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Matrix factorization (MF) can extract the low-rank features and integrate the information of the data mani-

fold distribution from high-dimensional data, which can consider the nonlinear neighborhood information.

Thus, MF has drawn wide attention for low-rank analysis of sparse big data, e.g., Collaborative Filtering (CF)

Recommender Systems, Social Networks, and Quality of Service. However, the following two problems exist:

(1) huge computational overhead for the construction of the Graph Similarity Matrix (GSM) and (2) huge

memory overhead for the intermediate GSM. Therefore, GSM-based MF, e.g., kernel MF, graph regularized

MF, and so on, cannot be directly applied to the low-rank analysis of sparse big data on cloud and edge plat-

forms. To solve this intractable problem for sparse big data analysis, we propose Locality Sensitive Hashing

(LSH) aggregated MF (LSH-MF), which can solve the following problems: (1) The proposed probabilistic pro-

jection strategy of LSH-MF can avoid the construction of the GSM. Furthermore, LSH-MF can satisfy the

requirement for the accurate projection of sparse big data. (2) To run LSH-MF for fine-grained parallelization

and online learning on GPUs, we also propose CULSH-MF, which works on CUDA parallelization. Experi-

mental results show that CULSH-MF can not only reduce the computational time and memory overhead but

also obtain higher accuracy. Compared with deep learning models, CULSH-MF can not only save training

time but also achieve the same accuracy performance.
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works→ Network reliability;

Additional Key Words and Phrases: CUDA parallelization on gpu and multiple GPUs, Graph Similarity Matrix

(GSM), Locality Sensitive Hash (LSH), Matrix Factorization (MF), online learning for sparse big data, Top-K
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1 INTRODUCTION

In the era of big data, the data explosion problem has arisen. Thus, a real-time and accurate so-

lution to alleviate information overload on industrial platforms is nontrivial [2]. Big data come

from human daily needs, i.e., social relationships, medical data, and recommendation data from e-

commerce companies [31]. Moreover, due to the large scale and mutability of spatiotemporal data,

sparsity widely exists in big data applications [52]. For accurate big-data processing, representa-

tion learning can eliminate redundant information and extract the inherent features of big data,

which makes big-data analysis and processing more accurate and efficient [3]. Furthermore, for

sparse data from social networks and recommendation systems, low-rank representation learn-

ing can extract features as latent variables to represent the node and user properties from the

high-dimension space, which can alleviate the information loss owing to missing data [61]. MF is

the state-of-the-art unsupervised representation learning model with the same role as Principal

Component Analysis (PCA) and an autoencoder that can project the high-dimensional space

into the low-rank space [9].

Due to its powerful extraction capability for big data, linear and nonlinear dimensionality re-

duction is widely used as an emerging low-rank representation learning model [4]. As one of the

most popular dimensionality reduction models, MF can factorize high-dimensional data into two

low-rank factor matrices via the constraints of prior knowledge, i.e., distance metrics and regular-

ization items [19]. Then, MF uses the product of the two low-rank matrices to represent the original

high-dimension data, which endows the MF with a strong generalization ability [40]. However, due

to the variety of big data, e.g., multiple attributes of images [55], context-aware text information

[28], and so on, linear MF is not applicable to an environment with hierarchical information; thus,

it should consider the inherent information of big data [1]. Nonlinear MF, e.g., neural MF [60]

and the graph for manifold data [34, 46], which relies on the construction of the GSM, can mine

deep explicit and implicit information. However, the Deep Learning (DL) model for neural MF

needs multilayer parameters to extract inherent variables, which can limit the training speed and

create huge spatial overhead for constructing a GSM; thus, DL cannot be adopted by industrial big

data platforms. Thus, modern industrial platforms are anxious to save parameters in nonlinear MF

models [66].

Neighborhood information for nonlinear MF is an emerging topic [23, 67]. The neighborhood

model can strengthen the feature representation by capturing the strong relationship points within

the data; and this model is popular in Recommendation Systems, Social Networks, and Qual-

ity of Service (QoS) [29, 66]. Handling neighborhood information is based on several important

neighborhood points that should construct a GSM [51, 66]. However, the use of the GSM should

consider the following two problems: (1) the selection and definition of the similarity function

should be accurate and (2) the huge time and spatial overhead caused by the construction of the

GSM. The first problem can be solved by using DL to select the best similarity [10]. However,

the huge computational costs make DL unsuitable for cloud-side platforms. The construction of

the GSM takes a huge amount of time and spatial overhead, and its parallelization is difficult. Due

to the quadratically increased spatial costs, the second problem is fatal to real applications using
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high-dimensional data. In this case, the approximated strategy is considered to replace the calcu-

lation of the GSM.

LSH is a statistical estimation technique that is widely used in high-dimensional data for the

Approximate Nearest Neighborhood (ANN), and it maps the high-dimensional data to low-

dimensional latent space using random projection, which can simplify the approximated search

problem into a matching lookup problem [41]. Due to low time complexity, LSH has a fast pro-

cessing capability for high-dimensional data [65]. Furthermore, LSH has the following drawbacks:

(1) the LSH scheme has a slight loss of accuracy; (2) the use of DL can lead to high-precision hashes,

but DL is not applicable to cloud-side platforms; (3) online tracking of the hash value for incremen-

tal big data; (4) due to information missing, the similarity between sparse data is not very accurate

and should be handled by a specific LSH function. Thus, it is nontrivial to achieve a reasonable

accuracy in less time with fine-grained parallelization for LSH. Furthermore, with the rapid

development of GPU-based cloud-edge computing, increasingly more vendors will tend to use

GPU acceleration [37]. There are three challenges to aggregate LSH with nonlinear MF efficiently

to extract the deep features of sparse and high-dimensional data: (1) How can a suitable LSH

function be defined to reduce the computation time while ensuring reasonable accuracy? (2) How

can LSH be accommodated with the nonlinear neighborhood MF to achieve low spatial overhead

in an online way? (3) How can a GPU and multiple GPUs be used to achieve a faster calculation

speed?

This work is proposed to solve the above problems, and the main contributions are presented

as follows:

(1) A novel Stochastic Gradient Descent (SGD) algorithm for MF on a GPU (CUSGD++) is

proposed. This method can utilize the GPU registers more and disentangle the involved

parameters. The experimental results show that it achieves the fastest speed compared to

the state-of-the-art algorithms.

(2) simLSH is proposed to replace the GSM and accomplish sparse data encoding. simLSH can

greatly reduce the time and memory overheads and improve the overall approximation ac-

curacy. Furthermore, an online method for simLSH is proposed for incremental data.

(3) The proposed CULSH-MF can combine the access optimization on GPU memory of

CUSGD++ and the neighborhood information of simLSH for nonlinear MF. Thus, CULSH-

MF can complete the training very fast and attain an 8, 000× speedup compared to serial

algorithms. Furthermore, CULSH-MF can achieve a speedup of 2.0× compared to CUSGD++.

Compared with deep learning models, CULSH-MF can achieve the same effect, and CULSH-

MF only needs to spend 0.01% of the training time.

In this work, related works and preliminary findings are presented in Sections 2 and 3, respec-

tively. The proposed model for LSH aggregated MF is presented in Section 4. Experiment results

are shown in Section 5.

2 RELATED WORK

Owing to the powerful low-rank generalization ability, MF is widely used in various fields of big

data processing, i.e., Source Localization [6], Wireless Sensor Networks [58], Network Data Anal-

ysis [57], Network Embedding [43], Recommender Systems [24, 25], Hyperspectral Image Clas-

sification [64], and Biological Data Analysis [11]. Furthermore, LSH is a powerful hashing tool

that can also strengthen the performance of nonlinear dimension reduction, including PCA and

MF, for recommendation [16, 39], retrieval [42, 50], and similarity search [68]. Besides, theoreti-

cal research in optimization and machine learning communities, e.g., Maximum Margin Matrix
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Factorization (MMMF) [30, 53], Nonnegative Matrix Factorization (NMF) [32, 38], Proba-

bilistic Matrix Factorization (PMF) [13, 28, 45], and Weighted Matrix Factorization (WMF)

[21, 48, 49], also pay considerable attention to MF. The optimization problem for MF is a classic

nonconvex problem [8, 17]. An alternative minimization strategy, e.g., Alternating Least Squares

(ALS) [54], SGD [59, 63], or Cyclic Coordinate Descent (CCD) [47], is adopted to solve this non-

convex problem. An efficient big data processing method requires highly efficient hardware and

algorithms.

The rapid development and good performance of GPUs also tend to accelerate basic optimiza-

tion algorithms that consider the global memory access, threads, and thread block synchronization

on a GPU. Thus, the parallelization processes of related methods on GPUs have unique specialties.

