Workflow Scheduling on Computing Systems

Kenli Li, Xiaoyong Tang, Jing Mei, Longxin Zhang, Wangdong Yang, and Keqin Li

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business This book is published with financial support from National Key R&D Programs of China (Grant No. 2020YFB2104000), National Natural Science Foundation of China (Grant No. 61972146), and Hunan Provincial Natural Science Foundation of China (Grant No. 2020JJ4376).

First edition published 2023 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2023 Kenli Li, Xiaoyong Tang, Jing Mei, Longxin Zhang, Wangdong Yang, and Keqin Li

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

[Insert LoC Data here when available]

ISBN: 978-1-032-30920-0 (hbk) ISBN: 978-1-032-30921-7 (pbk) ISBN: 978-1-003-30727-3 (ebk)

DOI: 10.1201/b23006

Typeset in LM Roman by KnowledgeWorks Global Ltd.

Contents

List of F	igures		xiii
List of Ta	ables		xvii
Forewor	d		xxi
Author E	Bios		xxiii
Preface			xxvii
Chapter	1 ■ C	computing Systems	1
1.1	COMP	PUTING SYSTEMS RESOURCE MANAGEMENT	1
1.2	THE V	VELL KNOWN SYSTEMS	2
	1.2.1	SLURM	2
	1.2.2	PBS	5
	1.2.3	YARN	7
1.3	PARAL	LLEL APPLICATIONS	11
	1.3.1	Workflow Applications	12
	1.3.2	Classical Tasks DAG Model	12
1.4	SOME	REAL-WORLD WORKFLOW APPLICATIONS	13
	1.4.1	Montage	14
	1.4.2	Broadband	16
	1.4.3	Epigenomics	17
	1.4.4	LIGO Inspiral Analysis	18

vi Contents

1.5	OUTLINE OF THE BOOK			
Chapter	2 - C	2 Classical Workflow Scheduling		
2.1	TASK	SCHEDULING	21	
2.2	SCHE	DULING CHALLENGES	22	
	2.2.1	Energy-Efficient Scheduling	22	
	2.2.2	Reliability-Aware Scheduling	22	
	2.2.3	High Performance Real-Time Scheduling	23	
2.3	SCHE	DULING ALGORITHMS CLASSIFICATION	24	
	2.3.1	Local versus Global	24	
	2.3.2	Static versus Dynamic	24	
	2.3.3	Optimal versus Suboptimal	26	
	2.3.4	Approximate versus Heuristic	26	
	2.3.5	Centralized versus Distributed	26	
2.4	SEVER	RAL HEURISTIC WORKFLOW SCHEDULING		
	ALGO	RITHMS	26	
	2.4.1	DLS	27	
	2.4.2	MCP	30	
	2.4.3	HEFT	32	
2.5	SUMM	IARY	33	
Chapter	3 - S	tochastic Task Scheduling on Grid Computing Systems	35	
3.1	INTRC	DUCTION	35	
3.2	THE G	RID SCHEDULING ARCHITECTURE	37	
3.3	STOCI	HASTIC SCHEDULING PROBLEM	40	
	3.3.1	The Random Variable Approximate Weight	40	
	3.3.2	Stochastic Scheduling Attributes	41	

3.4	THE S	TOCHASTIC SCHEDULING STRATEGY	42
	3.4.1	Stochastic Task Priorities Phase	43
	3.4.2	Machine Selection Phase	44
	3.4.3	SHEFT Scheduling Algorithm Complexity Analysis	45
3.5	ALGO	RITHM PERFORMANCE EVALUATION	45
	3.5.1	Experiments Setting and Evaluation Metrics	45
	3.5.2	Randomly Generated Workflow DAG Graphs	46
	3.5.3	The Sensitivity of Machine Number	47
	3.5.4	The Sensitivity of DAG Size	50
3.6	SUMM	ARY	52
Chapter	4 - S	cheduling Stochastic Tasks on Heterogeneous Cluster ystems	53
4.1	INTRO	DUCTION	54
4.2	A STO	CHASTIC SCHEDULING MODEL	55
	4.2.1	Stochastic Workflow Applications	55
	4.2.2	Heterogeneous Cluster Systems	56
	4.2.3	The Motivational Example	57
4.3	THE P	RELIMINARY CONCEPTS	57
	4.3.1	Scheduling Attributes	59
	4.3.2	Manipulation of Normal Random Variables	60
4.4	A STO	CHASTIC SCHEDULING ALGORITHM	64
	4.4.1	Stochastic Bottom Level	64
	4.4.2	Stochastic Dynamic Level Scheduling Algorithm	66
	4.4.3	An Illustration Example	68
4.5	WORK	FLOW APPLICATION PERFORMANCE EVALUATION	69
	4.5.1	Special Application DAG	69
	4.5.2	Experimental Results	70

