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Abstract. We develop an approach to multivariable cubature based on positivity, extension,
and completion properties of moment matrices. We obtain a matrix-based lower bound on the
size of a cubature rule of degree 2n+1; for a planar measure µ, the bound is based on estimating
ρ(C) := inf{rank (T − C) : T Toeplitz and T ≥ C}, where C := C][µ] is a positive matrix
naturally associated with the moments of µ. We use this estimate to construct various minimal
or near-minimal cubature rules for planar measures. In the case when C = diag (c1, . . . , cn)
(including the case when µ is planar measure on the unit disk), ρ(C) is at least as large as the
number of gaps ck > ck+1.

1. Introduction

Let µ denote a positive Borel measure on Rd having convergent power moments up to at
least degree m. Corresponding to a multi-index i ≡ (i1, . . . , id) ∈ Zd+ with total degree |i| ≡
i1 + · · ·+ id ≤ m, let βi denote the i-th power moment of µ, i. e.,

βi =
∫
Rd

ti dµ(t) ≡
∫
Rd

ti11 . . . tidd dµ(t1, . . . , td),

where t = (t1, . . . , td) ∈ Rd; by assumption, the latter integral is absolutely convergent. A
cubature rule for µ of degree m and size N consists of nodes x1, . . . , xN in Rd and positive
weights ρ1, . . . , ρN such that ∫

Rd

p(t) dµ(t) =
N∑
k=1

ρk p(xk)

for each polynomial p in Pdm (the complex vector space of polynomials in real variables t1, . . . , td
with total degree at most m); note that ϑ(d,m) ≡ dimPdm =

(
d+m
m

)
.

Two recurrent themes in cubature literature are the estimation of the fewest nodes possible
in a cubature rule of prescribed degree, and the construction of rules with the fewest nodes
possible (cf., [C1], [Mo1] – [Mo3], [My1] – [My3], [My5], [My6], [P2], [R], [S], [Str1] – [Str4],
[SX], [X1] – [X3]). In [R], Radon introduced the technique of constructing minimal cubature
rules whose nodes are common zeros of multivariable orthogonal polynomials. In the 1960s and
1970s this approach was refined and extended by many authors, particularly Stroud [Str1] –
[Str4], Mysovskikh [My1] – [My3], [My5], [My6], and Möller [Mo1] – [Mo3]. More recently, Xu
[X1] – [X3] further extended this approach using multivariable ideal theory, and Putinar [P2] has
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presented a development of cubature based on operator dilation theory. In the present note, we
introduce still another approach to the estimation problem, based on positivity and extension
properties of the moment matrix M(bm2 c)[µ] that we associate to µ. This approach emerges
naturally from a recent study of multivariable truncated moment problems by R. Curto and the
first-named author (cf., [CF1], [CF2], [CF3]); for terminology and notation concerning moment
matrices, see below and Section 2.

Suppose µ (as above) is square positive, i. e., if f ∈ Pdbm2 c and f 6= 0, then
∫
|f |2 dµ > 0. For

this case, the following well-known result provides a basic lower estimate for the number of nodes
N in any cubature rule for µ of degree m (cf., [Str1], [C1], [S], [SX]). Namely, if µ is square
positive, then

N ≥ ϑ(d, bm
2
c).(1.1)

Following [SX], we say that a cubature rule is Gaussian if equality holds in (1.1). This terminology
is consistent with classical Gaussian quadrature for Lebesgue measure on [a, b] ⊂ R; indeed,
with d = 1 and m = 2n + 1, Gaussian quadrature provides a minimal cubature rule with
n+ 1

(
= ϑ(1, bm2 c)

)
nodes (cf., [Str4]).

For the general case, where µ is not necessarily square positive, the following Radon-Stroud
estimate (cf., [C1, Theorem 7.1]) provides a basic lower bound.

Theorem 1.1. ([R], [Str1]) N ≥ dimPdbm2 c|suppµ.

Here, for k > 0, Pdk |suppµ := {p|suppµ : p ∈ Pdk}; note that dimPdk |suppµ ≤ dimPdk , and in
the square positive case, dimPdk |suppµ = dimPdk .

Assume now that µ is square positive, with finite moments of all orders, and m = 2n+ 1. A
fundamental result of Mysovskikh [My5] characterizes the existence of Gaussian rules.

Theorem 1.2. ([My5], cf., [X2, Theorem 5.3]) A square positive measure µ on Rd admits a
Gaussian rule of degree 2n+ 1 if and only if the orthogonal polynomials of degree n+ 1 in L2(µ)
have

(
n+d
d

)
common zeros (which then form the support of such a rule).

For d > 1, Gaussian rules are uncommon. Indeed, Möller [Mo1] – [Mo3] developed a general
theory of lower bounds and obtained several types of estimates for the size N of a cubature rule
of odd degree 2n+ 1. Some estimates are based on ideal theory and orthogonal polynomials, e.g.
[Mo3, Theorem 2] (cf. [C1, Theorem 8.6] [CMS, Theorem 11]). Another type of estimate, valid
when µ is centrally symmetric, (i. e., βi = 0 whenever |i| is odd), shows that

N ≥

2 dimGn − 1 if n is even and 0 is a node,

2 dimGn otherwise,

where G2k is the space of even polynomials in Pd2k+1|suppµ and G2k+1 is the space of odd
polynomials in Pd2k+1|suppµ [Mo3, Theorem 3] (cf. [C1, Theorem 8.3] [CMS, Theorem 13]).
These estimates are particularly concrete in the planar case of centrally symmetric measures,
where both types of estimates may be expressed as follows.

Theorem 1.3. (Möller [Mo2]) If µ is a square positive, centrally symmetric measure on R2, then
the size N of any cubature rule for µ of degree 2n+ 1 satisfies

N ≥ (n+ 1)(n+ 2)
2

+ bn+ 1
2
c.
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It follows immediately from Theorem 1.3 that µ admits no Gaussian rule of degree 2n + 1; for
classes of non-centrally symmetric measures on R2 with Gaussian rules of arbitrarily large degree,
see Schmid-Xu [SX] (cf. also Schmid [S]). In [Mo2], Möller also characterized the cubature rules
that attain the lower bounds of [Mo2] (cf. Section 5 below); subsequently, the theory of lower
estimates and minimal rules developed in several directions, e. g., [Mo3], [CS], [X1] – [X3], [S];
many of these developments are discussed in the surveys of Xu [X2], Cools [C1], and Cools et.
al. [CMS].

Our moment matrix approach is based on the observation that for a positive Borel measure
µ on Rd with convergent moments βi =

∫
ti dµ, |i| ≤ m, the existence of a cubature rule for

µ of degree m is equivalent to the existence of a finitely atomic representing measure ν in the
following Truncated Multivariable Moment Problem for β ≡ β(m)[µ] = {βi}|i|≤m:

βi =
∫
ti dν, |i| ≤ m, ν ≥ 0, supp ν ⊂ Rd.(1.2)

Following a line of results beginning with Tchakaloff’s Theorem [T], and including generalizations
due to Mysovskikh [My1] and Putinar [P1], in [CF5, Theorem 1.4] it was proved that if µ has
convergent moments up to at least order m+ 1, then µ admits an inside cubature rule of degree
m, with size ≤ 1 + dim(Pdm|suppµ). (An inside rule is one for which each node is contained in
suppµ.)

Let µ be a positive Borel measure on Rd with convergent moments up to at least degree
m = 2n. The moment data β ≡ β(2n)[µ] correspond to a moment matrix M(n) ≡ MRd(n)[µ]
defined as follows. Consider the basis Bdn for Pdn consisting of the degree lexicographic ordering of
monomials (for d = 2, the ordering is 1, x1, x2, x

2
1, x1x2, x

2
2, . . . , x

n
1 , x

n−1
1 x2, . . . , x

n
2 ); for p ∈ Pdn,

let p̂ denote the coefficient vector of p relative to Bdn. M(n) has ϑ(d, n) rows and columns and is
uniquely determined by

〈M(n)p̂, q̂〉 =
∫
pq̄ dµ, p, q ∈ Pdn.(1.3)

See Section 2 for other descriptions of M(n), which we sometimes denote as M(n)[µ] to emphasize
µ; since µ ≥ 0, then (1.3) immediately implies that M(n)[µ] ≥ 0 (cf., [CF2, (3.2), p. 15]).

Our first moment matrix estimate concerns the “even” case, m = 2n.

Proposition 1.4. (Cf. Proposition 3.1.) Let µ be a positive Borel measure on Rd with convergent
moments up to at least degree m = 2n. The size N of any cubature rule for µ of degree m satisfies
N ≥ rankM(n)[µ].

If µ is square positive, then M(n) is invertible (cf. Proposition 2.9 or (1.3)), so rankM(n) =(
n+d
d

)
, whence Proposition 1.4 recovers (1.1) for m even. In the general case, we show in Section 2

(Proposition 2.8 below) that rankM(n)[µ] = dimPdn|suppµ, so Proposition 1.4 recovers the
“even” case of the Radon-Stroud lower bound in Theorem 1.1. The following result shows that
the estimate established in Proposition 1.4 is sharp.

Theorem 1.5. Let µ be a positive Borel measure on Rd with convergent moments up to at least
degree 2n. Then µ has a cubature rule of degree 2n with (minimal) size N = rankM(n)[µ] if and
only if M(n)[µ] can be extended to a moment matrix

M(n+ 1) ≡

(
M(n) B(n+ 1)

B(n+ 1)∗ C(n+ 1)

)
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satisfying rankM(n + 1) = rankM(n)[µ]; equivalently, there is a choice of “new moments” of
degree 2n+1 and a corresponding matrix W , such that M(n)W = B(n+1) (i. e., RanB(n+1) ⊂
RanM(n)) and W ∗M(n)W is a moment matrix block (of degree 2n+ 2).

For planar Lebesgue measure restricted to such basic sets as a square, disk, or triangle, Gauss-
ian rules of degree 2n, having (n + 1)(n + 2)/2 nodes, exist only for very small values of n (cf.
[C1] [C2]). By contrast, the measures studied by Schmid and Xu [SX] (op. cit.), have Gaussian
rules of all degrees and are supported on a region of the plane with nonempty interior. Recently,
we showed in [CF4] and [CF8] that if µ (as in Theorem 1.5) is supported in a parabola or ellipse
in the plane, then µ always admits a Gaussian rule of degree 2n with size N = rankM(n)[µ].

In the sequel, we refer to a rank-preserving extension as described above as the flat moment
matrix extension of M(n) determined by B(n+1), denoted by [M(n);B(n+1)] (cf. Theorem 2.2
and Corollary 2.7). In the case of the real line, d = 1, a moment matrix is simply a Hankel
matrix; in the planar case, d = 2, the block C(n+1) is Hankel. [I, Theorem 11.1] gives a formula
for the rank of an arbitrary Hankel matrix, and in [I, page 53] rank-preserving Hankel extensions
of Hankel matrices are referred to as singular extensions . In the case of the complex plane C
that we consider below, a moment matrix block C(n+ 1) is a Toeplitz matrix, and [I] contains a
theory for rank-preserving Toeplitz extensions of Toeplitz matrices, and a formula for the rank
of an arbitrary Toeplitz matrix [I, Theorem 15.1].

We prove Theorem 1.5 in Section 3 (Theorem 3.2). The following example illustrates how The-
orem 1.5 can be used to construct minimal cubature rules; for certain details of the computational
methods that we use, see Section 2.

Example 1.6. We use Theorem 1.5 to describe a family of 6-node (minimal) cubature rules of
degree 4 for planar measure µ ≡ µ2 restricted to the unit square S = [0, 1] × [0, 1]. We have

βij =
(

1
i+ 1

)(
1

j + 1

)
, so

M(2) ≡M(2)[µ] =



1 1/2 1/2 1/3 1/4 1/3
1/2 1/3 1/4 1/4 1/6 1/6
1/2 1/4 1/3 1/6 1/6 1/4
1/3 1/4 1/6 1/5 1/8 1/9
1/4 1/6 1/6 1/8 1/9 1/8
1/3 1/6 1/4 1/9 1/8 1/5


.

From Theorem 1.5, a rank-preserving moment matrix extension M(3) has the form

M(3) =

(
M(2) B(3)
B(3)∗ C(3)

)
,

where

B(3) =



1/4 1/6 1/6 1/4
1/5 1/8 1/9 1/8
1/8 1/9 1/8 1/5
u a v b

a v b z

v b z c


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has the property that C ≡ B(3)∗M(2)−1B(3) is a Hankel matrix (which is the form of a moment
matrix block for d = 2, cf. Section 2). The preceding system is too difficult to solve in general,
so to simplify the system we assign “correct” values to a ≡ β41 = 1/10, b ≡ β23 = 1/12, and
c ≡ β05 = 1/6. With these values, C is Hankel if and only if C31 = C22 and C42 = C33, i.e.,

6481− 32400u− 51840v + 388800uv − 311040v2 − 32400z + 388800vz = 0,

−3995 + 33696v − 388800v2 + 51840z + 311040vz − 388800z2 = 0.

These equations can be solved for u and z in terms of v provided (126 −
√

7)/1512 ≤ v ≤
(126 +

√
7)/1512 (approximately, 0.0815835 ≤ v ≤ 0.0850832). For a numerical example, we set

v = (126 +
√

7)/1512. In M(3), the columns are labelled 1, X, Y,X2, XY, Y 2, X3, X2Y,XY 2, Y 3

(cf. Section 2). Since rankM(3) = rankM(2) and M(2) > 0, we can compute polynomials
qi(x, y) (1 ≤ i ≤ 4) of degree 2 such that in the column space of M(3) we have X3 = q1(X,Y ),
X2Y = q2(X,Y ), XY 2 = q3(X,Y ), Y 3 = q4(X,Y ). The variety ofM(3), V ≡ V(M(3)), is the set
of common zeros of p1(x, y) = x3−q1(x, y), p2(x, y) = x2y−q2(x, y), p3(x, y) = xy2−q3(x, y), and
p4(x, y) = y3−q4(x, y) (cf. Section 2), and a calculation shows that V = {zi ≡ (xi, yi)}5i=0, where
z0 ≈ (0.940959, 0.0590414), z1 ≈ (0.311018, 0.138127), z2 ≈ (0.00142475, 0.5), z3 ≈ (0.734, 0.5),
z4 ≈ (0.311018, 0.861873), z5 ≈ (0.940959, 0.940959). Since cardV = rankM(3) = rankM(2) =
6, it now follows from Theorem 1.5 and the “real” version of Corollary 2.4 that µ has a (minimal)
6-node cubature rule of degree 4 of the form ν =

∑5
i=0 ρiδzi . The densities ρi may be computed

from the Vandermonde-type equation V (ρ0, ρ1, . . . , ρ5)t = (β00, β10, β01, β20, β11, β02)t, where

V =



1 1 1 1 1 1
x0 x1 x2 x3 x4 x5

y0 y1 y2 y3 y4 y5

x2
0 x2

1 x2
2 x2

3 x2
4 x2

5

x0y0 x1y1 x2y2 x3y3 x4y4 x5y5

y2
0 y2

1 y2
2 y2

3 y2
4 y2

5


.