Tan et al. [54] proposed cuALS, which parallelizes ALS on a GPU. Xie et al. [59] proposed cuSGD

based on data parallelization. cuSGD [59] achieves the goal of acceleration by adopting data par-

allelization on a GPU, and it has no load imbalance problem. Nisa et al. [47] optimized the CCD

algorithm and proposed the GPU-based CCD++ algorithm. Li et al. [33, 35] proposed CUSNMF

based on feature tuple multiplication and summation and CUMSGD based on the elimination of

row and column dependencies. These basic algorithms have good performance on a GPU. How-

ever, scalability is not considered, which results in significant limitations of model compatibility.

Nonlinear MF comprises two components, i.e., a DL model for neural MF [60] and a neighborhood

model with GSM for graph MF [14, 29]. He et al. [18] proposed Neural Collaborative Filtering

(NCF) using the DL model, and this model involves a multilayer neural network that can extract

the low-rank feature of MF [60]. The neighborhood model is often integrated into the algorithm

and brings better results [14, 29].

The construction of a GSM requires calculating the similarity between high-dimensional points,

the choice of similarity functions play a key role in specific environments, and the selection of the

Top-K nearest neighbors from the GSM is time consuming [26]. However, designing an effective

similarity function is a difficult task. Research on training similarities through DL is emerging

[15]. However, high-dimensional data cause the computational complexity of DL to dramatically

increase. To further optimize the calculation and save space, pruning strategies and approximation

algorithms have been proposed [12]. LSH is such an approximate algorithm based on probability

projection [44]. Furthermore, the inverse use of LSH can also achieve the farthest neighbor search

[63]. However, most LSH algorithms do not work well in sparse data environments. minLSH is

able to calculate the similarity between sets, but does not consider the weights of the elements

in the set. Although a considerable amount of work has sought to improve minLSH, this work

increases the complexity [56]. simHash [44] showed good performance in similar text detection.

LSH can project the feature vectors of similar items to equal hash values with a high probabil-

ity [20], and this makes LSH widely used for nearest neighbor searches, fast high-dimensional

information searches, and similarity connections [36, 62]. Due to the inherent sparsity of big data,

using LSH to construct a GSM to aggregate sparse MF on a big data platform is nontrivial work.

Furthermore, the accuracy of the low-rank tracking of online learning for incremental big data

is a key problem [27]. Chen et al. proposed an online hash for incremental data [7]. However,

there is a lack of an online LSH strategy for sparse and online data on parallel and distributed

platforms.

3 PRELIMINARIES

In this section, LSH for neighboring points with closer projective hash values is presented in Sec-

tion 3.1. The basic MF model and nonlinear MF with notations are introduced in Section 3.2, and

the related symbols are listed in Table 1.
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Table 1. Table of Symbols

Symbol Definition

I , J Two variable sets with interaction;

R Input sparse matrix ∈ RM×N ;

R̂ Low-rank approximated matrix ∈ RM×N ;

ri, j (i, j )th element in matrix R;

Ω The set (i, j ) of non-zero value in matrix R;

Ωi The set j of non-zero value in matrix R for variable Ii ;

Ω̂j The set i of non-zero value in matrix R for variable Jj ;
U/ui Left low-rank feature matrix ∈ RM×F / ith row;

V/vj Right low-rank feature matrix ∈ RN×F / jth row;

μ The overall relation between variable set I and variable set J ;
bi The deviation between variable Ii ∈ I and μ;

b̂j The deviation between variable Jj ∈ J and μ;

bi, j Overall baseline rating = μ + bi + b̂j ;

nj1, j2

The number of entries in variable set I which have relations with

Variables {j1, j2} in variable set J ;
ρ j1, j2 Pearson similarity of two variables {j1, j2} ∈ J ;
S j1, j2 GSM

def
=

nj1, j2

nj1, j2+λρ
ρ j1, j2 ;

R (i ) The set of variables ∈ J that are explicitly related to the variable Ii ∈ I ;
N (i ) The set of variables ∈ J that are implicitly related to the variable Ii ∈ I ;
SK (j ) Top-K Nearest Neighbors variables set of the variable Jj ∈ J ;
JK The Top-K Nearest Neighbors Matrix JK ∈ RN×K ;

RK (i; j ) = R (i )
⋂
SK (j );

NK (i; j ) = N (i )
⋂
SK (j );

W
Explicit influence matrix ∈ RN×K to represent the degree of explicit

Influence for variable set J ;

C
Implicit influence matrix ∈ RN×K to represent the degree of implicit

Influence for variable set J ;
w j/w j,k1

jth Explicit influence vector ∈ RK of W / the k1th element of w j ;

c j/c j,k2
jth Implicit influence ∈ RK of C / the k2th element of c j ;

I , J The new variable sets in online learning;

Î , Ĵ Combination of new variable sets and original variable sets in online learning.

3.1 GSM And LSH

Definition 3.1 (Graph Similarity Matrix GSM). We assume two sets as I = {I1, . . . , Ii , . . . , IM } and

J = {J1, . . . , Jj , . . . , JN }. Given two variables {Jj1 , Jj2 } ∈ J and a similarity function S (j1 | |j2), the

goal is to construct a weighted fully directed graph GJ , where each vertex represents a variable

in J , and the weight of each edge represents the similarity of the output vertex to the input vertex

calculated by S (j1 | |j2). The construction of GSM GJ should consider the relation between J and I .

The value of GJ
j1, j2

relies on {{ri, j1 |i ∈ Ω̂j1 }, {ri, j2 |i ∈ Ω̂j2 }}.

The neighborhood similarity query for variable set J relies on the GSM GJ ∈ RN×N [20, 29, 66].

The most important problem in the neighborhood model is to find a set of Top-K similar variables.

For this problem, the Top-K nearest neighbors query is emerging.

ACM/IMS Transactions on Data Science, Vol. 2, No. 4, Article 37. Publication date: March 2022.



37:6 Z. Li et al.

Fig. 1. Comparison of computational complexity and space complexity between GSM and LSH.

Definition 3.2 (Top-K Nearest Neighbors). Given a set of variables S, each variable as a vertex

constitutes a fully directed graph G. The goal is to find a subgraph SK where each vertex has K

and only K out edges point to the vertices of its Top-K similar variables.

By querying the GSM, the Top-K nearest neighbors can be obtained. However, for a large set

of variables, the cost of the GSM is huge. If variable set J has N elements, then the computational

complexity is O (N (N − 1)). Furthermore, the overhead for the Top-K nearest neighbors query of

a variable Jj isO (2NK −K2 +K ), and the overhead of Top-K nearest neighbors for the variable set

J and the construction of the matrix JK ∈ RN×K isO (2N 2K −NK2 +NK ). The overall overhead is

O (N 2 (2K+1)+N (K−K2−1)), and the spatial overhead isO (NK ). Thus, the construction of a GSM

using high-dimensional sparse big data is not advisable. In the context of high-dimensional sparse

big data, the calculation costs of a GSM are squared. In this case, we need to reduce unnecessary

calculations or find an alternative method. LSH is a probabilistic projection method that projects

two similar variables with a high probability to the same hash value while two dissimilar variables

are projected to different hash values with a high probability. We need to judge the similarity

between the two variables and find the Top-K nearest neighbors for each variable.

Definition 3.3 (Locality Sensitive Hash LSH). The LSH function is a hash function that satisfies

the following two points:

• For any points x and y in Rd that are close to each other, there is a high probability P1 that

they are mapped to the same hash value PH [h(x ) = h(y)] � P1 for | |x − y | | � R1; and

• For any points x and y in Rd that are far apart, there is a low probability P2 < P1 that they

are mapped to the same hash value PH [h(x ) = h(y)] � P2 for | |x − y | | � cR1 = R2.

The use of LSH has allowed us to reduce the complexity from O (N 2) to O (N ).
As Figure 1 shows, the construction of a GSM requires O (N 2) similarity calculations and con-

sumes O (N 2) space while the calculation and spatial consumption of LSH is O (N ).
LSH can alleviate the problem of huge computational overhead. However, there are several

problems when the LSH is applied to a system with a neighborhood model: (1) How can a sys-

tem with a neighborhood model using LSH obtain the same overall accuracy as the original

method? (2) How can the computational model for LSH be incorporated in a big data processing

system? (3) How can the system with the LSH model accommodate online learning for incremental

data?
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3.2 Nonlinear Matrix Factorization Model

In big data analysis communities, representation learning can disentangle the explicit and implicit

information behind the data, and the low-rank representation problem is presented as follows:

Definition 3.4 (Representation Learning for Sparse Matrix [3]). Assume a sparse matrix R ∈ RM×N

presents the relationship of two variable sets {I , J }. The value ri, j represents the relation degree

of the variables {Ii } in I and {Jj } in J . Due to missing information, the representation learning

task for variable {Ii } trains the feature vector ui relying on nonzero values {ri, j |j ∈ Ωi }, and the

representation learning task for variable {Jj } is to train the feature vector vj relying on nonzero

values {ri, j |i ∈ Ω̂j }.

Definition 3.5 (Sparse Matrix Low-rank Approximation). Assume a sparse matrix R ∈ RM×N and

a divergence function D (R‖R̂) that evaluates the distance between two matrices. The purpose

of the low-rank approximation is to find an optimal low-rank matrix R̂ and then minimize the

divergence.

