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Let β ≡ β(m) = {βi}i∈Zn
+,|i|≤m, β0 > 0, denote a real n-dimensional multisequence 

of finite degree m. The Truncated Moment Problem concerns the existence of a 
positive Borel measure μ, supported in Rn, such that

βi =
∫
Rn

xidμ (i ∈ Z
n
+, |i| ≤ m). (0.1)

We associate to β ≡ β(2d) an algebraic variety in Rn called the core variety, 
V ≡ V(β). The core variety contains the support of each representing measure μ. We 
show that if V is nonempty, then β(2d−1) has a representing measure. Moreover, if V
is a nonempty compact or determining set, then β(2d) has a representing measure. 
We also use the core variety to exhibit a sequence β, with positive definite moment 
matrix and positive Riesz functional, which fails to have a representing measure.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let β ≡ β(m) = {βi}i∈Z
n
+,|i|≤m, β0 > 0, denote a real n-dimensional multisequence of finite degree m, 

and let K denote a closed subset of Rn. The Truncated K-Moment Problem for β (TKMP) concerns the 
existence of a positive Borel measure μ, supported in K, such that

βi =
∫
K

xidμ (i ∈ Z
n
+, |i| ≤ m). (1.1)

(Here, for x ≡ (x1, . . . , xn) ∈ R
n and i ≡ (i1, . . . , in) ∈ Z

n
+, we set |i| = i1 + · · · + in and xi = xi1

1 · · ·xin
n .) 

A measure μ as in (1.1) is a K-representing measure for β; for K = R
n, we refer to TKMP simply as the 

Truncated Moment Problem (TMP) and to μ as a representing measure. In the sequel, unless otherwise 
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noted, we assume m is even, m ≡ 2d (so the moment data completely define a moment matrix, as described 
below). By a concrete solution to the truncated K-moment problem we mean a set of necessary and sufficient 
conditions for K-representing measures that can be effectively applied in numerical examples. Concrete 
solutions, valid for all d ≥ 1, are known only in a few cases. These include, for n = 1, K = R, [0, +∞), and 
[a, b] (cf. [10]), and for n = 2, when K is a curve p(x, y) = 0 with deg p ≤ 2 (cf. [15,17]), and for certain 
curves of higher degree [25]. TKMP is motivated in part by the much-studied Full K-Moment Problem for 
β(∞) ≡ {βi}i∈Zn

+ (cf. [1,2,34,38,43–45,48]). A result of J. Stochel [47] shows that β(∞) has a K-representing 
measure if and only if β(m) has a K-representing measure for every m ≥ 1. Furthermore, there are close 
connections between truncated moment problems, polynomial optimization, and positive polynomials, as 
described in several recent surveys (cf. [32,35,36]).

In previous work with R.E. Curto [16] we developed necessary and sufficient conditions for representing 
measures based on flat extensions of positive moment matrices (cf. Theorems A.1 and A.2 below). The 
moment matrix approach yields concrete results in a number of significant cases of TMP (e.g.., [11,15,17,19,
21,25]), but at present it is not known how to apply this approach to a general multisequence β(2d). In the 
sequel we introduce an alternate, more geometric, approach to TMP. In Section 2 we associate to β ≡ β(2d)

an algebraic variety in Rn called the core variety, denoted by V ≡ V(β), and use this to develop certain 
new necessary or sufficient conditions for representing measures. The core variety contains the support of 
each representing measure for β. Our results imply that if V is nonempty, then β(2d−1) has a representing 
measure. Furthermore, β itself has a representing measure if V is a nonempty compact or determining 
set. We illustrate techniques for computing V in certain cases, using sums-of-squares techniques and linear 
programming, but in general it may be quite difficult to compute the core variety. It appears that advances 
in the computation of V may depend on additional techniques from Real Algebraic Geometry, perhaps 
involving semi-definite programming and semi-algebraic sets, linear matrix inequalities, etc. [3,35].

We begin by recalling several basic necessary conditions for representing measures. Let Md ≡ Md(β)
denote the moment matrix associated with β (cf. Appendix A.1 for additional notation). The rows and 
columns of Md are denoted by Xi and are indexed (in degree-lexicographic order) by the monomials xi

in Pd ≡ {p ∈ R[x1, . . . , xn] : deg p ≤ d}. Corresponding to p ≡
∑

i∈Z
n
+,|i|≤d

aix
i ∈ Pd is the element 

p(X) ≡
∑

aiX
i of Col Md, the column space of Md; Md is recursively generated if whenever p, q, pq ∈ Pd

and p(X) = 0, then (pq)(X) = 0. Positivity and recursiveness of Md are necessary conditions for representing 
measures [10,13].

Let V ≡ V (Md) denote the algebraic variety corresponding to Md, i.e., V =
⋂

p∈Pd,p(X)=0

Zp (where Zp =

{x ∈ R
n : p(x) = 0}). The core variety is contained in V and encodes more information as to the existence 

of representing measures than does V (see the remarks following Theorem 1.3). Nevertheless, V (Md) is itself 
a useful invariant. It is known that if β ≡ β(2d) has a representing measure μ, then supp μ ⊆ V (Md) and 
rank Md ≤ card supp μ [13]. It follows that another necessary condition for representing measures is the 
“variety condition”, i.e., rank Md ≤ card V (Md) (cf. [13, (1.7), p. 6]). In some cases, certain combinations 
of the preceding conditions are sufficient for representing measures. Thus, for n = 1, β has a representing 
measure if and only if Md is positive semidefinite and recursively generated (cf. [10] and Theorem 2.21). 
Further, for n = 2, with K = Zp for a polynomial p(x, y) of degree 1 or 2, and d ≥ deg p, β has a 
K-representing measure if and only if Md is positive, recursively generated, satisfies the variety condition, 
and has a column relation p(X, Y ) = 0 (cf. [12,15,17,26]). In general, however, the preceding conditions are 
not sufficient for representing measures [20,25].

To motivate our results, we recall the role of positive Riesz functionals in the moment problem. For 
β ≡ β(m), the Riesz functional Lβ : Pm −→ R is defined by Lβ(

∑
i∈Z

n
+,|i|≤m

aix
i) =

∑
aiβi. If μ is a 

K-representing measure for β and p ∈ Pm satisfies p|K ≥ 0, then Lβ(p) =
∫

p dμ ≥ 0, so in this 

K
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sense Lβ is K-positive; for K = R
n, we say simply that Lβ is positive. In the Full K-Moment Problem 

for β ≡ β(∞), a classical theorem of M. Riesz (n = 1) [41] and E.K. Haviland (n > 1) [30] shows that 
β has a K-representing measure if and only if the corresponding functional Lβ is K-positive, i.e., for 
p ∈ R[x1, . . . , xn], if p|K ≥ 0, then Lβ(p) ≥ 0. The proof of Tchakaloff’s Theorem [49] shows that the 
direct analogue of Riesz–Haviland holds in TKMP if K is compact (see Theorem A.3 below), but in general 
the direct analogue of Riesz–Haviland for TKMP is not valid (cf. (A.3) [22]). Nevertheless, there is an 
appropriate analogue, as we next describe.

Theorem 1.1 (Truncated Riesz–Haviland theorem [18]). Let β ≡ β(2d) or β ≡ β(2d+1). β has a K-representing 
measure if and only if β admits an extension to a sequence β̃ ≡ β̃(2d+2) such that Lβ̃ is K-positive.

Theorem 1.1 is not, by itself, a concrete solution to TKMP because in numerical examples it may be very 
difficult to verify K-positivity. For example, with K = R

n, n ≥ 2, and d ≥ 3, there is no concrete description 
of the polynomials p ∈ P2d satisfying p|K ≥ 0 (cf. Appendix A), so there is no direct method for verifying 
that Lβ̃ is K-positive. Several authors have addressed this issue from a variety of viewpoints (cf. [28,31,37,
50]). In the sequel we use the core variety to circumvent this difficulty, at least in some cases (cf. Section 3). 
The approach we take is based in part on a refinement of K-positivity. Following [27], for β ≡ β(m), we say 
that Lβ is strictly K-positive if Lβ is K-positive and the conditions p ∈ Pm, p|K ≥ 0, and p|K 	≡ 0 imply 
Lβ(p) > 0. If K = R

n and Lβ is strictly K-positive, we say that Lβ is strictly positive. Further, K is a 
determining set for Pm if the conditions p ∈ Pm and p|K ≡ 0 imply p ≡ 0. (If K has nonempty interior, 
then K is a determining set, but certain finite sets are also determining sets (see Appendix A.2 below).) 
Strict positivity leads to the following existence criterion.

Theorem 1.2. ([27, Theorem 1.3]) For β ≡ β(m), if K is a determining set for Pm and Lβ is strictly 
K-positive, then β has a K-representing measure.

Our main result provides the following sufficient conditions for positivity of Lβ and representing measures 
for β.

Theorem 1.3. Let β ≡ β(2d). If the core variety V ≡ V(β) is nonempty, then Lβ is strictly V-positive and 
β(2d−1) has a V-representing measure. Moreover, if V is nonempty and is either compact or a determining 
set for P2d, then β(2d) has a V-representing measure.

A theorem of Bayer and Teichmann [4], generalizing Tchakaloff’s Theorem on multivariable cubature [49] (cf. 
Appendix A.2), implies that if m is finite and β ≡ β(m) has a K-representing measure, then β has a finitely 
atomic K-representing measure (cf. [36,25]). It follows that the representing measures in Theorem 1.3 can 
always be taken to be finitely atomic. By way of contrast with Theorem 1.3, examples are known in which 
the variety V (Md) is a nonempty determining set, but Lβ is not positive (cf. Example 3.5-iii)), or in which 
V (Md) is nonempty and compact, but β has no representing measure (cf. (A.3) below).

Several results in the literature relate the rank of a singular positive moment matrix Md to the existence 
of a representing measure. The heuristic here is that the more dependence relations there are in the columns 
of Md, the easier it is to determine whether or not β has a representing measure. Indeed, a basic result 
of [11,16] implies that if Md 
 0 and rank Md = rank Md−1 (i.e., Md is flat in the sense of [11]), then β
has a unique representing measure. Moreover, a remarkable recent result of G. Blekherman [7] implies that 
if Md 
 0 and rank Md ≤ 3d − 3 (with d ≥ 3), then Lβ is positive (whence β(2d−1) has a representing 
measure by Theorem 1.1). By contrast, relatively little is known about the case when Md is positive definite 
(Md � 0), which is the focus of Section 3. The cases of Md � 0 within the scope of Hilbert’s theorem 
on sums of squares (cf. Appendix A.2) have representing measures, but the first case beyond the scope of 
Hilbert’s theorem, when n = 2 and d = 3, is largely unsolved. A result of K. Schmüdgen [42] implies an 
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example for n = 2, d = 3 in which M3 � 0, but Lβ(6) is not even positive (cf. Example 3.5-iii)). For the case 
n = 2, d = 3 and M3 � 0, we show in Theorem 3.4 that either V = R

2 (and there is a measure), card V = 10
(and there is a measure), or V = ∅ (and there is no measure). Theorem 1.2 implies that if Md � 0 and Lβ

is strictly positive, then β has a representing measure, and in [27, Question 1.2] we asked whether the same 
conclusion holds if Md � 0 and Lβ is merely positive. In Section 3 (Theorem 3.8), we use the core variety 
to resolve this question as follows.

