 65
4 XY

2 − 13
4 Y

3 − 22X2Y Y + 35
4 XY

3, we then successively compute
β34 = −8894873563

32768 , β25 = −188695052247
131072 , β16 = −4002599665619

524288 , β07 = −84900703109071
2097152 . We will impose

the Smul’jan criteria for positivity of a moment matrix extension (cf. Section 2). A calculation using
Mathematica’s W = LinearSolve[M(3), B(4)] shows that there existsW satisfying B(4) =M(3)W .
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As in Example 4.1, we next use the above relations forX4 and Y 4 in the columns of
(
B(4)T C(4)

)
to determine the moments for block C := C(4). The resulting recursively determined extensionM(4)
is positive semidefinite if and only if C � C′ := WTM(3)W . NowC33 := C51 = 49568350247

65536 ≈ 756353
and C′

33 = 1264843863151430003
1671544766464 ≈ 756692. Since C33 < C′

33, there is no positive, recursively generated
extension M(4), whence Theorem 4.3 implies that β(6) has no representing measure. �

In the examples of [CF5] [CF7], as in Example 4.18, when a positive, recursively determinate
M(n) fails to have a representing measure, it transpires that M(n) does not admit a positive,
recursively generated extension M(n + 1). Moreover, if a positive moment matrix M(n) admits
a flat extension M(n + 1), then it admits unique successive flat, positive, recursively generated
extensionsM(n+2),M(n+3), . . . (cf. [CF2] [CF10]). These observations and Theorem 4.3 suggest
the following question.

Question 4.19. If M(n) is recursively determinate and admits a positive, recursively generated
extension M(n + 1), does it admit successive positive, recursively generated extensions M(n + 2),
M(n+ 3), . . . (and a corresponding representing measure (cf. Theorem 4.3))?

5. Appendix

We present below the data for Example 4.17. We define a moment matrix M(4)(β) in
three real variables x, y, z. The moment data for each degree k (0 ≤ k ≤ 8) follows the degree-
lexicographic ordering of the monomials of degree k. Thus, for degree 3, the ordering is x3, x2y,
x2z, xy2, xyz, xz2, y3, y2z, yz2, z3, and the corresponding moments are presented in the order β300,
β210, β201, β120, β111, β102, β030, β021, β012, β003. In the sequel, s denotes

√
2.

Degree 0 moment: 32. Degree 1 moments: 82, 9, −12 + 2s. Degree 2 moments: 290, 21, −28 +
2s, 31, −1 + 3s, 106 − 4s. Degree 3 moments: 1186, 69, −96 + 2s, 67, −1 + 3s, 346 − 4s,
39, −7+ 5s, 23− 6s, −132+ 10s. Degree 4 monents: 5138, 261, −400+ 2s, 211, −1+ 3s, 1378−
4s, 87, −7+5s, 71−6s, −400+10s, 91, −7+9s, 81−10s, −7+15s, 610−24s. Degree 5 moments:
22882, 1029, −1800+2s, 787, −1+3s, 5938−4s, 279, −7+5s, 263−6s, −1584+10s, 199, −7+
9s, 225− 10s, −7 + 15s, 2178− 24s, 159, 19+ 17s, 101− 18s, −49+ 25s, 85− 36s, −1232+ 58s.
Degree 6 moments: 103730, 4101, −8368 + 2s, 3091, −1 + 3s, 26482− 4s, 1047, −7 + 5s, 1031−
6s, −7000+10s, 631, −7+9s, 801−10s, −7+15s, 9106−24s, 351, −19+17s, 293−18s, −49+
25s, 277−36s, −4368+58s, 331, −31+33s, 237−34s, −49+45s, 323−60s, −41+87s, 4642−140s.
Degree 7 moments: 476866, 16389, −39576+2s, 12307, −1+3s, 120466−4s, 4119, −7+5s, 4103−
6s, −32304 + 10s, 2359, −7 + 9s, 3105 − 10s, −7 + 15s, 40482− 24s, 1119, −19 + 17s, 1061 −
18s, −49 + 25s, 1045 − 36s, −18536 + 58s, 727,−31 + 33s, 669 − 34s, −49 + 45s, 889 − 60s,
−41+ 87s, 17842− 140s, 639, −67+ 65s, 413− 66s, −133+ 85s, 391− 108s, −287+ 145s, 359−
210s, −12080+338s. Degree 8 moments: 2218898, 65541, −189280+2s, 49171, −1+3s, 556018−
4s, 16407, −7 + 5s, 16391− 6s, −152200+ 10s, 9271, −7 + 9s, 12321− 10s, −7 + 15s, 185074−
24s, 4191, −19+ 17s, 4133− 18s, −49+ 25s, 4117− 36s, −84240+ 58s, 2311, −31+ 33s, 2397−
34s, 49 + 45s, 3203− 60s, −41 + 87s, 77554− 140s, 1407, −67 + 65s, 1181− 66s, −133 + 85s,
1159− 108s, −287 + 145s, 1127− 210s, −47544 + 338s, 1291, −127 + 129s, 861− 130s, −217 +
165s, 935− 204s, −287 + 261s, 1473− 350s, −239 + 507s, 42002− 816s.
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