MF only involves low-rank feature matrices, and the feature vectors are used for cluster and

social community detection [9]. A sparse matrix has only a few elements that are valuable, and all

other elements are zero. Sparse MF is applied to this problem because it factorizes the sparse matrix

into two low-rank feature matrices. In addition, MF model has two limitations: (1) this model is

too shallow to capture more affluent features, and (2) this model cannot capture dynamic features.

The approximation value r̂i, j of the nonlinear matrix factorization model [29] is presented as:

r̂i, j = bi, j︸︷︷︸
1©

+
���RK (i; j )���

− 1
2

∑
Jj1 ∈RK (i ;j )

(ri, j1 − bi, j1 )w j, j1

︸��������������������������������������������︷︷��������������������������������������������︸
2©

+
���NK (i; j )���

− 1
2

∑
Jj2 ∈N K (i ;j )

c j, j2

︸����������������������������︷︷����������������������������︸
3©

+ uiv
T
j︸︷︷︸

4©

.

(1)

There are four parts in Equation (1), and those parameters can combine the explicit and implicit

information of the neighborhood for nonlinear MF, which are introduced as follows [20, 29, 66]:

1© {μ,bi , b̂j ,bi, j }: The baseline score is represented as bi, j = μ + bi + b̂j for the relation of

variable Ii ∈ I and variable Jj in set J . Considering that different variables Ii ∈ I have their own

different preferences for the entire variable set J , different variables Jj ∈ J have their own different

preferences for the entire variable set I . To simplify the description, suppose μ is the overall relation

between variable set I and variable set J ; bi represents the deviation between variable Ii ∈ I and

μ, which indicates the preference of variable Ii to variable set J ; and b̂j represents the deviation

between variable Jj ∈ J and μ, which indicates the preference of variable Jj to variable set I . A

simple case is presented as: μ =
∑

(i, j )∈Ω ri, j/|Ω | (the average relation of the known elements),

bi =
∑

j ∈Ωi
ri, j/|Ωi | − μ (the difference between the average relation of the known elements in

Ii and μ), and b̂j =
∑

i ∈Ω̂j
ri, j/|Ω̂j | − μ (the difference between the average relation of the known

elements in Jj and μ).

{nj1, j2 , S j1, j2 , S
K (j ),R (i ),RK (i; j ),w j }: Suppose that Jj1 and Jj2 are any two variables in J , and

nj1, j2 = |Ω̂j1

⋂
Ω̂j2 | is the number of variables ∈ I , both of which are related to variables {Jj1 , Jj2 }

∈ J . ρ j1, j2 is the Pearson similarity for variables {Jj1 , Jj2 } ∈ J as a baseline. The (j1, j2)th element

of GSM is defined as S j1, j2

def
=

nj1, j2

nj1, j2+λρ
ρ j1, j2 , where λρ is the regularization parameter that adjusts

the importance. By searching for the GSM, the Top-K nearest neighbors variable set SK (j ) of the

variable Jj ∈ J can be obtained. To retain the generalizability, R (i ) is denoted as the variable subset

of J with explicit relation with variable Ii ∈ I , which contains all the variables for which ratings
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by Ii are available. If variable {Jj1 } ∈ RK (i; j ) = R (i )
⋂
SK (j ), then variable Ii ∈ I has more explicit

relations with variable Jj1 . We parameterize the above explicit relations. Feature vectors w j ∈ RK

are used as the explicit factors for the Top-K nearest neighbors SK (j ) of variable Jj . w j, j1 is used

to represent the information gain that variable Jj1 ∈ RK (i; j ) explicitly brings to Jj ∈ J . The closer

the basic predicted value bi, j is to the true value ri, j , the lower the impact received. Therefore, the

residual (ri, j1 −bi, j1 ) is used as the coefficient ofw j, j1 . Combining all (ri, j1 −bi, j1 )w j, j1 , Jj1 ∈ RK (i; j )

and multiplying the result by a scaling factor |RK (i; j ) |− 1
2 , we obtain |RK (i; j ) |− 1

2
∑

Jj1 ∈RK (i ;j ) (ri, j1 −
bi, j1 )w j, j1 .

3© {N (i ),NK (i; j ), c j }: To retain the generalizability, N (i ) is denoted as the variable subset of

J with an implicit relation with the variable Ii ∈ I , and it is not limited to a certain type of im-

plicit data. If {Jj2 } ∈ NK (i; j ) = N (i )
⋂
SK (j ), then the variable Ii ∈ I has more implicit relations

with variable Jj2 . We parameterize the above implicit relations. Feature vectors c j ∈ RK are used

as the implicit factors for the Top-K nearest neighbors SK (j ) of a variable Jj . c j, j2 is used to rep-

resent the information gain that variable Jj2 ∈ NK (i; j ) implicitly brings to variable Jj ∈ J . Com-

bining all c j, j1 , Jj1 ∈ NK (i; j ) and multiplying the result by a scaling factor |NK (i; j ) |− 1
2 , we obtain

|NK (i; j ) |− 1
2
∑

Jj1 ∈N K (i ;j ) c j, j1 .

4© {ui ,vj }: Original MF model. ui is the low-rank feature vector for variable Ii ∈ I , and vj is the

low-rank feature vector for variable Jj ∈ J .
With the neighborhood consideration and L2 norm constraints for the parameters

{U,V, μ,bi , b̂j ,w j , c j }, the optimization objective is presented as:

arg min
U,V,μ,bi ,b̂j ,w j ,c j

D
(
R‖R̂

)
=

∑
(i, j )∈ Ω

(ri, j − r̂i, j )
2 + λb

M∑
i=1

b2
i + λb̂

N∑
j=1

b̂2
j

+ λw

N∑
j=1

∑
Jj1 ∈RK (i ;j )

w2
j, j1
+ λc

N∑
j=1

∑
Jj1 ∈N K (i ;j )

c2
j, j2

+ λu

M∑
i=1

| |ui | |2 + λv

N∑
j=1

���
���vj

���
���
2
,

(2)

where {λb , λb̂
, λw , λc , λu ,andλv } are the corresponding regularization parameters.

There are two improvements: (1) the neighborhood influences are inherent in some big data

applications [1, 22, 67], and (2) the Top-K nearest neighborhood with explicit and implicit infor-

mation can replace all queries of neighborhood points [20, 29, 66].

4 ONLINE LSH AGGREGATED SPARSE MF ON GPU AND MULTIPLE GPUS

Figure 2 illustrates the structure of this work. First, we consider the interaction value of variable

Ii in variable set I and variable Jj in variable set J and generate the interaction matrix R from this.

Second, the original method, which is based on the GSM, can calculate the similarity of every two

variables Jj1 and Jj2 in variable set J to generate a similarity graph GJ ; and querying GJ to obtain

the subgraph SK can hold the Top-K nearest neighbors of each variable Jj ∈ J . The difference is

that the simLSH method we proposed constructs a hash table through p coarse-grained hashings

and q fine-grained hashings. Then, we obtain the subgraph SK through the hash table. Finally, we

train the feature vectors using the updating rule (5).

As Figure 2 shows, this work should consider the following three parts: (1) Interaction matrix

R of two variable sets {I , J }, which should consider the incremental data and add the coupling
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Fig. 2. LSH aggregated sparse MF on big data analysis platform.

ability of the overall system. (2) The construction of a neighborhood relationship should reduce

the overall space and computational overhead and maintain the overall accuracy. (3) Training the

representation feature vectors in a low computational and high accuracy way. The above objectives

guide this section. In this section, LSH for sparse big data and CUDA parallelization are presented

in Section 4.1; and then stochastic optimization strategy, CUDA parallelization, and multiple GPUs

for sparse big data are presented in Section 4.2, Finally, the online learning solution is presented

in Section 4.3.

4.1 LSH And CUDA Parallelization

The Top-K nearest neighbors, which relies on the construction of the GSM, is a key step in the

nonlinear neighborhood model. However, the GSM requires a huge amount of calculations, and

the time complexity is O (N 2) based on the Pearson similarity. A variety of LSH functions are not

friendly to sparse data, because the accuracy of most distance measures will be greatly reduced.

This is caused by there being very few positions where the nonzero elements of each vector are the

same. The Jaccard similarity is suitable for sparse data, and its representative algorithm is minHash

[5]; however, this method only considers the existence of the elements and neglects the real value.

