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Abstract. For k even, let Pk denote the vector space of polynomials in 2 real variables of degree

at most k . A linear functional L : Pk −→ R is positive if p ∈ Pk, p|R2 > 0 =⇒ L(p) > 0 .

Hilbert’s theorem on sums of squares (cf. [15]) implies that L : P4 −→ R is positive if and

only if the moment matrix associated to L is positive semidefinite. In this note, using k = 6 ,

we exhibit the first family of positive linear functionals L : Pk → R whose positivity cannot be

derived from the positive semidefiniteness of the associated moment matrices, and which do not

correspond to integration with respect to positive measures.

1. Introduction

For n > 1, k > 0, let β ≡ β (k) := {βi : i ∈ Z
n
+, |i| 6 k} denote an n -dimensional

real multisequence of degree k (where i ≡ (i1, . . . , in) and |i| = i1 + · · ·+ in ). Let K ⊆
R

n be a nonempty closed set. The truncated K -moment problem asks for conditions

on β so that there exists a positive Borel measure µ on R
n satisfying

supp µ ⊆ K

and

βi =

∫

K
xidµ (|i| 6 k)

(where x ≡ (x1, . . . ,xn) and xi = x
i1
1 · · ·xin

n ); we refer to such a measure as a K -

representing measure for β .

Let P ≡ R[x1, . . . ,xn] and let Pk denote the subspace consisting of all polyno-

mials p with deg p 6 k . We associate to β the Riesz functional Lβ : Pk −→R defined

by Lβ (∑aix
i) = ∑aiβi . Note that if β admits a K -representing measure µ , then Lβ

is K -positive in the sense that p ∈ Pk , p|K > 0 =⇒ Lβ (p) > 0; indeed, in this case,

Lβ (p) =
∫

K pdµ > 0 (since µ is a positive measure supported in K ). For K = R
n ,

we refer to µ simply as a representing measure and to a K -positive functional Lβ as

positive. For K compact, the proof of Tchakaloff’s Theorem [20] shows that if Lβ is

K -positive, then β admits a K -representing measure. Even for n = 1, this implication

does not always hold for non-compact K [9, Example 2.1], but the following result of

[9] characterizes the existence of K -representing measures in terms of K -positivity.
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THEOREM 1.1. ([9, Theorem 1.2]) Let k = 2m or k = 2m+1 . β ≡ β (k) admits a

K -representing measure if and only if Lβ admits a K -positive extension Lβ̃ : P2m+2 →
R .

Theorem 1.1 is the analogue for the truncated moment problem of the classical

theorem of M. Riesz (n = 1) [17] and E.K. Haviland (n > 1) [13], which shows that a

full multisequence β ≡ β (∞) admits a K -representing measure if and only if the corre-

sponding Riesz functional Lβ : P −→ R is K -positive. (Theorem 1.1 actually implies

the Riesz-Haviland Theorem (see [9]).) In view of Theorem 1.1 and the Riesz-Haviland

Theorem, it is important to be able to recognize when a functional Lβ is K -positive.

A celebrated theorem of K. Schmüdgen [19] shows that if K is a compact semialge-

braic set, then a strictly positive polynomial on K can be expressed as a weighted sum

of squares, and this permits one to establish K -positivity for Lβ (∞) simply by verify-

ing the positive semidefiniteness of a finite number of localizing matrices associated

to β (∞) (cf. [9] [14] [19]). Nevertheless, a basic difficulty is that for a general closed

(even semialgebraic) set K , there is no concrete description of the polynomials that

are nonnegative on K , so there may be no direct test for K -positivity of Lβ̃ or Lβ (∞) .

[12, Theorem 2.2] shows that Lβ (k) is K -positive if and only if β (k) is in the closure

of the multisequences having K -representing measures. Motivated by this result, in

the sequel we will use an approximation technique to provide the first examples of

K -positive functionals Lβ (k) in cases where β (k) has no K -representing measure and

where the strictly positive polynomials on K cannot be represented as weighted sums

of squares.