Indeed, since M(2) is invertible, the real version of Proposition 2.1 shows that V is invertible,
and we find ρ0 = ρ5 ≈ 0.0642857, ρ1 = ρ4 ≈ 0.22272727, ρ2 ≈ 0.09854228, ρ3 ≈ 0.3274317. Note
that each node of ν is inside S, and the same property holds if we use v = (126−

√
7)/1512; we

have not examined whether the same holds for every intermediate value of v. 2

We next consider the “odd” case, where µ is a positive Borel measure on Rd with convergent
moments up to at least degree m = 2n + 1. The matrix M(n) (corresponding to moment data
β(2n)) admits a block decomposition M(n) = (Mij)0≤i,j≤n, where the entries of Mij are the
moments βk of total degree |k| = i + j (cf., Section 2). Since m = 2n + 1, we may similarly
define blocks Mi,n+1, 0 ≤ i ≤ n, and we set B(n+ 1) ≡ B(n+ 1)[µ] =

(
Mi,n+1

)
0≤i≤n

. If µ has

a cubature rule of degree 2n + 1, then there is a matrix W such that M(n)W = B(n + 1) (cf.
Proposition 2.6), in which case C](n + 1) ≡ C](n + 1)[µ] := W ∗M(n)W is independent of W
satisfying M(n)W = B(n+ 1) (cf. the proof of Theorem 3.3). Now C](n+ 1) has the size of any
d-dimensional moment matrix block of the form H = Mn+1,n+1. For any positive matrix S of
this size, we set

ρ(S) = inf{rank (H − S) : H = Mn+1,n+1 ≥ S}.



6 LAWRENCE FIALKOW AND SRDJAN PETROVIC

The following result (which is proved in Section 3 as Theorem 3.3) is our main existence theorem
concerning minimal cubature rules of odd degree.

Theorem 1.7. Let µ be a positive Borel measure on Rd with convergent moments up to at least
degree 2n+ 1. The size N of any cubature rule for µ of degree 2n+ 1 satisfies

N ≥ N [n, µ] ≡ rankM(n)[µ] + ρ(C](n+ 1)[µ]).

Further, let H = Mn+1,n+1 be a moment matrix block satisfying H ≥ C](≡ C](n + 1)[µ]) and
rank (H − C]) = ρ(C]), and set

MH(n+ 1) =

(
M(n) B(n+ 1)[µ]

B(n+ 1)[µ]∗ H

)
.

Then µ admits a cubature rule of degree 2n + 1 with minimal size N [n, µ] if and only if, for
some H as above, MH(n+ 1) admits a rank-preserving moment matrix extension M(n+ 2) (cf.,
Theorem 1.5).

In Theorem 1.11 (below) we show that for µ ≡ µD, Lebesgue measure on the closed unit
disk, the estimate for N in Theorem 1.7 coincides with Möller’s estimate in Theorem 1.3. The
exact relationship between the estimate in Theorem 1.7 and the lower bound in [Mo2] is an open
problem. Indeed, there is an extensive literature concerning cases where Möller’s lower bounds
can be achieved or cases where the estimates cannot be realized (cf. [Mo1] [Mo3] [CH] [CS]
[MP] [S] [SX] [VC] [X3]); by contrast, we have concrete estimates for ρ(C]) in only relatively
few cases (discussed below), so at this point it is difficult to ascertain when the lower bound of
Theorem 1.7 is attainable, and also difficult to compare our lower bound to those of Möller in
[Mo1] – [Mo3]; we believe the main value of Theorem 1.7 is that it affords an alternate approach
to lower estimates and the calculation of cubature rules, based on constructive matrix methods.

Example 1.8. We use Theorem 1.7 to compute a minimal, 4-node, cubature rule of degree 3
for planar measure µ ≡ µ2 on the unit square S. We have

M(1) ≡M(1)[µ] =

 1 1/2 1/2
1/2 1/3 1/4
1/2 1/4 1/3


and

B(2) ≡ B(2)[µ] =

1/3 1/4 1/3
1/4 1/6 1/6
1/6 1/6 1/4

 ,

whence

C] =

7/36 1/8 1/9
1/8 5/48 1/8
1/9 1/8 7/36

 .

Since

H ≡

7/36 1/8 1/9
1/8 1/9 1/8
1/9 1/8 7/36


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satisfies H ≥ C] and rank (H − C]) = 1, we have ρ = 1, so any cubature rule for µ of degree 3
has at least 4 (= N [1, µ]) nodes. We denote the columns of

M(2) ≡

(
M(1) B(2)
B(2)∗ H

)

by 1, X, Y,X2, XY, Y 2 and observe that X2 = −(1/6) 1+X and Y 2 = −(1/6) 1+Y . For any cu-
bature rule ν of degree 3 for which M(2)[ν] = M(2), M(3) ≡M(3)[ν] is recursively generated (see
Section 2), so in the column space of M(3)[ν], with columns labelled as 1, X, Y,X2, XY, Y 2, X3,
X2Y,XY 2, Y 3, we must have relations X3 = −(1/6)X + X2, X2Y = −(1/6)Y + XY , XY 2 =
−(1/6)X+XY , Y 3 = −(1/6)Y +Y 2. These relations immediately determine β05 = β50 = 11/72,
β14 = β41 = 7/12, β23 = β32 = 1/12. With these values,

W ≡



−1/6 0 0 −1/6
5/6 0 −1/6 0
0 −1/6 0 5/6
0 0 0 0
0 1 1 0
0 0 0 0


satisfies M(2)W = B(3), and

C ≡ B(3)∗W =


13/108 11/144 7/108 1/16
11/144 7/108 1/16 7/108
7/108 1/16 7/108 11/144
1/16 7/108 11/144 13/108


is Hankel. Thus

M(3) ≡

(
M(2) B(3)
B(3)∗ C

)
is a rank-preserving moment matrix extension of M(2). To compute a 4-node (minimal) rule of
degree 3 for µ (in accord with Theorem 1.7), we use W to note the following column relations
in M(3): X3 = −(1/6) 1 + (5/6)X, X2Y = −(1/6)Y + XY , XY 2 = −(1/6)X + XY , Y 3 =
−(1/6) 1+(5/6)Y . Now the variety associated with x3 = −(1/6) +(5/6)x, x2y = −(1/6) y+xy,
xy2 = −(1/6)x+ xy, y3 = −(1/6) + (5/6) y consists of 4 points, z0 = ((1/6) (3−

√
3), (1/6) (3−√

3)), z1 = ((1/6) (3−
√

3), (1/6) (3+
√

3)), z2 = ((1/6) (3+
√

3), (1/6) (3−
√

3)), z3 = ((1/6) (3+√
3), (1/6) (3 +

√
3)). It follows from the “real” version of Corollary 2.4 that µ admits a cubature

rule of the form ν =
∑3
i=0 ρiδzi . To compute the densities ρi, we set zi = (xi, yi) (0 ≤ i ≤ 3)

and let

V =


1 1 1 1
x0 x1 x2 x3

y0 y1 y2 y3

x0y0 x1y1 x2y2 x3y3

 ;

since 1, X, Y,XY is a basis for the column space of M(2), the real version of Proposition 2.1
implies that V is invertible. Since V (ρ0, ρ1, ρ2, ρ3)t = (β00, β10, β01, β20)t = (1, 1/2, 1/2, 1/4)t,
then ρi = 1/4 (0 ≤ i ≤ 3). 2
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Since ρ(·) ≥ 0 and rankM(n)[µ] = dimPdn|suppµ (cf. Proposition 2.8), Theorem 1.7 recovers
the “odd” case of the Radon-Stroud estimate in Theorem 1.1. Theorem 1.7 is a moment matrix
analogue of Möller’s estimate [Mo1], [Mo2]. In particular, we have the following analogue of
Theorem 1.2 concerning the existence of Gaussian rules of odd degree.

Theorem 1.9. Let µ be a positive Borel measure on Rd with convergent moments up to at least
degree 2n+ 1, and let M = M(n)[µ], B = B(n+ 1)[µ]. Then µ admits a cubature rule of degree
2n+ 1 with minimal size rankM(n)[µ] if and only if
(i) RanB(n+ 1)[µ] ⊂ RanM(n)[µ], so that B = MW for some matrix W , and
(ii) W ∗MW (which is independent of W satisfying B = MW ) has the form of a moment matrix
block C(n+ 1).

From Theorem 1.9, one can readily recover classical Gaussian quadrature on R. Indeed, let µ
be a square positive Borel measure on an interval I ⊂ R, with convergent moments βi =

∫
I
ti dµ,

(0 ≤ i ≤ 2n+1). MR(n)[µ] is the (n+1)×(n+1) Hankel matrix H(n) ≡ (βi+j)0≤i,j≤n. Since H(n)
is invertible and C(n+ 1) is a 1× 1 matrix, the conditions of Theorem 1.9 are satisfied trivially.
In the unique flat extension H(n + 1) of H(n), if we label the columns as 1, T, T 2, . . . , Tn+1,
then we have a dependence relation Tn+1 = c01 + c1T + · · · + cnT

n. It follows from [CF1] (or
Theorem 2.5 below) that the corresponding polynomial tn+1−(c0 +c1t+ · · ·+cntn), has precisely
n+1 real roots, {ti}ni=0 (⊂ I), and that µ has a minimal cubature rule of degree 2n+1 of the form
ν =

∑n
i=0 ρi δti , where the densities ρi > 0 can be computed from the Vandermonde equation

V (t0, . . . , tn)(ρ0, . . . , ρn)t = (β0, . . . , βn)t.
We prove Theorem 1.9 in Section 3, Theorem 3.4. Condition (i) of Theorem 1.9 is satisfied if µ

has convergent moments of degree 2n+ 2, for in that case, M(n+ 1)[µ] ≥ 0 (cf. Proposition 2.6).
For the case when µ is square positive, so that M(n)[µ] is invertible, Theorem 1.9 seems to
give a computationally simpler test for the existence of a Gaussian rule than does Theorem 1.2;
indeed, one only needs to be able to compute the moment data and to then check whether or
not C](n+ 1)[µ]

(
= B(n+ 1)[µ]∗M(n)[µ]−1B(n+ 1)[µ]

)
has the form of a moment matrix block

Mn+1,n+1. For planar measures (d = 2), it is easy to see that a moment matrix block Mn+1,n+1

is simply an (n+ 2)× (n+ 2) Hankel matrix.
In general, it may be difficult to compute ρ(·). In Section 4 we focus on the case where

µ ≡ µD is planar Lebesgue measure restricted to the closed unit disk D, and we show that the
estimate in Theorem 1.7 for µD coincides with Moller’s estimate in Theorem 1.3. In this case,
instead of working with the truncated R2 moment problem and a moment matrix corresponding
to β(2n)[µ], it is convenient to employ the equivalent truncated complex moment problem for
measures on the complex plane C. More generally, the truncated R2d moment problem for a real
sequence β(2n) is equivalent to the truncated Cd moment problem for a corresponding complex
sequence γ(2n) ≡ {γij}i,j∈Zd+,|i|+|j|≤n. This problem concerns the existence of a positive Borel
measure µ on Cd such that γij =

∫
z̄izj dµ, (|i| + |j| ≤ 2n), where z ≡ (z1, . . . , zd) ∈ Cd.

Corresponding to γ(2n) is the complex moment matrix MCd(n) ≡ MCd(n)(γ) (cf. Section 2).
Due to the equivalence of the moment problems for β(2n) and γ(2n) (cf., [CF4, Proposition 1.12],
[CF7, Section 2], [StSz, Appendix]), Theorems 1.7 and 1.9 admit exact analogues when M(n)[µ]
is replaced by MCd(n)[µ]. To see this, replace B(n+1)[µ] by BCd(n+1)[µ] and replace C](n+1)[µ]
by C]Cd(n + 1)[µ] ≡ W ∗MCd(n)[µ]W (for W satisfying BCd(n + 1)[µ] = MCd(n)[µ]W ). We now
define ρCd(·) by analogy with ρ(·), but using complex moment matrix blocks Mn+1,n+1. The
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equivalence of the moment problem on R2d for β(2n) with the moment problem on Cd for γ(2n)

readily implies rankMCd(n)[µ] = rankM(n)[µ] and ρCd(C]Cd(n + 1)[µ]) = ρ(C](n + 1)[µ]). The
complex version of Theorem 1.7 now states that the size N of any cubature rule for µ of degree
2n+ 1 satisfies

N ≥ rankMCd(n)[µ] + ρCd(C]Cd(n+ 1)[µ]),

and the complex version of Theorem 1.9 may be formulated similarly. For measures on the
complex plane C, a moment matrix block Mn+1,n+1 is simply an (n + 2) × (n + 2) Toeplitz
matrix; moreover, C]C(n + 1) always has a weak Toeplitz property: in each diagonal a1, . . . , ap,
we have a1 = ap, a2 = ap−1, etc. [CF2, Proposition 2.3].

Returning to the case µ ≡ µD, in Proposition 4.5, for m = 2n+ 1, we show that C]C(n+ 1)[µD]
is a positive diagonal matrix, diag (c1, . . . , cn+2); a gap in diag (c1, . . . , cn+2) is an occurrence of
ci > ci+1. Our main computational result, which follows, shows how to estimate ρCd(C) for a
positive diagonal matrix C.

Theorem 1.10. (cf. Theorem 4.1.) Let C = diag (c1, . . . , cp) be a positive diagonal p×p matrix.
Suppose there is a positive integer q and a strictly increasing sequence {nk}qk=1 of positive integers
such that cnk > cnk+1 for 1 ≤ k ≤ q. If T is a positive Toeplitz matrix such that T −C ≥ 0 then
rank (T − C) ≥ q; thus ρCd(C) is at least as large as the number of gaps in C.