To solve this problem, simLSH, which is inspired by simHash applied to text data, is proposed for

sparse dig data projection [44]. This method balances the existence of the elements and the value

of the elements and maintains low computational complexity. simLSH can effectively combine

the number of interactions of variable sets {I , J } with the degree of interaction, and simLSH can

improve the accuracy while reducing the computational complexity. simLSH is composed of the

following two parts:

(1) Coding for Sparse Big Data: simLSH randomly generates G-bits {0, 1} string Hi for each

variable Ii ∈ I , which is equivalent to a simple hash value. The hash value H j for each variable

Jj ∈ J that we need is calculated by Hi and ri, j , i ∈ Ωj . Obviously, the hash value H j should also be
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Fig. 3. An example of simLSH.

a G-bits {0, 1} string. After the hash value H j for variable Jj ∈ J is calculated, we obtain H j,д ∈ H j

by accumulating Φ(Hi,д ) · Ψ(ri, j ), i ∈ Ωj . Ψ(ri, j ) is a function such that there is a suitable interval

between different ri, j s, and Φ(Hi,д ) is a function that maps Hi,д from {0, 1} to {−1,+1}. Finally,

ϒ() maps the nonnegative value of H j,д to {1} and the negative value to {0}. Then, the G-bit {0, 1}
string H j is obtained. The entire process of simLSH can be expressed as:

H j = ϒ
���
�

∑
i ∈Ω̂j

Ψ(ri, j )Φ(Hi )
�		


. (3)

As Figure 3 shows, variable Jj has three relation values ri, j {3, 4, 5} with {i1, i2, i3} ∈ Ωj . When

G = 3, {Hi1 ,Hi2 ,Hi3 } are randomly assigned to {001, 010, 100}, respectively. It takes Ψ(ri, j ) = ri, j by

calculating {(−3− 4+ 5), (−3+ 4− 5), (3− 4− 5)}; and then, theG positions {−2,−4,−6} of H j are

obtained, respectively. Finally, we obtain theG-bit {0, 1} string H j {0, 0, 0} by mapping operations.

(2) Coarse-grained and Fine-grained Hashing: LSH is an approximation method to estimate

the GSM, but it will achieve accuracy losses when applied to sparse big data. In this case, simLSH

is proposed to speed up the calculations and improve the accuracy.

Since the maximum probability of two extremely dissimilar variables {Jj1 , Jj2 } with the same

hash value is P2, the mapping of a hash function does not guarantee that the variables {Jj1 , Jj2 }
with the same hash value are similar. To alleviate this situation, the multiple random mapping

strategy is considered as follows: (1) Coarse-grained Hashing: Similar variables with the same

hash values of all mappings are considered. If p random mappings are conducted, where p � N ,

then the probability of two dissimilar variables projected as similar pairs is reduced to at most P
p
2 .

Furthermore, the probability of two similar variables projected as similar pairs is also reduced to at
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ALGORITHM 1: CULSH

Input: Sparse matrix R of variable sets {I , J }, Random Hash values Hi .

Output: The Top-K Nearest Neighbors Matrix JK ∈ RN×K . Each row represents the Top-K Nearest

Neighbors of a variable Jj ∈ J .
1: for (Fine-grained Hashing): q times Coarse-grained Hashing do

2: for (Coarse-grained Hashing): p times simLSH do

3: for (parallel): Variables Jj ∈ J are evenly assigned to thread blocks

{TBtb_idx |tb_idx ∈ {1, . . . ,TB}} do

4: Calculate the hash value H j by Equation (3) for variable Jj ∈ J .
5: end for

6: end for

7: Count the similar variable pairs with the same hash value in p times simLSH.

8: end for

9: Count the similar variable pairs that appear one or more times in q coarse-grained hashings.

10: for (parallel): Variables Jj ∈ J are evenly assigned to thread blocks {TBtb_idx |tb_idx ∈ {1, . . . ,TB}}
do

11: Search the Top-K nearest neighbors {Jj1 , . . . , JjK } of the variable Jj ∈ J .
12: end for

least P
p
1 . Under this condition, many similar variable pairs will be missed. (2) Fine-grained Hashing:

In this strategy, as long as at least one of the two variables {Jj1 , Jj2 } projected as similar pairs is

subjected to coarse-grained hashing, the similar variable pairs {Jj1 , Jj2 } are selected. Suppose that q
coarse-grained hashings are conducted. The probability of two similar variables {Jj1 , Jj2 } projected

as similar pairs is increased to at least 1 − (1 − P
p
1 )q . By increasing the values of p and q, the

probability that two similar pairs of variables {Jj1 , Jj2 } are projected as similar pairs is increased.

This method can improve the probability, and its calculation amount is p × q times of that of

simLSH. We need to adjust the sizes of p and q. Before the model training, we only need to perform

multiple simLSHs onN variables to find similar variable pairs, which can reduce the computational

complexity to O (N ). Even if you use p × q simLSHs to increase the probability, the computational

complexity is only p × q × N , and p × q × N is much smaller than N 2.

Our goal is to find the Top-K nearest neighbors for each variable Jj ∈ J . simLSH does not directly

obtain the Top-K nearest neighbors for Jj . It is accomplished by searching for other variables with

the same hash value in the hash table. We use the coarse-grained and fine-grained hashing of

simLSH and select the K most frequent variables {J1, . . . , JK } ∈ J in the hash table of variable

Jj and make a random supplement if the number is less than K . On the CUDA platform, each

thread block for simLSH (CULSH) manages a variable Jj . CULSH is described in Algorithm 1 as

follows: (1) Lines 1–9: The calculation of simLSH with coarse-grained hashing and fine-grained

hashing. In lines 3–5, calculate the hash value H j for variable Jj ∈ J in parallel and save it, and this

only consumes a small amount of memory. (2) Lines 10–12: Search the Top-K nearest neighbors

{Jj1 , . . . , JjK
} of variable Jj ∈ J according to hash value H j of variable Jj ∈ J .

4.2 Stochastic Optimization Strategy and CUDA Parallelization on GPUs

and Multiple GPUs

The basic optimization objective (2) involves six tangled parameters {U,V,bi , b̂j ,w j , c j }. The state-
of-the-art parallel strategy of SGD in References [59, 63] cannot disentangle the involved parame-
ters. Due to the entanglement of the parameters, the optimization objective (2) is nonconvex and
alternative minimization is adopted [8, 17, 47, 54], which can disentangle the involved parameters
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as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arg min
ui

∑
j ∈Ωi

(
ri, j − r̂i, j

)2
+ λu

M∑
i=1

| |ui | |2 ;

arg min
vj

∑
i ∈Ω̂j

(
ri, j − r̂i, j

)2
+ λv

N∑
j=1

���
���vj

���
���
2

;

arg min
bi

∑
j ∈Ωi

(
ri, j − r̂i, j

)2
+ λb

M∑
i=1

b2
i ;

arg min
b̂j

∑
i ∈Ω̂j

(
ri, j − r̂i, j

)2
+ λ

b̂

N∑
j=1

b̂2
j ;

arg min
w j, j1

∑
i ∈Ω̂j

(
ri, j − r̂i, j

)2
+ λw

∑
Jj1 ∈RK (i ;j )

w2
j, j1

;

arg min
c j, j2

∑
i ∈Ω̂j

(
ri, j − r̂i, j

)2
+ λc

∑
Jj2 ∈N K (i ;j )

c2
j, j2
.

(4)

SGD is a powerful optimization strategy for large-scale optimization problems [17, 54]. Using
SGD to solve the optimization problem (4) is presented as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bi ← bi + γbi

(
ei, j − λbbi

)
;

b̂j ← b̂j + γb̂j

(
ei, j − λb̂

b̂j

)
;

ui ← ui + γu

(
ei, jvj − λuui

)
;

vj ← vj + γv

(
ei, jui − λvvj

)
;

w j, j1 ← w j, j1 + γw

(���RK (i; j )���
− 1

2 ei, j (ri, j1 − bi, j1 ) − λww j, j1

)
;

c j, j2 ← c j, j2 + γc

(���NK (i; j )���
− 1

2 ei, j − λcc j, j2

)
,

(5)

where the parameters {γbi
,γ

b̂j
,γu , γv ,γw ,γc } are the corresponding learning rates and ei, j = ri, j −

r̂i, j . The update rule (5) has parallel inherence. Then, the proposed CULSH-MF is composed of the

following three steps:

(1) Basic Optimization Structure (CUSGD++): CUSGD++ only considers the basic two pa-

rameters {U,V}. Compared with cuSGD, CUSGD++ has the following two advantages: (1) Due to

the higher usage of GPU registers in Stream Multiprocessors (SMs), ui or vj can be updated

in the registers, avoiding the time overhead caused by a large number of memory accesses. The

memory access model is illustrated in Figure 4. SM {1, 2} update {u1,u2} in the registers, respec-

tively; and {{v1,v3, v4,v7, v8,v11,v13}, {v1,v4,v6, v7,v9,v10,v12}} are returned to global memory

after each update step. (2) Due to the disentanglement of the parameters in the update rule (5), the

data access conflict is reduced, which ensures a high access speed. From the update rule (5), the

update processes of {U,V} are symmetric. Algorithm 2 only describes the update process of {U} in

the registers as follows: (1) Lines 2–3: Given TB thread blocks, feature vectors {ui |i ∈ {1, . . . ,M }}
are evenly assigned to thread blocks {TBtb_idx |tb_idx ∈ {1, . . . ,TB}}. Each thread block TBtb_idx
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Fig. 4. Memory access model of CUSGD++.