To explain our results, let us first recall the scope of the sums of squares approach

when K = R
n . Following [7], for k = 2d , we may associate to β ≡ β (k) the moment

matrix M ≡ Md(β ) , of size dimPd , defined by

〈Mp̂, q̂〉 = Lβ (pq) (p,q ∈ Pd) (1.1)

(where p̂ is the vector of coefficients of p relative to the basis of monomials of Pd in

degree-lexicographic order). If β admits a representing measure µ , then for q ∈ Pd ,

〈Mq̂, q̂〉 = Lβ (q2) =
∫

q2dµ > 0, so M is positive semidefinite (M � 0). In general,

even for n = 1, positive semidefiniteness of M is not sufficient for β to admit a repre-

senting measure [3]. However, if M � 0 and each polynomial p in P2d that is strictly

positive on R
n admits a sum of squares decomposition, i.e., p = ∑q2

j (q j ∈ Pd ), then

Lβ is positive. Indeed, in this case,

Lβ (p) = ∑Lβ (q2
j) = ∑〈Mq̂ j, q̂ j〉 > 0; (1.2)

now, if q|R2 > 0, then for every ε > 0, q + ε is strictly positive, so (1.2) implies

Lβ (q) > −εLβ (1) , and thus Lβ (q) > 0.

A well-known theorem of Hilbert (cf. [15] [16]) shows that for k even, every

polynomial in Pk that is nonnegative on R
n may be expressed as a sum of squares of

polynomials if and only if n = 1; or n = 2 and k = 4; or n > 1 and k = 2. We note that

these are precisely the cases in which each polynomial that is strictly positive on R
n is

a sum of squares, so that precisely in these cases can positivity of Lβ be established
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through the positive semidefiniteness of Mk(β ) (as in the argument following (1.2)).

To see this, suppose q ∈ Pk is nonnegative on R
n but is not a sum of squares. It

suffices to show that for all sufficiently small ε > 0, the strictly positive polynomial

q + ε is not a sum of squares. Let Σk denote the convex cone in Pk consisting of

sums of squares and recall from [14, Section 3.8] that Σk is closed in Pk (relative

to the norm ||Σaix
i|| = max |ai|). It follows from the Minkowski separation theorem

[2, (34.2)] that there exists a linear functional L : Pk −→ R for which L|Σk > 0 and

L(q) < 0. By continuity, L(q + ε) < 0 for all sufficiently small ε > 0, so q + ε is not

a sum of squares.

Let us apply the preceding observations when n = 2. For n = 2 and k = 4,

Hilbert’s theorem and (1.2) imply that if β ≡ β (4) satisfies M2(β )� 0, then Lβ is posi-

tive. However, the above discussion implies that there exists β ≡ β (6) such that M3(β )
is positive semidefinite but Lβ is not positive; moreover, an example of Schmüdgen

[18] illustrates a case where M3(β ) is positive definite but Lβ is not positive. In view

of these examples, for β ≡ β (6) we cannot use sums of squares, as in (1.2), to promote

positive semidefiniteness of M3(β ) into positivity of Lβ . In cases where β (6) fails to

have a representing measure, we require a new technique, beyond sums of squares, to

establish that Lβ is positive, and the goal of this note is to illustrate such a technique.

In the sequel, for n = 2, we denote the successive rows and columns of the mo-

ment matrix M ≡ M3(β ) by 1, X , Y, X2, XY, Y 2,X3, X2Y, XY 2, Y 3 . We denote the

elements of β (6) by βi j ( i, j > 0, i + j 6 6), where βi j corresponds to the monomial

xiy j . Let Col M denote the column space of M in R
10 . Under the conditions

M ≡ M3(β ) � 0, Y = X3 in Col M, rank(M) = 9, (1.3)

we will associate to β an expression ψ(β ) , a certain rational function of the moment

data in β (see Section 2). [11, Theorem 1.1] implies that under the conditions of (1.3),

β has a representing measure (necessarily supported in the curve y = x3 ) if and only if

β15 > ψ(β ) . Our main result, which follows, displays a family of positive functionals

Lβ (6) whose positivity does not arise from the existence of representing measures or

from sums of squares as in (1.2).

THEOREM 1.2. For β ≡ β (6) , suppose M ≡ M3(β )� 0 , Y = X3 , and rank M =
9 . If β15 = ψ(β ) , then β has no representing measure, but Lβ is positive.

