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LDFnet: Lightweight Dynamic Fusion Network for
Face Forgery Detection by Integrating Local

Artifacts and Global Texture Information
Zhiqing Guo , Liejun Wang , Wenzhong Yang , Gaobo Yang , and Keqin Li , Fellow, IEEE

Abstract— Face forgery detection has become a new research
hotspot. Though existing detection works have achieved impres-
sive performance, they are difficult to achieve a proper trade-off
between detection accuracy and model complexity. To solve this
problem, we design some low-complexity modules and construct
a lightweight dynamic fusion network (LDFnet) to achieve
high accuracy and lightweight face forgery detection. Firstly,
we regard significant local visual artifacts as a correct semantic
feature needed for detection. A spatial group-wise enhance (SGE)
module is introduced as a supervision to suppress possible noise
and capture local artifacts. Secondly, we design a manipulation
trace extraction block (TraceBlock), which can replace vanilla
convolution to achieve global inference, thus capturing the
texture information in the global scope. Based on TraceBlock,
we construct a global texture representation (GTR) network
to extract global manipulation features hierarchically. Finally,
we design a dynamic fusion mechanism (DFM) to fully fuse local
and global clues, and dynamically generate a more discriminating
feature representation. Extensive experimental results show that
the proposed LDFnet is significantly superior to the previous
detection works on some popular face forgery datasets, such as
FF++, DFDC, CelebDF and HFF. In particular, LDFnet only
uses 963k model parameters and 801M FLOPs, which is far
lower than the calculation cost of face forgery detection based
on large model, and achieves better detection results.

Index Terms— Face forgery detection, lightweight model, local
artifacts, global texture information, dynamic fusion.

I. INTRODUCTION

WITH the continuous development of computer graph-
ics and generative methods, face forgery techniques

have made considerable progress in manipulating multimedia
content. While promoting the film industry, these forgery
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techniques may also be used to seek illegal benefits,1 such as
fabricating fake news, creating political crises or blackmailing
someone. Thus, there is an urgent need to develop some
countermeasures to neutralize the negative effects of face
forgery techniques.

In recent years, with the escalating concerns over face
forgeries, researchers in the multimedia forensics community
have developed a lot of detection works. In previous studies,
some lightweight detection networks have been proposed [1],
[2], [3]. These methods focus on some obvious forgery clues,
such as visual artifacts [2] and head posture inconsistency [3],
and use lightweight convolutional neural networks (CNNs) or
machine learning methods to detect face forgery. However,
with the rapid development of face forgery technique, it is
difficult for lightweight methods to capture the subtle traces
left by more advanced forgery technique. Especially in the
compressed dataset, the manipulation traces are laundered,
which limits the detection of lightweight models. In addi-
tion, due to the limited feature representation ability, these
lightweight models usually have poor generalization ability in
cross-dataset evaluation. Thus, more and more studies have
begun to build large models based face forgery detection
networks with strong feature representation ability around
advanced backbone networks such as ResNet [4], Xception [5],
Vision Transformer [6], etc. On the one hand, some stud-
ies promote face forgery detection by forcing the backbone
network to learn discriminant features directly from local
artifact regions [7], [8]. On the other hand, some studies
capture the manipulation traces in the global scope by expand-
ing the attention range of the backbone network [9], [10].
Recently, some studies show that both local artifacts and
global information are important manipulation clues, which
can be used to stimulate the backbone network to achieve
high detection accuracy [11]. Although these methods can
achieve good detection results, they also bring high model
parameters and computational complexity, as shown in Fig 1.
This is not conducive to deploying detection algorithms in
portable devices. Thus, the above defects motivate us to
develop a lightweight detection network, which can achieve
high accuracy and generalization while maintaining low model
parameters and computational complexity.