reads its own feature vector ui from the global memory into the registers. (2) Line 4: The feature

vector ui with all nonzero values {ri, j |j ∈ Ωi } in the thread block TBtb_idx is updated. (3) Lines

5–7: Use the warp shuffle instructions [34] to accelerate the dot productuiv
T
j of two vectors {ui ,vj }

and broadcast the result. This technology with additional hardware support uses registers that are

faster than shared memory and does not involve thread synchronization. Furthermore, this tech-

nology aligns and merges memory to reduce the access time. The number of threads in a thread

warp under the CUDA platform is 32, and elements {ui,f ,vj,f | f ∈ {1, . . . , F }} in feature vectors

{ui ,vj } are evenly assigned to thread blocks {Tt_idx |t_idx ∈ {1, . . . , 32}}. A thread Tt_idx in each

thread blockTBtb_idx sequentially reads the corresponding elements {ui,f ,vj,f | f %32 = t_idx , f ∈
{1, . . . , F }} in feature vectors {ui ,vj }, and the thread Tt_idx calculates the corresponding products

{ui,f vj,f | f %32 = t_idx , f ∈ {1, . . . , F }}. Then, the warp shuffle in the thread Tt_idx to obtain the

dot product uiv
T
j =

∑
t_idx

∑
f %32=t_idx ui,f vj,f . (4) Lines 8–10: Feature vectors ui are updated in

the registers to avoid rereading from global memory for the next update, and feature vectors vj

are updated directly in global memory. (5) Line 11: After all nonzero values {ri, j |j ∈ Ωi } have been

updated, the latest ui are written to global memory because it will no longer be used.

(2) Aggregated Model (CULSH-MF): The updating process of {W,C} for each thread Tt_idx

is imbalanced. This imbalance does not affect the serial model. However, it obviously affects

the running speed of the parallel model. The most significant impacts are the following two

points: (1) discontinuous memory access and (2) imbalanced load on each thread T . To solve

the above problems, an adjustment for the parameters {W,C} is proposed in this section. In

CULSH-MF, the adjustment takes the set R (i ) as a complement of the set N (i ). Therefore, SK (j ) =
RK (i; j )

⋃
NK (i; j ),RK (i; j )

⋂
NK (i; j ) = ∅. Thus, the number of the involved elements for {W,C}

are equal and each variable Jj involves 2K parameters {{w j,k |k ∈ {1, . . . ,K }}, {c j,k |k ∈ {1, . . . ,K }}}.
For the convenience of the expression, we use k1 and k2 to represent the indexes of j1 and j2 in

these K parameters, respectively, which means that w j, j1 and c j, j2 are represented as w j,k1
and

c j,k2
, respectively. The computational process of

∑
Jj1 ∈RK (i ;j ) (ri, j1 −bi, j1 )w j,k1

and
∑

Jj2 ∈N K (i ;j ) c j,k2

involves the dot product and summation operations. Thus, the warp shuffle instructions, which can

align and merge memory to reduce the overhead for GPU memory access, are used.

CULSH-MF also takes advantage of the register to reduce the memory access overhead and

then increase the overall speed. Due to the limited space, we only introduce the update rule of
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ALGORITHM 2: CUSGD++

G{parameter }: parameter in global memory

R{parameter }: parameter in register memory

Input: Initialization of low-rank feature matrices {U,V}, interaction matrix R, learning rate {γu ,γv },
regularization parameter {λu , λv }, and training epoches epo.

Output: U.

1: for : loop from 1 to epo do

2: for (parallel): {TBtb_idx |tb_idx ∈ {1, . . . ,TB}} manages its own feature vectors {ui |i ∈ {1, . . . ,M }}
do

3: R{ui } ← G{ui }
4: for : all {ri, j |j ∈ Ωi } do

5: Calculate r̂i, j = uiv
T
j .

6: Calculate ei, j = ri, j − r̂i, j .

7: Update ui ,vj by update rule (5).

8: R{ui } ← ui

9: G{vj } ← vj

10: end for

11: G{ui } ← R{ui }
12: end for

13: end for

{V, b̂j ,W,C} in the registers. In Algorithm 3, the update process is presented in detail as follows: (1)

Line 1: Average value μ =
∑

(i, j )∈Ω ri, j/|Ω | as the basis value. (2) Lines 3–7: Given TB thread blocks,

parameters {vj , b̂j ,w j , c j |j ∈ {1, . . . ,N }} are evenly assigned to thread blocks {TBtb_idx |tb_idx ∈
{1, . . . ,TB}}. Each thread block TBtb_idx reads its own parameters {vj , b̂j ,w j , c j } from the global

memory into the registers. In addition, the reading of memory is also aligned and merged. (3)

Line 8: The parameters {vj , b̂j ,w j , c j } with all nonzero values {ri, j |i ∈ Ω̂j } in thread blockTBtb_idx

are updated. (3) Lines 9–11: Use the warp shuffle instructions [34] to accelerate the dot productuiv
T
j

and summation {∑j1∈RK (i ;j ) (ri, j1 −bi, j1 )w j,k1
,
∑

j2∈N K (i ;j ) ck,k2
}. Elements {ui,f ,vj,f ,w j,k1

, c j,k2
| f ∈

{1, . . . , F },k1,k2 ∈ {1, . . . ,K }} in parameters {ui ,vj ,w j , c j |j ∈ {1, . . . ,N }} are evenly assigned

to thread blocks {Tt_idx |t_idx ∈ {1, . . . , 32}}. A thread Tt_idx in each thread block TBtb_idx se-

quentially reads the corresponding elements {ui,f ,vj,f ,w j,k1
, c j,k2

| f %32 = k1%32 = k2%32 =

t_idx , f ∈ {1, . . . , F },k1,k2 ∈ {1, . . . ,K }} in parameters {ui ,vj ,w j , c j }, and the thread Tt_idx cal-

culates the corresponding calculations {ui,f vj,f , (ri, j1 − bi, j1 )w j,k1
, ck,k2

| f %32 = k1%32 = k2%32 =

t_idx , f ∈ {1, . . . , F },k1,k2 ∈ {1, . . . ,K }}. Please note that since SK (j ) = RK (i; j )
⋃

NK (i; j ) and

RK (i; j )
⋂

NK (i; j ) = ∅, the thread only calculates one of (ri, j1 − bi, j1 )w j,k1
and ck,k2

. This makes

the load of each threadTt_idx relatively balanced during the update process. Then, the warp shuffle

in thread Tt_idx to obtain the r̂i, j = μ + bi + b̂j +
∑

t_idx (
∑

f %32=t_idx ui,f vj,f +
∑

k1%32=t _idx

j1∈RK (i ;j )

(ri, j1 −

bi, j1 )w j,k1
+
∑

k2%32=t _idx

j2∈N K (i ;j )

ck,k2
). (4) Lines 12–18: Parameters {vj , b̂j ,w j , c j } are updated in the registers

to avoid rereading from global memory for the next update, and parameters {ui ,bi } are updated di-

rectly in global memory. (5) Lines 19–22: After all nonzero values {ri, j |i ∈ Ω̂j } have been updated,

the latest {vj , b̂j ,w j , c j } are written to global memory because they will no longer be used. These

operations are similar to CUSGD++.

The algorithm has the following advantages: (1) It stores a large number of parameters in

registers, avoiding frequent access to global memory and decreasing the time consumption; and

(2) The parameter distribution is regular such that each threadTt_idx is balanced, which can avoid
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ALGORITHM 3: CULSH-MF

G{parameter }: parameter in global memory

R{parameter }: parameter in register memory

Input: Initialization for {U,V, μ,bi , b̂j ,W,C}, sparse matrix R, learning rate parameters {γb ,γb̂
,γu ,

γv ,γw ,γc }, regularization parameters {λb , λb̂
, λu , λv , λw , λc }, and training epoches epo.

Output: {U,V, μ,bi , b̂j ,W,C}.
1: u ← Average value of rating matrix R.

2: for loop from 1 to epo do

3: for (parallel): {TBtb_idx |tb_idx ∈ {1, . . . ,TB}} manages its own parameters

{ui ,vj ,w j , c j |j ∈ {1, . . . ,N }} do

4: R{b̂j } ← G{b̂j };
5: R{vi } ← G{vj }
6: R{w j } ← G{w j }
7: R{c j } ← G{c j }
8: for all {ri, j |i ∈ Ω̂j } do

9: Calculate r̂i, j by Equation (1).

10: Calculate ei, j = ri, j − r̂i, j .

11: Update {bi , b̂j ,ui ,vj ,w j , c j } by update rule (5).