REMARK 1.3. i) The positivity of Lβ was conjectured in [12, Example 2.5],

where it was established for particular numerical instances of M satisfying (1.3); the

key new ingredient for the proof of Theorem 1.2 is Proposition 2.2, which is proved by

means of a highly intensive symbolic algebra calculation. The functionals of Theorem

1.2 (including those of [12, Example 2.5]) seem to be the first concrete examples of Lβ

where positivity cannot be established through the existence of representing measures

or via sums of squares.

ii) We may view a multisequence β ≡ β (k) as an element of R
η , where η =

dim Pk . Let C denote the convex cone in R
η consisting of those multisequences β

having K -representing measures. [12, Theorem 2.2] shows that Lβ is K -positive if
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and only if β ∈ C . From this viewpoint, with k = 6 and K = R
2 , the sequences β in

Theorem 1.2 belong to bdry C \C .

The case of the bivariate moment problem for β (4) with M2(β
(4)) singular was

solved in [6] [8]: concrete necessary and sufficient conditions for representing mea-

sures are known, and finitely atomic representing measures with the fewest atoms can

be explicitly computed. Note that in Theorem 1.2, M2(β
(4)) is positive definite. In [12],

J. Nie and the second-named author proved that for a bivariate β ≡ β (4) , if M2(β )≻ 0,

then β does have a representing measure, but at present it is not known how to con-

struct such a measure. It follows from [1, Theorem 2] that since there is a representing

measure, then there exists a cubature rule ν (a finitely atomic representing measure)

with card supp ν 6 dim P4 = 15, but there is no method known for computing ν . Fur-

ther, any representing measure µ necessarily satisfies card supp µ > rank M2(β ) = 6

(cf. [4] [7]), but it remains unknown whether 6-atomic representing measures always

exist. In general, if a positive semidefinite Md admits a flat (i.e., rank-preserving) ex-

tension Md+1 , then β (2d) admits a rank Md -atomic representing measure that can be

explicitly computed [7], but it is unknown whether a positive definite M2 always admits

a flat extension M3 (and a corresponding 6-atomic measure). We will show that for the

sequences β (4) which appear in Theorem 1.2, there always exist computable 9-atomic

representing measures:

COROLLARY 1.4. If β (4) admits an extension to a sequence β (6) satisfying (1.3)

and β15 > ψ(β (6)) , then β (5) admits a computable 9-atomic representing measure.

2. A family of positive functionals Lβ (6)

In this section we prove Theorem 1.2, and to this end we require a preliminary re-

sult and some notation. Recall that a real symmetric 2×2 block matrix M ≡

(

A B

BT C

)

is positive semidefinite if and only if A � 0, B = AW for some matrix W (equiva-

lently, Ran B ⊆ Ran A), and C � W T AW (cf. [7]). For a bivariate moment matrix

M ≡ Md(β ) , we denote the columns by 1, X , Y , . . . , Xd , Xd−1Y , . . . , XY d−1 , Y d

(following the degree-lexicographic ordering of the monomials in Pd ). Each linear

dependence relation in the columns of M may thus be expressed as p(X ,Y ) = 0, where

p(x,y) ≡ ∑ai jx
iy j ∈ Pd and p(X ,Y ) := ∑ai jX

iY j . Recall from [7] that M is recur-

sively generated if p, q, pq ∈ Pd , p(X ,Y ) = 0 =⇒ (pq)(X ,Y ) = 0. Recursiveness is

a necessary condition for the existence of a representing measure for β . The following

result is implicit in [11].

PROPOSITION 2.1. If β ≡ β (2d) has a representing measure, then M ≡ Md(β )
admits a positive, recursively generated moment matrix extension

Md+1(β̃ ) ≡

(

M B(d + 1)
B(d + 1)T C(d + 1)

)

;

in particular, Ran B(d + 1) ⊆ Ran M .
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Proof. Since β has a representing measure, say µ , it follows from [1] that µ
admits a cubature rule of degree 2d , i.e., there exists a finitely atomic positive measure

ν that has the same moments as µ up to (at least) degree 2d . Since ν is finitely atomic,

it has finite moments of degrees 2d + 1 and 2d + 2, and a corresponding moment

sequence β̃ ≡ β̃ (2d+2) . Since ν is obviously a representing measure for β̃ , it follows

that Md+1(β̃ ) is a positive, recursively generated extension of M , and, in particular,

Ran B(d + 1)⊆ Ran M . �

We note that the preceding result holds for general n > 1.