4.6	SUMM	IARY	72
Chapter	5∎F	eliability-Energy-Aware Scheduling algorithm	73
5.1	INTRO	DUCTION	73
5.2	SYSTI	EM MODELS	75
	5.2.1	Task Scheduling Architecture	75
	5.2.2	Heterogeneous Computing Systems	75
	5.2.3	Parallel Application Workflow DAG	77
	5.2.4	Energy Consumption Model	79
5.3	SYSTI	EM RELIABILITY ANALYSIS	80
	5.3.1	Single Processor Failure Rate	80
	5.3.2	Application Reliability Analysis	82
5.4	THE F	RELIABILITY-ENERGY AWARE SCHEDULING ALGORITHM	83
	5.4.1	Task Priorities Phase	84
	5.4.2	Task Assignment Phase	86
	5.4.3	Slack Reclamation	87
5.5	EXPE	RIMENTAL RESULTS AND DISCUSSION	88
	5.5.1	Simulation Environment	88
	5.5.2	Randomly Generated Application	88
	5.5.3	Various Weight θ of REAS Algorithm	89
	5.5.4	The Real-World Applications Results	90
5.6	SUMM	IARY	91
Chapter	6∎E	nergy Consumption and Reliability Bi-objective Workflow	
	S	cheduling	93
. .			
6.1	INTRO		93
6.2	MODE	ELS AND PRELIMINARIES	95
	6.2.1	Workflow Model	95

Chapter	7∎Ir A	nterconnection Network Energy-Aware Scheduling Igorithm	121
6.6	SUMM	IARY	119
	6.5.4	Randomly Generated Application Graphs	117
		6.5.3.2 Molecular Dynamic Code	116
		6.5.3.1 Three Kinds of Classic DAG Graphs	113
	6.5.3	Real World Application Graphs	113
	6.5.2	Experimental Setting	111
	6.5.1	Performance Metrics	111
6.5	PERF	ORMANCES EVALUATION	111
	6.4.7	The Main Algorithm	109
	6.4.6	Mutation	107
	6.4.5	Two-Point Crossover	104
	6.4.4	Selection	103
	6.4.3	Fitness Measure	103
	6.4.2	Initial Population	103
	6.4.1	Encoding	102
6.4	ALGO	RITHMS	102
	6.3.2	A Motivational Example	101
	6.3.1	Multi-Objective Optimization Problem Overview	99
6.3	EXAM	PLE	99
<u> </u>	6.2.5	Problem Definition	98
	6.2.4	Reliability Model	98
	6.2.3	Energy Model	96
	6.2.2	System Model	96

x Contents

7.2	HETER	ROGENEOUS SYSTEMS	123
	7.2.1	Computing Nodes and Fat-Tree Networks	123
	7.2.2	Scientific Application Workflow	125
	7.2.3	Energy Consumption Model	126
7.3	INTER	CONNECTION ENERGY AWARE SCHEDULING PROBLEM	126
7.4	NETW	ORK ENERGY-EFFICIENT WORKFLOW SCHEDULING	
	STRAT	EGY	128
	7.4.1	Task Level Computing	128
	7.4.2	Subdeadline Initialization	129
	7.4.3	Dynamic Adjustment	130
	7.4.4	Data Communication Optimization Algorithm	131
	7.4.5	The Heuristic Network Energy-Efficient Workflow	
		Scheduling Algorithm	133
7.5	REAL-	WORLLD APPLICATION PERFORMANCE EVALUATION	134
	7.5.1	Experimental Setting	134
	7.5.2	Real-World Scientific Workflow	136
	7.5.3	The First Experimental Results	136
	7.5.4	The Second Experimental Results	138
7.6	SUMM	IARY	138
Chapter	8∎R	esource-Aware Duplication-Minimization Scheduling	
	A	lgorithm	141
8.1	INTRC	DUCTION	142
	8.1.1	Definition of Task Scheduling	142
	8.1.2	Introduction of Duplication-based Algorithms	143
8.2	MODE	LS AND PRELIMINARIES	143
	8.2.1	Computing System Model	144
	8.2.2	Application Model	145