12: R{b̂j } ← b̂j

13: R{vj } ← vj

14: R{w j } ← w j

15: R{c j } ← c j

16: G{bi } ← bi

17: G{ui } ← ui

18: end for

19: G{b̂j } ← R{b̂j }
20: G{vj } ← R{vj }
21: G{w j } ← R{w j }
22: G{c j } ← R{c j }
23: end for

24: end for

idle threads and can improve the active rate of threads. Compared with CUSGD++, CULSH-MF

can assemble more tangled parameters of the nonlinear MF model. The parameters {vj , b̂j ,w j , c j }
are taken as a whole, and the memory is merged and aligned. Then, the use of warp shuffle can fur-

ther optimize the memory access by allowing the computational overhead to be further reduced.

The spatial overhead isO ( |Ω | +MF +NF + 3NK ) for interaction sparse matrix R, low-rank factor

matrices {U,V}, influence matrices {W,C}, and the Top-K GSM matrix JK .

(3) Multi-GPU Model: With big data, a single GPU still cannot meet our requirements. There-

fore, the method must be extended to multiple GPUs (MCUSGD++/MCULSH-MF). We use data

parallelism to allow multiple GPUs to run our algorithms at the same time. To avoid data conflicts,

each GPU-updated block cannot be on the same Ii or on the same Jj . After the update is com-

pleted, the updated parameters are not sent back to the CPU because another GPU needs these

data directly. Transferring data directly in the GPUs avoids the extra time overhead of uploading

to the CPU and then allocates them to other GPUs. Each GPU is assigned some specific parame-

ters, which are not needed by other GPUs. After all updates are completed, each GPU passes the

parameters that are stored at that time back to the CPU.
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Fig. 5. Multi-GPU solution.

Assume that we have D GPUs. The sparse matrix R is divided into D × D parts

{Rd1,d2
|d1,d2 ∈ {1, . . . ,D}}. Low-rank feature matrices {U,V} are divided into {{Ud1

|d1 ∈
{1, . . . ,D}}, {Vd2

|d2 ∈ {1, . . . ,D}}}, respectively. Influence matrices {W,C} are divided into

{{Wd2
|d2 ∈ {1, . . . ,D}}, {Cd2

|d2 ∈ {1, . . . ,D}}}, respectively. The parameters {Rd1,d2
, Vd2

, Wd2
,

Cd2
|d1 ∈ {1, . . . ,D}} are allocated to the d2th GPU and do not require transmission. Parameter

Vd1
is allocated to the d1th GPU at initialization and then transferred to another GPU after each

update step. Figure 5 depicts MCUSGD++ on three GPUs. MCULSH-MF is similar and is given in

parentheses below. The sparse matrix R is divided into 3 × 3 blocks. The training process of all

the parameters is divided into three parts: (1): GPUs {1, 2, 3} update {{U1, V1, (W1, C1)}, {U2, V2,

(W2, C2)}, {U3, V3, (W3, C3)}} and then transmit {U1, U2, U3} to GPUs {3, 1, 2}, respectively; (2):

GPUs {1, 2, 3} update {{U2, V1, (W1, C1)}, {U3, V2, (W2, C2)}, {U1, V3, (W3, C3)}} and transmit

{U2, U3, U1} to GPUs {3, 1, 2}, respectively; and (3): GPUs {1, 2, 3} update {{U3, V1, (W1, C1)}, {U1,

V2, (W2, C2)}, {U2, V3, (W3, C3)}} and transmit {U3, U1, U2} to GPUs {3, 1, 2}, respectively.

4.3 Online Learning

Big data analysis should consider the incremental data, and the corresponding model can be com-

patible with the incremental data. The amount of incremental data is much smaller than the

amount of original data. Thus, the time overhead for retraining the overall data is not worthwhile.

It is nontrivial to design an online model for incremental data. The variable sets {I , I , Î } and {J , J , Ĵ }
are denoted as the original variable set, new variable set, and overall variable set, respectively. In

this work, we consider that the new variable sets I and J enter the system and interact with vari-

able sets J and I , respectively. Please note that this allows variable set I to interact with variable

set J .
For the original variable Jj ∈ J , the Top-K nearest neighbors {Jj1 , . . . , JjK

} ∈ J are kept. For

the new variable J j ∈ J , we search its Top-K nearest neighbors { Ĵ ĵ1
, . . . , Ĵ ĵK

} ∈ Ĵ . The hash value

of variable set J depends on I , and the hash value of variable set J depends on Î . To keep them

consistent, we update the hash value of variable Jj ∈ J ; then, we save the intermediate variables∑
i ∈Ω̂j

Ψ(ri, j ) (2 · Hi − 1) of simLSH and update H j = ϒ(
∑

i ∈Ω̂j
Ψ(ri, j )Φ(Hi ) +

∑
i ∈Ω̂j

Ψ(ri, j )Φ(Hi )).

Furthermore, we obtain H j = ϒ (
∑

î ∈Ω̂j
Ψ(r î, j ) Φ(Hî ) ). The online learning solution is described

in Algorithm 4 as follows: (1) Lines 1–3: Update the hash value H j for variable Jj ∈ J . Saving the
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ALGORITHM 4: Online Learning

Input: {bi ,ui , b̂j ,vj ,w j , c j }, new variable sets I and J , random Hash values Hi .

Output: {bi ,ui },{b̂j ,vj ,w j , c j }.
1: for loop from 1 to epo do

2: for (parallel): Variables Jj ∈ J are evenly assigned to thread blocks

{TBtb_idx |tb_idx ∈ {1, . . . ,TB}} do

3: Update the hash value H j for variable Jj ∈ J .
4: end for

5: for (parallel): Variables J j ∈ J are evenly assigned to thread blocks

{TBtb_idx |tb_idx ∈ {1, . . . ,TB}} do

6: Calculate the hash value H j for variable J j ∈ J .
7: end for

8: for (parallel): Variables J j ∈ J are evenly assigned to thread blocks

{TBtb_idx |tb_idx ∈ {1, . . . ,TB}} do

9: Search the Top-K nearest neighbors { Ĵ
ĵ1
, . . . , Ĵ

ĵK
} of the variable J j ∈ J .

10: end for

11: for (parallel): Variables Jj ∈ J are evenly assigned to thread blocks

{TBtb_idx |tb_idx ∈ {1, . . . ,TB}} do

12: Update {bi ,ui } for variable I i ∈ I .
13: end for

14: for (parallel): Variables J j ∈ J are evenly assigned to thread blocks

{TBtb_idx |tb_idx ∈ {1, . . . ,TB}} do

15: Update {b̂j ,vj ,w j , c j } for variable J j ∈ J .
16: end for

17: end for

intermediate variables makes the process only require a small amount of calculation. (2) Lines 4–6:

Calculate hash valueH j for variable J j ∈ J . Both the hash value of variable set J and the hash value

of variable set J depend on Î . (3) Lines 7–9: Search the Top-K nearest neighbors { Ĵ ĵ1
, . . . , Ĵ ĵK

} of

variable J j ∈ J . The Top-K nearest neighbors in the overall variable set Ĵ can provide more informa-

tion. (4) Lines 10–12: Update {bi ,ui } for variable I i ∈ I . {ri, j |I i ∈ I , Jj ∈ J } is used and {b̂j ,vj ,w j , c j }
remains unchanged, but they can still be stored in registers to reduce memory access. (5) Lines

13–15: Updating {b̂j ,vj ,w j , c j } for variable J j ∈ J , {r î, j |̂Iî ∈ Î , J j ∈ J } is used, and {b̂j ,vj ,w j , c j }
remains unchanged.

5 EXPERIMENTS

CULSH-MF is composed of two parts: (1) Basic parallel optimization model depends on CUSGD++,

which can utilize the GPU registers more and disentangle the involved parameters. CUSGD++

achieves the fastest speed compared to the state-of-the-art algorithms. (2) The Top-K nearest neigh-

borhood query relies on the proposed simLSH, which can reduce the time and memory overheads.

Furthermore, it can improve the overall approximation accuracy. To demonstrate the effectiveness

of the proposed model, we present the experimental settings in Section 5.1. The speedup perfor-

mance of CUSGD++ compared with the state-of-the-art algorithms is shown in Section 5.2. The ac-

curacy, robustness, online learning, and multiple GPUs of CULSH-MF are presented in Section 5.3.
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Table 2. Datasets

Parameter Netflix MovieLens Yahoo! Music

M 480,189 69,878 586,250

N 17,770 10,677 12,658

|Ω | 99,072,112 9,900,054 91,970,212

|Γ | 1,408,395 100,000 1,000,000

Max Value 5 5 100

Min Value 1 0.5 0.5

CULSH-MF is a nonlinear neighborhood model for low-rank representation learning, and we com-

pare CULSH-MF with the DL model in Section 5.4 to demonstrate the effectiveness of CULSH-MF.

5.1 Experimental Setting

The experiments were run on an NVIDIA Tesla P100 GPU with CUDA version 10.0. The same

software and hardware conditions can better reflect the superiority of the proposed algorithm.