Theorem 1.4. For n = 2, d = 3, there exists β ≡ β(6) such that M3 � 0 and Lβ is positive, but β has no 
representing measure.

In Section 4 we discuss some open questions concerning the core variety. The existence results that we 
have discussed above are based on convex analysis and basic algebraic geometry; however, the explicit 
constructions of measures in the examples in the sequel are based as well on positivity and extension 
properties of moment matrices. To make the exposition largely self-contained, we have collected some 
background material concerning these topics in Appendix subsections A.1 and A.2.

2. The core variety of a multisequence

In this section we introduce the core variety V ≡ V(β) of a multisequence β ≡ β(2d) and derive its 
basic properties, leading to a proof of Theorem 1.3. We assume that β satisfies the most basic requirement 
for a representing measure, Md 
 0, which is equivalent to the condition that Lβ be square positive, i.e., 
Lβ(p2) ≥ 0 (p ∈ Pd). Recall the variety V (Md) :=

⋂
p∈Pd, Mdp̂=0

Zp, which we now designate by V(0). In [27, 

Section 2], we introduced V(1) :=
⋂

p∈kerLβ , p|V(0)≥0

Zp as an initial attempt to refine V (Md). Now, for i ≥ 0, 

let

V(i+1) :=
⋂

p∈kerLβ , p|V(i)≥0

Zp.

We define the core variety of β (or of Md(β)) by V ≡ V(β) :=
∞⋂
i=0

V(i); we also denote this by V(Md).

In the definition of V, we used V(0) = V (Md), primarily because V (Md) is easy to compute. An alternate 
definition for a core variety can be based on setting W(0) :=

⋂
p∈ker Lβ ,p|Rn≥0

Zp, then setting

W(i+1) :=
⋂

p∈kerLβ , p|W(i)≥0

Zp (i ≥ 0),

and, finally, defining W ≡ W(β) :=
∞⋂
i=0

W(i). We claim that W = V. Since Md 
 0, for p ∈ Pd, Md(p̂) =

0 ⇐⇒ Lβ(p2) = 0, and since Zp = Zp2 , it follows that W(0) ⊆ V(0). Now, for p ∈ ker Lβ , p|V(0) ≥ 0 =⇒
p|W(0) ≥ 0, so W(1) ⊆ V(1). Further, if p ∈ ker Lβ is psd (p|Rn ≥ 0, cf. Section A.2), then p|V(0) ≥ 0, so 
V(1) ⊆ W(0). Thus, W(1) ⊆ V(1) ⊆ W(0), and it is not difficult to prove (by induction) that for i ≥ 1,

W(i) ⊆ V(i) ⊆ W(i−1),

whence W = V. In the sequel we always compute the core variety using V, because V(0) is much easier to 
compute than W(0).
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The usefulness of the variety V (Md) lies in the fact that it contains the support of any representing 
measure (see the remarks following (A.1)). Our first result shows that the core variety has the same inclusion 
property as V (Md), and since it is contained in V (Md), it provides a better indication of the location of the 
support.

Proposition 2.1. If μ is a representing measure for β, then supp μ ⊆ V.

The proof of Proposition 2.1 follows immediately from the following result.

Lemma 2.2. If β has a representing measure μ, then for each i ≥ 0, supp μ ⊆ V(i).

Proof. The proof is by induction on i ≥ 0, and for i = 0 the result follows from (A.1). Suppose i ≥ 0
and supp μ ⊆ V(i). We claim that supp μ ⊆ V(i+1). If not, there exists x ∈ supp μ with x /∈ V(i+1). 
Thus there exists p ∈ kerLβ , p|V(i) ≥ 0, with p(x) 	= 0. Since x ∈ supp μ ⊆ V(i), then p(x) > 0, whence 

0 <
∫

supp μ

pdμ = Lβ(p) = 0, a contradiction. �

Corollary 2.3. i) If β has a representing measure, then rank Md ≤ card V.
ii) If μ is a representing measure for β with int(supp μ) 	= ∅, then V(β) = R

n.

Proof. i) (A.2) shows that if μ is a representing measure for β, then rank Md ≤ card supp μ, so the result 
follows from Proposition 2.1.

ii) Since a proper affine variety has empty interior in Rn, the result follows from Proposition 2.1. �
We next turn to several results related to computing the core variety.

Lemma 2.4. For i ≥ 0, V(i+1) ⊆ V(i).

Proof. The proof is by induction on i ≥ 0. Let Q(0) := {p ∈ Pd : Mdp̂ = 0}, and let Q(i+1) := {p ∈ P2d :
Lβ(p) = 0, p|V(i) ≥ 0} (i ≥ 0). Thus, V(i) =

⋂
p∈Q(i)

Zp (i ≥ 0). Suppose q ∈ Q(0); then V(0) ⊆ Zq, q|V(0) ≡ 0, 

and Lβ(q) = Lβ(q · 1) = 〈Mdq̂, ̂1〉 = 0. Thus, q ∈ Q(1), so V(1) =
⋂

p∈Q(1)

Zp ⊆
⋂

q∈Q(0)

Zq = V(0). Now 

assume i ≥ 1 and V(i) ⊆ V(i−1). Let q ∈ Q(i), so q|V(i−1) ≥ 0. Thus, q|V(i) ≥ 0, whence q ∈ Q(i+1). Now, 
V(i+1) =

⋂
p∈Q(i+1)

Zp ⊆
⋂

q∈Q(i)

Zq = V(i), so the result follows. �

We note for future reference the following implications that are implicit in the proof of Lemma 2.4:

p ∈ kerLβ , p|V(i) ≥ 0 =⇒ V(i+1) ⊆ Zp

⋂
V(i) (2.1)

p ∈ ker Lβ , p|V(i) > 0 =⇒ V = ∅ (2.2)

V(i) = V(i+1) =⇒ V = V(i) (2.3)

The following result shows that there always exists i for which the hypothesis of (2.3) holds. In the sequel, 
for a subset S ⊆ R[x] ≡ R[x1, . . . , xn], V ar(S) denotes the variety of S, i.e., V ar(S) := {x ∈ R

n : s(x) =
0 ∀s ∈ S} (=

⋂
s∈S

Zs); any set of the form V ar(S) is an algebraic set. For X ⊆ R
n, let I(X) denote the ideal

of X, i.e., I(X) = {p ∈ R[x] : p|X ≡ 0}. It follows from [8, Ch. 4, Section 2, Theorem 7] [30, page 11, (9)]
that for S ⊆ R[x], V ar(I(V ar(S))) = V ar(S).
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Proposition 2.5. There exists i ≥ 0 such that V = V(i); equivalently, V(i) = V(i+1) = · · · = V(i+k) = · · ·
(k ≥ 0); equivalently, if p ∈ ker Lβ(p), and p|V(i) ≥ 0, then V(i) ⊆ Zp.

Proof. For j ≥ 0, let I(j) = I(V(j)) := {p ∈ R[x] : p|V(j) ≡ 0}. Since V(j+1) ⊆ V(j) (Lemma 2.4), then 
I(j) ⊆ I(j+1); thus I(0) ⊆ I(1) ⊆ · · · ⊆ I(j) ⊆ I(j+1) · · · . Since R[x] is Noetherian [29, page 13] [9, Ch. 2.5, 
Thm. 4], it satisfies the ascending chain condition for ideals [9, Thm. 7]. Thus there exists i ≥ 0 such that 
I(i) = I(i+1) = · · · = I(i+k) = · · · (k ≥ 0), whence V ar(I(i)) = V ar(I(i+1)) = · · · = V ar(I(i+k)) = · · · . 
Note that V(j) is an algebraic set since, by definition, V(j) = V ar(Sj) for Sj := {p ∈ ker Lβ : p|V(j−1) ≥ 0}. 
It now follows from [29, page 11, (9)] that V ar(I(j)) = V ar(I(V(j))) = V(j), and thus V(i) = V(i+1) = · · · =
V(i+k) = · · · . Now, from (2.3), V = V(i). Finally, it is clear that V = V(i) if and only if V(i) = V(i+1), or, 
equivalently, if p ∈ ker Lβ and p|V(i) ≥ 0 together imply p|V(i) ≡ 0. �

We next illustrate the core variety and the preceding results with an example. In the sequel, we set 
r := rank Md, v := card V (Md), and ν := card V. Recall from [17,26] that for n = 2, if Md is positive, 
recursively generated, r ≤ v, and M2 is singular, then β(2d) has a representing measure supported in a 
planar curve of degree 1 or 2. In [25] we solved TKMP for the case when K is the planar curve y = x3; in 
particular, we showed that the results of [17] do not extend to planar curves of degree 3. We next compute 
the core variety for a family of moment matrices with Y = X3 column relations.