	8.2.3	Perform	ance Measures	147
8.3	RESO	URCE-AW	ARE SCHEDULING ALGORITHM WITH	
	DUPLI		/INIMIZATION (RADMS)	149
	8.3.1	Task Pr	ioritization Stage	149
	8.3.2	Task M	apping Stage	150
	8.3.3	Redund	ancy Deletion Stage	153
	8.3.4	A Schee	luling Example	156
8.4	DUPLI	CATION (OPTIMIZING SCHEME	159
	8.4.1	Analysis	s on Generation of Redundancy	159
	8.4.2	Strategi	es of Redundancy Exploitation	159
		8.4.2.1	Move Tasks to the LFT	160
		8.4.2.2	Move Tasks to the EST	162
		8.4.2.3	Migrate Tasks among Processors	164
8.5	EXPE	RIMENTAI	RESULTS AND ANALYSIS	168
	8.5.1	Experin	nental Metrics	168
	8.5.2	Parame	ter Settings	169
	8.5.3	Experin	nental Results and Analysis	170
		8.5.3.1	Effect of Task Number	170
		8.5.3.2	Effect of Processor Number	171
		8.5.3.3	Effect of Parallelism Factor	172
		8.5.3.4	Effect of CCR	173
		8.5.3.5	Makespan Improvement	173
8.6	SUMM	IARY		174
Chapter	9∎C	ontentior	n-Aware Reliability Efficient Scheduling	175
9.1	INTRC	DUCTION	١	175
9.2	MODE	LS AND F	PRELIMINARIES	176
	9.2.1	Applica	tion Model	176

	9.2.2	Commun	nication Contention Model	177
	9.2.3	Energy 1	Model	179
	9.2.4	Reliabili	ty Model	179
9.3	PRELIN	/INARIES	;	180
	9.3.1	Task Pri	ority	180
	9.3.2	Problem	Description	181
	9.3.3	Motivati	onal Example	181
9.4	CONTE	ENTION-A	WARE RELIABILITY MANAGEMENT SCHEME	182
9.5	EXPER	IMENTS		184
	9.5.1	Performa	ance Metrics	186
		9.5.1.1	Scheduling Length Ratio (SLR)	186
		9.5.1.2	Energy Consumption Ratio (ECR)	186
		9.5.1.3	POF	187
	9.5.2	Random	ly Generated DAG	187
	9.5.3	Effect of	Random Applications	188
	9.5.4	Real-Wo	rld Application DAG	190
		9.5.4.1	LU Decomposition	191
		9.5.4.2	Fast Fourier Transform	192
		9.5.4.3	Molecular Dynamic Code	194
9.6	SUMM	ARY		196
Bibliogra	phy			197

List of Figures

1.1	The main architecture of SLURM	3
1.2	SLURM entities	5
1.3	PBS structure	7
1.4	The structure of YARN	9
1.5	The application execution on YARN	10
1.6	An example of workflow application DAG model	14
1.7	Montage workflow	15
1.8	Broadband workflow	16
1.9	Epigenomics workflow	18
1.10	LIGO workflow	18
2.1	A hierarchical taxonomy for task scheduling	24
2.2	DAG task diagram example	30
2.3	A simple arbitrary processor network topology diagram	31
3.1	Grid scheduling architecture	38
3.2	Experimental results of 100 tasks. (a) makespan; (b) speedup; (c) makespan standard deviation	48
3.3	Experimental results of 200 tasks. (a) makespan; (b) speedup; (c) makespan standard deviation	48
3.4	Experimental results of 300 tasks. (a) makespan; (b) speedup; (c) makespan standard deviation	49