Proposition 4.5 also shows that C]C(n + 1)[µD] has precisely bn+ 1
2
c gaps. From the preceding

discussion, and combining the complex version of Theorem 1.7 with Theorem 1.10, we obtain the
following lower estimate for µD cubature rules.

Theorem 1.11. (cf. Theorem 4.4.) ρC(C]C(n + 1)[µD]) ≥ bn+ 1
2
c; the size N of any cubature

rule for µD of degree 2n+ 1 satisfies N ≥ (n+ 1)(n+ 2)
2

+ bn+ 1
2
c.

Note that µD is centrally symmetric. Theorem 1.11 shows that for µ = µD, the lower estimate in
Theorem 1.7 coincides with Möller’s estimate in Theorem 1.3. Whether the above estimate for ρC
can be extended to general centrally symmetric planar measures (so as to recover Theorem 1.3)
is an open question. As we discuss in Section 5, other results of Möller in [Mo2] imply that
Theorem 1.11 is not sharp when n is even, since the lower bound for N can be increased by at
least 1 in this case. Whether, for n even, we can improve the estimate for ρC(C]C(n + 1)[µD] is
another open problem.

If µ 6= µD it can still happen (although not very often) that C]C[µ] is diagonal, even in cases
where µ is not centrally symmetric. More generally, Theorem 1.10 can be applied indirectly in a
variety of cases in which C ≡ C]C(n+1)[µ] is not diagonal. One obvious case is when C = D+T0

with D a positive diagonal matrix and T0 Toeplitz. In this case, ρC(C) = ρC(D). Indeed, if T
is Toeplitz and T − C ≥ 0, then rank (T − C) = rank ((T − T0) −D), whence ρC(C) ≥ ρC(D);
conversely, if T is Toeplitz and T ≥ D, then T +T0 ≥ C and rank (T −D) = rank ((T +T0)−C),
whence ρC(D) ≥ ρC(C). Next, if the compression of C to the first k rows and columns is of the
form D+ T0 (as above), then ρC(C) ≥ ρC(D). Moreover, the same conclusion can be obtained if
the compression of C is to rows and columns i1, i2, . . . , ik as long as the corresponding compression
of any Toeplitz matrix T is still Toeplitz. In fact, it is not hard to see that more is true.

Proposition 1.12. Let C be a positive N ×N matrix and suppose that U is a unitary operator
on CN such that, for every N×N Toeplitz matrix T , the compression of U∗TU to the first k rows
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and columns is Toeplitz. Let Ck denote the corresponding compression of U∗CU , and suppose
that Ck = D + T0, with T0 a Toeplitz matrix, and D a positive diagonal matrix with at least q
gaps. Then ρC(C) ≥ q.

To illustrate the compression technique, consider an example of C](6) that we have encountered
while studying cubature rules of degree 9 for µD (cf. Section 5). Let C](6) be of the form

a z r x v p q

z b z r y v p

r z c z s y v

x r z c z r x

v y s z c z r

p w y r z b z

q p v x r z a


where 0 ≤ a < b < c. By considering the compression of C] to rows and columns 5, 6, and 7 we
see that ρC(C]) ≥ 2.

Section 5 illustrates how moment matrix techniques can be used to construct certain minimal
cubature rules. In [R] Radon introduced the method of constructing multivariable cubature rules
supported on the common zeros of orthogonal polynomials. Using an approach based on matrix
theory, Stroud [Str2], [Str4, Section 3.9, p. 88] constructed a family of 2d-node cubature rules of
degree 3 in Rd for a class including centrally symmetric measures; Mysovskih [My1] subsequently
showed that these rules are precisely the minimal rules of degree 3 for this class. In Example 5.1,
we compute ρC(C]C(2)[µ]) and characterize the minimal rules of degree 3 for a planar measure
µ ≥ 0. In Proposition 5.2 we give a new description of the minimal rules of degree 3 in the
centrally symmetric case; Example 5.3 illustrates our method with planar measure on the square
C2 = [−1, 1]× [−1, 1].

In Proposition 5.4, we show that a planar measure µ satisfies ρC(C]C(3)[µ]) ≤ 1. Among
Radon’s results in [R] is the description of certain 7-node minimal rules of degree 5 for a wide
class of planar measures (cf., [Str4, Section 3.12]). In Theorem 5.5 we use Proposition 5.4 to
completely parametrize the (minimal) 7-node rules of degree 5 for µD. In a companion paper
by C. V. Easwaran and the authors [EFP] we use moment matrix methods to resolve an open
problem of [C2] by showing that among the 10-node (minimal) cubature rules of degree 6 for µD,
there is no inside cubature rule (although there are many minimal rules with 9 points inside). A
12-node (inside, minimal) rule for µD of degree 7 is cited in [Str4, S2:7–1, pg. 281] (cf. [P]). In
Proposition 5.8 we develop a new family of 12-node degree 7 rules for µD. Proposition 5.10 gives
a new proof that there is no degree 9 rule for µD̄ with as few as 17 points. The first example
of a degree 9 rule for µD with as few as 19 nodes is due to Albrecht [A]. In Proposition 5.12
we show how Albrecht’s rule (and a related infinite family of 19-node rules) can be derived
by a 2-step moment matrix extension M(5) → M(6) → M(7), where rankM(5) = 18 and
rankM(6) = rankM(7) = 19. All of the preceding examples concern planar measures, but the
results of Section 3 apply as well to measures on Rd. Of course, for d > 2 it is considerably
more difficult to compute moment matrix extensions than it is for d = 2. In Example 5.13 we
construct a family of minimal cubature rules of degree 2 for volume measure on the unit ball in
R3.
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We conclude this section by comparing and contrasting our approach to cubature with some
established approaches. In case suppµ is symmetric, one effective strategy for constructing
a cubature rule is to design a highly symmetric (if sometimes non-minimal) distribution of the
nodes, reflecting the symmetry in suppµ (cf. [Str4], [HP], [CK], [C1]). By contrast, our approach
does not take advantage of symmetry, and is applied in the same manner whether or not suppµ
displays symmetry; in [CF4, Example 4.12] moment matrices were used to give a complete
description of the 5-node (minimal) cubature rules of degree 4 for arclength measure on the
parabolic arc y = x2, 0 ≤ x ≤ 1, where symmetry is not available; further, techniques from the
K-moment problem [CF6] were used to characterize which of these rules are supported inside
the arc.

As noted above, Radon [R] pioneered the technique of constructing cubature rules supported
on the common zeros of orthogonal polynomials in L2(µ). By contrast, in [CF2] a representing
measure arises from the spectral measure of a normal operator associated with a flat extension.
Thus, in our approach, orthogonal polynomials whose common zeros support a cubature rule
emerge as a by-product of the flat extension which establishes the existence of the rule. The
analogue of the set of common zeros of orthogonal polynomials is the variety corresponding to
a flat extension [M(n);B(n + 1)], determined by B(n + 1) = M(n)W (cf. Theorem 2.4). The
polynomials which determine the variety of M(n + 1) are very easy to compute, for they come
from dependence relations in the columns of M(n) and from dependence relations in the columns
of
(
M(n) B(n+ 1)

)
, relations that are immediately available from W . (Indeed, the referee

has kindly pointed out that W provides the coefficients for a Jackson basis for the space of
orthogonal polynomials of degree n + 1 (cf. [Str4, page 67]).) Once a flat extension is known,
it is therefore usually straightforward to compute the nodes and densities of the corresponding
cubature rule. The main issue in our approach thus concerns the existence of a flat extension
M(n+ 1) or, in the case of a non-“minimal” rule, the existence of a sequence of rank increasing
positive extensions M(n+ 1), . . . ,M(n+ k), followed by a flat extension M(n+ k+ 1); although
a number of concrete existence theorems are known (cf. [CF2] – [CF7], [F3]), much remains to
be learned about moment matrix extensions.

2. Moment matrices

Let Cdr [z, z̄] denote the space of polynomials with complex coefficients in the indeterminates
z ≡ (z1, . . . , zd) and z̄ ≡ (z̄1, . . . , z̄d), with total degree at most r; thus dimCdr [z, z̄] = η(d, r) =(
r+2d

2d

)
. For i ≡ (i1, . . . , id) ∈ Zd+, let |i| = i1 + · · ·+ id and let zi = zi11 . . . zidd . Given a complex

sequence γ ≡ γ(s) = {γij}i,j∈Zd+ , |i|+ |j| ≤ s, the truncated complex moment problem for γ entails
determining conditions for the existence of a positive Borel measure µ on Cd such that

γij =
∫
z̄izj dµ, |i|+ |j| ≤ s.(2.1)

A measure µ as in (2.1) is a representing measure for γ.
In the sequel we focus on s = 2n; in this case, γ determines a moment matrix M(n) ≡

MCd(n)(γ) that we next describe. The size of M(n) is η(d, n), with rows and columns denoted
by {Z̄iZj : i, j ∈ Zd+, |i|+ |j| ≤ n}, following the degree lexicographic order of the monomials in
Cdn[z, z̄]. (For example, with d = n = 2, this order is 1, Z1, Z2, Z̄1, Z̄2, Z

2
1 , Z1Z2, Z1Z̄1, Z1Z̄2, Z

2
2 ,
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Z2Z̄1, Z2Z̄2, Z̄
2
1 , Z̄1Z̄2, Z̄

2
2 .) The entry of M(n) in row Z̄iZj , column Z̄kZl is γk+j,i+l, (|i| +

|j|, |k|+ |l| ≤ n).
For p ∈ Cdn[z, z̄], p(z, z̄) =

∑
r,s∈Zd+, |r|+|s|≤n

arsz̄
rzs, we set p̂ = (ars). The Riesz functional

Λ ≡ Λγ : Cd2n[z, z̄] → C is defined by Λ(
∑
brsz̄

rzs) =
∑
brsγrs. The matrix Md

n(γ) is uniquely
determined by

〈Md
n(γ)f̂ , ĝ〉 = Λγ(fḡ), (f, g ∈ Cdn[z, z̄]).(2.2)

If γ has a representing measure µ, then Λγ(fḡ) =
∫
fḡ dµ; in particular, 〈Md(n)(γ)f̂ , f̂〉 =∫

|f |2 dµ ≥ 0, so Md(n)(γ) is positive semidefinite in this case.
Corresponding to p ∈ Cdn[z, z̄], p(z, z̄) =

∑
arsz̄

rzs (as above), we define an element in
Col M(n) by p(Z, Z̄) =

∑
arsZ̄

rZs; the following result will be used in the sequel to locate
the nodes of cubature rules.

Proposition 2.1. ([CF2, (7.4)]) Suppose µ is a representing measure for γ(2n) and for p ∈
Cdn[z, z̄], let Z(p) = {z ∈ Cd : p(z, z̄) = 0}. Then suppµ ⊂ Z(p) if and only if p(Z, Z̄) = 0 in
Col M(n).

It follows from Proposition 2.1 that if γ(2n) has a representing measure, then Md(n)(γ) is
recursively generated in the following sense:

p, q, pq ∈ Cdn[z, z̄], p(Z, Z̄) = 0 ⇒ (pq)(Z, Z̄) = 0.(2.3)

We define the variety of γ (or the variety of M(n)(γ)) by V(γ) = ∩{Z(p) : p ∈ Cdn[z, z̄], p(Z, Z̄) =
0}. Proposition 2.1 implies that if µ is a representing measure for γ(2n), then suppµ ⊂ V(γ) and,
moreover, that

cardV(γ) ≥ card suppµ ≥ rankMd
C(n)(γ),(2.4)

(cf., [CF7, (7.6)]).
The following result characterizes the existence of “minimal”, i. e., rankM(n)-atomic, repre-

senting measures.

Theorem 2.2. ([CF2, Corollary 7.9 and Theorem 7.10]) γ(2n) has a rankMd
C(n)(γ)-atomic rep-

resenting measure if and only if M(n) is positive semidefinite and M(n) admits an extension to
a moment matrix M(n+1) satisfying rankM(n+1) = rankM(n). In this case, M(n+1) admits
unique successive rank-preserving positive moment matrix extensions M(n+2),M(n+3), . . . and
there exists a rankM(n)-atomic representing measure for M(∞).

We refer to a rank-preserving extension M(n+ 1) of a positive moment matrix M(n) as a flat
extension; such an extension is positive (cf. Corollary 2.7). For planar moment problems (d = 1),
the following result describes a concrete procedure for computing the unique rankM(n)-atomic
representing measure corresponding to the flat extension M(n+ 1) of M(n)(γ) in Theorem 2.2.

Theorem 2.3 (Flat Extension Theorem). ([CF6, Theorem 2.1]) Suppose M(n) = MC(n)(γ)
is positive semidefinite and admits a flat extension M(n + 1), so that Zn+1 = p(Z, Z̄) in
Col M(n + 1) for some p ∈ Cn[z, z̄]. Then there exist unique successive flat (positive) exten-
sions M(n + 2),M(n + 3), . . . , and M(n + k) is uniquely determined by the column relation
Zn+k = (zk−1p)(Z, Z̄) in Col M(n + k) (k ≥ 2). Let r = rankM(n). There exist unique
scalars a0, . . . , ar−1 such that in Col M(n), Zr = a01 + · · ·+ar−1Z

r−1. The analytic polynomial
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gγ(z) = zr−(a0+· · ·+ar−1z
r−1) has r distinct roots, z0, . . . , zr−1, and γ has a rank M(n)-atomic

(minimal) representing measure of the form ν ≡ ν[M(n + 1)] =
∑r−1
i=0 ρiδzi , where the densities

ρi > 0 are uniquely determined by the Vandermonde equation V (z0, . . . , zr−1)(ρ0, . . . , ρr−1)t =
(γ00, γ01, . . . , γ0,r−1)t. The measure ν[M(n+1)] is the unique representing measure for M(n+1).

The calculation of gγ in Theorem 2.3 entails iteratively computing moment matrices M(n +
2),M(n+ 3), . . . ,M(r), and r may be as large as (n+ 1)(n+ 2)/2. The following result provides
an alternate, frequently more efficient, method for computing a minimal representing measure
corresponding to a flat extension M(n+ 1).

Theorem 2.4. (Cf. [CF7, Theorem 2.3]) Suppose M(n) ≡ MCd(n)(γ) is positive and admits a
flat extension M(n + 1). Then V ≡ V(M(n + 1)) satisfies cardV = r = rankM(n) and V ≡
{zk}r−1

k=0 forms the support of the unique representing measure ν for M(n+ 1), i.e., ν =
∑
ρkδzk .