Example 2.6. With n = 2, consider M3 given by

M3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 2 5 0 0 0 0
0 1 2 0 0 0 2 5 14 42
0 2 5 0 0 0 5 14 42 132
1 0 0 2 5 14 0 0 0 0
2 0 0 5 14 42 0 0 0 0
5 0 0 14 42 132 0 0 0 0
0 2 5 0 0 0 5 14 42 132
0 5 14 0 0 0 14 42 132 430
0 14 42 0 0 0 42 132 430 S

0 42 132 0 0 0 132 430 S T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is straightforward to check that for each S ∈ R, M3 is positive, with rank M3 = 9 and a column relation 
Y = X3, if and only if

T >
2048888 + 2856S + S2

2 . (2.4)

Assuming (2.4) holds, we have V(0) = Γ ≡ Zy−x3 . To compute V(1) we next describe the polynomials 
in ker Lβ that are nonnegative on V(0). By considering a basis for ker Lβ , it is not difficult to see that if 
Q(x, y) ∈ ker Lβ , then Q admits a representation of the form

Q(x, y) = F (x, y) + H(x, y)(y − x3), (2.5)

where deg H ≤ 3 and

F (x, y) := ax + by + c(x2 − 1) + d(xy − 2) + e(y2 − 5) + fx2y + gxy2 + hy3

+ j(x2y2 − 14) + k(xy3 − 42) + m(y2 − 132) + nx2y3 + pxy4 + qy5

+ r(x2y4 − 430) + s(xy5 − S) + t(y6 − T ),
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for scalars a, b, c, . . . . Clearly, Q|Γ ≥ 0 if and only if F |Γ ≥ 0. Now P (x) := F (x, x3) is nonnegative for all 
real x if and only if P can be represented as

P (x) = R(x)2 + U(x)2, (2.6)

for polynomials R(x) = a0 + · · · + a9x
9 and U(x) = b0 + · · · + b9x

9.
For each choice of R and U , let W := P − (R2 + U2). By setting the coefficients of W equal to 0, we 

see that, starting with the degree 18 term and working downwards to the degree 1 term, each coefficient 
of F is uniquely determined as a quadratic expression in certain of the ai and bi; thus, t = a2

9 + b29, 
s = a2

8 + 2a7a9 + b28 + 2b7b9, . . . , a = 2a0a1 + 2b0b1. By considering the x17 term of W we also see that it is 
necessary that

a8a9 + b8b9 = 0. (2.7)

To satisfy (2.6) it thus suffices to chose â := (a0, . . . , a9) and b̂ := (b0, . . . , b9) so that (2.7) holds and the 
constant term of W equals 0. Consider the real symmetric matrix

J :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 2 0 5 0 14 0
0 1 0 2 0 5 0 14 0 42
1 0 2 0 5 0 14 0 42 0
0 2 0 5 0 14 0 42 0 132
2 0 5 0 14 0 42 0 132 0
0 5 0 14 0 42 0 132 0 430
5 0 14 0 42 0 132 0 430 0
0 14 0 42 0 132 0 430 0 S

14 0 42 0 132 0 430 0 S 0
0 42 0 132 0 430 0 S 0 T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A calculation shows that the constant term of W can be expressed as

κ := 〈Jâ, â〉 + 〈Jb̂, b〉. (2.8)

Thus, (2.6) holds if and only if there is a choice of â and b̂ such that (2.7) holds and κ = 0. Since (2.4)
holds, a further calculation shows that J is positive semidefinite if and only if S ≥ 1444.

We first consider the case S > 1444. In this case, J is positive definite, so the only solution to (2.8) is 
â = b̂ = 0, which implies F (x, y) ≡ 0 (because the coefficients of F are, from (2.6), quadratic polynomials 
in the ai and bi). In this case, ZQ(x,y)|Γ = Γ, so we have V(1) = V(0), whence (2.3) implies V = Γ.

For the case S = 1444, dim ker J = 1, and a calculation shows that the non-trivial solutions to (2.6) are 
of the form P (x) = αZ(x)2 (α > 0), where

Z(x) = x8 − 8x6 + 20x4 − 16x2 + 2. (2.9)

Z(x) has 8 distinct real roots, given by x1 = −
√

2 −
√

2 −
√

2, x2 =
√

2 −
√

2 −
√

2, x3 = −
√

2 +
√

2 −
√

2, 

x4 =
√

2 +
√

2 −
√

2, and with x4+i obtained from xi by replacing the innermost 2 −
√

2 by 2 +
√

2
(1 ≤ i ≤ 4). Thus, if Q|Γ ≥ 0, then ZQ

⋂
V(0) = S := {(xi, x3

i )}8
i=1, whence V(1) = S. Now, 

card V ≤ card V(1) ≤ 8 < 9 = rank M3, so Corollary 2.3-i) implies that β has no representing mea-
sure.

Although we already know that there is no representing measure, we next show explicitly that V =
V(2) = ∅. To do this, we use the form of F (x, y) (above) to identify polynomials F1(x, y) and F2(x, y) that 
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belong to ker Lβ , are nonnegative on V(1), and satisfy ZF1

⋂
ZF2 = ∅. With the aid of linear programming, 

we find two such polynomials defined (approximately) by F1(x, y) := −2.45681(x2y2−430) −2.72738(xy5−
1444) + y6 − 4981 (which satisfies F1(xi, x3

i ) = 0 (1 ≤ i ≤ 4) and F1(xi, x3
i ) > 0 (5 ≤ i ≤ 8)), and 

F2(x, y) := −1.35840(x2y2−430) +3.85396(xy5−1444) −y6+4981 (which satisfies F2(xi, x3
i ) > 0 (1 ≤ i ≤ 4) 

and F2(xi, x3
i ) = 0 (5 ≤ i ≤ 8)).

Finally, we consider the case S < 1444. Let J8 denote the compression of J to the first 8 rows and columns, 
and let J9 denote the compression of J to the first 9 rows and columns. Now J8 � 0 and det J9 < 0. It 
follows readily that there exist vectors â and b̂, with a9 = b9 = 0, such that 〈Jâ, ̂a〉 = 1 and 〈Jb̂, ̂b〉 = −1. 
Thus (2.8) implies that there exist nonzero polynomials R(x) and U(x), each with degree at most 8, such 
that (2.6) holds. Since ZP = ZR

⋂
ZU , it follows that Q(x, y) has at most 8 distinct zeros in Γ, and since 

rank M3 = 9, it follows from Corollary 2.3-i) that β has no representing measure.
This example is consistent with the solution to TMKP for K = Γ in [25]. In [25], for n = 2, if Md 
 0

and the only dependence relations in Col Md correspond to multiples of y − x3, then there is a rational 
function of the moment data, ψ(β), such that β has a representing measure if and only if β1,2d−1 > ψ(β). 
In each case of the preceding example, ψ(β) = 1444. [25] depends on the Bayer–Teichmann Theorem [4]
and on the Flat Extension Theorem (Theorem A.1), so the core variety provides a clearer and more direct 
explanation of this example. The method of this example can also be used to study V whenever n = 2 and 
V(0) = Zp, where p(x, y) = y − q(x) for some univariate polynomial q(x). �

In view of Proposition 2.5, to compute V we must study the transition from V(i) to V(i+1). The next 
result provides an abstract characterization of this transition.

Proposition 2.7. For each i ≥ 0, there exists Qi ∈ ker Lβ such that Qi|V(i) ≥ 0 and V(i+1) = V(i) ⋂ZQi
.

Proof. Let S := {p ∈ ker Lβ : p|V(i) ≥ 0} and let J denote the ideal in R[x1, . . . , xn] generated by S. The 
Hilbert Basis Theorem [9, Theorem 4, p. 74] [29, p. 13] implies that there exists a finite collection p1, . . . , pm

in S such that J = (p1, . . . , pm) (the ideal generated by p1, . . . , pm). Thus, V(i+1) =
⋂
p∈S

Zp =
m⋂

k=1

Zpk
. Let 

Q ≡ Qi := p1 + · · ·+ pm; clearly, 
m⋂

k=1

Zpk
⊆ ZQ. For 1 ≤ k ≤ m, since pk|V(i) ≥ 0, if x ∈ V(i) and Q(x) = 0, 

then x ∈ Zpk

⋂
V(i). Thus, ZQ

⋂
V(i) ⊆ (

m⋂
k=1

Zpk
) 
⋂

V(i) ⊆ ZQ

⋂
V(i). Now, ZQ

⋂
V(i) = (

m⋂
k=1

Zpk
) 
⋂

V(i)

= V(i+1) ⋂V(i) = V(i+1). �
In numerical examples it may be very difficult to compute Qi as in Proposition 2.7. We next describe a 

procedure that can be used in certain examples to show that V = V(i+1) = V(i). Let N := {p ∈ Pd : p̂ ∈
ker Md}; clearly, N is a subspace of Pd and V (Md) =

⋂
p∈N

Zp. Note that if p ∈ N and q ∈ Pd, then 

g ≡ pq ∈ ker Lβ , since Lβ(pq) = 〈Mdp̂, q̂〉 = 0. Let Ñ denote the subspace of ker Lβ generated by

{g ∈ P2d : g = pq for p ∈ N , q ∈ Pd}.

For g ≡ pq (as above), g|V (Md) = pq|V (Md) ≡ 0, so

g|V(i) ≡ 0, V(i+1) ⊆ Zg (g ∈ Ñ , i ≥ 0). (2.10)

In constructing a basis B for ker Lβ to use in computing V(i+1), it is advantageous to include a basis 
for Ñ , say B˜ ≡ {g1, . . . , gm}. Suppose B = {f1, . . . , fp, g1, . . . , gm} denotes a basis for ker Lβ . Given 
N
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Q ∈ ker Lβ , we have Q ≡ F + G, where F := a1f1 + · · · + apfp and G := b1g1 + · · · + bmgm for scalars 
a1, . . . , ap, b1, . . . , bm. If we assume Q|V(i) ≥ 0, then since each gj |V(i) ≡ 0, this is equivalent to F |V(i) ≥ 0, 
i.e.,

a1f1(w) + · · · + apfp(w) ≥ 0 (w ∈ V(i)). (2.11)

In the sequel we refer to {f1, . . . , fp} as a reduced basis for ker Lβ . In the case where V(i) is finite, V(i) ≡
{w1, . . . , ws}, (2.11) is equivalent to the “reduced” system

a1f1(wj) + · · · + apfp(wj) ≥ 0 (1 ≤ j ≤ s). (2.12)

By solving this system, we can gain insight into ZQ (which necessarily contains V(i+1)). We may summarize 
the preceding discussion as follows.

Proposition 2.8. V = V(i) ⇐⇒ V(i+1) = V(i) ⇐⇒ F |V(i) ≥ 0 =⇒ F |V(i) ≡ 0 ⇐⇒ F |V(i) ≥ 0 =⇒
a1 = · · · = ap = 0.

The following lemma shows that in augmenting {g1, . . . , gm} to a basis for ker Lβ , no fj can be a sum 
of squares.

Lemma 2.9. Suppose Md 
 0. If f ∈ ker Lβ and f =
k∑

i=1
p2
i for some k ≥ 1 and pi ∈ Pd (1 ≤ i ≤ k), then 

f ∈ Ñ .

Proof. We have 0 = Lβ(f) =
∑

〈Mdp̂i, p̂i〉. Since Md 
 0, it follows that each Mdp̂i = 0, so each pi ∈ N
and thus f ∈ Ñ . �

Assuming that we have computed V(i), there are two main cases where we are able to apply Proposition 2.8
to show that V = V(i+1) = V(i). The first case is when V(i) is finite. In this case, if s and p are sufficiently 
small, it is possible to solve (2.12) directly, using algebra (cf. Example 2.19 below). But even for slightly larger 
systems, this direct approach may be very difficult, and computer algebra procedures such as Mathematica’s 
Reduce, which solve such systems in principle, seem to exhaust the computer’s memory before achieving 
a solution. In such cases, (2.12) may be solved numerically, using linear programming. More generally, we 
can use linear programming if we can find p ∈ ker Lβ such that p|V(i) ≥ 0 and card Zp < ∞, for then 
supp μ ⊆ V(i+1) ⊆ Zp for any representing measure μ. The disadvantage of using linear programming 
in examples is that it may entail numerical errors which make conclusions suspect. By contrast, if (as in 
Example 2.6) we are able to solve (2.12) exactly, then we can clearly see why β does or does not have a 
representing measure geometrically, by the way zero sets of certain polynomials intersect.