4.1	A workflow application with normal distribution	56
4.2	Stochastic workflow DAG series and parallel model	61
4.3	The operator \Re	68
4.4	An illustration example. (a) DLS (makespan $=$ 15.33); (b) SDLS (makespan $=$ 14.46)	69
4.5	Examples of workflow DAGs. (a) A low paral- lelism degree application; (b) A high parallelism degree application	70
5.1	The reliability-energy aware workflow scheduling architecture	76
5.2	The example of workflow application DAG graph	77
5.3	The experimental results of real-world DSP prob- lem. (a) schedule length; (b) energy consumption;	
	(c) reliability	90
6.1	A simple DAG	96
6.2	Multi-objective optimization	100
6.3	The selection procedure	105
6.4	Two-point crossover	106
6.5	Mutation	108
6.6	Comparisons of Gauss-Jordan (the number of processors equals 3 with $CCR = 1.0$)	114
6.7	Comparisons of Laplace (the number of processors equals 3 with $CCR = 1.0$)	114
6.8	Comparisons of LU (the number of processors equals 3 with $CCR = 1.0$)	115
6.9	A molecular graph	116
6.10	Comparisons of molecular graph (the number of processors equals 6 with $CCR = 1.0$)	117

6.11	Comparisons of randomly generated DAG graph (the number of task graphs equals to 100, the number of processors equals 6 with $CCR = 0.5$)	118
6.12	Comparisons of randomly generated DAG graph (the number of task graphs equals to 100, the number of processors equals 8 with $CCR = 1.0$)	118
6.13	Comparisons of randomly generated DAG graph (the number of task graphs equals to 100, the number of processors equals 6 with $CCR = 5.0$)	119
7.1	A heterogeneous computing systems fat-tree architecture	124
7.2	The illustration of extended DAG mode	125
7.3	Task scheduling across computing nodes problem	127
7.4	Network routing chip data communication time	128
7.5	The results of varying CCR. (a) LIGO; (b) Montage	137
7.6	The results of varying deadline. (a) LIGO;	1.0.0
	(b) Montage	139
8.1	Heterogeneous distributed system architecture	145
8.2	An example of DAG	146
8.3	A duplication-based schedule of the example DAG	148
8.4	Determining the most-suitable time slot to	
	duplicate t_j	153
8.5	Schedule of tasks t_1 , t_2 , t_3 , t_4 , t_6 , t_8 , t_7 , and t_5	156
8.6	Schedule after deleting redundancy of t_1	158
8.7	Schedule of tasks t_9 , t_{10} , t_{11} , t_{12} , and t_{13}	158
8.8	Schedule after deleting redundancy of t_2 and t_8	158
8.9	Schedule after tasks moving to the LFT and	
	redundancy deletion	162

8.10	Schedule after tasks moving to the EST and	
	redundancy deletion	165
8.11	Schedule after tasks migration	168
8.12	Effect of task number on performance	170
8.13	Effect of processor number on performance	171
8.14	Effect of parallelism factor on performance	172
8.15	Effect of CCR on performance	173
9.1	Simple DAG	178
9.2	Link model	178
9.3	Scheduling of task graph in Figure 9.1. (a) schedule without contention; (b) schedule under	
	CARMEB with contention	182
9.4	Effect of varying task number for $CCR = 0.5$	188
9.5	Effect of varying task number for $CCR = 1.0$	189
9.6	Effect of varying task for $CCR = 10$	189
9.7	Effect of varying task number for $CCR = 5$ and	
	DAGsize = 100	189
9.8	LU-decomposition task graph	191
9.9	Effect of varying CCR the LU decomposition task	
	graph	192
9.10	FFT with four points	193
9.11	Effect of varying CCR for the FFT task graph	194
9.12	Effect of varying CCR for the molecular dynamics	
	code task graph	195

List of Tables

2.1	Taxonomy of task scheduling strategies	25
2.2	The attribute value in Figure 2.2	31
3.1	Application task execution size and edge data	
	communication on Figure 1.6	39
3.2	Some symbols used in this chapter	40
3.3	Performance impact of 10 machines for makespan	51
3.4	Performance impact of 10 machines for speedup	51
3.5	Performance impact of 10 machines for makespan standard deviation	51
3.6	Performance impact of 16 machines for makespan	52
3.7	Performance impact of 16 machines for speedup	52
3.8	Performance impact of 16 machines for makespan	
	standard deviation	52
4.1	The deterministic scheduling of Figure 4.1	58
4.2	The processing time of Figure 4.1 on cluster	
	systems	58
4.3	Notations and definitions	58
4.4	The $sblevel$ of sample DAG tasks in Figure 4.1	65
4.5	The special workflow DAG experimental results	
	about makespan with Figure $4.5(a)$	71
4.6	The special workflow DAG experimental results	
	about speedup with Figure $4.5(a)$	71