The experiments are conducted on 3 public datasets: Netflix,1 MovieLens,2 and Yahoo! Music.3

For MovieLens and Yahoo! Music, data cleaning is conducted, and 0 values are changed from 0

to 0.5. This will make cuALS work properly, which is one of the shortcomings of cuALS. The

specific situations of the datasets are shown in Table 2. The ratings in the Yahoo! Music dataset

are relatively large, which affects the training process. In the actual training process, we divided

all the ratings in the Yahoo! Music dataset by 20, and then we multiply by 20 when verifying the

results. In this way, the ratings of the three datasets are in the same interval, which facilitates the

parameter selection. The accuracy is measured by the RMSE as:

RMSE =

√√( ∑
(i, j )∈Γ

(vi, j − ṽi, j )2

) /
|Γ |, (6)

where Γ denotes the test sets.

The number of threads in a thread warp under the CUDA system is 32. Therefore, we set the

number of threads in the thread block to a multiple of 32. This is done to maximize the utilization

of the warp. Then, to align access, we set the parameters {F ,K } as multiples of 32.

5.2 CUSGD++

CUSGD++ is used to compare cuALS [54] and cuSGD [59] on the three datasets. The parameters of

cuALS and cuSGD were set as described in their papers and optimized according to the hardware

environment, and CUSGD++ uses the dynamic learning rate in Reference [63] as

γt =
α

1 + β · t1.5
, (7)

where the parameters {α , β, t ,γt } represent the initial learning rate, adjusting parameter of the

learning rate, the number of current iterations, and the learning rate at t iterations, respectively.

The learning rate and other parameters in CUSGD++ are listed in Table 3.

The GPU experiments are conducted on three datasets. To ensure running fairness, we ensure

that the GPU executes these algorithms independently, and there is no other work. Figure 6 shows

1https://www.netflixprize.com/.
2https://grouplens.org/datasets/movielens/.
3https://webscope.sandbox.yahoo.com/.
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Table 3. CUSGD++ Parameters

Parameter Netflix MovieLens Yahoo! Music

α 0.04 0.04 0.01

β 0.3 0.3 0.1

λu 0.035 0.035 0.02

λv 0.035 0.035 0.02

Table 4. Speedup Comparison on the Baseline cuALS

Algorithm Netflix MovieLens Yahoo! Music

cuALS 15.00 1.30 15.60

cuSGD 5.05 (3.0×) 0.31 (4.2×) 1.92 (8.1×)

CUSGD++ 1.49 (10.1×) 0.15 (8.7×) 0.69 (22.6×)

Fig. 6. RMSE vs. time: The experimental results demonstrate that CUSGD++ converges faster than other

approaches.

the relationship between the RMSE and training time. In Table 4, the times it takes to achieve

an acceptable RMSE (0.92, 0.80, and 22.0 for Netflix, MovieLens and Yahoo! Music, respectively)

are presented. cuALS has an extremely fast descent speed, but the time of each iteration is very

long, because the matrix inversion calculation is performed twice for each iteration. Furthermore,

because the number of {ri, j |j ∈ Ωi } for each Ii is very different and the number of {ri, j |i ∈ Ω̂j }
for each Jj is the same, the thread load imbalance further increases the time overhead. cuSGD has

a slower descent speed but less time overhead per iteration due to using data parallelism without

load-balancing issues.

cuSGD has an obvious flaw in that it does not take full advantage of the hardware resources

of the GPU. cuSGD stores data in global memory, which makes it take too much time to read

and write data. Our proposed CUSGD++ is significantly faster than the state-of-the-art algorithms

on the GPU. CUSGD++ and cuSGD have the same number of iterations to obtain an acceptable

RMSE, and the speed of a single iteration is 2–3 times faster than cuSGD. With the same gradient

descent algorithm, the proposed CUSGD++ and cuSGD algorithms are basically the same in terms

of descent speed. CUSGD++ makes full use of the GPU hardware. Therefore, the time overhead of

each iteration is only approximately 1/3 that of cuSGD. It is inevitable that CUSGD++ results in

a thread load imbalance problem, and our further work is to solve this problem. Simultaneously,

we simply sort the index of the row or column for Ii ∈ I according to the number of {ri, j |j ∈ Ωi }.
Therefore, Ii containing more nonzero elements {ri, j |j ∈ Ωi } is updated first. This approach can

reduce the time overhead on a single iteration and achieve speedups of {1.02X , 1.03X , 1.06X } on

the Netflix, MovieLens, and Yahoo! Music datasets, respectively.
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Table 5. The Initial Learning Speed and Regularization

Parameters of CULSH-MF for All Three Datasets

Parameter Netflix MovieLens Yahoo! Music

αi 0.02 0.035 0.02

α̂ j 0.02 0.035 0.02

αu 0.02 0.035 0.02

αv 0.02 0.035 0.02

αw 0.001 0.002 0.001

αc 0.001 0.002 0.001

λbi
0.01 0.02 0.02

λ
b̂j

0.01 0.02 0.02

λu 0.01 0.02 0.02

λv 0.01 0.02 0.02

λw 0.05 0.002 0.05

λc 0.05 0.002 0.05

Table 6. Running Time (Seconds)

Algorithm Platform F K Time

Serial Intel Xeon E5-2620 CPU 32 32 782.64

LSH-MF Intel Xeon E5-2620 CPU 32 32 17.66

CULSH-MF Nvidia Tesla P100 GPU 32 32 0.09

5.3 CULSH-MF

Before introducing the experiment, we will introduce the selection of the relevant parameters.

CULSH-MF still uses the dynamic learning rate in Equation (7). The initial learning rate and regu-

larization parameters are shown in Table 5, and β for all three datasets is 0.3.

To clarify the superiority of CULSH-MF, the experimental presentation is split into the following

five parts: (1) The overall performance comparison, (2) the performance comparison for the various

methods of Top-K nearest neighborhood query, (3) the performance comparison of neighborhood

nonlinear MF with naive MF methods, (4) the performance comparison on a GPU and multiple

GPUs, and (5) the robustness of CULSH-MF.

We first compare the serial algorithms, i.e., LSH-MF and GSM-based Top-K nearest neighbor-

hood MF [29]. To ensure the fairness of the comparison, the parameters used are the same [29].

The serial algorithms are conducted on an Intel Xeon E5-2620 CPU, and the CUDA parallelization

algorithms are conducted on an NVIDIA Tesla P100 GPU. Parameters {F ,K } are set as {32, 32},
respectively. Table 6 presents the time overhead of the three algorithms on the MovieLens dataset

(baseline RMSE 0.80). The experimental results show that the LSH-MF can achieve a 44.3× speedup

compared to the GSM-based Top-K nearest neighborhood MF. CULSH-MF can achieve a 196.22×
speedup compared to the LSH-MF serial algorithm. These results demonstrate that the proposed

algorithms are efficient.

The comparison baselines of the GSM and simLSH are set under the same experimental con-

ditions. To make the experiment more rigorous, a randomized control group was added, and it

randomly selects K variables for each variable rather than the Top-K nearest neighbors query.

Furthermore, we compared two other LSH algorithms, random projection (RP_cos) based

on cosine distance and minHash based on Jaccard similarity. On sparse data, compared to the
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Fig. 7. RMSE vs. time: The comparison between GSM, simLSH (various p and q values), and other LSH

algorithms.

Euclidean distance, the LSH algorithms based on the cosine distance have less accuracy loss. In

addition, minHash can approximately calculate the Jaccard similarity between sets or vectors. The

above two LSH functions are simple and have low computational complexity, Furthermore, the

more complex LSH functions are not suitable for high-dimensional sparse data.

The baseline RMSEs are {0.92, 0.80, 22.0} for Netflix, MovieLens, and Yahoo! Music, respectively.

For the MovieLens and Netflix datasets, Ψ(ri, j ) = r
2
i, j is set to expand the gap between interaction

values, and the Yahoo! Music dataset has more dense interaction values. Thus, Ψ(ri, j ) = r 4
i, j . We

use a byte as a hash value (G = 8) and set λρ as the commonly used 100. Figure 7 shows that the

random selection method performs worse than the GSM-based method, simLSH, and other LSH

algorithms on the three datasets. When the parameters {p,q} are set as {p = 3,q = 100}, simLSH

is almost the same as that of the GSM.

When the parameters {p,q} are set as {p = 3,q = 100}, simLSH surpasses the GSM, and the

performances of RJ_cos and minHash are far from that of simLSH. The reason is that the datasets

are very sparse, and the descent speed brought by minHash is not very impressive.

Table 7 shows the optimal RMSE and the corresponding time overhead. Table 7 (top) demon-

strates that simLSH can achieve a better RMSE than using the GSM and simLSH is better than the

GSM and other LSH algorithms not only in descent speed but also in accuracy. Table 7 (middle)

shows the time overhead of GSM, simLSH, and other LSH algorithms on the three datasets, and

simLSH takes much less time than the GSM. The calculation time required for RP_cos is slightly

larger than that of simLSH, and minHash requires considerable calculation time due to the high

dimensionality of the datasets. Table 7 (bottom) shows the spatial overhead of GSM, simLSH, and

other LSH algorithms on the three datasets, and simLSH takes much less space than the GSM.