The other case where we are able to apply Proposition 2.8 to show V = V(i+1) = V(i) is when V(i) has 
the property that each polynomial F that is nonnegative on V(i) can be expressed as a (weighted) sum of 
squares. In such cases we can determine algebraically whether or not the condition of Proposition 2.8 holds. 
We have already illustrated this technique in Example 2.6, and we further illustrate this method in the next 
two examples. In other cases, it may be difficult to show that V(i+1) = V(i). For example if V(0) = R

n, then 
to show V(1) = V(0) it would be necessary to test the zero sets of each psd polynomial in ker Lβ , but there 
is no known method for doing this. While there are algorithms for proving that a particular polynomial 
with numerical coefficients is psd [35] (and to then compute its zeros), we cannot do this for arbitrary (i.e., 
non-numerical) linear combinations of the basis elements of ker Lβ . On the other hand, we illustrate in 
Example 3.5 and Theorem 3.8 cases where V(0) = R

n and where we can use Proposition 2.8 to compute V by 
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showing that V(i+1) 	= V(i). More generally, suppose {pi}ki=0 ⊂ ker Lβ , with p̂0 ∈ ker Md and pi| 
i−1⋂
j=0

Zj ≥ 0

(1 ≤ i ≤ k). If card
k⋂

j=0
Zj < rank Md, then card V < rank Md, so β has no representing measure (cf. 

Example 2.6 (S = 1444, first proof), or the first proof of Theorem 3.8).

Example 2.10. We illustrate Proposition 2.8 with n = 2 and M3 given by

M3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
2 0 1 0 0 0 0

0 1
2 0 0 0 0 1

2 0 1 0
0 0 1 0 0 0 0 1 0 3
1
2 0 0 1

2 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
1 0 0 1 0 3 0 0 0 0
0 1

2 0 0 0 0 1
2 0 1 0

0 0 1 0 0 0 0 1 0 3
0 1 0 0 0 0 1 0 3 0
0 0 3 0 0 0 0 3 0 10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

M3 is positive semidefinite, with rank M3 = 8 and column relations X3 = X and X2Y = Y . V(0) thus con-
sists of the lines x = 1 and x = −1, together with the origin (0, 0). Consider p(x, y) := x3 −x and q(x, y) :=
yx2−y. A basis for ker Lβ consists of the 14 distinct elements of {xiyjp}i,j≥0,i+j≤3

⋃
{xkymq}k,m≥0,k+m≤3, 

together with the reduced basis {x, y, x2− 1
2 , xy, y2−1, xy2, y3, xy3, x4−3, xy4, y5, xy5, y6−10}. Therefore, 

if F (x, y) ∈ ker Lβ satisfies F |V (0) ≥ 0, then we may assume that F (x, y) = ax +by+c(x2− 1
2 ) +dxy+e(y2−1)

+fxy2 + gy3 + jxy3 +m(x4 − 3) + pxy4 + qy5 + sxy5 + t(y6 − 10) for scalars a, b, c, . . . . It is not difficult 
to show that F1(y) := F (1, y) and F2(y) := F (−1, y) can both be represented as nonzero sums of squares, 
but when we impose the additional requirement F (0, 0) ≥ 0, we find that the only solution to F |V(0) ≥ 0 is 
F ≡ 0. Thus V = V(1) = V(0). It is possible to show that although M3 does not admit a flat extension, it 
does admit infinitely many positive rank 9 extensions M4, each of which admits a unique flat extension M5; 
thus M3 has infinitely many representing measures. �

We next compute the core variety for a sequence with 3 variables.

Example 2.11. We consider a degree 4 sequence β in 3 real variables, whose moment matrix M2 has rows 
and columns indexed as 1, X, Y , Z, X2, XY , XZ, Y 2, Y Z, Z2; the entry in row XiY jZk, column XrY sZt

is Lβ(xi+ryj+szk+t). M2 is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 2 4 50 24 −22 −30 26 80 846
2 24 −22 −30 8 16 368 −38 −398 −1342
4 −22 26 80 16 −38 −398 64 498 2188
50 −30 80 846 368 −398 −1342 478 2188 18074
24 8 16 368 180 −172 −288 188 656 7272
−22 16 −38 −398 −172 188 656 −226 −1054 −8614
−30 368 −398 −1342 −288 656 7272 −1054 −8614 −40158
26 −38 64 478 188 −226 −1054 290 1532 10802
80 −398 478 2188 656 −1054 1 − 8614 1532 10802 58232
846 −1342 2188 18074 7272 −8614 −40158 10802 58232 420438

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Let p(x, y, z) = x + y − 1 and q(x, y, z) = z − (x2 + y2). M2 is positive and recursively generated, with 
rank M2 = 5, and column relations p(X, Y, Z) = 0, (xp)(X, Y, Z) = 0, (yp)(X, Y, Z) = 0, (zp)(X, Y, Z) = 0, 
and q(X, Y, Z) = 0. Thus V(0) = Zp

⋂
Zq.

To compute V(1), we first note that the subspace Ñ has a basis B (of size 26) consisting of the multiples 
of p or q in P4 except for zp, xzp, yzp and z2p. To form a basis for ker Lβ , we adjoin to B a reduced basis 
for ker Lβ consisting of r1 = x − 1

3 , r2 = x2−4, r3 = z2−141, r4 = yz− 40
3 , r5 = z3− 9037

3 , r6 = xz3 +6693, 
r7 = y2z2 − 5401

3 , and r8 = z4 − 70073. Now suppose F (x, y, z) ∈ ker Lβ satisfies F |V(0) ≥ 0; we may 
assume F = c1r1 + · · · c8r8. Since F |V(0) ≥ 0, we see that G(x) := F (x, 1 − x, x2 + (1 − x)2) ≥ 0 for all 
real x. Now deg G = 8, so G admits a representation as G = A(x)2 + B(x)2 for A(x) = a0 + · · · + a4x

4

and B(x) = b0 + · · ·+ b4x
4. By setting the coefficients of S := G − (A2 +B2) to 0 (using the same method 

as in Example 2.6, expressing each ci in terms of the ak and bk), we see that the constant term of S

is 0 (and therefore all coefficients of S are 0) if and only if â := (a0, . . . , a4) and b̂ := (b0, . . . , b4) satisfy 
0 = 〈Jâ, ̂a〉 + 〈Jb̂, ̂b〉, where

J :=

⎛
⎜⎜⎜⎜⎜⎝

12 4 48 16 360
4 48 16 360 64
48 16 360 64 3048
16 360 64 3048 256
360 64 3048 256 26760

⎞
⎟⎟⎟⎟⎟⎠ .

Since J is positive definite, we see that G is psd if and only if â = b̂ = 0, which then implies that 
each ci = 0. Thus, each polynomial in ker Lβ that is nonnegative on V(0) is in Ñ , and it follows that 
V = V(1) = V(0) = {(x, 1 − x, x2 − 2x + 1)} (x ∈ R). Further calculations show that β has infinitely many 
representing measures, including the 6-atomic measure with support points (1, 0, 1), (0, 1, 1), (−1, 2, 5), 
(2, −1, 5), (−3, 4, 25), (3, −2, 13) and all densities equal to 1. �

We next turn to the proof of the main result, Theorem 1.3, which we re-state for ease of reference.

Theorem 2.12. Let β ≡ β(2d). If the core variety V ≡ V(β) is nonempty, then Lβ is strictly V-positive and 
β(2d−1) has a V-representing measure. Furthermore, if V nonempty and is either compact or a determining 
set for P2d, then β(2d) has a V-representing measure.

Remark 2.13. i) In view of [4], if β(m) has a K-representing measure, then β(m) has a finitely 
atomic K-representing measure. Thus, Theorem 2.12 may also be expressed in terms of finitely atomic 
V-representing measures.

ii) It follows from Theorem 2.12 that if the variety V (Md) is finite, then β has a representing measure if 
and only if the core variety V is nonempty. The finite variety case is significant because, from Theorem A.2, 
β has a representing measure if and only if Md admits a positive extension Md+k+1 whose variety V (Md+k+1)
is finite and is the support of a representing measure for β. The finite variety case arises, for example, if 
n = 2, there exist p, q ∈ Pd such that p(X, Y ) = q(X, Y ) = 0 in Col Md, and p and q have no nontrivial 
common factor. In this case, it follows from Bezout’s Theorem [9] that card V (Md) ≤ card (Zp

⋂
Zq) ≤

deg p deg q < ∞.

Proof of Theorem 2.12. Without loss of generality in the following argument, we may assume that Lβ(1) ≡
β0 = 1. From Proposition 2.5 we may also assume that V = V(j) = V(j+1) = · · · for some j ≥ 0. Suppose 
first that Lβ is not V-positive. Thus, there exists p ∈ P2d such that p|V ≥ 0, but Lβ(p) < 0. Let q =
p −Lβ(p) ∈ P2d. Then Lβ(q) = 0, and for x ∈ V, q(x) = p(x) −Lβ(p) > 0. Since q ∈ ker Lβ and q|V(j) ≥ 0, 
then (2.1) implies V(j+1) ⊆ Zq

⋂
V(j) = Zq

⋂
V = ∅, whence V = ∅, a contradiction. Thus, Lβ is V-positive. 
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If Lβ is not strictly V-positive, then there exists p ∈ P2d such that p|V ≥ 0 and p|V 	≡ 0, but Lβ(p) = 0. 
Since V = V(j), there exists v0 ∈ V(j) such that p(v0) > 0. Since p|V(j) ≥ 0 and Lβ(p) = 0, then v0 ∈ V(j)

= V(j+1) ⊆ V(j) ⋂Zp ⊆ V(j) \ {v0}, a contradiction. Thus, Lβ is strictly V-positive.
Since Lβ is V-positive, Theorem 1.1 (applied with d replaced by d − 1) implies that β(2d−1) has a 

V-representing measure. Furthermore, Theorem A.3 implies that if V is compact, then β has a V-representing 
measure. Finally, since Lβ is strictly V-positive, Theorem 1.2 implies that if V is a determining set for P2d, 
then β has a V-representing measure. �
Corollary 2.14. If ν ≡ card V < r ≡ rank Md, then ν = 0 (V = ∅).

Proof. If 0 < ν < r, then from the compact case of Theorem 2.12, β has a representing measure. Theo-
rem 3.8-i) thus implies r ≤ ν, a contradiction. �
Corollary 2.15. If V ≡ V(β) is nonempty, then β is a limit of multisequences having V-representing measures, 
i.e., β has a sequence of approximate representing measures.