4.7	The special workflow DAG experimental results about makespan with Figure 4.5(b)	71
4.8	The special workflow DAG experimental results about speedup with Figure $4.5(b)$	72
5.1	The parameters of computing systems processors	76
5.2	The task estimation execution matrix $[w_{i,k,h}]$	78
5.3	The estimation data communication matrix $[a_{i,j}]$	78
5.4	The workflow DAG task b_level value	86
5.5	The schedule length of REAS algorithm with various weight θ	89
5.6	The energy consumption of REAS algorithm with various weight θ	90
5.7	The reliability of REAS algorithm with various weight θ	90
6.1	Voltage-relative frequency combinations	97
6.2	Computation costs on different processors	102
6.3	Selected workflow models	112
7.1	Tasks <i>t_level</i> , <i>dlel</i> , and <i>dl_i</i> of Figure 7.2	130
7.2	The adjusted unscheduled tasks for Figure 7.2	131
8.1	Notations used in this chapter	144
8.2	WCETs of tasks on different processors	146
8.3	The upward ranks of tasks in the motivation application	150
8.4	A comparison of makespan for random DAGs	174
9.1	Notations used in this chapter	177
9.2	Computation costs on different processors	181

- 9.3 Parameter configuration for the LU task graphs 191
- 9.4 Parameter configuration for the FFT task graphs 193

Foreword

In recent years, with the popularity of the Internet and the availability of powerful computers and high-speed networks as lowcost commodity components, it is possible to construct largescale parallel and distributed computing systems, such as cluster systems, supercomputers, grid computing, cloud computing, and edge/fog computing. These technical opportunities enable the sharing, selection, and aggregation of geographically distributed heterogeneous resources to solve science, engineering, and commerce problems. Resource management plays a key role in improving the performance of these systems, and especially effective and efficient scheduling methods are fundamentally important. However, the systems face a lot of challenging problems, such as energy consumption, reliability, resource utilization, cost, instability, and resource contention. Workflow scheduling aims at meeting user demands and resource provider management indicators, while maintaining a good overall performance or throughput for computing systems. The publication of this book satisfies this need in a timely manner.

This book offers a systematic presentation of workflow scheduling, which encompasses the systems architecture, scheduling model, energy consumption, reliability, resource utilization, problem formulation, billing mechanisms, and the detailed discussion of the theoretical underpinnings, design methodology, and practical implementation. This book is rich in content and detailed in graphics. For each presented algorithm, the book uses corresponding motivational examples to explain clearly and achieve the easy-to-understand purpose. In particular, the book:

- Offers a comprehensive overview of computing systems workflow scheduling techniques about systems, scheduling architecture, energy consumption, reliability, resource utilization, problem formulation, billing mechanism, methods, design considerations, and practical implementation.
- Presents the design principles necessary for analyzing the computing systems requirements, objectives, time complexity and constraints, that will guide engineering students and engineers toward achieving high-performance, low-cost, and efficient resource management systems.
- Demonstrates the practical implementation of workflow scheduling and their design guidelines and optimizations that can be directly adopted in engineering application and research work.
- Provides a complete perspective on workflow scheduling that hopefully can inspire appreciation and better understanding of the subject matter.

It is a great pleasure to introduce this Workflow Scheduling on Computing Systems, which is a joint effort and creation of six scholars with dedication and distinction. The authors have published very extensively in the fields of grid computing systems, cluster systems, cloud computing, and are undoubtedly the leading scholars in scheduling workflow parallel applications on computing systems. Finally, I would like to congratulate the authors on their excellent work, and I look forward to see the publication of this book.