Let {Z̄imZjm}r−1
m=0 denote a maximal independent subset of the columns of M(n) and let V be the

r× r matrix whose entry in row m, column k is z̄imk zjmk . Then V is invertible, and the densities
ρ0, . . . , ρr−1 are uniquely determined by V (ρ0, . . . , ρr−1)t = (γi0,j0 , . . . , γir−1,jr−1)t.

We now turn to real moment matrices. Let n ≥ 1 and let

1, x1, . . . , xd, x
2
1, x1x2, . . . , x1xd, x

2
2, x2x3, . . . , x2xd, . . . , x

2
d, . . . , x

n
1 , x

n−1
1 x2, . . . , x

n
d

denote a degree lexicographic ordering of the monomials in x1, . . . , xd up to degree n. This
ordering defines an ordered basis Bdn for Pdn; for f ∈ Pdn, let f̂ denote the coefficient vector of f
relative to Bdn. By β(2n) we mean a real multi-sequence {βi : i ∈ Zd+, |i| ≤ 2n}. The real moment
matrix M(n) ≡ MRd(n)(β) corresponding to β ≡ β(2n) has size ϑ(n, d) with rows and columns
labelled Xi, |i| ≤ n, following the above ordering, i. e., 1, X1, . . . , Xd, . . . , X

n
1 , Xn−1

1 X2, . . . , X
n
d .

The entry of M(n)(β) in row Xi and column Xj is βi+j . Suppose p ∈ Pd2n, p =
∑
|i|≤2n aix

i; we
define Λβ(p) =

∑
|i|≤2n aiβi. It follows readily that M(n) is uniquely determined by the relation

〈M(n)p̂, q̂〉 = Λβ(pq), (p, q ∈ Pdn).(2.5)

Proposition 2.1, (2.3), and (2.4) admit direct analogues for real moment matrices (cf. [CF7]).
We next present an analogue of Theorem 2.2 for real truncated moment problems. In the sequel,
whenever β ≡ β(k) is a d-dimensional multi-sequence {βi : |i| ≤ k}, β̃ will denote a multi-sequence
extension of the form {β̃i}|i|≤m, where m > k and β̃i = βi for |i| ≤ k.

Theorem 2.5. (cf. [CF7, Theorem 2.8]) Let β ≡ β(2n) be a d-dimensional real multisequence,
and let M ≡M(n)(β). If β has a representing measure µ, then card suppµ ≥ rankM . Further,
β admits a rankM -atomic representing measure if and only if M is positive semi-definite and
can be extended to a moment matrix of the form M(n + 1) such that rankM(n + 1) = rankM .
In this case, M(n+ 1) also has a rankM -atomic representing measure.

Using Theorem 2.5, one can readily formulate the direct analogue of Corollary 2.4 for real
moment matrices; this is what we used in Examples 1.6 and 1.8.

We next cite two auxiliary results that we will use to construct flat extensions of moment
matrices. Let H1 and H2 denote complex Hilbert spaces and let H = H1 ⊕H2. Let Ã ∈ L(H)
be a self-adjoint operator whose operator matrix relative to this decomposition is of the form

Ã =

(
A B

B∗ C

)
,(2.6)
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with A = A∗ ∈ L(H1), C = C∗ ∈ L(H2). Theorem 2.5 concerns the case A = M(n)(β),
Ã = M(n+ 1)(β̃), so we need a characterization of the case when Ã ≥ 0 and rank Ã = rankA.

Proposition 2.6. (cf. [Smu] [Epp]) Suppose Ã is as in (2.6). Then Ã ≥ 0 if and only if
A ≥ 0 and there exists W ∈ L(H1,H2) such that B = AW and C ≥ W ∗AW . In this case,
W ∗AW is independent of W satisfying B = AW , and when H is finite dimensional, rank Ã =
rankA+ rank (C −W ∗AW ).

Corollary 2.7. Suppose H ≡ H1 ⊕ H2 is finite dimensional, A ∈ L(H1) is positive, and B ∈
L(H1,H2). Then there exists C ∈ L(H2) such that

Ã =

(
A B

B∗ C

)
≥ 0

and rank Ã = rankA if and only if there exists W ∈ L(H1,H2) such that B = AW and C =
W ∗AW .

Since, from Proposition 2.6, W ∗AW is independent of W satisfying B = AW , it is clear
that a rank-preserving extension Ã of A (≥ 0) is completely determined by A and B (with
RanA ⊂ RanB). We refer to such an extension Ã as a flat extension of A and we denote it by
Ã = [A;B]; Proposition 2.6 or [Smu] imply that [A;B] ≥ 0.

We conclude this section with two results concerning real moment matrices; of course, these
results can be reformulated as well for complex moment matrices.

Proposition 2.8. rankM(n)[µ] = dimPdn|suppµ.

Proof. Let Col M(n)[µ] denote the column space of the matrix M(n)[µ] and consider the map
ψ : Col M(n)[µ]→ Pdn|suppµ defined by ψ(

∑
|i|≤n aiX

i) =
∑
aix

i|suppµ. Since µ is a represent-
ing measure for β(2n)[µ], [CF2, Proposition 3.1] implies that for p ≡

∑
aix

i ∈ Pdn,
∑
aiX

i = 0
in Col M(n)[µ] if and only if p|suppµ ≡ 0. Thus ψ is a well-defined isomorphism, whence
rankM(n)[µ] = dim Col M(n)[µ] = dimPdn|suppµ.

Based on Proposition 2.8 we can establish the following result.

Proposition 2.9. For a positive Borel measure µ on Rd with convergent moments up to at least
order 2n, the following are equivalent:
(i) µ is square positive, i. e., for p ∈ Pdn, p 6= 0,

∫
|p|2 dµ > 0;

(ii) M(n)[µ] is invertible (equivalently, M(n)[µ] > 0);
(iii) rankM(n)[µ] =

(
n+d
d

)
;

(iv) dimPdn|suppµ = dimPdn;
(v) suppµ is not contained in the zero set of any nonzero element of Pdn.

Proof. (i) ⇒ (ii) Assume µ is square positive. For f ∈ Pdn, f 6= 0, 〈M(n)[µ]f̂ , f̂〉 =
∫
|f |2 dµ > 0,

whence M(n)[µ]f̂ 6= 0. Thus M(n)[µ] is invertible, and since M(n)[µ] ≥ 0, this is equivalent to
M(n)[µ] > 0.

(ii) ⇒ (iii) Clear, since the size of M(n)[µ] is
(
n+d
d

)
.

(iii) ⇒ (iv) If (iii) holds, then dimPdn =
(
n+d
d

)
= rankM(n)[µ], whence (iv) follows from

Proposition 2.8.
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(iv) ⇒ (v) From (iv) and Proposition 2.8, rankM(n)[µ] = dimPdn|suppµ = dimPdn =
(
n+d
d

)
,

whence M(n)[µ] is invertible. The proof of Proposition 2.8 shows that, for p ∈ Pdn, p|suppµ = 0
if and only if M(n)[µ]p̂ = 0, so (v) follows.

(v) ⇒ (i) If (v) holds then, as in the previous implication, M ≡ M(n)[µ] is invertible; then
M > 0, whence M1/2 > 0. Now, for p ∈ Pdn, p 6= 0,

∫
|p|2 dµ = 〈Mp̂, p̂〉 = 〈M1/2p̂,M1/2p̂〉 > 0

whence (i) holds.

3. Lower bounds for cubature rules

In this section we use moment matrices to provide lower estimates for the size of a cubature
rule. We state the results only for measures on Rd, but all of the ensuing results can be refor-
mulated for the complex case (cf. Section 2). We begin with the proof of Proposition 1.4, which
we restate for convenience.

Proposition 3.1. Let µ be a positive Borel measure on Rd with convergent moments up to
at least degree m = 2n. The size N of any cubature rule for µ of degree m satisfies N ≥
rankM(n)[µ].

Proof. Let β = β(2n)[µ], i. e., βi =
∫
ti dµ, |i| ≤ 2n. If ν is a cubature rule for µ of degree

2n, then β(2n)[ν] = β(2n)[µ], whence M(n)[ν] = M(n)[µ]. Since ν is a representing measure for
β(2n)[ν], Theorem 2.5 implies card supp ν ≥ rankM(n)[ν] = rankM(n)[µ].

We next prove Theorem 1.5, which we restate.

Theorem 3.2. Let µ be as in Proposition 3.1; then µ has a cubature rule of degree 2n with
(minimal) size N = rankM(n)[µ] if and only if M(n)[µ] can be extended to a moment matrix
M(n + 1) satisfying rankM(n + 1) = rankM(n)[µ]; equivalently, there is a choice of “new
moments” of degree 2n+ 1 and a corresponding matrix W , such that M(n)W = B(n+ 1) (i. e.,
RanB(n+ 1) ⊂ RanM(n)) and W ∗M(n)W is a moment matrix block (of degree 2n+ 2).

Proof. Since µ ≥ 0, then M(n)[µ] ≥ 0. It follows from Theorem 2.5 that µ admits a cubature
rule of degree 2n and size rankM(n)[µ] if and only if M(n)[µ] can be extended to a moment
matrix M(n + 1) satisfying rankM(n + 1) = rankM(n). The concrete condition for the flat
extension follows from Corollary 2.7.

We now consider lower estimates in the “odd” case. We begin by proving Theorem 1.7.

Theorem 3.3. Let µ be a positive Borel measure on Rd with convergent moments up to at least
degree 2n+ 1. The size N of any cubature rule for µ of degree 2n+ 1 satisfies

N ≥ N [n, µ] ≡ rankM(n)[µ] + ρ(C](n+ 1)[µ]).

Further, let H = Mn+1,n+1 be a moment matrix block satisfying H ≥ C](≡ C](n + 1)[µ]) and
rank (H − C]) = ρ(C]), and set

MH(n+ 1) =

(
M(n) B(n+ 1)[µ]

B(n+ 1)[µ]∗ H

)
.

Then µ admits a cubature rule of degree 2n+ 1 with minimal size N [n, µ] if and only if, for some
H as above, MH(n+ 1) admits a rank-preserving moment matrix extension M(n+ 2).
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Proof. Suppose ν is a cubature rule for µ of degree 2n+ 1. Then M ≡M(n+ 1)[ν] has the form

M =

(
M(n)[µ] B(n+ 1)[µ]

B(n+ 1)[µ]∗ C(n+ 1)[ν]

)
,

where C(n+1)[ν] is block Mn+1,n+1 of M(n+1)[ν]. Since ν ≥ 0, then M ≥ 0, so Proposition 2.6
implies that there is a matrix W such that B(n+1) = M(n)W and C(n+1)[ν] ≥ C](n+1)[µ](=
W ∗M(n)W ). Proposition 2.6 further shows that

rankM = rankM(n)[µ] + rank (C(n+ 1)[ν]− C](n+ 1)[µ]) ≥ rankM(n)[µ] + ρ(C](n+ 1)[µ]).

Now ν is a representing measure for β(2n+2)[ν], so Theorem 2.5 implies that N ≡ card supp ν ≥
rankM , and the estimate follows.

Next, suppose ν is a (minimal) cubature rule for µ of degree 2n + 1, with precisely N [n, µ]
nodes. As above,

N [n, ν] = card supp ν ≥ rankM(n+ 2)[ν] ≥

rankM(n+ 1)[ν] = rankM(n)[µ] + rank (C(n+ 1)[ν]− C](n+ 1)[µ]) ≥ N [n, ν].

Thus, H ≡ C(n+ 1)[ν] satisfies H ≥ C](n+ 1)[µ] and ρ(C](n+ 1)[µ]) = rank (H−C](n+ 1)[µ]),
and clearly M(n+ 2)[ν] is a flat extension of MH(n+ 1)(= M(n+ 1)[ν]).

Conversely, suppose H ≡ Mn+1,n+1 satisfies H ≥ C] and rank (H − C]) = ρ(C]); thus
rankMH(n + 1) = N [n, µ]. If MH(n + 1) admits a flat extension M(n + 2), then (using Theo-
rem 2.2) MH(n + 1) admits a representing measure ν with N [n, µ] nodes, and ν thus acts as a
minimal cubature rule for µ of degree 2n+ 1.

We next prove Theorem 1.9, a moment matrix analogue of Mysovskikh’s criterion.

Theorem 3.4. Let µ be a positive Borel measure on Rd with convergent moments up to at least
degree 2n+ 1, and let M = M(n)[µ], B = B(n+ 1)[µ]. Then µ admits a cubature rule of degree
2n+ 1 with minimal size rankM(n)[µ] if and only if
(i) RanB(n+ 1)[µ] ⊂ RanM(n)[µ], so that B = MW for some matrix W , and
(ii) W ∗MW (which is independent of W satisfying B = MW ) has the form of a moment matrix
block C(n+ 1).

Proof. Suppose ν is a cubature rule for µ of degree 2n + 1 with card supp ν = rankM(n)[µ].
Then M(n+ 1)[ν] is a positive moment matrix of the form(

M(n)[µ] B(n+ 1)[µ]
B(n+ 1)[µ]∗ C(n+ 1)

)
≡

(
M B

B∗ C

)
.

Since ν is a representing measure for β(2n+2)[ν], Theorem 2.5 implies that rankM(n)[µ] =
card supp ν ≥ rankM(n+ 1)[ν] ≥ rankM(n)[µ], so M(n+ 1)[ν] is a flat extension of the positive
moment matrix M(n)[µ]. Now (i) and (ii) follow from Corollary 2.7.

Conversely, suppose (i) and (ii) hold and let

M̃ =

(
M B

B∗ C

)
,

with M = M(n)[µ], B = B(n+1)[µ], B = MW , C = W ∗MW . Since M is positive, Corollary 2.7
shows that M̃ is a flat extension of M of the form M̃ = M(n+ 1). Theorem 2.5 now implies that
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M̃ admits a rankM -atomic representing measure, which acts as a cubature rule for µ of degree
2n+ 1 and size rankM .

Theorem 3.4 is very general in the sense that the matrix M ≡M(n)[µ] may be singular. From
Proposition 2.9, M is singular if and only if suppµ is contained in some algebraic subset of Rd

of degree no more than n. If M is invertible, then rankM = ϑ(n, d) =
(
n+d
d

)
. Thus, we have the

following consequence.