Proof. Since V is nonempty, Lβ is V-positive, so the result follows from [27]. �
In the sequel, we say that β is V-consistent if the conditions p ∈ P2d, p|V ≡ 0 together imply Lβ(p) = 0; 

since V ⊆ V (Md), V-consistency implies consistency. The example in (A.3) (below) illustrates a case where 
Md is positive and V (Md) 	= ∅, but Md is not recursively generated and hence β is not consistent. By 
contrast, we have the following result.

Corollary 2.16. If V ≡ V(β) is nonempty, then β is V-consistent.

Proof. Theorem 2.12 implies that Lβ is V-positive. If p ∈ P2d satisfies p|V ≡ 0, then since p|V ≥ 0 and 
−p|V ≥ 0, it follows that Lβ(p) = 0. �

Theorem 2.12 does not provide for representing measures in the case where V is a proper non-compact 
variety. We next show how this case can arise.

Proposition 2.17. Let n = 2 and let p(x, y) be an irreducible polynomial with deg p = d and Zp infinite. 
Suppose there exists a positive finite Borel measure μ on R2 with supp μ = Zp. Then β ≡ β(2d)[μ] satisfies 
V(β) = Zp.

Proof. Let Md ≡ Md(β). We first show that V (Md) = Zp (= supp μ). Let q(x, y) ∈ Pd, q 	≡ 0, and 
suppose q(X, Y ) = 0 in Col Md. (A.1) implies Zp ≡ supp μ ⊆ Zq, so q ∈ I(Zp). Since p is irreducible 
and Zp is infinite, it follows that I(Zp) = (p), the principal ideal generated by p [29, Ch. 1.6, Cor. 1]. 
Thus, there is a factorization q = ph for some polynomial h. Since deg p + deg h = deg q, q ∈ Pd, and 
deg p = d, it follows that q = αp for some nonzero scalar α, whence Zq = Zp. Now V(0) ≡ V (Md) =⋂
q∈Pd, q(X,Y )=0

Zq = Zp (= supp μ). Next, to compute V(1), let g(x, y) ∈ P2d satisfy g ∈ ker Lβ and 

g|V(0) ≥ 0. Since 
∫
gdμ = Lβ(g) = 0 and g|supp μ = g|V(0) ≥ 0, we have g|Zp

= g|supp μ ≡ 0, i.e., 
Zp ⊆ Zg. Thus, V(0) ⊇ V(1) =

⋂
g∈P2d, g|V(0)≥0

Zg ⊇ Zp = V(0). Now, V(1) = V(0), so from (2.3) we have 

V = V(1) = V(0) = Zp. �
In the following result, we denote V(Md) by Vd. We further set rd := rank Md and νd := card Vd. 

A consequence of the Bayer–Teichmann Theorem and of Theorem 3.8-i) is that a necessary condition for β
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to have a representing measure is that Md admit positive, recursively generated moment matrix extensions 
Md+1, Md+2, . . . satisfying rd+i ≤ νd+i (i ≥ 0). Clearly, {ri} is nondecreasing, and we next show that {νi}
is nonincreasing. Theorem A.2 implies that β has a representing measure if and only if rd+i = rd+i+1 for 
some i; in this case, rd+i+k = rd+i+1 = νd+i+1 = νd+i+k for every k ≥ 0. More generally, for the V-extremal
case, when ri = νi for some i, we show below (Theorem 2.20) that there exists a (unique) representing 
measure.

Proposition 2.18. If Md+1 
 0, then Vd+1 ⊆ Vd.

Proof. Let V(i)
d := V(i)(Md) and V(i)

d+1 := V(i)(Md+1). It suffices to prove that for i ≥ 0, V(i)
d+1 ⊆ V(i)

d . The 

proof is by induction on i ≥ 0, and V(0)
d+1 ⊆ V(0)

d follows from [23]. Now suppose V(j)
d+1 ⊆ V(j)

d (0 ≤ j ≤ i − 1), 
and consider V(i)

d =
⋂

p∈kerL
β(2d) , p|

V(i−1)
d

≥0

Zp. For p ∈ P2d with Lβ(2d)(p) = 0 and p|V(i−1)
d

≥ 0, clearly 

p ∈ P2d+2, Lβ(2d+2)(p) = 0, and since V(i−1)
d+1 ⊆ V(i−1)

d (by induction), then p|V(i−1)
d+1

≥ 0. Thus, V(i)
d+1 =⋂

q∈kerL
β(2d+2) , q|

V(i−1)
d+1

≥0

Zq ⊆
⋂

p∈kerL
β(2d) , p|

V(i−1)
d

≥0

Zp = V(i)
d . �

Recall that if β has a representing measure μ, then r := rank Md ≤ card supp μ ≤ ν := card V ≤ v :=
card V (Md). The results of [20] show that if β is extremal, i.e., r = v, then β has a representing measure 
if and only if Md 
 0 and β is consistent. In this case, there is a unique representing measure μ, with 
supp μ = V (Md). Thus, if β is extremal and has a representing measure, then β is also V-extremal, i.e., 
rank Md = card V. We next illustrate a case where β is V-extremal, but not extremal.

Example 2.19. For n = 2, d = 3, consider M ≡ M3 given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8 0 0 6 0 6 0 0 0 0
0 6 0 0 0 0 6 0 4 0
0 0 6 0 0 0 0 4 0 6
6 0 0 6 0 4 0 0 0 0
0 0 0 0 4 0 0 0 0 0
6 0 0 4 0 6 0 0 0 0
0 6 0 0 0 0 6 0 4 0
0 0 4 0 0 0 0 4 0 4
0 4 0 0 0 0 4 0 4 0
0 0 6 0 0 0 0 4 0 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A calculation shows that M 
 0, with rank M = 8, and we claim that β is V-extremal. V (M) is determined 
by the column relations X3 = X and Y 3 = Y . Setting p(x, y) = x3−x and q(x, y) = y3−y, we see that V (M)
is the 9-point grid consisting of points wi ≡ (xi, yi) given by w1 = (−1, −1), w2 = (0, −1), w3 = (1, −1), 
w4 = (−1, 0), w5 = (0, 0), w6 = (1, 0), w7 = (−1, 1), w8 = (0, 1), w9 = (1, 1). To construct a basis for 
ker Lβ so as to simplify our calculations, we seek to include as many multiples of p or q as possible. There 
are 20 such multiples in P6, as follows: g1 := p, g2 := xp, g3 := yp, g4 := x2p, g5 := xyp, g6 := y2p, 
g7 := x3p, g8 := x2yp, g9 := xy2p, g10 := y3p, g11 := q, g12 := xq, g13 := yq, g14 := x2q, g15 := xyq, 
g16 := y2q, g17 := x3q, g18 := x2yq, g19 := xy2q, g20 := y3q. However, this collection is dependent, since 
g3 = g12 −g17 +g10, so we delete g3, which results in an independent set of 19 polynomials. Since a basis for 
ker Lβ requires 27 polynomials, we augment this collection with f1 := x, f2 := y, f3 := x2 − 3

4 , f4 := xy, 
f5 := y2 − 3 , f6 := x2y, and f7 := xy2.
4
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The new collection provides 26 independent elements of ker Lβ , so we require one additional polynomial 
for a basis. For this, we use the de-homogenized Robinson polynomial defined by

r(x, y) := x6 + y6 − x4y2 − x2y4 − x4 − y4 − x2 − y2 + 3x2y2 + 1

(cf. Section A.2). A calculation with the moments shows that r ∈ ker Lβ ; moreover, this polynomial is 
suitable for our problem because it is known to be nonnegative throughout the plane but is not a sum of 
squares (cf. Lemma 2.9), and has affine zeros precisely at each wi except w5. A further calculation shows 
that the new collection is indeed a basis for ker Lβ . To compute V(1), let Q(x, y) ∈ ker Lβ and suppose 
Q|V (M) ≥ 0. There exist scalars a1, . . . , a7, b1, b2, b4, . . . , b20, α such that

Q(x, y) = a1f1 + · · · + a7f7 + αr + b1g1 + b2g2 + b4g4 + · · · + b20g20.

Since each gi|V (M) ≡ 0, the condition Q|V (M) ≥ 0 is equivalent to F |V (M) ≥ 0, where

F (x, y) := ax + by + c(x2 − 3
4) + dxy + e(y2 − 3

4) + fx2y + gxy2 + αr(x, y),

for certain scalars a, b, c, d, e, f, g, α. Since F |V (M) ≥ 0, we have, in particular, the system F (xi, yi) ≥ 0
(1 ≤ i ≤ 9, i 	= 5). It is not difficult to verify (either algebraically or using linear programming) that 
a = b = c = d = e = f = g = 0 is the unique solution to this system. We now have F (x, y) = αr(x, y). If we 
impose the condition F (0, 0) ≥ 0, we see that α ≥ 0. Thus, for Q ∈ ker Lβ with Q|V (M) ≥ 0,

Q(x, y) = αr(x, y) + p(x, y)u(x, y) + q(x, y)v(x, y) (2.13)

for certain u, v ∈ P3 and α ≥ 0. From (2.13), ZQ includes Zr for all such Q, so it follows that Zr ⊆ V(1). Since 
r is psd and r ∈ ker Lβ , we also have the reverse inclusion, so it follows that V(1) = Zr. To compute V(2), 
we now consider Q(x, y) ∈ ker Lβ (as above) and we assume that Q|V(1) ≥ 0. Then, exactly as above, we 
have F (x, y)|Zr

≥ 0, so we again conclude that Q has the form in (2.13) for certain u, v ∈ P3 and α ∈ R. 
From this it follows that ZQ contains V(1) for all such Q, whence V(1) ⊆ V(2). Now V = V(2) = V(1) = Z(r)
by (2.3). Thus, β is V-extremal, with r = ν = 8 < 9 = v. �

We next describe an analogue of [20] for the V-extremal case. The following existence-uniqueness result 
for the V-extremal case can be proved independently of the compact case of Theorem 2.12, based instead on 
the proof of [20, Theorem 2.8], but replacing V (Md) with V(β), and using Theorem 2.12 and Corollary 2.16
just to establish V-consistency; we omit the details.

Theorem 2.20. If rank Md = card V, then β admits a unique representing measure μ, and supp μ = V.

We conclude this section by considering several cases in which the truncated moment problem has been 
completely solved, and for these cases we show that the existence of a representing measure for β is equivalent 
to β having a nonempty core variety. We first relate Theorem 2.20 to TMP on the real line (n = 1). We 
treat the case when Md is singular next and the case when Md is nonsingular in Section 3.