For the feature map obtained by vanilla CNNs, due to the
lack of supervision of local artifact regions and possible noises
in the face image, the spatial distribution of manipulation

1https://www.ted.com/talks/danielle_citron_how_deepfakes_undermine_trut
h_and_threaten_democracy
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Fig. 1. Relationship between model complexity and detection performance.
From this, we can observe that the LDFnet constructed by designing the
lightweight mechanism achieves a better trade-off between accuracy and
complexity. Compared with the existing detection methods, the proposed
LDFnet has obvious advantages in AUC score, model parameters and FLOPs.
Details are in Table I.

clues will suffer some chaos, which weakens the representation
of learned discriminant features. To effectively capture the
local manipulation artifacts in the feature map, we introduce
a Spatial Group-wise Enhance (SGE) module which hardly
needs additional parameters and calculation cost when design-
ing the detection network [12]. Different from some popular
attention modules, the SGE module uses the similarity between
global statistical features and local statistical features of each
location as the generation source of attention masks, and scales
feature vectors at all locations to suppress possible noise and
highlight correct semantic feature regions. In the face forgery
detection, local visual artifacts (see the red box in Fig. 2)
are the most significant differences between real and fake
face images, which can be regarded as the correct semantic
features required for detection. Thus, SGE module can be used
to enhance the feature representation of local manipulation
artifacts to promote face forgery detection.

The convolution operation in CNNs only extracts informa-
tion from local neighborhood pixels, which makes it difficult to
realize global inference [13]. However, the manipulation traces
left by face forgery are usually distributed in the global image
(see Fig. 2), especially for the fake face images generated by
GANs. To capture global subtle texture changes, it is necessary
to improve the locality problem in CNNs. Thus, we design a
manipulation trace extraction block (TraceBlock), which can
replace the vanilla convolution to capture subtle manipulation
traces distributed in the global scope. In addition, we also
build a global texture representation (GTR) network. Specif-
ically, we first use the well-known constrained convolution
layer to extract the primary manipulation traces [14]. Then,
the hierarchical feature extraction module is constructed by
stacking TraceBlocks to further learn the global manipulation
trace features.

To generate a more discriminating feature representation,
we propose a dynamic fusion mechanism (DFM), which
includes pre-fusion and post-fusion. Specifically, the local
and global features are concatenated by pre-fusion. By adap-
tively updating the weights, local and global features are
convolved dynamically to generate a new feature represen-
tation. Then, the attention matrix generated from the global
features is projected into the dynamically learned feature
space to complete post-fusion. By realizing high-dimensional
feature interaction between the extracted local artifacts and
global texture information, we enhance the representation of

Fig. 2. Distribution of manipulation clues. The first and second columns
are real faces and corresponding fake faces, respectively. To clearly show the
manipulation traces in the face image, we calculate the absolute difference
(closer to white color means greater pixel difference) between the real and fake
images in the third column. The red and yellow boxes mark some significant
local artifacts and subtle texture changes in the global scope, respectively.

discriminant features. In the existing feature fusion mecha-
nism, one method is to fuse local and global features directly
through element-wise sum (see Fig. 3 (c)). Another method
is to preserve all feature information for recognition through
simple feature concatenation. These methods are only simple
addition or concatenation in the feature space, and cannot com-
pletely capture the local artifacts and global texture changes.
Thus, the superiority of DFM is that it not only considers
retaining all forgery information and generating joint feature
representation, but also uses the global attention matrix to
promote the detection network to pay attention to forgery clues
distributed in the global scope.

To achieve efficient face forgery detection, we adopt SGE
module, TraceBlock and DFM to build a lightweight dynamic
fusion network (LDFnet). Extensive experiments show that
LDFnet can achieve better detection results than existing
methods on the premise of using only a few parameters and
low computational complexity. The main contributions of this
paper are summarized as follows:

• We propose a unified end-to-end framework, called
LDFnet, which can realize efficient face forgery detection.

• We regard local visual artifacts as a semantic feature, and
use SGE module as a supervision to promote the detection
network to capture local artifacts.

• We design a novel TraceBlock, which can be used to
capture the global texture changes in face forgery images.

• We design a DFM that can fully integrate local and global
information to further refine the discriminant features.

The rest of this paper is organized as follows. Section II
briefly describes the related works. Section III presents the
details of the proposed method. Section IV reports the experi-
mental results and analysis. Conclusion is made in Section V.