Corollary 3.5. Let µ be a positive Borel measure on Rd with moments up to degree 2n+ 1 and
suppose suppµ is not contained in any algebraic subset of degree not exceeding n. Then µ admits
a minimal cubature rule of degree 2n+ 1, with

(
n+d
d

)
nodes, if and only if B∗M−1B has the form

of a moment matrix block C(n+ 1) (where M = M(n)[µ] and B = B(n+ 1)[µ]).

For d = 1, the condition of Corollary 3.5 is satisfied vacuously since B∗M−1B is a real number.
In this case, the resulting (n+ 1)-atomic cubature rule of degree 2n+ 1 corresponds to classical
Gaussian quadrature. For d = 2, the condition of Corollary 3.5 is that B∗M−1B has the form of
a Hankel matrix.

4. Estimating ρ when C]C is diagonal

Theorem 3.3 provides a criterion for a positive Borel measure µ on Rd to have a “minimal”
cubature rule of degree 2n + 1, a rule with rankM(n)[µ] + ρ(C](n + 1)[µ]) nodes. In order to
utilize Theorem 3.3 to compute minimal or near-minimal rules, it is necessary to be able to
estimate ρ(C](n+1)[µ]). In the present section we show how to estimate ρC(C](n+1)[µ]) in case
C]C(n+1)[µ] is a diagonal matrix (Theorem 4.1); in the introduction we indicated how this result
can be adapted to certain situations in which C]C(n+1)[µ] is non-diagonal. In Proposition 4.5 we
show that µD, planar measure on the unit disk, has the property that C]C(n + 1)[µ] is diagonal,
and, as a consequence, we are able to recover Möller’s lower estimate of Theorem 1.3 in the case
of µD (Theorem 4.4). In Section 5 we will apply Theorems 4.4 and 4.1 to construct families of
minimal or near-minimal cubature rules for µD.

Theorem 4.1. Let C be an N ×N positive diagonal matrix with diagonal entries c1, c2, . . . , cN .
Suppose that there exists a positive integer q and a strictly increasing sequence {nk}qk=1 of positive
integers such that cnk > cnk+1 for 1 ≤ k ≤ q. If T is a positive Toeplitz matrix such that T−C ≥ 0
then rank (T − C) ≥ q.

In order to prove Theorem 4.1 we first establish some notation. Since T is a positive Toeplitz
matrix its entries tij , 1 ≤ i, j ≤ N , can be written as tij = tj−i for j ≥ i and tij = tj−i for j < i.
Let ak = t0 − ck (≥ 0), 1 ≤ k ≤ N . Clearly ank < ank+1 for 1 ≤ k ≤ q. Let S be the principal
submatrix of T −C obtained using rows and columns {nk}qk=1. Let F = detS; since S ≥ 0, then
F ≥ 0. For 1 ≤ k ≤ q, let Sk be the matrix obtained from S by replacing anj by anj+1, k ≤ j ≤ q;
we also set Sq+1 = S. Since anj+1 > anj (k ≤ j ≤ q) and S ≥ 0, it follows that Sk ≥ 0, whence
Fk ≡ detSk ≥ 0 (1 ≤ k ≤ q + 1). Further, for 1 ≤ k ≤ q + 1 and 1 ≤ j ≤ q, let S(j)

k denote
the matrix obtaine from Sk by deleting the j-th row and column, and let F (j)

k = detS(j)
k ; clearly

F
(j)
k ≥ 0. The following result compares the values of these determinants.

Lemma 4.2. Fk ≥ Fk+1, 1 ≤ k ≤ q, and F1 > F2.
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Proof. We will use induction on q. The case q = 1 is trivial since the determinants under
consideration are just numbers: F1 = an1+1, F2 = F = an1 , and an1 < an1+1. As an illustration,
we show the case q = 2. Now we need to prove that F1 > F2 and F2 ≥ F . This follows from
straightforward computation:∣∣∣∣∣∣

an1+1 tn2−n1

tn2−n1 an2+1

∣∣∣∣∣∣−
∣∣∣∣∣∣
an1 tn2−n1

tn2−n1 an2+1

∣∣∣∣∣∣ = (an1+1 − an1)an2+1 ≥ 0(4.1)

∣∣∣∣∣∣
an1 tn2−n1

tn2−n1 an2+1

∣∣∣∣∣∣−
∣∣∣∣∣∣
an1 tn2−n1

tn2−n1 an2

∣∣∣∣∣∣ = (an2+1 − an2)an1 ≥ 0(4.2)

and it is clear that an1+1 − an1 > 0, while the positivity of T − C implies that an2 ≥ 0 and,
therefore, an2+1 > 0.

Suppose that the lemma has been proved for q − 1. We show that, in this situation, it is true
for q. Let k be an integer such that 1 ≤ k ≤ q. Then

Fk − Fk+1 = (ank+1 − ank)F (k)
k .(4.3)

Clearly ank+1 − ank > 0 and F
(k)
k ≥ 0. Thus Fk ≥ Fk+1. We will show that F1 > F2. Consider

the sequence n′1 < · · · < n′q−1, where n′j = nj+1. By induction, the corresponding determinants

F ′j satisfy F ′1 > F ′2 ≥ · · · ≥ F ′q−1 ≥ F ′q. Now F ′j = F
(1)
j+1 (1 ≤ j ≤ q), so F (1)

2 ≥ · · · ≥ F
(1)
q+1 and

F
(1)
2 > F

(1)
3 . Since F (1)

1 = F
(1)
2 and F

(1)
q+1 = F (1) ≥ 0, it follows that F (1)

1 > 0, whence (4.3)
implies F1 > F2. The proof is complete.

Using Lemma 4.2 we can now easily prove Theorem 4.1. Indeed, we have just established that

F1 > F2 ≥ F3 ≥ · · · ≥ Fq ≥ F ≥ 0,

whence F1 > 0. Let R denote the compression of T −C to rows and columns n1 + 1, . . . , nq + 1.
Due to the Toeplitz structure of T , R coincides with S1, whence detR = detS1 = F1 > 0. It
now follows that rank (T − C) ≥ rankR = q. Thus Theorem 4.1 is established.

We now begin our analysis of C]C(n+ 1)[µD]. It is often convenient to view M(n) ≡MC(n)(γ)
as a block matrix, as follows. Given a doubly indexed finite sequence of complex numbers
γ(2n) := {γij : 0 ≤ i+ j ≤ 2n}, with γ00 > 0 and γij = γ̄ji, one can form a family of Toeplitz-like
rectangular matrices M [i, j], 0 ≤ i, j ≤ n, where the first row of M [i, j] is γij , γi+1,j−1, . . . , γi+j,0

while the first column is γij , γi−1,j+1, . . . , γ0,i+j . The complex moment matrix M(n) ≡MC(n)(γ)
is then represented as a block matrix

M(n) =


M [0, 0] M [0, 1] . . . M [0, n]
M [1, 0] M [1, 1] . . . M [1, n]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M [n, 0] M [n, 1] . . . M [n, n]

 .(4.4)

Recall that the rows and columns of M(n) are denoted by the degree lexicographic ordering
E : 1, Z, Z, Z2, . . . ; the entry in row Z̄iZj , column Z̄kZl is 〈M(n)̂̄zkzl, ̂̄zizj〉 = γk+j,l+i, (0 ≤
i+ j, k + l ≤ n).

In the case of M(n)[µD] it is useful to describe M(n) relative to a permutation of E . Notice
that E is ordered in such a way that basis vectors are grouped relative to the degree i + j of
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ZiZ
j
. In the new basis we will group row and column vectors using the quantity i − j instead,

and within each group monomials will be listed by ascending total degree. For example, when
n = 4, the ordering is

Z
4
, Z

3
, Z

2
, ZZ

3
, Z, ZZ

2
, 1, ZZ, Z2Z

2
, Z, Z2Z,Z2, Z3Z,Z3, Z4.

We will show that relative to this new ordering M(n) ≡ M(n)[µD] is block diagonal. More
precisely, for −n ≤ p ≤ 0, consider the following ordered sets of column vectors of M(n),

Lp = {Z−p, ZZ−p+1
, . . . , ZkZ

−p+k
, . . . , Zb(n+p)/2cZ

−p+b(n+p)/2c}

and
N−p = {Z−p, Z−p+1Z, . . . , Z−p+kZ

k
, . . . , Z−p+b(n+p)/2cZ

b(n+p)/2c}.
Let Lp [resp., N−p] be the subspace spanned by Lp [resp., N−p]. We claim that for each p, Lp
and N−p are invariant for M(n). For 0 ≤ j, k ≤ b(n+ p)/2c,

〈M(n) ̂zkz−p+k, ̂zjz−p+j〉 = γ−p+k+j,−p+k+j = 〈M(n) ̂zkz−p+k, ̂zjz−p+j〉,

and note that γ−p+k+j,−p+k+j > 0. Since, for the disk, γrs 6= 0 if and only if r = s, then for
0 ≤ i, j ≤ n with j − i 6= p,

〈M(n) ̂zkz−p+k, ẑjzi〉 = γ−p+k+j,k+i = 0 = γk+i,−p+k+j = 〈M(n) ̂zkz−p+k, ẑjzi〉.

Thus Lp and N−p are invariant for M(n); relative to the reordering of the rows and columns of
M(n) into the ordered blocks

L−n, . . . ,L−1,L0,N1, . . . ,Nn,(4.5)

M(n) admits a block decomposition

M(n) = M−n ⊕ · · · ⊕M−1 ⊕M0 ⊕M1 ⊕ · · · ⊕Mn,(4.6)

with M−p = Mp, 1 ≤ p ≤ n. Note that for 1 ≤ p ≤ n, Mp is a Hankel matrix whose entries are
determined by its top row (γpp, . . . , γp+b(n−p)/2c,p+b(n−p)/2c) and its rightmost column,

(γp+b(n−p)/2c,p+b(n−p)/2c), . . . , γp+2b(n−p)/2c,p+2b(n−p)/2c)t.(4.7)

We also note for future reference that the lower right hand entry of Mp is γnn if and only if n−p
is even. The preceding discussion now leads to the following result; note that since suppµD is
not contained in any algebraic subset, Proposition 2.1 implies that M(n)[µD] is invertible.

Lemma 4.3. Let 0 ≤ i+j, k+l ≤ n. If 〈M(n)[µD]̂̄zizj , ̂̄zkzl〉 = 0, then 〈M(n)[µD]−1̂̄zizj , ̂̄zkzl〉 =
0.

The following result is essentially Theorem 1.11.

Theorem 4.4. A cubature rule of degree d and size N for planar Lebesgue measure on D satisfies

the following estimates: if d = 2n + 1, then N ≥ (n+ 1)(n+ 2)
2

+ bn+ 1
2
c; if d = 2n then

N ≥ (n+ 1)(n+ 2)
2

.

Suppose d = 2n; since M(n)[µD] is invertible, Proposition 1.4 implies N ≥ rankM(n)[µD] =
(n + 1)(n + 2)/2. Now let d = 2n + 1; from Theorem 1.7, to complete the proof in this case it
suffices to show that ρ(C](n+1)[µD]) ≥ b(n+1)/2c. This inequality is an immediate consequence
of Theorem 4.1 and the following result.
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Proposition 4.5. C] ≡ C]C(n+ 1)[µD] is diagonal. The diagonal entries c0, c1, . . . , cn+1 satisfy
ci < ci+1 if 0 ≤ i < b(n + 1)/2c and ci > ci+1 if n + 1 − b(n + 1)/2c ≤ i < n + 1, so there are
b(n+ 1)/2c “gaps”.

Proof. First we show that C] is diagonal. Using the same partitioning as in (4.4), we can write

P ≡M−1 =
(
Pij

)n
i,j=0

and, similarly, we can write B as a block column matrix
(
Bi

)n
i=0

. Thus,

C] = B∗M−1B =
∑
i,j

B∗i PijBj .

Clearly, it suffices to show that, for all i, j, B∗i PijBj is a diagonal matrix. Note that if i has the
same parity as n, then Bi = 0 (and similarly for j), so we may assume that i and j have different
parity than n. In this case, Bi (which has size (i+ 1)× (n+ 2)) can be partitioned into 3 blocks,
Bi =

(
0 Di 0

)
, where Di is a nonzero scalar multiple of identity (of size ((i + 1) × (i + 1))

and both zero matrices have size (i+ 1)× (n− i+ 1)/2. Now

B∗i PijBj =

 0
Di

0

Pij

(
0 Dj 0

)
=

0
DiPijDj

0

 .

Thus, it suffices to consider the rectangular (i+ 1)× (j + 1) block DiPijDj . Since both Di and
Dj are scalar multiples of the identity, it remains to prove that the rectangular block Pij has the
desired property, namely that its middle portion (deleting the leftmost and rightmost blocks of
size (i+ 1)× (n− i+ 1)/2) is diagonal. This follows from Lemma 4.3 and the fact that in M(n)
the corresponding middle portion of block M [i, j] is diagonal.

One knows (cf. [CF2, Proposition 2.3]) that cr = cn+1−r, 0 ≤ r ≤ n + 1. Thus, it remains
to prove that cr < cr+1, 0 ≤ r < b(n + 1)/2c. To that end, we will compute the numbers cr
explicitly. In order to simplify notation we will write γk for γkk. (Of course, γij = 0 for i 6= j.)
By Corollary 2.7, the matrix

M ] =

(
M(n) B

B∗ C]

)
has the same rank as M(n). Now M ] coincides with M(n+ 1) except in block C]. Nevertheless,
since C] is diagonal, as is C(n+ 1), M ] also admits a block decomposition relative to (4.5) (with
n replaced by n+ 1), of the form

M ] = M ]
−(n+1) ⊕ · · · ⊕M

]
−1 ⊕M

]
0 ⊕M

]
1 ⊕ · · · ⊕M

]
n+1.(4.8)

The only differences between M ] and M(n+ 1) occur in columns indexed by Z
i
Zj with i+ j =

n + 1, and each block Lp or N−p contains at most one such vector. Such columns occur in
alternate blocks Mn+1,Mn−1, . . . . If Mk has such a column (1 ≤ k ≤ n+ 1), then it has exactly
one such column, say Z

i
Zj , with i + j = n + 1, 0 ≤ i, j ≤ n + 1. In fact, it is not hard to

see that, for 0 ≤ r < b(n + 1)/2c, Mn−2r+1 is an (r + 1) × (r + 1) Hankel matrix with the top
row (γn−2r+1, . . . , γn−r+1) and the rightmost column (γn−r+1, . . . , γn+1)t. (When r = 0, this
means that Mn+1 is just the real number γn+1.) The corresponding block M ]

n−2r+1 differs only
in the lower right corner, where γn+1 is replaced by cn+1−r. Since rankM ] = rankM(n), (4.8)
implies that the last column of M ]

n−2r+1 is dependent on the first r columns of M ]
n−2r+1, and

since M(n) > 0, the compression of M ]
n−2r+1 to first r rows and columns is invertible. It now

follows that cr (= cn+1−r) is uniquely determined by the equation detM ]
n−2r+1 = 0.
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Next, we show how to solve the equation detM ]
n−2r+1 = 0 for cr. Let r be an integer such that

0 ≤ r ≤ b(n+ 1)/2c and denote fr = detMn−2r+1 and f ]r = detM ]
n−2r+1. Since γm = π/(m+ 1)

it is natural to consider matrices

Hpq =
(

1
i+ j + p− 2

)q
i,j=1

, p ≥ 1,

and their determinants Apq = detHpq. Note that f ]r = detMn−2r+1 = 0 and that fr =
detMn−2r+1 = πr+1 detHn−2r+2,r+1 = πr+1An−2r+2,r+1. On the other hand, using once
again the multilinearity of determinants, we have that f ]r − fr = (cr − γn+1) detHn−2r+2,r =
(cr − γn+1)πrAn−2r+2,r. It now follows that

cr = γn+1 −
πAn−2r+2,r+1

An−2r+2,r
.