Theorem 2.21. Let n = 1 and suppose Md is singular. The following are equivalent for β ≡ β(2d) (β0 > 0):
i) β has a representing measure;
ii) [10] Md is positive and recursively generated;
iii) β is V-extremal, i.e., ν = r (> 0);
iv) V is nonempty and V = V (Md).
v) V is nonempty.
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Proof. The equivalence of i) and ii) is established in [10]. Suppose iii) holds; since ν = r > 0, Theorem 2.12
implies that Lβ is positive, whence Md 
 0. Similarly, Corollary 2.16 implies that β is V-consistent, hence 
consistent, so Md is recursively generated, and thus ii) holds. Now suppose ii) holds. The results of [10]
show that in this case, r = v and there is a representing measure, so Theorem 3.8 implies r ≤ ν ≤ v = r, 
whence iii) holds; thus i)–iii) are equivalent. Next, if iv) holds, then so does v), and the same argument as 
in iii) =⇒ ii) shows that v) implies ii).

To complete the proof, it now suffices to show that i)–iii) imply iv). From the structure of a positive, 
singular, recursively generated Hankel matrix (cf. [10]), the columns 1, X, . . . , Xr−1 are independent, there 
is a dependence relation g(X) = 0 with deg g = r, and (xig)(X) = 0 (0 ≤ i ≤ d −r). Further, g has r distinct 
real roots and V(0) ≡ V (Md) = Zg = supp μ, where μ is the unique representing measure for β. Thus, there 
is a basis for ker Lβ of the form {xi−βi}r−1

i=1

⋃
{xjg}2d−r

j=0 . Now suppose q(x) ∈ ker Lβ and q|V(0) ≥ 0. Then 

q(x) is of the form q(x) = f(x) + g(x)h(x), where deg h(x) ≤ 2d − r and f(x) :=
r−1∑
i=1

αi(xi − βi) (αi ∈ R). 

Since q|V(0) ≥ 0, then f |V(0) ≥ 0. Now 0 = Lβ(q) = Lβ(f) =
∫

supp μ

f(x)dμ(x) and f |supp μ = f |V(0) ≥ 0, so 

f |V(0) ≡ 0. Since card V(0) = r and deg f ≤ r − 1, it follows that f ≡ 0. Thus, V(0) ⊆ Zq, so V(1) = V(0), 
and (2.3) implies V = V(1) = V(0) = Zg. �

By combining the results of [12,15,17,26], we see that if n = 2 and M2 is singular, then β ≡ β(2d) has a 
representing measure if and only if Md is positive and recursively generated, and rank Md ≤ card V (Md).

Proposition 2.22. Let n = 2. If V ≡ V(Md) is nonempty and M2 is singular, then β ≡ β(2d) has a representing 
measure.

Proof. If V is a nonempty finite set, the existence of a representing measure follows from Theorem 2.12, so 
we may assume that V is an infinite set. Since V is nonempty, Theorem 2.12 and Corollary 2.16 imply that 
Lβ is positive and consistent; in particular, Md 
 0 and Md is recursively generated. Since V is infinite, then 
rank Md < +∞ = card V ≤ card V (Md), so, as described above, the existence of a representing measure 
follows. �

Recall Hilbert’s theorem on sums of squares: each psd polynomial of degree 2d is sos if and only if n = 1, 
d = 1, or n = d = 2. In each of these cases, TMP has been solved, and we show that in each such case the 
existence of a representing measure is equivalent to V(β) 	= ∅. We treat the case when Md is positive and 
singular next, and we consider the case when Md is positive definite in Section 3.

Proposition 2.23. In the cases of Hilbert’s Theorem, if Md is positive and singular, and if V ≡ V(Md) is 
nonempty, then β has a representing measure.

Proof. For the case n = 1, the result follows from Proposition 2.21. For the case d = 1, since Md 
 0, then 
[27, Section 4] implies that β has a measure (indeed, in this case Md has a flat extension). For the case 
n = d = 2 and Md singular, the result follows from Proposition 2.22. �
3. The positive definite case

In this section we apply the core variety in the case when Md is positive definite, i.e., Md � 0. This case of 
TMP is largely unsolved, due to the lack of dependence relations in Col Md. (Such relations, when present 
and combined with recursiveness, are useful in constructing positive extensions leading to flat extensions and 
representing measures (cf. Theorem A.1 and A.2).) Recall that Hilbert’s theorem shows each psd polynomial 
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is sos if and only if n = 1, d = 1, or n = d = 2 (cf. Section A.2). In the cases of Hilbert’s theorem, it is 
known that a positive definite moment matrix has a representing measure (cf. [10] for n = 1 and [27] for 
d = 1 and n = d = 2). We begin with a new proof of this result based on the core variety.

Proposition 3.1. In the cases of Hilbert’s Theorem, if Md(β) � 0, then V(β) = R
n and β has a representing 

measure.

Proof. Since Md � 0, then V (Md) = R
n. From (2.3), to show V = R

n, it suffices to verify that V(1) = R
n. 

Suppose q ∈ ker Lβ and q is psd. Then q is of the form q =
∑

q2
i for certain qi ∈ Pd, and thus 0 = L(q) =∑

L(q2
i ) =

∑
〈Mdq̂i, q̂i〉. Since Md � 0, it follows that each q̂i = 0, whence q = 0 and Zq = R

n. We thus 
have V(1) =

⋂
q∈ker Lβ ,q|Rn≥0

Zq = R
n = V(0), whence (2.3) implies V = V(1) = V(0) = R

n. Since Rn is a 

determining set, Theorem 1.3 implies that β has a representing measure. �
Remark 3.2. For the cases d = 1 or n = 1, it is known that if Md � 0, then Md admits a flat extension 
Md+1 (cf. [11,27]). For the case n = d = 2, it was an open question for several years as to whether a positive 
definite M2 admits a flat extension M3. This has recently been answered affirmatively in [21], using the 
proof of [17] and a “reduction of rank” technique.

Relatively little is known concerning the positive definite case beyond the scope of Hilbert’s Theorem. 
However, we do have the following general result.

Proposition 3.3. The following are equivalent:
i) Lβ is strictly positive;
ii) Md � 0 and V = R

n;
iii) V = R

n.

Proof. We begin with i) =⇒ ii). Suppose Lβ is strictly positive. For p ∈ Pd with p 	≡ 0, we have 〈Mdp̂, ̂p〉 =
Lβ(p2) > 0, so Md � 0. It follows that V(0) ≡ V (Md) = R

n. From (2.3), to show V = R
n, it suffices to prove 

that V(1) = R
n. Suppose p ∈ ker Lβ and p|V(0) ≥ 0. Then since p is psd and Lβ is strictly positive, we have 

p ≡ 0, whence Zp = R
n. It follows that Rn = V(1) ⊆ V(0) = R

n, so the conclusion V = R
n follows. Clearly 

ii) implies iii), and the implication iii) =⇒ i) follows immediately from Theorem 1.3. �
For the case n = 2, d = 3, and M3 � 0, we next characterize the existence of representing measures in 

terms of the core variety. In the sequel we will denote by Δn,2d the polynomials in R[x1, . . . , xn] of degree 
at most 2d that are nonnegative on Rn, but cannot be expressed as sums of squares of polynomials (cf. 
Section A.2).

Theorem 3.4. For n = 2 and M3 � 0, exactly one of the following holds:
i) V = R

2 and there is a representing measure;
ii) ν = 10 and there is a unique representing measure, whose support is V;
iii) ν = 0 and there is no representing measure.

Proof. i) If V = R
2 (as described in Proposition 3.3), then since R2 is a determining set, Theorem 1.3

implies the existence of a representing measure.
ii) If ν = 10, then since M3 � 0, we have r = ν. Thus β is V-extremal, so the existence of a unique 

representing measure, with support V, follows from Theorem 2.20.
iii) Since M3 � 0, we have V(0) = R

2, and since ker Md = {0}, then Ñ = {0}. To compute V(1), suppose 
p ∈ ker Lβ and p is psd. If card Zp > 10, then it follows from [40, Sec. 7] (see also [8, Thm. 3.7]) that p is sos, 



962 L.A. Fialkow / J. Math. Anal. Appl. 456 (2017) 946–969
and thus Lemma 2.9 implies p ∈ Ñ , whence p = 0. Thus, if V 	= R
2, then there exists p ∈ ker Lβ

⋂
Δ2,6 such 

that card Zp ≤ 10, so ν ≤ 10. If we further assume that ν 	= 10, then ν < 10 = rank M3, so Corollary 2.14
implies that ν = 0 and that there is no representing measure. �
Example 3.5. We may illustrate the three cases of Theorem 3.4 as follows. For case i), let μ denote a 
positive finite Borel measure on the plane with supp μ = R

2, e.g., dμ = e−x2−y2
dxdy. Let M ≡ M3[μ]. 

For p ∈ P3, p 	≡ 0, 〈Mp̂, ̂p〉 = Lβ(p2) =
∫
p2dμ > 0, so M � 0. Similarly, if p ∈ ker Lβ is psd, then since ∫

pdμ = Lβ(p) = 0, we have p ≡ 0. Thus V = V(1) = V0) = R
2.

To illustrate case ii), recall the Robinson polynomial r(x, y), and let R(x, y, z) denote its homogenization, 
defined by

R(x, y, z) := x6 + y6 + z6 − x4y2 − x2y4 − x4z2 − y4z2 − x2z4 − y2z4 + 3x2y2z2.

It is known that r(x, y) has precisely eight affine zeros wi ≡ (xi, yi) (1 ≤ i ≤ 8), as follows: w1 = (−1, −1), 
w2 = (0, −1), w3 = (1, −1), w4 = (−1, 0), w5 = (1, 0), w6 = (−1, 1), w7 = (0, 1), w8 = (1, 1). Corresponding 
to these are eight projective zeros of the Robinson form R: w̃i := (xi, yi, 1) (1 ≤ i ≤ 8). The Robinson form 
has two additional projective zeros, w̃9 ≡ (x9, y9, z9) := (1, 1, 0) and w̃10 ≡ (x10, y10, z10) := (1, −1, 0). We 
now define T (x, y, z) to be the Robinson form composed with a linear change of variables in R3, as follows:

T (x, y, z) := R(3x− 3y + z,−3x + 5y − 2z, x− 2y + x).

Since R ∈ Δ3,6, so is T . Then the dehomogenization of T , defined by t(x, y) := T (x, y, 1), is in Δ2,6. For 
each projective zero (x, y, z) of R, (u, v, w) := (x + y + z, x + 2y + 3z, x + 3y + 6z) is a projective zero 
of T , and if w 	= 0, then ( u

w , vw ) is an affine zero of t. A calculation now shows that t has 10 distinct 
affine zeros, ui ≡ (ai, bi) (1 ≤ i ≤ 10), as follows: u1 = (−1

2 , 0), u2 = (0, 13 ), u3 = (1
4 , 

1
2 ), u4 = (0, 25 ), 

u5 = (2
7 , 

4
7 ), u6 = (1

8 , 
1
2 ), u7 = (2

9 , 
5
9 ), u8 = ( 3

10 , 
3
5 ), u9 = (1

2 , 
3
4 ), u10 = (0, 12 ). Setting μ :=

10∑
i=1

δ(ai,bi), 

a straightforward calculation with nested determinants shows that M3[μ] � 0, and a calculation with the 
moments β ≡ β(6)[μ] shows that Lβ(t) = 0. Since t is psd, we have V(1) ⊆ Zt, whence ν ≤ 10. Since β has 
the representing measure μ, we also have 10 = card supp μ ≤ ν, so we see that ν = 10 and V = Zt.