We next describe how to construct M3(β ) satisfying the hypotheses of Theorem

1.2. Let n = 2 and d = 3. We consider the general form of a moment matrix M3(β )
with a column relation Y = X3 (normalized with β00 = 1):

M ≡ M3(β ) =

































1 a b c e d b f g x

a c e b f g e d h j

b e d f g x d h j k

c b f e d h f g x u

e f g d h j g x u v

d g x h j k x u v w

b e d f g x d h j k

f d h g x u h j k r

g h j x u v j k r s

x j k u v w k r s t

































. (2.1)

For suitable values of the moment data, M satisfies the following properties:

M � 0, Y = X3, rank M = 9; (2.2)

this is the case, for example, with

a = b = f = g = u = v = w = x = 0, c = 1, e = 2, d = 5, h = 14,
j = 42, k = 132, r = 429, s = 1429, t = 4847,

(2.3)

M ≡ M3(β ) =

































1 0 0 1 2 5 0 0 0 0

0 1 2 0 0 0 2 5 14 42

0 2 5 0 0 0 5 14 42 132

1 0 0 2 5 14 0 0 0 0

2 0 0 5 14 42 0 0 0 0

5 0 0 14 42 132 0 0 0 0

0 2 5 0 0 0 5 14 42 132

0 5 14 0 0 0 14 42 132 429

0 14 42 0 0 0 42 132 429 1429

0 42 132 0 0 0 132 429 1429 4847

































. (2.4)

In [11] we solved the truncated K -moment problem for K = {(x,y)∈R
2 : y = x3} .

In particular, [11] provides a numerical test, that we next describe, for the existence of

K -representing measures whenever M as in (2.1) satisfies (2.2). From Proposition 2.1,



6 C. EASWARAN AND L. FIALKOW

we know that if β admits a representing measure, then M admits a positive, recursively

generated extension M4(β̃ ) . In any such extension, the moments must be consistent

with the relation y = x3 , so in particular, we must have β44 = β15(≡ s) . To insure

positivity, M4(β̃ ) must satisfy a lower bound for the diagonal element β44 (in row

X2Y 2 , column X2Y 2 ), which we may derive as in [11]. Let J denote the compression

of M obtained by deleting row X3 and column X3 ; thus, J ≻ 0. Let us write

J =

[

N U

UT ∆

]

,

where N is the compression of J to its first 8 rows and columns, U is a column vector,

and ∆ ≡ β06(≡ t) > 0. Consider the corresponding block decomposition of J−1 , which

is of the form

J−1 =

[

P V

V T ε

]

,

where P ≻ 0 and ε > 0. Since M4(β̃ ) is recursively generated, the relation Y = X3 in

Col M propagates to the column relations X4 = XY and X3Y = Y 2 in Col M4(β̃ ) , so

by moment matrix structure, after deleting the element in row X3 , the first 8 remaining

elements of column X2Y 2 must be W ≡ (h, x, u, j, k, r, v, w)T . Let ω = 〈PW,W 〉
and define

ψ(β ) :=
ωε −〈V,W〉2

ε
. (2.5)

In [11] we showed that in M4(β̃ ) we must have β44 > ψ(β ) , so in M we require

β15 > ψ(β ) , and [11, Theorem 1.1] implies that β has a representing measure if and

only s ≡ β15 > ψ(β ) ; since Y = X3 in Col M , such a measure is necessarily supported

in K (cf. [7]).

Although ψ(β ) is formally defined in terms of all of the moments in β , we will

show below (Proposition 2.2) that for M as in (2.1)-(2.2), the value of ψ(β ) is actually

independent of s and t . For any M satisfying (2.1) and (2.2), so that ψ(β ) is indepen-

dent of s and t , we now specify s ≡ β15 = ψ(β ) , and we adjust t (if necessary) so that

M continues to be positive with rank M = 9. Thus, M satisfies all of the hypotheses of

Theorem 1.2; for a numerical example, consider (2.3), where a calculation shows that

β15 ≡ 1429 = ψ(β ) .

Proof of Theorem 1.2. With β as in the hypothesis, we claim that Lβ is positive.

Since β15 = ψ(β ) , positivity for Lβ cannot be derived from the existence of a repre-

senting measure, since [11, Theorem 1.1] shows that β has no representing measure.