II. RELATED WORKS

A. Small Model Based Face Forgery Detection

With the development of AI-enabled face forgery tech-
nology, face forgery detection has attracted the attention of
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Fig. 3. Compare the proposed work with the existing work. The red and blue rectangles represent local artifacts and global texture information respectively.
(a) Prediction using local features. (b) Prediction using global features. (c) Joint prediction using local and global features by element-wise sum. (d) Dynamic
fusion of local artifacts and global texture for a joint prediction.

researchers in the multimedia forensics community. In the
early work, there was a lot of forensics work based on
machine learning or lightweight CNNs. For machine learning
based approaches, Yang et al. [15] fed the locations of facial
landmark points into support vector machine (SVM) to detect
the GAN-synthesized face images. Later, Yang et al. [3] also
realized face forgery detection by using head posture incon-
sistency and SVM. Li et al. [16] constructed a feature set
based on chrominance components to capture image statistics
for identifying face forgery images. Chen et al. [17] extracted
rich spatial and spectral features from face images, and trained
them with LightGBM classifier, thus realizing lightweight and
efficient face forgery detection. For lightweight CNNs based
approaches, Afchar et al. [1] proposed two neural networks
with only a few layers, which realized face forgery detection
by capturing the mesoscopic properties of faces. Matern et
al. [2] trained a small neural network to capture visual artifacts
in eyes and teeth. Nguyen et al. [18] proposed a lightweight
multi-task learning method, which can simultaneously detect
the authenticity of face images and locate the manipula-
tion regions. Sun et al. [19] proposed an efficient detection
framework by using temporal modeling of precise geometric
features.

Although the above-mentioned small model based face
forgery detection works can be easily deployed in portable
devices, they are usually difficult to achieve high detection
accuracy and generalization due to limited feature representa-
tion ability. As we know, machine learning methods usually
have poor generalization. In addition, it is also difficult for
lightweight CNNs to capture the common features left by
different face forgeries, which leads to poor performance in
cross-dataset evaluation. Different from the previous work,
we design some low-complexity mechanisms to capture the
key features of face forgery, thus achieving efficient face
forgery detection in the intra-dataset and inter-dataset experi-
mental evaluation.

B. Large Model Based Face Forgery Detection

Recently, a lot of large model based detection works have
been proposed. Some works promote the existing backbone
networks to capture forgery patterns by designing attention
mechanisms [20], [21], [22]. For example, Li et al. [7] assumed
that there are blending steps in face swapping, and designed

a face X-ray algorithm, which can be trained without any
fake face images. Du et al. [20] used pixel-level mask to
regularize the local representation in the training process,
so as to force the detection model to learn the intrinsic
representation from the local forgery region. Miao et al. [22]
introduced a self-attention module to force the model to focus
on the forgery region, and designed a landmark-guided dropout
module to destroy the identity features. Miao et al. [23] also
used Central Difference Attention and High-frequency Wavelet
Sampler to extract subtle forgery clues in spatial and frequency
domains. Wang et al. [24] proposed a localization invariance
Siamese network, and used the structural similarity index
measurement to construct the groundtruth mask to guide the
detection model to pay attention to forged regions. Yang et
al. [25] proposed a masked relation learning method, which
learned attention features from multiple facial regions, and
captured global irregularities by using cross-regional relational
information.