In order to evaluate the last expression we use the formula from [Pol, Problem 7.1.4]

Apq =
[1!2! . . . (q − 1)!]2(p− 1)!p! . . . (q + p− 2)!

(q + p− 1)!(q + p)! . . . (2q + p− 2)!
.

Thus
An−2r+2,r+1

An−2r+2,r
=

[r!(n− r + 1)!]2

(n+ 1)!(n+ 2)!
and

cr = π

(
1

n+ 2
− [r!(n− r + 1)!]2

(n+ 1)!(n+ 2)!

)
.

Next we make the comparison between cr and cr+1. Let r be an integer, 0 ≤ r < b(n + 1)/2c.
Then

cr+1 − cr = π
[r!(n− r + 1)!]2

(n+ 1)!(n+ 2)!
− π [(r + 1)!(n− r)!]2

(n+ 1)!(n+ 2)!

= π
[r!(n− r)!]2

(n+ 1)!(n+ 2)!
[
(n− r + 1)2 − (r + 1)2]

= π
[r!(n− r)!]2

(n+ 1)!(n+ 2)!
(n+ 2)(n− 2r).

This shows that cr+1−cr > 0 if and only if r < n/2. Since it is easy to verify that r < b(n+1)/2c
implies r < n/2, the proof is complete.

5. Moment matrices and minimal cubature rules: examples

In this section we show how moment matrix techniques from the previous sections can be used
to construct minimal or near-minimal cubature rules, and how these techniques can be used to
analyze the minimal size of a cubature rule. We begin by analyzing ρ(C]C(2)[µ])) for a large class
of planar measures; this leads to a moment matrix characterization of the existence of minimal
rules of degree 3. We next show that ρ(C]C(3)[µ]) ≤ 1 for an arbitrary planar measure µ having
moments up to at least degree 5, and we use this result to parameterize the minimal rules of
degree 5 for µD. We then present a series of additional results concerning µD, including a proof
of the conjecture of [HP] on the nonexistence of 17 point rules of degree 9 for µD, and a moment
matrix development of Albrecht’s 19 point rule of degree 9 for µD. We conclude with an example
which illustrates how moment matrix methods can be applied in R3.

We begin by analyzing ρ ≡ ρ(C]C(2)[µ]) and the structure of minimal degree 3 cubature rules
for planar measures µ satisfying RanBC(2)[µ] ⊂ RanMC(1)[µ]. The range hypothesis is satisfied,
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in particular, whenever suppµ is not contained in any line (cf. Proposition 2.1), or whenever µ
has finite moments up to at least degree 4 (so that M(2)[µ] ≥ 0, cf. Proposition 2.6). In the
sequel, we write

M(1) ≡MC(1)[µ] =

1 x x̄

x̄ e w̄

x w e

 (≥ 0), B(2) ≡ BC(2)[µ] =

w e w̄

t t̄ s̄

s t t̄

 ,

and C](2) ≡ C]C(2)[µ] =

a b̄ d̄

b c b̄

d b a

 (≥ 0).

Example 5.1. Suppose µ ≥ 0 is a planar Borel measure with convergent moments up to at
least degree 3 and suppose RanB(2) ⊂ RanM(1). If a = c in C](2), then clearly ρ = 0. In this
case, the existence of a minimal cubature rule for µ of degree 3 having exactly rankM(1) nodes
follows from the complex version of Theorem 1.9 (cf. Theorem 2.2); such a rule can be explicitly
constructed using [CF2, Theorem 4.7] (cf. Theorem 2.3).

We note that the preceding case (a = c) includes the cases when r ≡ rankM(1) ≤ 2. Indeed,
in these cases there are constants α, β ∈ C such that

Z̄ = α1 + βZ(5.1)

in Col M(1), whence z̄ = α+ βz in suppµ [CF2, Proposition 3.1]. Multiplying this last relation
by various powers of z and z̄ and then integrating with respect to µ shows that the following
relations hold in the columns of

(
M(1) B(2)

)
:

Z̄Z = αZ + βZ2,(5.2)

Z̄2 = αZ̄ + βZ̄Z.(5.3)

Since RanB(2) ⊂ RanM(1), there are scalars A,B ∈ C such that in Col
(
M(1) B(2)

)
,

Z2 = A1 +BZ.(5.4)

Using the definition of C](2), we see that (5.1) – (5.4) must also hold in the columns of
[M(1);B(2)] whence a = Aw̄ + Bt̄ = A(αx̄ + βe) + B(αe + βt) = α(Ax̄ + Be) + β(Ae + Bt) =
αt+ βb = c.

Suppose now that a 6= c, so that rankM(1) = 3. For β ∈ C, β 6= b, let

α =
1
2

(a+ c+
√

(a− c)2 + 4|β − b|2)(5.5)

and δ = d+
(β − b)2

α− c
. A calculation shows that

T ≡

α β̄ δ̄

β α β̄

δ β α


satisfies T ≥ C](2) and that rank (T − C](2)) = 1. Thus ρ = 1, and any degree 3 cubature rule
for µ has at least 4 (= rankM(1) + ρ) nodes (Theorem 1.7).
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We next address existence (and construction) of 4-node (minimal) rules of degree 3 for the
case a 6= c. With T as above, let

M(2) =

(
M(1) B(2)
B(2)∗ T

)
.

Proposition 2.6 implies that M(2) ≥ 0 and that rankM(2) = rankM(1) + rank (T − C](2)) =
4 = rank [M(2)]4 (since M(1) > 0 and α > a); here, [M(2)]4 denotes the compression of M(2)
to the first 4 rows and columns. In Col M(2) we thus have a linear dependence relation

Z̄Z = A1 +BZ + CZ̄ +DZ2,(5.6)

where A,B,C,D ∈ C depend on β. Let pβ(z, z̄) = zz̄− (A+Bz+Cz̄+Dz2). If, for some β 6= b,
D = 0, then [CF4, Theorem 1.2] implies that µ has a unique (minimal) 4-node cubature rule νβ
of degree 3 satisfying γ13[νβ ] = β, and the rule may be constructed as in [CF4, Section 2].

Suppose now that for each β 6= b, we have D 6= 0 in pβ . In this case, it follows from [F2,
Theorem 1.3] that µ has a 4-node minimal cubature rule of degree 3 if and only if there exists
β 6= b, such that cardZ(pβ) ≥ 4 (this occurs, in particular, if |D| 6= 1 [F2, Proposition 1.6]); for
each such β, a minimal rule can be constructed as in [F2]. (A similar result, involving a pair of
real orthogonal polynomials instead of pβ , was obtained by Goit [G] (cf. [Str4, page 99]).) 2

Concerning the last case in Example 5.1, it is an open question whether there always exists
some β 6= b for which cardZ(pβ) ≥ 4. In the case when µ is centrally symmetric, we next use
the preceding method to show that each β 6= b corresponds to a unique 4 node (minimal) rule of
degree 3. An equivalent, but different, parametrization of these minimal rules is due to Stroud
[Str2] (cf. [Str4, Theorem 3.9-2]).

Proposition 5.2. Suppose µ ≥ 0 is a centrally symmetric planar measure with moments up
to at least degree 3, and suppose M(1) > 0, with γ00 = 1. Then a 6= c, and for β 6= b, let
α = (1/2) (a + c +

√
(a− c)2 + 4|β − b|2). Let qβ(z) = (D2 − s)z4 + (2AD − r)z2 + A2, where

A =
α
√
c− β̄(b/

√
c)

α− a
, D =

β̄ − b̄
α− a

, r = (A− Ā)/D̄, and s = D/D̄. Then qβ has 4 distinct roots,

{zi}3i=0, which provide the support for a minimal cubature rule µβ ≡
∑3
i=0 ρiδzi of degree 3, and

any minimal rule of degree 3 is of this form, where the densities ρi are uniquely determined by
V (z0, z1, z2, z3)(ρ0, ρ1, ρ2, ρ3)t = (γ00, γ01, γ02, γ03)t.

Proof. Since M(1) > 0, µ is square positive (Proposition 2.9), so Theorem 1.3 implies that each
cubature rule for µ of degree 3 has at least 4 (> rankM(1)[µ]) nodes. Example 5.1 thus implies
that a 6= c, and we define α as in (5.5). Since µ is centrally symmetric, we have x = t = s = 0, and

a calculation shows that in (5.6), A =
α
√
c− β̄(b/

√
c)

α− a
, B = 0, C = 0, D =

β̄ − b̄
α− a

. Further, from

the definition of C](2), a = |w|2 and e2 = c. Since M(1) > 0 then |w|2 > e2, and consequently
a > c. Another calculation now shows that α− a < |β− b|, whence |D| 6= 1. It thus follows from
[CF4, Corollary 3.4] or [F2, Proposition 1.6] that M(2) has a unique representing measure νβ ,
which serves as a minimal cubature rule for µ of degree 3.

To construct νβ , write (5.6) as Z̄Z = A1 + DZ2. It follows from [CF2, Lemma 3.10] that
Z̄Z = Ā1 + D̄Z̄2, whence

Z̄2 = r1 + sZ2,(5.7)
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with r = (A − Ā)/D̄, s = D/D̄. [CF4] and [CF2] together imply that M(2) has a unique flat,
recursively generated extension M(4). By recursiveness, (5.6) and (5.7) imply that in Col M(4)
we have A21 + 2ADZ2 + D2Z4 = Z̄2Z2 = rZ2 + sZ4. Now [CF2, Theorem 4.7] implies that
qβ(z) ≡ (D2−s)z4+(2AD−r)z2+A2 has 4 distinct roots, zi (0 ≤ i ≤ 3), which comprise supp νβ .
The densities ρi (0 ≤ i ≤ 3) of νβ are uniquely determined by V (z0, z1, z2, z3)(ρ0, ρ1, ρ2, ρ3)t =
(γ00, γ01, γ02, γ03)t, where V denotes the Vandermonde matrix.

Example 5.3. To illustrate Proposition 5.2, consider the square C2 = [−1, 1] × [−1, 1] with
planar measure. Since γ00 = 4, we cannot directly use the formulas of Proposition 5.2, but we
can use exactly the same method. We compute α = (1/2)

(
(16/9) +

√
(16/9)2 + 4|β|2

)
and

δ = β2/(α − c). For a numerical example, let β = 1/10. We have A = 2/3 and D ≈ 0.0560731.
The roots of qβ are z0 ≈ −0.794525i, z1 = −z0, z2 ≈ −0.840398, z3 = −z2 and we use the
Vandermonde equations to compute ρ0 = ρ1 ≈ 1.05607, and ρ2 = ρ3 ≈ 0.943927. 2

We now begin the study of C](3)[µ]. Let

C] ≡ C](3)[µ] =


a b̄ ē f̄

b c d̄ ē

e d c b̄

f e b a

 (≥ 0),

T =


α β̄ γ̄ δ̄

β α β̄ γ̄

γ β α β̄

δ γ β α

 (≥ C]),

and ∆ ≡ T − C] (≥ 0). In the sequel, [∆]k denotes the compression of ∆ to its first k rows and
columns.

Proposition 5.4. For a planar measure µ ≥ 0, ρ(C](3)[µ]) ≤ 1.

Proof. If a = c and b = d, then clearly ρ = 0. We next consider the case a = c, b 6= d, and we
claim that ρ = 1. Choose β ∈ C such that |β − d| = |β − b|(> 0), and let α = a+ |β − b|. Then
[∆]1 > 0, and [∆]2 ≥ 0 with rank [∆]2 = 1. To insure that [∆]3 ≥ 0 with rank [∆]3 = 1, we
require γ ∈ C such that

γ̄ − ē
β̄ − b̄

=
β̄ − d̄
α− c

=
α− c
β − d

.(5.8)

Since |β − d|2 = |β − b|2 = (α− a)2 = (α− c)2, (5.8) holds if and only if γ̄ = ē+
(β̄ − b̄)(β̄ − d̄)

α− c
.

To complete the construction of T with ∆ ≥ 0 and rank ∆ = 1, we seek δ ∈ C such that

δ̄ − f̄
γ̄ − ē

=
γ̄ − ē
β̄ − d̄

=
β̄ − b̄
α− c

=
α− a
β − b

,

which reduces to δ̄ =
(γ̄ − ē)2

β̄ − d̄
+ f̄ ; thus ρ = 1.
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We now consider the case a 6= c, b 6= d; we will show that ρ = 1. To insure that [∆]3 ≥ 0 and
rank [∆]3 = 1, we require α, β, γ ∈ C, with α ≥ a, c, such that

(α− a)(α− c) = |β − b|2, and(5.9)

γ̄ − ē
β̄ − b̄

=
β̄ − d̄
α− c

=
α− c
β − d

.(5.10)

To solve (5.10), we choose β ∈ C such that β 6= b and β 6= d, and we set α = c + |β − d|(> c)

and γ̄ = ē +
(β̄ − b̄)(β̄ − d̄)

α− c
. To assure α ≥ a, we further require |β − d| ≥ a − c. Now

(α− a)(α− c) = ((α− c) + (c− a))|β − d| = (|β − d|+ c− a)|β − d|, so (5.9) is equivalent to

(|β − d|+ c− a)|β − d| = |β − b|2.(5.11)

Let ψ = c − a and r = |β − d|/|β − b|; (5.11) is equivalent to |β − b|r2 + ψr − |β − b| = 0,

with r > 0, or r =
−ψ +

√
ψ2 + 4|β − b|2

2|β − b|
. It readily follows that |β − d| ≥ a − c, as required.