Moreover, as we discussed in Section 1, positivity for Lβ cannot be derived from the

positivity of M via sums of squares arguments as in (1.2) because, by Hilbert’s theo-

rem, there exist degree 6 bivariate polynomials that are everywhere nonnegative but are

not sums of squares. To prove that Lβ is positive, we employ a sequence of approxi-

mate representing measures. Since J ≻ 0, then t ≡ ∆ > UT N−1U . Thus, there exists

δ > 0 such that if we replace s (= ψ(β )) by s + 1
m

(with 1
m

< δ ), then the resulting

moment matrix, M3(β
[m]) , remains positive, with rank M3(β

[m]) = 9 and Y = X3 in
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Col M3(β
[m]) . Since, from Proposition 2.2 (below), the value of ψ(β [m]) is indepen-

dent of β15[β
[m]] and β06[β

[m]] , we have ψ(β [m]) = ψ(β ) = s < s + 1
m

= β15[β
[m]] .

It now follows from [11, Theorem 1.1] that β [m] has a representing measure, whence

Lβ [m] is positive. Note that the convex cone {β ≡ β (6) ∈ R
10 : Lβ is positive} is closed;

since ‖β [m]−β‖ = 1
m
−→ 0, we conclude that Lβ is positive. �

To complete the proof of Theorem 1.2 it now suffices to prove the following result.

PROPOSITION 2.2. For M ≡ M3(β ) as in (2.1)-(2.2), the value of ψ ≡ ψ(β ) is

independent of s and t , i.e., if M3(β
′) is as in (2.1)-(2.2) and β ′ agrees with β except

possibly in the values of s and t , then ψ(β ′) = ψ(β ) .

Proof. Our proof that the value of ψ is independent of s and t is computational.

We represent J−1 in the form

J−1 =

[

P V

V T ε

]

≡
1

D

[

P′ V ′

V ′T ε ′

]

,

where D = det J . Then we have

ψ =
〈P′W,W 〉− 1

ε ′ 〈V
′,W 〉2

D
. (2.6)

One can verify, either computationally or by examining the relevant terms, that:

i) 〈P′W,W 〉 is a polynomial in s and t of the form A1 + A2s + A3s2 + A4t , with

coefficients Ai that are polynomials in the remaining moment variables that define M .

ii) 〈V ′T ,W 〉 is a linear polynomial in s , with coefficients that are polynomials in

the remaining moment variables, excluding t .

iii) D is quadratic in s and linear in t (as in i)).

iv) ε ′ is a polynomial in the moment variables, but with no terms including s or

t .

ψ can then be represented as ratio of two polynomials in s and t :

ψ =
n0 + n1s+ n2s2 + n3t

d0 + d1s+ d2s2 + d3t
, (2.7)

where {ni}
3
i=0 and {di}

3
i=0 are sequences of polynomial functions in the variables a ,

b , f , g , u , v , w , c , e , d , h , j , k , r , and x (and which contain no terms with s or t ).

Then the value of ψ is independent of s and t if and only if

n0

d0

=
n1

d1

=
n2

d2

=
n3

d3

. (2.8)

Our proof of (2.8) consists of computing f0 = n0
d0

, f1 = n1
d1

, f2 = n2
d2

, f3 = n3
d3

and

showing that
f0

f3

=
f1

f3

=
f2

f3

= 1. (2.9)
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By explicit computation using the computer algebra system Maxima, we were able to

verify (2.9), thus completing the proof. However, the calculations of the terms involved

in verifying (2.9) present particular computational challenges that we discuss in the

next section. �

Proof of Corollary 1.4. Suppose M2 ≻ 0 and that M2 can be extended to M3(β )
satisfying (1.3) and β15 > ψ(β ) . If β15 > ψ(β ) , then [11, Theorem 1.1] implies that

M3 admits a flat extension M4 , so β (6) admits a 9-atomic representing measure that

can be explicitly constructed using the method of [7]. If β15 = ψ(β ) , then Theorem

1.2 implies that Lβ (6) is positive, so Theorem 1.1 implies that β (5) has a representing

measure. For a more constructive approach, we recall that in the proof of Theorem

1.2., β [m] satisfies the conditions of [11, Theorem 1.1], which implies that β [m] has a

9-atomic representing measure that can be explicitly constructed using the method of

[7]; clearly, such a measure is also a representing measure for β (5) . �

We conclude with a question.