There are also some works process the face image through
preprocessing mechanisms to obtain some key manipulation
clues, which are fed into the backbone network for feature
learning [26], [27], [28], [29]. For example, Qian et al. [27]
used two complementary clues to deeply mine the forgery
patterns. Chen et al. [28] realized robust face forgery detection
by using dual-color spatial information and improved Xception
network. Hu et al. [29] used the frame-level and temporal-
level features to accurately detect the compressed face forgery
videos. Zhu et al. [8] disentangled the face image into direct
light and identity texture as the key clue to expose face forgery.
Furthermore, Zhu et al. [30] proposed a composition search
strategy to find useful components and effective architectures
to expose forged faces. Chen et al. [31] used occluded face
images to train the model in the pre-training stage, and used
multi-task learning method to fine-tune the model, which
achieved high accuracy detection. Li et al. [32] disentangled
artifacts from irrelevant information, and designed a new loss
function to provide pixel-level supervision for the generator,
thus promoting the backbone network to achieve accurate face
forgery detection. Yang et al. [33] constructed the manip-
ulation trace from the perspective of image generation to
promote the detection of the backbone network. Li et al. [34]
fed different facial image patches into the feature extractor,
and mapped the symmetrical facial regions into the angular
hyperspace, thus exposing face forgery.
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Fig. 4. Overall structure of LDFnet for face forgery detection. LDFnet is a dual-branch network, which captures global subtle texture changes and local
significant visual artifacts, respectively. The clues extracted from the two branches are fed into the dynamic fusion mechanism to further optimize the feature
representation.

Due to the powerful feature representation ability, these
large model based face forgery detection works can achieve
high detection accuracy. However, with the increase in detec-
tion performance, the improvement of model parameters and
computational complexity is unacceptable for practical appli-
cation scenarios. In our work, we only use very low model
parameters and calculation cost while improving the detection
performance, which realizes efficient face forgery detection.

III. METHODOLOGY

The proposed LDFnet is designed from two directions. That
is, capturing local significant artifacts and global subtle texture
changes. To efficiently fuse the learned local and global manip-
ulation features, we also design a DFM. Thus, this section
will elaborate from three aspects: local artifact representation,
global texture representation and dynamic fusion mechanism.

A. Local Artifact Representation

To efficiently model the feature representation of local
artifacts in face forgery images, we construct a BaseNet by
using five depthwise separable convolution layers, and use the
SGE module as supervision to promote the BaseNet to focus
on the local artifacts.

In our BaseNet, the depthwise separable convolution is
exploited to generate a set of feature maps T ∈ RC×H×W ,
where C and H ×W represent the channel number and spatial
dimension of the feature map, respectively. Then, we use
SGE module to divide T into N groups along the channel
dimension. For a group feature map X , each position in
the feature space has a vector representation, that is, X =

{x1, x2, . . . , xm}, m = H × W . Since the inevitable noise and
similar patterns in the feature space, it is difficult for vanilla
convolution layers to obtain well-distributed feature responses.
Thus, the SGE module first uses the spatial average function
Fgp(·) to obtain the overall information of entire group space:

g = Fgp(X) =
1
m

m∑
i=1

xi (1)

Then, using the dot product between the global feature g and
the local feature xi , the corresponding coefficient ci can be
generated for each feature in X .

ci = g · xi (2)

Coefficient ci measures the similarity between global feature
g and local feature xi to some extent. To obtain the enhanced
feature vector x̂i , the normalized coefficient ĉi is first passed
through sigmoid function σ(·). Then, the original feature xi
is scaled by dot products to enhance the learning of semantic
features in local regions, as follows:

x̂i = xi · σ(ĉi ) (3)

The SGE module was originally designed to enhance the
representation of semantic features in feature space [12]. Since
significant visual artifacts can also be regarded as important
semantic features for face forgery detection, the SGE module
can be used to enhance the feature representation of local
visual artifacts. In our design, after each depthwise separable
convolution, an SGE module is embedded to promote BaseNet
to pay attention to local manipulation clues (see Fig. 4).

B. Global Texture Representation

Let x j be a pixel in the input image. Thus, the pixel yi
in the output image calculated by CNNs can be expressed as
follows:

yi =

∑
j⊆N (i)

x j ∗ wi j (4)

where i, j = {1, 2, 3, . . . , H × W }, and wi j is the learnable
weight between the i-th pixel and the j-th pixel. In addition,
j is the index of some possible pixels related to the i-th pixel.
Note that the bias is omitted to simplify the equation. For
CNNs, j-th pixel belongs to the neighborhood N (i) of the
i-th pixel. For example, N (i) in 3 × 3 convolution contains
a set of eight neighboring pixels except the i-th pixel itself.
Due to the limited receptive field, the local inference mode
of CNNs is difficult to capture the manipulation clues in the
global scope.
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Fig. 5. A diagram that captures global and local manipulation traces.