To complete the construction of T such that ∆ ≥ 0 and rank ∆ = 1, it remains to choose δ such

that δ̄ =
(γ̄ − ē)2

β̄ − d̄
+ f̄ .

Finally, in the case a 6= c, b = d, we take α = c, β = b, γ = e, and δ = f + (c− a)z, where z is
an arbitrary point in the unit circle |z| = 1. It is easy to see that

∆ =


c− a 0 0 (c− a)z̄

0 0 0 0
0 0 0 0

(c− a)z 0 0 c− a

 ,

so rank (∆) = 1 and, consequently, ρ = 1.
We note for future reference that, in the last case, if a Toeplitz matrix T satisfies T ≥ C] and

rank (∆) = 1, then ∆ has the above form. Indeed, in this situation,

∆ =


α− a β̄ − b̄ γ̄ − ē δ̄ − f̄
β − b α− c β̄ − b̄ γ̄ − ē
γ − e β − b α− c β̄ − b̄
δ − f γ − e β − b α− a

 .

The condition that rank (∆) = 1 applied to compressions of this matrix to rows and columns 1
and 2 (resp., 2 and 3) yields (α−a)(α−c) = |β−b|2 = (α−c)2. Since a 6= c, it follows that α = c

and, consequently, β = b. Turning attention to the compression to rows 3 and 4 and columns
1 and 2, we see that γ = e. Finally, the compression to rows and columns 1 and 4 shows that
|δ − f |2 = (c− a)2, and the result follows.

In the next series of results we use moment matrix techniques to study minimal cubature rules
for µD, planar measure on the closed unit disk.

Theorem 5.5. The minimal cubature rules of degree 5 for the disk are given by the measures

νκ ≡
6∑
i=0

ρiδzi ,

where κ ∈ C satisfies |κ| = 2π/9, z0 = 0, zi (1 ≤ i ≤ 6) are the 6th roots of 4κ/(3π), ρ0 = π/4,
and ρi = π/8, (1 ≤ i ≤ 6).
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In [R], J. Radon developed a general method for constructing 7-node, degree 5 cubature rules
for subsets of the plane satisfying a hypothesis concerning common zeros of orthogonal polyno-
mials. For the weight function w(x, y) ≡ 1, Radon’s rule for the disk yields the nodes (0, 0),
(±
√

2/3, 0), (±
√

1/6,±
√

1/2), with weights π/4 for (0, 0) and π/8 for each of the other nodes
[Str4, page 279]. This rule corresponds to Theorem 5.5 with d = 2π/9.

Proof of Theorem 5.5. A calculation shows that C] = diag (0, 2π/9, 2π/9, 0), so Theo-
rem 4.4 implies that any cubature rule for µD of degree 5 satisfies N ≥ 7. In Proposition 5.4 we
have a 6= c, b = d = 0, so by the note at the conclusion of Proposition 5.4 and by the complex
version of Theorem 1.7, any minimal rules of degree 5 with as few as 7 nodes would correspond
to flat extensions of

Mκ(3) ≡

(
M(2) B(3)
B(3)∗ Tκ

)
,

where

Tκ =


2π/9 0 0 κ̄

0 2π/9 0 0
0 0 2π/9 0
κ 0 0 2π/9


and |κ| = 2π/9. We now show that for each κ with |κ| = 2π/9, Mκ(3) admits a unique flat
extension. Such an extension is completely determined by a choice of new moments of degree 7:
γ34 ≡ x, γ25 ≡ u, γ16 ≡ v, γ07 ≡ w (and their conjugates). Direct calculation shows that in the
column space of

(
M(3) B(4)

)
we have

Z4 =
3
π
κZ̄2 +

9x
2π
Z3(5.12)

and

Z3Z̄ =
2
3
Z2 +

9x̄
2π
Z3.(5.13)

From (5.12), u = v = 0 and w = (9x/(2π))κ. From (5.13), x = 0, whence w = 0 follows from
the previous identity. With these choices for the new moments of order 7, it is straightforward to
verify that the flat extension [M(3);B(4)] is a moment matrix M(4); indeed, if we express B(4)
as B(4) = M(3)W , then a calculation shows that W ∗M(3)W is Toeplitz.

In M(4) we have column relations Z4 = (3/π)κZ̄2, Z3Z̄ = (2/3)Z2, and Z2Z̄2 = (2/3)ZZ̄,
which readily imply that the variety of M(4) consists of z0 = 0 and the distinct 6-th roots of
4κ/(3π). The result now follows from Corollary 2.4, together with a Vandermonde calculation,
which shows that ρ0 = π/4 and ρi = π/8 (1 ≤ i ≤ 6). 2

We continue with a cubature rule of degree 4 for the disk.

Proposition 5.6. ([F2]) The minimal µD cubature rules of degree 4 with the additional property
that they also interpolate the µD-moments of Z4Z̄, Z3Z̄2, Z2Z̄3, and ZZ̄4, correspond to the
6-atomic measures νa,b =

∑5
k=0 ρkδzk , where a, b ∈ R satisfy a2 + b2 = 2π2/27, z0 = 0, zk

(1 ≤ k ≤ 5) are the 5-th roots of (4/(3π)) (a+ ib), ρ0 = π/4, and ρk = 3π/20 (1 ≤ k ≤ 5).

Proof. We are seeking a flat extension of M(2) in which B(3) has exact moments of degree 5
(namely, 0) except for γ05 and γ50(= γ̄05). Using the same method as in the proof of Theorem 5.5,
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a calculation shows that the values of γ05 for which B(3)∗M(2)−1B(3) is Toeplitz correspond
precisely to the measures νa,b.

Remark 5.7. Note that if a µD cubature rule as in Proposition 5.6 also interpolates the moment
for Z5 (and hence for Z̄5), the rule would have degree 5, and its size would be at least 7, so in
this sense the rule in Proposition 5.6 is optimal. For certain measures on the disk of the form
µ ≡ w(x, y) dxdy, a minimal 6-node rule of degree 4 is referenced in [Str4, S2:4–1, page 278]. For
the weight w(x, y) ≡ 1, this rule corresponds to νa,b with a =

√
2/27π, b = 0.

We next develop a family of minimal rules of degree 7 for µD. By Theorem 1.3 or Theorem 1.11,
any such rule has N ≥ 12, and a 12-node rule is cited in [Str4, pg. 281]. In the sequel,
T (a1, a2, . . . , an) denotes a self-adjoint Toeplitz matrix whose top row is (a1, a2, . . . , an).

Proposition 5.8. Let α = 81π/416, β = δ = 0; for a complex number w satisfying |w| = 1, let
γ = 3πw/416, ε = (81π/416)(γ/γ̄), and Tw = T (α, β, γ, δ, ε). Then

M(4) ≡

(
M(3)[µD] B(4)[µD]
B(4)[µD]∗ Tw

)
is a rank 12 positive moment matrix, with a flat extension M(5) corresponding (via Theorem 2.3)
to a 12-node cubature rule of degree 7 for µD.

Proof. Note that C](4))[µD] = diag (0, 3π/16, 7π/36, 3π/16, 0); a calculation shows that Tw −
C](4))[µD] is positive with rank 2, so by Proposition 2.6, M(4) is positive with rank 12. A
further calculation using Proposition 2.6 reveals that in any positive moment matrix extension
M(5) of M(4) all moments of degree 9 must equal 0. With these values in B(5), we find the
following dependence relations in the column space of

(
M(4) B(5)

)
:

Z5 = − 9
52
wZ +

27
104

wZ2Z̄ +
81
104

w

w̄
Z̄3; Z4Z̄ = − 9

52
wZ̄ +

81
104

Z3 +
27
104

wZZ̄2;

Z3Z̄2 = − 9
52
Z +

105
104

Z2Z̄ +
3

104
wZ̄3; Z2Z̄3 = − 9

52
Z̄ +

3
104

w̄Z3 +
105
104

ZZ̄2;

ZZ̄4 = − 9
52
w̄Z +

27
104

w̄Z2Z̄ +
81
104

Z̄3; Z̄5 = − 9
52
w̄Z̄ +

81
104

w̄2Z3 +
27
104

w̄ZZ̄2.

The preceding system determines a matrix W such that M(4)W = B(5), and a calcultaion shows
that C(5) ≡W ∗M(4)W is Toeplitz. Thus [M(4);B(5)] is a flat moment matrix extension M(5)
of M(4), and the existence of a 12-node rule of degree 7 now follows from Theorem 2.2 (or the
complex version of Theorem 1.7); to compute the nodes and densities, we may use Theorem 2.3.

For a numerical example, set w = 1, γ = 3π/416, ε = 81π/416. A calculation shows that the
variety ofM(5) consists of the following 12 nonzero common solutions to the polynomial equations

corresponding to the above dependencies: z0 = −
√

(27− 3
√

29)/52 i ≈ −0.4566707613i, z1 = z̄0,

z2 = −
√

(27 + 3
√

29)/52 i ≈ −0.9109958036i, z3 = z̄2, z4 = −
√

3/8(1 + i) ≈ −0.6123724357(1 +

i), z5 = z̄4, z6 =
√

3/8(1 − i), z7 = z̄6, z8 = −iz0, z9 = iz0, z10 = −iz2, z11 = iz2. Since
cardV(M(5)) = 12 = rankM(4), Corollary 2.4 implies that {zi}11

i=0 forms the support of a
minimal (inside) cubature rule for µD of degree 7, with corresponding densities ρ0 = ρ1 =
ρ8 = ρ9 ≈ 0.3870777960, ρ2 = ρ3 = ρ10 = ρ11 ≈ 0.1656098005, ρ4 = ρ5 = ρ6 = ρ7 ≈
0.2327105669.
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It is not difficult to see that the preceding rule cannot be obtained from the rule in [Str4] by
means of rotations or reflections.

We next turn our attention to minimal rules of degree 9. In [Mo2] Möller proved that a
cubature rule of degree 4k+ 1 for a planar measure with circular symmetry satisfies N ≥ k(2k+
4) + 1, and Möller provided necessary conditions for the existence of a rule attaining this lower
bound in terms of zeros of certain orthogonal polynomials. In [VC, Theorem 4] Verlinden and
Cools obtained concrete criteria for the existence of rules attaining Möller’s bound and showed,
in particular, that a degree 9 rule for µD requires at least 18 nodes [VC, page 404] (cf. [CH]
[MP]). An 18-node rule had previously been obtained by Haegemans and Piessens [HP], who
conjectured its minimality. These results show that the lower bound in Theorem 1.11 is not
sharp for n even. We next give a moment matrix proof of the nonexistence of 17-node rules of
degree 9 for µD and a moment matrix characterization of the 18-node rules. We start with the
following result.

Proposition 5.9. Let a < b < c and let C = diag (a, b, c, c, b, a) ≥ 0. A Toeplitz matrix T

satisfies ∆ ≡ T − C ≥ 0 and rank ∆ = 2 (= ρC(C), cf., Theorem 4.1) if and only if

T =



c 0 0 0 ε 0
0 c 0 0 0 ε

0 0 c 0 0 0
0 0 0 c 0 0
ε̄ 0 0 0 c 0
0 ε̄ 0 0 0 c


(5.14)

with |ε|2 = (c− a)(c− b).

Proof. It is straightforward to check that if T has the indicated form, then ∆ is positive with
rank 2. For the converse, let T = T (α, β, γ, δ, ε, ϕ) be a Toeplitz selfadjoint matrix such that
∆ ≥ 0 and rank ∆ = 2 . Then

∆ =



α− a β γ δ ε ϕ

β̄ α− b β γ δ ε

γ̄ β̄ α− c β γ δ

δ̄ γ̄ β̄ α− c β γ

ε̄ δ̄ γ̄ β̄ α− b β

ϕ̄ ε̄ δ̄ γ̄ β̄ α− a


.

Since rank ∆ = 2 it follows that the compression D(i1, i2, i3; j1, j2, j3) of ∆ to rows i1, i2, i3
and columns j1, j2, j3 must be of rank at most 2, and therefore has zero determinant; further,
since ∆ ≥ 0, the determinant of every central compression of ∆ is nonnegative. Considering
D(1, 2, 3; 2, 3, 4) and D(2, 3, 4; 3, 4, 5) we obtain

0 = β3 + γ2β̄ + δ(α− b)(α− c)− δ|β|2 − βγ(α− c)− βγ(α− b)

0 = β3 + γ2β̄ + δ(α− c)(α− c)− δ|β|2 − βγ(α− c)− βγ(α− c).

Subtracting these equations yields δ(α− c)(c− b) + βγ(b− c) = 0. Since c > b, we see that

δ(α− c) = βγ.(5.15)
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Next we turn our attention to D(1, 2, 3; 1, 3, 4) and D(2, 3, 4; 2, 4, 5). This leads to

0 = β2(α− a) + γ|γ|2 + δβ̄(α− c)− βδγ̄ − γ(α− c)(α− a)− γ|β|2

0 = β2(α− b) + γ|γ|2 + δβ̄(α− c)− βδγ̄ − γ(α− c)(α− b)− γ|β|2.

Subtracting one equation from another yields β2(b − a) + γ(α − c)(a − b) = 0. Since b > a, we
obtain

β2 = γ(α− c).(5.16)

Now we notice that∣∣∣∣∣∣∣
α− a β γ

β̄ α− b β

γ̄ β̄ α− c

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣
α− a β γ

β̄ α− c β

γ̄ β̄ α− c

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
α− a 0 γ

β̄ c− b β

γ̄ 0 α− c

∣∣∣∣∣∣∣
= (c− b)

∣∣∣∣∣α− a γ

γ̄ α− c

∣∣∣∣∣ ≥ 0,

since c > b and since the last determinant corresponds to the central compression D(1, 3; 1, 3).
Similarly, ∣∣∣∣∣∣∣

α− a β γ

β̄ α− c β

γ̄ β̄ α− c

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣
α− b β γ

β̄ α− c β

γ̄ β̄ α− c

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
b− a β γ

0 α− c β

0 β̄ α− c

∣∣∣∣∣∣∣
= (b− a)

∣∣∣∣∣α− c β

β̄ α− c

∣∣∣∣∣ ≥ 0.