QUESTION 2.3. If M3(β ) satisfies (2.2) and β15 < ψ(β ) , can Lβ be positive?

If, in Question 2.3, Lβ were positive, then, from [12, Theorem 2.2], β = lim β [n] ,

where each β [n] has a representing measure. Such β [n] cannot all satisfy (2.2), for

otherwise β
[n]
15 > ψ(β [n]) from [11, Theorem 1.1], implying β15 > ψ(β ) . However,

there may be sequences having representing measures which approximate β and which

do not satisfy (2.2).

3. Appendix

In order to establish (2.9), we first need to compute J−1 , and to then represent ψ
in the form (2.6). We can then extract from (2.6) the coefficients of various powers of s

and t in the numerator and denominator, as well as terms independent of s and t , so as

to calculate the quantities {ni}
3
i=0 and {di}

3
i=0 in (2.7). This then allows us to compute

{ fi}
3
i=0 for use in verifying (2.9).

We first attempted to perform these computations using Mathematica software.

On a dual-core x86 64 computer with 10GB RAM (memory for computation) and 8GB

swap space (auxiliary storage), and using the Linux operating system, the program ran

for several days without producing even J−1 . We noted that as the computation pro-

gressed, available RAM and swap space became almost wholly consumed, eventually

shutting down the operating system. We repeated the above calculations with Mathe-

matica on several different machines and operating systems, all of which failed to yield

results. We then tried the same computations using Matlab, which employs the Maple

symbolic algebra system, but Matlab also failed to yield any result, eventually shutting

down the operating system.

We then turned to Maxima, an open source computational software system de-

scended from the now-extinct commercial Macsyma software. On the above-mentioned

machine, Maxima was able to compute J−1 and the representation of ψ as in (2.7), and

store the results on disk, in approximately 100 minutes. The intermediate expressions



POSITIVE LINEAR FUNCTIONALS WITHOUT REPRESENTING MEASURES 9

leading up to each fi (0 6 i 6 3) are very large, taking several hundred megabytes of

storage for each. Nevertheless, Maxima was able to retrieve the components of ψ from

disk, and compute and simplify all of the expressions f1 , f2 and f3 , in approximately

1 hour. Although Maxima also computed f0 , its simplification via the ratsimp func-

tion in Maxima failed, with Maxima reporting that the computation was aborted due to

heap space exhaustion. Now Maxima is written in the Lisp programming language, and

relies on a Lisp engine to do its computations. On our Linux operating system, Max-

ima was using the SBCL Lisp engine, Steel Box Common Lisp, another open source

software, to perform the calculations. Because the source code was accessible to us,

we recompiled SBCL so that it would be able to utilize up to 25GB of heap space. On

this recompiled Lisp engine, Maxima loaded the components of ψ from disk and com-

puted and simplified f0 in approximately 4200 seconds of cpu time (and an amount of

real time that varied, on several trials, between 2.2 hours and 8.5 hours, depending on

overall system conditions). The final outcome of these calculations is that each of the

quantities { fi}
3
i=0 in (2.9) reduces to the same expression (requiring 2,343,199 bytes of

memory and about 50 pages to print) for arbitrary values of the moment variables (not

including s and t ). The entire computation described above thus establishes (2.9) and

proves Proposition 2.2.

The details of the calculations that eventually proved successful, including anno-

tated Maxima code, are posted online at http://cs.newpaltz.edu/∼easwaran/PLF.

It is not clear to us why Maxima was successful, as compared to other software. This

seems partly due to the way the computations are organized. For example, the Math-

ematica command Inverse[J] is carrried out with the enormous term Det[J] present

in the denominator of each entry of the inverse, whereas Maxima provides an option

for carrying 1/(det J) outside, thus reducing storage requirements on swap space.

We suspect that the use of Lisp as its underlying processing mechanism also con-

tributes to the success of Maxima. In particular, the open source nature of Maxima

and of the SBCL Lisp processor allowed us to recompile source code, which was

crucial to the success of the computation (as described above). (More information

about Maxima and SBCL can be found at http://maxima.sourceforge.net/ and

http://sbcl.sourceforge.net/.)
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