Concerning iii), the first example of a positive definite moment matrix not having a representing measure 
appears in [12, Section 4], for the case n = 2 and d = 3. This example is based on Schmüdgen’s construction 
in [42] of a polynomial in Δ2,6 given by

ψ(x, y) := 200(x3 − 4x)2 + 200(y3 − 4y)2 + (y2 − x2)x(x + 2)[x(x− 2) + 2(y2 − 4)].

This polynomial is used in [42] to explicitly construct a linear functional L on P6 that is positive on Σ2,6, 
but is not positive on P6. The functional is defined by

L(p) := 32
8∑

i=1
p(Ai) + p(B1) + p(B2) − p(A0) (p ∈ P6),

where

A1 = (−2,−2), A2 = (0,−2), A3 = (2,−2), A4 = (−2, 0),

A5 = (0, 0), A6 = (−2, 2), A7 = (0, 2), A8 = (2, 2),

A9 = (2, 0), B1 = ( 1
100 , 0), B2 = (0, 1

100).
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The moment matrix M3(β) corresponding to the moment sequence β ≡ β(6), where βij = L(xiyj) (i, j ≥ 0,
i + j ≤ 6), illustrates case iii) in Theorem 3.4. The fact that M3 is positive definite was asserted in [12], but 
in [12] there are errors in recording the moments; The correct values are as follows:

β00 = 257, β10 = −6599
100 , β01 = 1

100 , β20 = 6360001
10000 , β11 = 0, β02 = 7680001

10000 , β30 = −263999999
1000000 , 

β21 = β12 = 0, β03 = 1
1000000 , β40 = 254400000001

100000000 , β31 = β13 = 0, β22 = 2048, β04 = 307200000001
100000000 , 

β50 = −10559999999999
10000000000 , β41 = β32 = β23 = β14 = 0, β05 = 1

10000000000 , β60 = 10176000000000001
1000000000000 , 

β51 = β33 = β15 = 0, β42 = β24 = 8192, β06 = 12288000000000001
1000000000000 .

Using nested determinants, it is straightforward to verify that M3 � 0. Now ψ is psd and L(ψ) =
−255360015879601

1000000000000 < 0, so L is not positive, and therefore β has no representing measure. It now follows from 
Theorem 3.4 that ν = 0. �

We next use the core variety to prove the existence of a large family of positive definite moment matrices 
not having representing measures.

Proposition 3.6. Let p ∈ Δn,2d with card Zp < dim Pd. Then there exists Md ≡ Md(yp) such that Md � 0, 
Lyp

(p) = 0, and V(Md) = ∅, whence yp has no representing measure.

Proof. Since Σ2d is a closed convex set in P2d [36, Ch. 3.8, Cor. 3.50, p. 50], and p /∈ Σ2d, the Separation 
Theorem [5, Thm. 34.1, p. 134] implies that there exists a linear functional L : P2d �→ R and α ∈ R such 
that L|Σ2d > α and δ := L(p) < α. Let q ∈ Σ2d, q 	≡ 0. Since for each n > 0, L( 1

nq) > α, then L(q) > nα, 
whence α ≤ 0 and δ < 0. Moreover, nL(q) = L(nq) > α, so L(q) > α

n , and thus L(q) ≥ 0. Now we have 
L|Σ2d ≥ 0 and L(p) = δ < 0.

Let μ denote a finite positive Borel measure such that supp μ = R
n. Then for β ≡ β(2d)[μ], Lβ is strictly 

positive. Let ε := Lβ(p) (> 0) and set γ = − ε
δ (> 0). Let y ≡ yp denote the sequence associated with 

L := γL +Lβ , i.e., yi = L(xi) (|i| ≤ 2d). For q ∈ Pd, q 	≡ 0, Ly(q2) ≡ L(q2) = γL(q2) +Lβ(q2) ≥ Lβ(q2) > 0, 
whence Md(y) � 0 and V(0) ≡ V(0)(Md(y)) = R

n. Now, Ly(p) = γL(p) + Lβ(p) = − ε
δ δ + ε = 0. Since 

p|V(0)(Md(y)) = p|Rn ≥ 0, it follows that V(y) ⊆ V(1)(Md(y)) ⊆ Zp, and since card Zp < dim Pd =
rank Md(y), Corollary 2.14 implies that V(Md(y)) = ∅, so y has no representing measure. �
Remark 3.7. The Robinson polynomial r(x, y) satisfies the hypothesis of Proposition 3.6, since r ∈ Δ2,6
and card Zr = 8 < 10 = dim P3. Similarly, the Motzkin polynomial m(x, y) satisfies card Zm = 4, and 
Schmüdgen’s polynomial ψ(x, y) satisfies card Zψ = 8. Given p ∈ Δn,2d as in Proposition 3.6, it is generally 
very difficult to express a separating functional L explicitly, because the proof of the Separation Theorem is 
non-constructive. For this reason, it is generally difficult to describe Lyp

numerically. However, as discussed 
above in Example 3.5-iii), in [42], Schmüdgen explicitly constructed a functional L separating ψ from Σ2,6. 
Now let μ be any positive Borel measure such that supp μ = R

n and such that μ has convergent moments up 
to degree 2d that can be explicitly computed, e.g., dμ = e−x2−y2

dxdy. For β ≡ β(2d)[μ], let L = − ε
δL +Lβ , 

where δ = L(ψ) (< 0) and ε = Lβ(ψ) (> 0). Then yψ, the moment sequence of degree 2d corresponding 
to L, is a numerically computable sequence that satisfies the requirements of Proposition 3.6.

The analysis of the relationship between Σn,2d and P+
n,2d, initiated by Hilbert, continues to be much-

studied, notably in the work of B. Reznick [39,40] and in recent work of G. Blekherman concerning 
Cayley–Bacharach theory (e.g. [6]). In [6] Blekherman showed that for p ∈ Δ3,6 there exists a 9-atomic 
separating functional; one of the parameters used to construct this functional is computed via semidefinite 
optimization (cf. [36]). Building on Blekherman’s work, S. Iliman and T. de Wolff [33] have developed an ex-
act (algebraic) method for constructing separating functionals L for certain classes of polynomials p in Δ3,6. 
In particular, [33, Section 5] has a concrete (numerical) formula for a 9-atomic separating functional L̃ for 
the homogeneous Motzkin form M(x, y, z). By de-homogenizing L̃, one has a separating functional L for 
m(x, y). Of course, once L is computed and μ is chosen as above, it is straightforward to construct yp exactly 
(as described above).
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If Lβ is strictly positive, then Md � 0, and Theorem 1.2 implies that β has a representing measure. In 
[27, Question 1.2] we asked whether the same conclusion holds if Md � 0 and Lβ is merely positive (cf. [18, 
Question 2.9]). The following result uses the core variety to provide a negative answer.

Theorem 3.8. For n = 2, there exists β ≡ β(6) with M3 ≡ M3(β) � 0 and Lβ positive, but with V = ∅, so β
does not have a representing measure.

Proof. As noted in Example 3.5, the de-homogenized Robinson polynomial r(x, y) has the following eight 
affine zeros wi ≡ (xi, yi) (1 ≤ i ≤ 8): w1 = (−1, −1), w2 = (0, −1), w3 = (1, −1), w4 = (−1, 0), w5 = (1, 0), 
w6 = (−1, 1), w7 = (0, 1), w8 = (1, 1). Corresponding to these are eight projective zeros of the Robinson 
form R, w̃i := (xi, yi, 1) (1 ≤ i ≤ 8), and there are two additional projective zeros for R, w̃9 ≡ (x9, y9, z9) :=

(1, 1, 0) and w̃10 ≡ (x10, y10, z10) := (1, −1, 0). Define the measure ω on R3 by ω :=
10∑
i=1

δw̃i
. Let β̃ ≡ β̃(=6)

denote the ω-moments of degree exactly 6, and let Lβ̃ denote the corresponding functional on homogeneous 
forms of degree 6 in R[x, y, z]. Now define L : R[x, y]6 �→ R by L(p(x, y)) := Lβ̃(p̃(x, y, z)) (where p̃ denotes 
the homogenization of p, i.e., p̃(x, y, z) = z6p(xz , 

y
z )). Let βij := L(xiyj) (i, j ≥ 0, i +j ≤ 6), so that Lβ = L. 

(Note that βij = β̃i,j,6−i−j , so β̃ is the homogenization of β in the language of [28], cf. Section A.2.) The 
moment matrix corresponding to β, M ≡ M3(β), is given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8 0 0 6 0 6 0 0 0 0
0 6 0 0 0 0 6 0 4 0
0 0 6 0 0 0 0 4 0 6
6 0 0 6 0 4 0 0 0 0
0 0 0 0 4 0 0 0 0 0
6 0 0 4 0 6 0 0 0 0
0 6 0 0 0 0 8 0 6 0
0 0 4 0 0 0 0 6 0 6
0 4 0 0 0 0 6 0 6 0
0 0 6 0 0 0 0 6 0 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Using nested determinants, it is easy to check that M � 0. Since β̃ has the representing measure ω in 
HTMP, it follows from Theorem A.4 that Lβ is positive.

We next compute V(M). Clearly, V(0) = R
2. A calculation with the moments of M shows that Lβ(r) = 0, 

and since r is psd, it follows that V(1) ⊆ Zr. Thus, ν ≤ card Zr = 8 < 10 = rank M , so Corollary 2.14
already implies that ν = 0 and that β has no representing measure. We will also verify this conclusion 
explicitly. If t(x, y) ∈ P6 is psd and Lβ(t) = 0, then 

∫
t̃(x, y, z)dω = Lβ̃(t̃) = Lβ(t) = 0. Since t is psd, 

so is t̃, and thus t̃|supp ω ≡ 0. It follows that t|Zr
≡ 0, which implies Zr ⊆ V(1). Since, from above, we 

also have V(1) ⊆ Zr, then V(1) = Zr. Now let f(x, y) := 2 − x2 − y2 and g(x, y) := 3
2x

2y2 − x2y4. Then 
Lβ(f) = Lβ(g) = 0 and f and g are nonnegative on Zr. Moreover, for 1 ≤ i ≤ 8, either f(wi) = 0 and 
g(wi) = 1

2 , or f(wi) = 1 and g(wi) = 0, so V ⊆ V(2) ⊆ Zr

⋂
Zf

⋂
Zg = ∅. �

4. Open questions

In the examples in this paper, whenever there is no representing measure we have V = ∅. This observation, 
Theorems 1.3, 2.21, 3.4, and Propositions 2.22–2.23 suggest the following basic question.