Adding the preceding two sequences of equations and inequalities, we see that the leftmost
expression of the sum is 0, since it is the difference of D(1, 2, 3; 1, 2, 3) and D(2, 3, 4; 2, 3, 4).
Thus,

0 = (c− b)[(α− a)(α− c)− |γ|2] + (b− a)[(α− c)2 − |β|2] ≥ 0,

and it follows that (α − a)(α − c) = |γ|2 and (α − c)2 = |β|2. Combining these relations with
(5.16), we see that (α − c)2 = |γ| |α − c|. Of course, α − c ≥ 0. If α − c > 0, then |γ| = α − c,
and it would follow that |γ| = α − a, impying that a = c, a contradiction. Thus α = c, and
consequently β = γ = 0. Using these values, a consideration of D(4, 5, 6; 1, 2, 3) now shows that
δ = 0. Similarly, D(1, 2, 5; 2, 5, 6) can be used to deduce that ϕ = 0. It follows that T must be
of the form as in (5.14) and it is easy to see that |ε|2 = (c− a)(c− b).

Now we use our approach to give a new proof that there is no 17 point rule of degree 9 for planar
measure on the disk.

Proposition 5.10. There is no 17 point rule of degree 9 for µD.

Proof. Applying Theorem 4.4, with n = 4, yields N ≥ 17. Of course, this estimate is based on
Theorem 1.7, the invertibility of M(4) (so that rankM(4) = 15), and the inequality ρ(C](5)) ≥ 2
based on Theorem 4.1. Since C](5) = diag (0, 4π/25, 33π/200, 33π/200, 4π/25, 0), Proposition 5.9
shows that a Toeplitz matrix T satisfies T ≥ C](5) and rank (T − C](5)) = 2 if and only if
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T ≡ Tz = T (33π/200, 0, 0, 0,
√

33πz/200, 0), where |z| = 1. Theorem 1.7 thus implies that
N = 17 is attainable if and only if there exists z (|z| = 1) such that

M(5) ≡

(
M(4) B(5)
B(5)∗ Tz

)
(5.17)

admits a flat extension. Thus, in order to prove that N > 17, we have to demonstrate that every
M(5) (as above) fails to have a flat extension. For such M(5), we consider the existence of a flat
moment matrix extension of the form

M(6) ≡

(
M(5) B(6)
B(6)∗ C

)
.

Note that the first 15 rows of B(6) contain moments of degree up to 10, and are already contained
in M(5). We will show that the remaining 6 rows, with moments of degree 11, consist of zeros
only.

We start by writing

M(6) =

A1 A2 B1

A∗2 A3 B2

B∗1 B∗2 C


where A1 is a compression of M(5) to the first 17 rows and columns. By the invertibility of M(4)
and the choice of T , it is not hard to see that A1 is invertible, and thus M(6) is a flat extension
of A1. By Corollary 2.7 there is a matrix X =

(
X1 X2

)
such that A1X =

(
A2 B1

)
. Clearly,

A1X2 = B1 and A1X1 = A2 so that X1 = A−1
1 A2. Also,(

A3 B2

B∗2 C

)
= X∗A1X,(5.18)

so it follows that B2 = X∗1A1X2 = X∗1B1 = (A−1
1 A2)∗B1 = A∗2A

−1
1 B1. Notice that the first 15

rows of B1 consist of moments of degree up to 10, so they can be read from M(5). The last two
rows contain moments of degree 11 that have yet to be determined, so we set them as(

γ56 γ65 γ74 γ83 γ92 γ10,1 γ11,0

γ47 γ56 γ65 γ74 γ83 γ92 γ10,1

)
.

Then, a calculation shows that

B2 = A∗2A
−1
1 B1

=


0 0 0 0 0 0 0
0 0 0 0 0 0 0√

33 z̄ γ56

33

√
33 z̄ γ65

33

√
33 z̄ γ74

33

√
33 z̄ γ83

33

√
33 z̄ γ92

33

√
33 z̄ γ10,1

33

√
33 z̄ γ11,0

33
√

33 z̄ γ47
√

33 z̄ γ56
√

33 z̄ γ65
√

33 z̄ γ74
√

33 z̄ γ83
√

33 z̄ γ92
√

33 z̄ γ10,1

 ,

and since B2 must be Toeplitz, it follows immediately that γi,11−i = 0 for i ≥ 6. In view of
the fact that γij = γ̄ji we see that all moments of degree 11 are 0. Thus, the matrix B1 is
completely determined. Moreover, (5.18) shows that C = X∗2A1X2. Since A1X2 = B1 we have
that X2 = A−1

1 B1, and thus C = (A−1
1 B1)∗A1(A−1

1 B1) = B∗1A
−1
1 B1. It is now easy to establish

that C is not Toeplitz since, for example, its (1, 1) entry is 33/500, while the (2, 2) entry is
1122/8000.
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Corollary 5.11. A positive rank 18 completion M(5) of

(
M(4)[µD] B(5)[µD]
B(5)[µD]∗

)
which has a

flat extension M(6) corresponds to an 18-node cubature rule for µD of degree 9, and conversely.

Proof. The direct implication follows immediately from Theorem 2.2. Conversely, suppose ν is an
18-node rule for µD of degree 9. We claim that rankM(5)[ν] = 18. By (2.4) and Proposition 2.6,
18 = card supp ν ≥ rankM(5)[ν] = rankM(4)[µD] + rank (C(5)[ν] − C](5)[µD]) ≥ 17 (since
rankM(4)[µD] = 15 and C](5)[µD] has 2 gaps). If rankM(5)[ν] = 17, then rank (C(5)[ν] −
C](5)[µD]) = 2, so Proposition 5.9 implies that C(5)[ν] has the form of (5.14). For such M(5)[ν],
a calculation similar to that in the proof of Theorem 5.10 shows that in M(6)[ν], all moments
of degree 11 equal 0. From this, a further calculation implies that ρ(C](6)[ν]) ≥ 2, whence
rankM(6)[ν] ≥ 19. This contradiction shows that rankM(5)[ν] = 18; [CF2] now implies that
18 = rankM(∞)[ν] ≥ rankM(6)[ν] ≥ rankM(5)[ν] = 18, so M(6)[ν] is a flat extension of
M(5)[ν].

The first cubature rule of degree 9 for µD with as few as 19 nodes was found by Albrecht
[A] (cf. [Str4, S2:9–1, pg. 281]); an infinite family of such rules is described in [HP]. We
next present a family of 19-node rules which includes Albrecht’s as a special case; a feature of
these rules is that they arise from 2-step extensions: starting with a special rank 18 completion

M(5) of

(
M(4)[µD] B(5)[µD]
B(5)[µD]∗

)
, we construct positive extensions M(6) and M(7) satisfying

rankM(7) = rankM(6) = 19.

Proposition 5.12. For w ∈ C, |w| = 1, let Tw = T (α, 0, 0, δ, 0, 0), where α = 128π/775 and

δ = (4π/775)w. Then M(5) ≡

(
M(4)[µD] B(5)[µD]
B(5)[µD]∗ Tw

)
is a rank 18 positive moment matrix

which has positive extensions M(6) and M(7) satisfying rankM(7) = rankM(6) = 19. The
unique measure µw corresponding to the flat extension M(7) (cf. Theorem 2.3) is a 19-node
cubature rule of degree 9 for µD. For w = 1, µw coincides with Albrecht’s rule [A].

Proof. We have C ≡ C](5)[µD] = diag (a, b, c, c, b, a) with a = 0, b = 4π/25, c = 33π/200. Then
α ≡ b2/(2b−c) (= 128π/775 > c > b > a) satisfies (α−a)(α−c) = (α−b)2; with δ = (4π/775) w̄,
we set Tw = T (α, 0, 0, δ, 0, 0). It follows readily that ∆ ≡ T − C satisfies ∆ ≥ 0 and rank ∆ = 3,
whence M(5) is positive with rank 18 (cf. Proposition 2.6). A calculation similar to that in
the proof of Theorem 5.10 shows that in any positive moment matrix extension M(6) of M(5),
all moments of degree 11 must equal 0. With these values, C](6) is not Toeplitz, so there is
no flat extension M(6); however, if we set T ′ = T (α′, 0, 0, δ′, 0, 0, η′) with α′ = 3328π/24025,

δ′ = (1264π/120125) w̄, η′ = (3328π/24025) w̄2, then M(6) ≡

(
M(5) B(6)
B(6)∗ T ′

)
is positive with

rank 19. We claim that M(6) has a unique flat extension M(7). Indeed, in any positive moment
matrix extension M(7), we require RanB(7) ⊂ RanM(6), and a calculation (as in Theorem 5.10)
shows that this requirement is satisfied if and only if all moments of degree 13 equal 0; with these
values, we see that C](7) is indeed Toeplitz.

Let µw denote the unique measure corresponding to the flat extension M(7) (cf. Theorem 2.3);
µw is thus a 19-node cubature rule for µD of degree 9. To compute the nodes and densities of µw we
may use Theorem 2.3 or Corollary 2.4. More simply, note that in ColM(5) we have the following
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dependencies: Z2Z̄3 = −(3/10)Z̄+(6/5)ZZ̄2+(1/32)w̄Z5, ZZ̄4 = −(4/5)w̄Z3+(4/5)Z̄3+w̄Z4Z̄,
Z̄5 = (48/5)w̄Z − (192/5)w̄Z2Z̄ + 32w̄Z3Z̄2. Since M(7) is a positive extension of M(5), the
same relations hold in ColM(7) (cf. [F1]); thus, suppµw is contained in the common zeros of
the polynomials corresponding to these relations. For w = 1, we find that there are precisely
19 distinct common zeros, {zk}18

k=0, which must therefore coincide with suppµ1. Let r =
√

3/5,

s =
√

1/5, t =
√

(96− 4
√

111)/155, u =
√

(96 + 4
√

111)/155, p =
√

(1/3)(72− 3
√

111)/155,

q =
√

(1/3)(72 + 3
√

111)/155. Then z0 = 0, zk = ±r ± si, (1 ≤ k ≤ 4), zk = ±(2/
√

5)i,
(k = 5, 6), zk = ±t, (k = 7, 8), zk = ±p ± pi, (7 ≤ k ≤ 12), zk = ±u, (k = 13, 14), zk =
±q ± qi, (15 ≤ k ≤ 18); all points are inside D. The corresponding densities (computed using
Corollary 2.4) are ρ0 ≈ 0.3422481580, ρk ≈ 0.1278317323, (1 ≤ k ≤ 6), ρk ≈ 0.2617858597,
(7 ≤ k ≤ 12), ρk ≈ 0.0769398239, (13 ≤ k ≤ 18). Albrecht’s rule is described in [Str4] in terms
of trigonometric functions, but it is easy to see that it coincides with µ1.

All of the preceding examples concern planar cubature rules, but the main results of Section
3 apply to measures on Rd; we conclude with an example in R3.

Example 5.13. We develop a family of minimal cubature rules of degree 2 for volume measure
µB in the unit ball B of R3 (cf. [Str4]). Here, M(1)[µB] = diag (4π/3, 4π/15, 4π/15, 4π/15), with
rows and columns indexed by 1, X, Y, Z. To compute a 4-node (minimal) rule of degree 2 we seek
new moments a = β300, b = β210, c = β201, d = β120, f = β111, e = β102, g = β030, h = β021,
p = β012, q = β003, so that

B(2) ≡


4π/15 0 0 4π/15 0 4π/15
a b c d f e

b d f g h p

c f e h p q


has the property that B(2)∗M(1)−1B(2) is a 3-dimensional moment matrix block C(2). One
branch of the solution to C(2) = B(2)M(1)−1B(2) is given by a = (1125d2 − 16π2)/(1125d),
e = −16π2/(1125d), b = c = h = p = f = 0, with d, g, and q free variables. With these choices,
in the column space of [M(1);B(2)] we find relations X2 = (1/5) 1+(1125d2−16π2)/(300dπ)X,
XY = 15d/(4π)Y , XZ = −4π/(75d)Z, Y 2 = (1/5) 1 + 15d/(4π)X + 15g/(4π)Y , Y Z = 0,
Z2 = (1/5) 1− (4π/75)dX + 15q/(4π)Z, and the corresponding variety, V(M(2)), has precisely
4 points,

p1 = (15d/(4π), (75g −
√

5(4500d2 + 1125g2 + 64π2))/(40π), 0),

p2 = (15d/(4π), (75g +
√

5(4500d2 + 1125g2 + 64π2))/(40π), 0),

p3 = (−4π/(75d), 0, (1125dq −
√

72000d2π2 + 1024π4 + 1265625d2q2)/(600dπ)),

p4 = (−4π/(75d), 0, (1125dq +
√

72000d2π2 + 1024π4 + 1265625d2q2)/(600dπ)).

To obtain an inside rule, we can choose, for example, d = 0.5298, g = q = 0, with p1 ≈
(0.632402,−0.774553, 0), p2 ≈ (0.632402, 0.774553, 0), p3 ≈ (−0.316254, 0,−0.547738), p4 ≈
(−0.316254, 0, 0.547738), and corresponding densities w1 = w2 ≈ 0.69821, w3 = w4 ≈ 1.39618.
2
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with circular symmetry, Numer. Math. 61 (1992), no. 3, 395–407.
[Wol] Wolfram Research Inc., Mathematica, Version 4.0, Wolfram Research Inc., Champaign, Il, 1998.
[X1] Y. Xu, Common zeros of polynomials in several variables and higher-dimensional quadrature. Pitman Re-

search Notes in Mathematics Series, 312. Longman Scientific & Technical, Harlow, 1994. viii+119 pp.
[X2] Y. Xu, On orthogonal polynomials in several variables. Special functions, q-series and related topics

(Toronto, ON, 1995), 247–270, Fields Inst. Commun., 14, Amer. Math. Soc., Providence, RI, 1997.
[X3] Y. Xu, Cubature formulae and polynomial ideals, Adv. in Appl. Math. 23 (1999), no. 3, 211–233.



MULTIVARIABLE CUBATURE 35

Acknowledgment: The examples in this paper were obtained using calculations with the soft-
ware tool Mathematica [Wol].

Department of Computer Science, State University of New York, New Paltz, NY

E-mail address: fialkowl@newpaltz.edu

Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008

E-mail address: srdjan.petrovic@wmich.edu.