> Kai Hwang Presidential Chair Professor Chinese University of Hong Kong Shenzhen, China

Author Bios

Kenli Li (Senior Member, IEEE) received his PhD in computer science from the Huazhong University of Science and Technology, China, in 2003. He was a visiting scholar at the University of Illinois at Urbana-Champaign, Champaign, Illinois from 2004 to 2005. He is currently a full professor of computer science and technology at Hunan University, China, and deputy director of National Supercomputing Center in Changsha. His major research areas include parallel computing, high-performance computing, grid and cloud computing. He has published more than 130 research papers in international conferences and journals such as the IEEE Transactions on Computers, IEEE Transactions on Parallel and Distributed Systems, IEEE Transactions on Signal Processing, Journal of Parallel and Distributed Computing, ICPP, and CCGrid. He is an outstanding member of CCF. He is serves on the editorial board of the IEEE Transactions on Computers.

Xiaoyong Tang received his M.S. and Ph.D. degrees from Hunan University, China, in 2007 and 2013, respectively. He is currently Professor at the School of Computer and Communication Engineering, Changsha University of Science and Technology. His research interests include parallel computing, cloud computing, big data, modeling and scheduling of distributed computing systems, distributed system reliability, and parallel algorithms. He has published more than 50 technique papers in international journals and conferences. He holds over 10 patents announced or authorized by the Chinese National Intellectual Property Administration. He is among the World's Top 2% Scientists. He is the reviewers of TC, TPDS, TII, JPDC, FGCS, CPE, JS, and so on.

Jing Mei received her Ph.D in computer science from Hunan University, China, in 2015. She is currently an assistant professor in the College of Information Science and Engineering in Hunan Normal University. Her research interests include parallel and distributed computing, cloud computing, edge computing etc. She has published 16 research articles in international conference and journals, such as IEEE Transactions on Computers, IEEE Transactions on Parallel and Distributed System, IEEE Transactions on Service Computing, Cluster Computing, Journal of Grid Computing, and Journal of Supercomputing.

Longxin Zhang received his Ph.D. in computer science from Hunan University, China, in 2015. He is currently Associate Professor of computer science at the Hunan University of Technology. He is also a Visiting Scholar of the University of Florida. His major research interests include modeling and scheduling for distributed computing systems, distributed system reliability, parallel algorithms, cloud computing, and deep learning. He has published more than 20 technique papers in international journals and conferences. He is the reviewer of IEEE TPDS, ACM TIST, IEEE TII, IEEE IOT, INS, ASC, and so on.

Wangdong Yang received his PhD in computer science and technology from Hunan University, China. He is a professor of computer science and technology in Hunan University, China. His research interests include modeling and programming for heterogeneous computing systems and parallel algorithms. He has published more than 30 papers in international conferences and journals such as the IEEE Transactions on Computers, the IEEE Transactions on Parallel and Distributed Systems, etc.

Keqin Li is a a SUNY Distinguished Professor of computer science at the State University of New York. He is also a National Distinguished Professor of Hunan University, China. His current research interests include cloud computing, fog computing and mobile edge computing, energy-efficient computing and communication, embedded systems and cyber-physical systems, heterogeneous computing systems, big data computing, highperformance computing, CPU-GPU hybrid and cooperative computing, computer architectures and systems, computer networking, machine learning, intelligent and soft computing. He has authored or coauthored more than 840 journal articles, book chapters, and refereed conference papers, and has received several best paper awards. He holds over 60 patents announced or authorized by the Chinese National Intellectual Property Administration. He is among the world's top 5 most influential scientists in distributed computing based on a composite indicator of Scopus citation database. He has chaired many international conferences. He is currently an associate editor of the ACM Computing Surveys and the CCF Transactions on High Performance Computing. He has served on the editorial boards of the IEEE Transactions on Parallel and Distributed Systems, the IEEE Transactions on Computers, the IEEE Transactions on Cloud Computing, the IEEE Transactions on Services Computing, and the IEEE Transactions on Sustainable Computing. He is an IEEE Fellow.

Preface

MOTIVATION OF THE BOOK

In the past few years, with the rapid development of IT technology, computing systems have become the core infrastructure of social economy. However, with the exponential growth of computing and data storage requirements, computing systems are facing with a lot of challenging problems, such as energy consumption, reliability, resource utilization, cost, stochastic computation, and resource contention. Workflow scheduling aims at meeting user demands and resource provider management indicators while maintaining a good overall performance or throughput for such systems.