To realize global inference, we design a TraceBlock
to improve the defects of CNNs. Specifically, TraceBlock
contains two branches (see Fig. 4), which capture local
information and global information respectively. In the first
branch, a layer of depthwise separable convolution is used to
capture local information. In the second branch, we introduce
a Multi-Layer Perceptron (MLP), which allows more pixels to
interact with the given i-th pixel, to perform global inference.
On the one hand, the size of feature map is variable in the
process of hierarchical feature extraction. Thus, the size of
global information extracted by MLP needs to be consistent
with local information, so as to realize feature fusion in a
TraceBlock. On the other hand, manipulation traces are usually
presented in the form of gray scale changes. Thus, the max
pooling is a suitable operation to capture these traces. In the
second branch of TraceBlock, we use max pooling function
Fmax (·) to adaptively reduce the size of x j according to
the stride of convolution kernel in the first branch, which
makes the global information consistent with the extracted
local information. Thus, the output yi of TraceBlock can be
expressed as:

yi = W1
∑

j⊆N (i)

x j ∗ wi j + W2
∑
∀ j

Fmax (x j ) ∗ ui j (5)

where wi j and ui j are both learnable weights between the
i-th pixel and the j-th pixel. But the difference is that the
j-th pixel in ui j belongs to all pixels in the feature map,
not just the local neighborhood, as shown in Fig. 5. The
design of TraceBlock is very flexible, we assign parameters
W1, W2 ∈ [0, 1] to local information and global information
learned from x j , respectively. In the process of back propaga-
tion, the parameters {W1, W2} are updated to adaptively fuse
local&global features and switch different inference modes.
For example, when W1 = 0 and W2 = 1, TraceBlock degrades
to MLP, and when W1 = 1 and W2 = 0, TraceBlock degrades
to CNNs that only capture local information.

Based on TraceBlock, a GTR Network is constructed.
Firstly, we introduce a well-known manipulation trace extrac-
tion module, namely the constrained convolution layer [14],
which is placed at the front end of the GTR Network to
extract low-level forgery clues. Then, we feed the low-level
trace features into a hierarchical feature extraction network
composed of five TraceBlocks to learn the high-level global
texture representation features. The diagram of GTR Network
is shown in Fig. 4.

C. Dynamic Fusion Mechanism

Different from the traditional fusion method, that is, the
features are combined in a fixed way in the feature space.

Fig. 6. Detailed structure of DFM. Where FL and FG represent local features
and global features, respectively. And FD represents the discriminant feature
after dynamic fusion.

We feed two types of features into the proposed DFM (see
Fig. 6), which can dynamically generate and refine the final
feature representation via back propagation.

In the pre-fusion, we first dynamically generate the joint
feature representation of local artifacts and global texture
information. Given the local feature FL ∈ RC×H×W and the
global feature FG ∈ RC×H×W , they are first concatenated
together along the channel direction to form the mixed feature
FM ∈ R2C×H×W , as follows:

FM = Concat (FL , FG) (6)

FM contains all the manipulation features learned from the
backbone network. To extract the high-dimensional represen-
tation of mixed features from FM , we use a layer of depthwise
separable convolution to dynamically generate feature map
MD ∈ RC×H×W in the process of back propagation.

In the post-fusion, we use the global information to dynam-
ically refine the feature map MD . As subtle texture changes
are widely distributed in the global feature space, we use
1×1 convolution for cross-channel interaction and information
integration at each spatial position of FG , and use SoftMax
function to generate attention matrix MAtt ∈ RC×H×W . The
above process can be expressed as:

MAtt = Sof t Max(

N∑
i=1

FG ∗ ω) (7)

where ω represents 1×1 convolution kernel, and N is equal to
H × W , which denotes all feature space positions. Finally, the
MAtt is projected onto the MD by a point-wise dot product
to further refine MD . In addition, the refined features are
fed into the spatial average function Fgp(·), and then the
dynamic fusion features FD ∈ RC×1×1 are generated by
layer normalization L N (·) and activation function ReLU (·),
as follows:

FD = ReLU (L N (Fgp(MD · MAtt ))) (8)

IV. EXPERIMENTS

A. Datasets

In our experiments, four challenging face forgery datasets,
such as FF++ [35], DFDC [36], CelebDF [37] and HFF [38],
are selected for experimental evaluation. Since the first three
datasets are all video datasets, we need to perform some
necessary preprocessing steps for them. Specifically, we first
extract the face region from the video frame by using the
Face Recognition Library.2 Then, all extracted face images are

2https://github.com/ageitgey/face_recognition
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resized to the size of 256 × 256 for training and evaluation.
To avoid the similarity between consecutive frames, we extract
N f rames face images from each video sequence at interval
Ni ter . In addition, considering the difference of the number of
frames in the video sequence, the specific details performed
on different datasets are as follows:

FF++ [35] contains 1,363 real video sequences and
4,000 fake video sequences generated by four typical
face forgery methods, including FaceSwap [40], DeepFake,3

Face2Face [41] and NeuralTextures [42]. For real video
sequences, the Ni ter = 2 and N f rames = 50 are used to
obtain the real face images. For fake video sequences, the
face images are extracted from each video with Ni ter = 2 and
N f rames = 16. As a result, the number of both real and
fake face images is more than 60k. To balance the data,
we randomly select 60k real faces and 60k fake faces from
the extracted images for experiments. The ratio of training
set to evaluation set is 5:1. In addition, FF++ contains three
versions: raw dataset, compressed high-quality dataset (FF-
HQ) and compressed low-quality dataset (FF-LQ). We adopted
two more challenging FF-HQ and FF-LQ datasets in the
experiment.

DFDC [36] is a large face forgery dataset containing more
than 100k face video sequences. In our experiment, 2,891
real face videos and 20,210 fake face videos are randomly
selected for the experiment. In real videos, parameters Ni ter
and N f rames are set to 2 and 35, respectively. For fake videos,
parameters Ni ter = 10 and N f rames = 5. As a result, we also
randomly select 60k real faces and 60k fake faces from the
extracted images to balance the data, and divide the training
set and the evaluation set at the ratio of 5:1.

CelebDF [37] contains 890 real face videos and 5,639
fake face videos. For real videos, parameters Ni ter = 2 and
N f rames = 100. For fake videos, parameters Ni ter = 2 and
N f rames = 16. CelebDF is a dataset with high visual quality,
which is usually used for cross-dataset evaluation. Therefore,
we randomly select 120k face images (real: 60k, fake: 60k)
from the extracted images as the evaluation set to verify the
generalization of the detection model.

HFF [38] is an image dataset composed of a variety of
generative face forgeries. In our experiment, a total of 155k
face images are divided into training set and evaluation set
at the ratio of 4:1. All face images are also resized to 256 ×

256 for experiments.

B. Experimental Settings

1) Evaluation Metrics: Face forgery detection is essentially
a binary classification task, so the accuracy rate (ACC) and the
area under the receiver operating characteristic curve (AUC)
are used to evaluate all detection models in the experiment.
In addition, LDFnet is a lightweight detection model. To better
demonstrate the superiority of LDFnet, we also provide model
parameters (Param.) and floating point operations (FLOPs)
in the paper. Since the FLOPs only measures the theoretical
computational complexity of the model, the inference speed
in real scenarios will also be affected by hardware equipment

3https://github.com/deepfakes/faceswap

and optimization algorithms. Thus, we also provide the actual
inference speed of the detection model for reference.

2) Implementation Details: Our experiments are imple-
mented under the PyTorch framework. In the training stage,
we set the random seed to 7 to ensure that the initialization
parameters of the model are consistent in any experiment.
In addition, the detection model is trained for 20 epoches in
each group of experiments, and the batch size is set to 64.
We use Adam optimizer with default parameters for training,
and the initial learning rate is 10−3. After each training epoch,
the learning rate decays to half.