Question 4.1. If V(β) is nonempty, does β have a representing measure?
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Theorem 2.21 and Proposition 3.1 show that for n = 1, we either have V(0) = V (	= ∅) or V(0) ⊃ V(1) =
V = ∅. For n = 2, in all of the examples of this paper we have either V(0) = V, V(0) ⊃ V(1) = V, or 
V(0) ⊃ V(1) ⊃ V(2) = V (= ∅).

Question 4.2. For fixed n and d, what is the maximal length k of a sequence of proper inclusions V(0) ⊃
· · · ⊃ V(k) = V?

For n = 1, if Md has a measure, then it has a flat extension Md+1 and card Vd ≥ card Vd+1, with 
strict inequality if and only if Md is positive definite. For n = 2, in the examples of [10–19] and [23–26]
concerning Theorem A.2, for a sequence of positive extensions Md, . . . , Md+k, Md+k+1, where Md+k+1 is 
a flat extension of Md+k, so that card V (Md) ≥ · · · ≥ card V (Md+k+1), we have never observed more 
than 2 strict inequalities before the varieties stabilize in the support of a representing measure for Md. This 
motivates the following question which seems to be related to Question 4.2.

Question 4.3. For fixed n and d, what is the largest number of strict inequalities possible in the sequence of 
inequalities card V (Md) ≥ · · · ≥ card V (Md+k+1) (where Md+k+1 is a flat extension of Md+k 
 0)?

If V = R
n (a determining set), then there is a representing measure by Theorem 1.3. The Bayer–

Teichmann Theorem implies that there is then a finitely atomic representing measure μ, so in this case 
supp μ is a proper subset of the core variety. In all of the examples we have seen in which V is a nonempty 
finite set, there is a unique representing measure, whose support coincides with the core variety.

Question 4.4. Suppose V is nonempty and finite. Is there a unique representing measure? Does the support 
of a representing measure necessarily coincide with V?

Note added in proof

In a forthcoming paper by Grigoriy Blekherman and the author, Question 4.1 is answered affirmatively; 
partial solutions to Questions 4.2–4.4 are also presented.
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Appendix A

A.1. Positive moment matrices and extensions

Unless otherwise stated, we are in the general case, i.e., n ≥ 1. For p ≡
∑

i∈Z
n
+,|i|≤d

aix
i ∈ Pd, let p̂ ≡ (ai)

denote the coefficient vector of p relative to the basis Bd of monomials in Pd in degree-lexicographic order. 
Following [11,16], we associate to β ≡ β(2d) the moment matrix Md ≡ Md(β), with rows and columns Xi

indexed by the elements of Bd. The entry in row Xi, column Xj of Md is βi+j (i, j ∈ Zn
+, |i|, |j| ≤ d), so Md

is a real symmetric matrix characterized by 〈Mdp̂, ̂q〉 = Lβ(pq) (p, q ∈ Pd). If Lβ is positive (in particular, 
if β has a representing measure), then 〈Mdp̂, ̂p〉 = Lβ(p2) ≥ 0, and since Md is real symmetric, it follows 
that Md is positive semidefinite (Md 
 0).

For p(x) ≡
∑

aix
i ∈ Pd, we have the column space element p(X) ≡

∑
aiX

i, and p(X) = Mdp̂. If β
admits a representing measure μ, then
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for p ∈ Pd, supp μ ⊆ Zp ⇐⇒ p(X) = 0 (A.1)

(cf. [11, Prop. 3.1]). It follows from (A.1) that supp μ ⊆ V (Md), whence

r ≡ rank Md ≤ card supp μ ≤ v ≡ card V (Md) (A.2)

(cf. [11, Cor. 3.7]). We will cite the following basic existence theorem of [11,16] for a “minimal” representing 
measure μ satisfying card supp μ = rank Md.

Theorem A.1 (Flat Extension Theorem, cf. [16, Thm. 1.1–1.2], [46]). β ≡ β(2d) has a rank Md-atomic 
representing measure if and only if Md 
 0 and Md admits a flat moment matrix extension, i.e., a moment 
matrix extension Md+1 satisfying rank Md+1 = rank Md. In this case, β(2d+2) admits a unique representing 
measure, μ ≡ μMd+1 , satisfying supp μ = V (Md+1) and card supp μ = rank Md.

For the case of flat data (Md 
 0 and rank Md = rank Md−1), Theorem A.1 (applied to Md−1) implies a 
unique (rank Md-atomic) representing measure for β(2d).

By combining Theorem A.1 with [4], we have the following solution to the Truncated Moment Problem, 
expressed in terms of moment matrix extensions.

Theorem A.2 (Moment Matrix Extension Theorem, cf. [16, Corollary 1.4]). β(2d) has a representing measure 
if and only if there is an integer k ≥ 0 such that Md admits a positive moment matrix extension Md+k which 
in turn admits a flat extension Md+k+1.

Theorem A.2 is not, by itself, a concrete solution to TMP, but it does provide a framework for obtaining 
concrete solutions in certain cases (cf. [15,17]).

A.2. Positive Riesz functionals

In [49], V. Tchakaloff established the fundamental existence theorem in cubature theory. Let K denote 
a compact subset of Rn with positive n-dimensional Lebesgue measure. Let μ denote the restriction of 
Lebesgue measure on Rn to K, and let m be a positive integer. Tchakaloff proved that there exist finitely 
many points in K, w1, . . . , wN (N ≤ dim Pm), and positive weights α1, . . . , αN , such that for each p ∈ Pm, 

L(p) :=
∫
K
p(x)dμ(x) =

N∑
i=1

αip(wi). A careful examination of [49] reveals that the role of μ is simply to 

establish that L : Pm �→ R is K-positive. Thus we may paraphrase Tchakaloff’s Theorem as the analogue 
of Riesz–Haviland for TKMP in the compact case, as follows.

Theorem A.3. (cf. Tchakaloff [49], [28, Theorem 2.2]) Let β ≡ β(m), β0 > 0, and let K be a compact subset 
of Rn. β has a K-representing measure if and only if Lβ : Pm �→ R is K-positive, in which case β admits a 
K-representing measure μ with card supp μ ≤ dim Pm.

Theorem A.3 plays a role in the proof of Theorem 1.3, but its import extends beyond the case when 
K is compact. There are examples where K is noncompact, but V is finite (e.g., Example 3.5-ii), where 
K ≡ V (Md) = R

2 but card V = 10), so Theorem 1.3 shows that in such examples representing measures 
exist.

Considerations with Taylor series imply that if K ⊆ R
n has nonempty interior, then K is a determining 

set for Pm. However, it is also possible for a finite set to be determining. Suppose μ is a finite positive Borel 
measure and let K := supp μ, where int(K) 	= ∅. Suppose μ has convergent moments up to degree 2m. 
The Bayer–Teichmann Theorem [4] implies that there exist points w1, . . . , wk in K and positive weights 
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α1, . . . , αk such that 
∫
K p(x)dμ(x) =

k∑
i=1

αip(wi) for all p ∈ P2m. We claim that W := {w1, . . . , wk} is 

a determining set for Pm. Indeed, if p ∈ Pm and p|W ≡ 0, then q := p2 ∈ P2m satisfies q|W ≡ 0. Now ∫
K q dμ =

∑
αiq(wi) = 0 and q|K ≥ 0, so q|K ≡ 0. Since int K 	= ∅, then q ≡ 0, whence p ≡ 0.

Following [40], we refer to p ∈ P2d as positive semidefinite (psd) if p|Rn ≥ 0, and as a sum of squares

(sos) if there exist p1, . . . , pk ∈ Pd such that p =
k∑

i=1
p2
i . For β ≡ β(2d), positivity of Lβ is easily established 

if each psd polynomial in P2d is sos, since then Lβ is positive if and only if Md 
 0; indeed, in this case, if 

p is psd, then p =
k∑

i=1
p2
i , so Lβ(p) =

∑
Lβ(p2

i ) =
∑

〈Mdp̂i, p̂i〉 ≥ 0. A well-known theorem of Hilbert shows 

that each psd polynomial is sos if and only if n = 1, d = 1, or n = d = 2 (cf. [40]). As discussed above, 
if K is compact and Lβ is K-positive, then β has a finitely atomic K-representing measure. Perhaps the 
simplest example of β for which Lβ is K-positive but β has no representing measure occurs with n = 1, 
K = R, d = 2, and M2(β) given by

⎛
⎜⎝ 1 1 1

1 1 1
1 1 2

⎞
⎟⎠ (A.3)

[18, Example 2.1]. In (A.3), since n = 1 and M2 
 0, it follows from the preceding discussion that Lβ is 
positive. However, since M2 is not recursively generated (X = 1, but X2 	= X), [10] implies that there is 
no representing measure. In this example, M2 
 0 and V (M2) ≡ {1} is nonempty and compact, so the 
nonexistence of a representing measure contrasts with Theorem 1.3.

Let P+
n,2d and Σn,2d denote, respectively, the positive cones in P2d consisting of the psd and sos polyno-

mials, and let Δ ≡ Δn,2d := P+
n,2d \Σn,2d. Concrete examples of polynomials in Δ were discovered beginning 

some 60 years after Hilbert’s work. We will refer to several such examples from Δ3,6 that are discussed by 
Reznick [39,40], including the Motzkin form

M(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2;

and the Robinson form

R(x, y, z) = x6 + y6 + z6 − x4y2 − x2y4 − x4z2 − y4z2 − x2z4 − y2z4 + 3x2y2z2.

It is well-known that a homogeneous form F (x, y, z) is psd (respectively, sos) if and only if its de-
homogenization f(x, y) := F (x, y, 1) is psd (respectively, sos). In the sequel we will denote the de-
homogenizations of M and R by m and r. In [28] we studied the connection between TMP for an 
n-dimensional sequence β ≡ β(2d) and the moment problem with respect to homogeneous polynomials 
of degree m in n + 1 variables x0, x1, . . . , xn, with moment data β̃ ≡ β̃(=2d) defined by

β̃(2d−|α|,α) := βα

for every α ∈ Z
n
+ with |α| ≤ 2d. We denote this problem by HTMP. The moment problem for β and the 

homogeneous moment problem for β̃ are not equivalent, but are closely related.

Theorem A.4. ([28, Theorem 3.1]) If β ≡ β(2d) has a representing measure in TMP, then β̃ has a repre-
senting measure in HTMP. Moreover, Lβ is positive if and only if β̃ has a representing measure in HTMP.
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