With the increasingly prominent role of workflow scheduling on computing systems, it is timely to introduce the workflow scheduling technology, including the basic concept of workflow scheduling, stochastic tasks scheduling, reliability-driven scheduling, reliability-energy-aware scheduling, interconnection networkaware scheduling, and resource-aware duplication optimization scheduling. To the best of our knowledge, although many books about job or task scheduling already exist, these books lack to provide a comprehensive review and thorough discussion of workflow scheduling. Educating and imparting the holistic understanding of workflow scheduling on computing systems has laid a strong foundation for postgraduate students, research scholars, and practicing engineers in generating and innovating solutions and products for a broad range of applications.

In recognition of this, the book *Workflow Scheduling on Computing Systems* is intended to provide a coverage on the theoretical and practical aspects of the subject matter, which includes not only the conventional workflow scheduling but also the systems challenging problems, such as energy consumption, reliability, resource utilization, cost, and all of which stem from the authors' own research work.

SUMMARY OF CONTENTS

This book focuses on workflow scheduling on computing systems. The main contents are summarized as follows.

Chapter 1 introduces the working principle of resource management and some typical resource managements (such as SLURM, PBS,YARN) in computing systems. Then, this chapter presents the practical application of workflow DAG model and real-world workflow applications.

In Chapter 2, we introduce the scheduling problems, workflow task scheduling, scheduling challenges, and the classification of scheduling algorithms. We also list several typical heuristic workflow scheduling algorithms such as DLS, MCP, HEFT.

Chapter 3 focuses on the stochastic scheduling problem on grid computing systems. In order to effectively scheduling precedence constrained stochastic tasks, this chapter present a stochastic heterogeneous earliest finish time scheduling algorithm, which incorporate the stochastic attribute, such as expected value and variance, of task processing time and edge communication time into scheduling.

Chapter 4 emphasizes the scheduling stochastic parallel applications with precedence constrained tasks on heterogeneous cluster systems. It formulates the stochastic task scheduling model and develops effective methods to deal with the normally distributed random variables. This chapter also describes a stochastic dynamic level scheduling algorithm SDLS, which employs stochastic bottom level and stochastic dynamic level to produce schedules of high quality. In Chapter 5, we first build a reliability and energy-aware task scheduling architecture including precedence-constrained parallel applications, energy consumption model on heterogeneous systems. Then, we present the single processor failure rate model based on Dynamic Voltage and Frequency Adjustment (DVFS) technique and deduce the application reliability of systems. Finally, to provide an optimum solution for this problem, a heuristic reliability-energy aware scheduling algorithm is presented.

Chapter 6 addresses a bi-objective genetic algorithm to deal with the bi-objective optimization problem of high system reliability and low energy consumption for parallel tasks. This approach offers users more flexibility when jobs are submitted to a data center.

Chapter 7 comprehensively presents the issues of heterogeneous systems, energy consumption of processors and interconnection networks, computation-intensive scientific workflow applications with deadline constraints, and task scheduling. This chapter also presents a network energy-efficient workflow task scheduling algorithm that consists of task level computing, task subdeadline initialization, dynamic adjustment, and a data communication optimization method.

In Chapter 8, we present a novel resource-aware scheduling algorithm called RADS, which searches and deletes redundant task duplications dynamically in the process of scheduling. A further optimizing scheme is designed for the schedules generated by our algorithm, which can further reduce resource consumption without degrading the makespan.

Chapter 9 presents a novel contention-aware reliability management algorithm for parallel tasks in heterogeneous systems. Given that majority of previous studies do not consider the realistic existence of contention in modern communication systems, the algorithm is presented in the current study by applying DVFS and slack reclaiming techniques.

AUDIENCE AND READERSHIP

This book should be a useful reference for researchers, engineers, and practitioners interested in scheduling theory for computing systems. The book can be used as a supplement for graduate students and system developers whose major areas of interest are in resource management of cluster, supercomputers, grid computing, cloud computing, edge/fog computing systems, and related fields, as well as engineering professionals from both academia and computing systems development companies. By reading this book, readers will be familiar with new types of computing systems and their features, will learn a variety of scheduling algorithms, and find a source of inspiration for their own research.

ACKNOWLEDGMENTS

This book is published with financial support from National Key R&D Programs of China (Grant No. 2020YFB2104000), National Natural Science Foundation of China (Grant No. 61972146), Hunan Provincial Natural Science Foundation of China (Grant No. 2020JJ4376).