Furthermore, simLSH can surpass the GSM, since it can adjust the parameters to achieve a bal-

ance between accuracy and time, and it can set appropriate parameters according to actual needs.

Figure 8 shows the influence of various values of {p,q} on the three datasets. The increase in p will

reduce the probability of two dissimilar variables projecting to the same hash value to P
p
2 , but the

probability 1 − (1 − P
p
1 )q of two similar variables projected to the same hash value will decrease.

Choosing a suitable p will achieve higher accuracy.

We should select the best parameters and ensure which parameters play a greater role. To ensure

that the threads are fully utilized, the parameters {F ,K } are all set as {32, 64, 96, 128}. Figure 9

illustrates the influences of {F ,K } on CULSH-MF. As Figure 9 shows, under the same F , CULSH-MF

with the neighborhood model obtains higher accuracy than CUSGD++ without the neighborhood

model in terms of the RMSE. Then, CULSH-MF is compared with CUSGD++ to demonstrate to

what degree the neighborhood model can improve the accuracy. Figure 10 shows that CULSH-MF

with the parameters {F = 128,K = 32} achieves a much faster descent speed than CUSGD++

with F = 128. The neighborhood model with a low K can greatly improve the descent speed, and

ACM/IMS Transactions on Data Science, Vol. 2, No. 4, Article 37. Publication date: March 2022.



37:22 Z. Li et al.

Fig. 8. RMSE vs. influence of various value of {p,q}.

Fig. 9. RMSE vs. influence of various value of {F ,K }. Compared with F , increasingK can reduce RMSE more.

Table 7. The Optimal RMSE of Various Top-K Methods (Up), the Time Overhead of Various Top-K
Methods (Seconds) (Middle), and the Space Overhead of Various Top-K Methods (MB) (Down)

Indicator Method Netflix MovieLens Yahoo! Music

RMSE

Rand 0.9157 0.7947 21.99

GSM 0.9136 0.7890 21.81

simLSH (p = 3, q = 100) 0.9137 0.7893 21.83

simLSH (p = 3, q = 200) 0.9135 0.7888 21.81

RP_cos (p = 3, q = 200) 0.9139 0.7896 21.87

minHash (p = 3, q = 200) 0.9138 0.7892 21.82

Time Overhead (Seconds)

Rand 0.0 0.0 0.0

GSM 422.996 27.150 295.417

simLSH (p = 3, q = 100) 15.414 2.777 25.994

simLSH (p = 3, q = 200) 31.017 5.602 52.012

RP_cos (p = 3, q = 200) 47.262 8.184 78.953

minHash (p = 3, q = 200) 270.003 38.224 319.831

Space Overhead (MB)

Rand 0.0 0.0 0.0

GSM 1,204.578 434.869 611.209

simLSH (p = 3, q = 100) 20.336 12.219 14.486

simLSH (p = 3, q = 200) 40.672 24.438 28.972

RP_cos (p = 3, q = 200) 40.672 24.438 28.972

minHash (p = 3, q = 200) 40.672 24.438 28.972

it can reach the target RMSE with only a few iterations. CUSGD++ has a shorter training time

per iteration, but it requires more training periods. Thus, CULSH-MF can outperform CUSGD++

owing to the overall training time with the optimal RMSE. Another noteworthy result is that

CULSH-MF runs faster than CUSGD++ as the value of F increases. CULSH-MF with parameter
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Fig. 10. RMSE vs. time: CULSH-MF outperforms CUSGD++ on all three datasets.

Table 8. RMSE Deviation of the Noisy Data and the Clean Data

Noise Rate Algorithm Netflix MovieLens Yahoo! Music

1%
CUSGD++(F = 128) 0.00116 0.00157 0.13840

CULSH-MF(F = 32, K = 32) 0.00096 0.00166 0.09770

0.5%
CUSGD++(F = 128) 0.00055 0.00092 0.06012

CULSH-MF(F = 32, K = 32) 0.00045 0.00076 0.04792

0.1%
CUSGD++(F = 128) 0.00032 0.00040 0.01404

CULSH-MF(F = 32, K = 32) 0.00011 0.00006 0.00954

0.05%
CUSGD++(F = 128) 0.00018 0.00028 0.00814

CULSH-MF(F = 32, K = 32) 0.00002 0.00004 0.00424

0.01%
CUSGD++(F = 128) 0.00011 0.00016 0.00412

CULSH-MF(F = 32, K = 32) 0.00001 0.00002 0.00194

Table 9. Online Datasets

Parameter Netflix MovieLens Yahoo! Music

M 475,388 69,180 580,388

N 17,593 10,571 12,532

|Ω | 98,339,095 9,789,247 90,752,595

M 4,801 698 5,862

N 177 106 126

|Ω | 733,017 110,807 1,217,617

K = 32 can achieve {2.67X , 2.97X , 1.36X } speedups compared to CUSGD++ when F = {32, 64, 128},
respectively.

Finally, we present the experimental results of the robustness of CULSH-MF and CUSGD++, the

online learning and multiple GPU solutions of CULSH-MF. First, data inevitably have noise, and

a robust model should suppress noise interference. The experiment is conducted on all datasets

with noise rates of {1%, 0.5%, 0.1%, 0.05%, 0.01%}. The experimental results in Table 8 show that

CULSH-MF has more robustness than CUSGD++, which means that the neighborhood nonlin-

ear model performs more robustly than the naive model. Second, we divide the training datasets

of Netflix, MovieLens and Yahoo! Music into original set Ω and new set Ω, and |Ω | � |Ω |. The

specific conditions of the dataset are shown in Table 9. In the online experiments, the RMSE of

our online CULSH-MF on the Netflix, MovieLens, and Yahoo! Music datasets only increased by

{0.00015, 0.00040, 0.00936}, respectively, which means that online CULSH-MF avoids the retrain-

ing process. Third, multiple GPUs can accommodate a larger data, and CULSH-MF is extended
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Table 10. Time Comparison (Seconds) to Obtain Basic HR of Various

Nonlinear MF Methods

Algorithm MovieLens1m (HR 0.65) Pinterest (HR 0.85)

GMF 219.6 335.1

MLP 940.4 1289.9

NeuMF 308.5 402.3

CULSH-MF 0.0343 0.0452

to MCULSH-MF. Due to the communication overhead between each GPU, MCULSH-MF cannot

reach the linear speeds, and properly distributing communications can shorten the computation

time. CULSH-MF can obtain {1.6X , 2.4X , 3.2X } speedups on {2, 3, 4} GPUs, respectively, compared

to CULSH-MF on a GPU.

Our model also applies to recommendations for implicit feedback and has a very obvious time

advantage. NCF works well but takes too much time, and CULSH-MF can achieve similar results

with a lower time overhead. We change the loss function of CULSH-MF to the cross-entropy loss

function, and the update formula will also follow the corresponding change. This derivation is too

simple and will not be repeated here. Because the time overheads to train the deep learning mod-

els on large-scale datasets are unacceptable, three deep learning models, e.g., Generalized Matrix

Factorization (GMF), the Multilayer Perceptron (MLP), and Neural Matrix Factorization

(NeuMF), of Reference [18] are just tested on two small datasets, e.g., MovieLens1m and Pinterest.

(1) GMF is a deep learning model based on matrix factorization that extends classic matrix factor-

ization. It first performs one-hot encoding on the indexes in the sets {I , J } of the input layer, and

the obtained embedding vectors are used as the latent factor vectors. Then, through the neural

matrix decomposition layer, it calculated the matrix Hadamard product of factor vector I and fac-

tor vector J . Finally, a weight vector and the obtained vector are projected to the output layer by

the dot product. (2) The MLP is used to learn the interaction between latent factor vector I and

latent factor vector J , which can give the model greater flexibility and nonlinearity. With the same

conditions as GMF, the MLP uses the embedded vector of the one-hot encoding of indices I and J
as the latent factor vector of I and J . The difference is that MLP concatenates latent factor vector

I with latent factor vector J . The model uses the standard MLP; and each layer contains a weight

matrix, a deviation vector, and an activation function. (3) GMF uses linear kernels to model the in-

teraction of potential factors, while MLP uses nonlinear kernels to learn the interaction functions

from data. To consider the above two factors at the same time, NeuMF integrates GMF and the

MLP, embeds GMF and the MLP separately, and combines these two models by connecting their

last hidden layers in series. This allows the fusion model to have greater flexibility. The Hit Ratio

(HR) is used to measure the accuracy of the nonlinear models. We use the same datasets and the

same metrics. For the same baseline HR, we compare the time overheads of CULSH-MF and the

three nonlinear models, i.e., GMF, the MLP, and NeuMF. The experimental results are shown in

Table 10. Table 10 shows that the time overhead of the CULSH-MF is only 0.01% that of the three

nonlinear models, i.e., GMF, the MLP, and NeuMF. Furthermore, the parameters of the CULSH-MF

are much smaller than those of the three nonlinear models, i.e., GMF, the MLP, and NeuMF.
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