C. Comparison With Face Forgery Detection Works

1) Intra-Dataset Evaluation: To make a fair comparison,
we select seven representative detection works with open
source codes, such as Meso-Incep [1], Multi-task [18], Xcep-
tionNet [35], F3-Net [27], AMTENnet [38], M2TR [10] and
GocNet [39], for experimental evaluation. All detection net-
works are trained from scratch on four datasets (FF-HQ [35],
FF-LQ [35], DFDC [36] and HFF [38]) and evaluated with
the same testing set.

Table I reports the comparison results of LDFnet and
existing detection methods on four datasets. Among them,
the HFF dataset mainly contains face forgery images gen-
erated by GANs. The generative models will leave forgery
clues in the global face image. These forgery clues have not
been laundered by image compression or other operations.
Thus, the existing detection method, even for lightweight
models (i.e., Meso-Incep, Multi-task and AMTENnet), can
capture the anomalies between real and fake face images
and achieve high ACC and AUC scores. For three video
datasets, most manipulation traces in compressed video frames
are usually laundered, which makes it difficult to detect.
Generally, the large model (i.e., XceptionNet, F3-Net, M2TR
and GocNet) can effectively mine the identification features
by using complex model structure and mechanism, and obtain
better detection results than the lightweight model. Especially,
M2TR achieves competitive detection results on four datasets
by combining CNNs and multi-scale transformer.4 Compared
with M2TR, GocNet uses tensor preprocessing module and
manipulation trace attention module to further improve the
detection performance of backbone network while keeping
relatively low FLOPs. Although these works have achieved
good detection results, their model parameters and calculation
costs are still large. In our work, LDFnet enhances the local
representation of manipulation features and captures the global
manipulation trace features by using SGE module and GTR
network, respectively. In addition, LDFnet optimizes the fea-
tures learned from the two-branch network by using DFM.
Thus, by paying attention to important clues and realizing
efficient dynamic fusion, LDFnet can obtain very competitive
face forgery detection results with very little model parameters
and calculation cost (Parameters: 963K & FLOPs: 801M).
In the actual model inference, we can observe that LDFnet can

4Since it is difficult to calculate the model parameters and FLOPs of
M2TR, we estimate the minimum value according to the backbone network
(XceptionNet + Transformer) for reference.
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TABLE I
COMPARISON RESULTS (%) OF FACE FORGERY DETECTION METHODS FOR INTRA-DATASET EVALUATION

TABLE II
COMPARISON RESULTS (%) OF FACE FORGERY DETECTION METHODS FOR CROSS-DATASET EVALUATION

surpass the existing large model detection methods at the speed
of 236 frames per second, which realizes real-time inference.

2) Cross-Dataset Evaluation: To verify the generalization
of detection model in cross-dataset evaluation, we introduce
a widely used evaluation benchmark, namely CelebDF [37].
This benchmark contains many large model based detection
methods, such as MADD [47], LTW [48], and M2TR [10].
It also contains many small model based detection methods,
such as VA-LogReg [2] and Multi-task [18]. To reduce the
evaluation error on CelebDF benchmark as much as possible,
we extracted 120k face images from all videos in CelebDF
dataset. As we know, large models can usually rely on complex
structures and powerful feature representation ability to learn
rich common features, thus achieving better generalization.
However, it is often difficult to achieve good generalization
for small models with limited feature representation ability.
Thus, we divide the detection methods in CelebDF benchmark
according to model parameters and FLOPs,5 so as to compare
generalization more fairly.

5We define the detection model with parameters below 2M and FLOPs
below 1G as a small model, and vice versa.

Table II reports the cross-dataset evaluation results of
LDFnet and 19 comparison methods. Among them, most
detection methods use FF++ dataset as training set. Thus,
LDFnet is consistent with most methods, training on FF++

dataset and testing on CelebDF dataset. From Table II, we can
observe that large model detection methods generally achieve
good generalization, while small model detection methods
often have poor cross-dataset evaluation results. However,
LDFnet still has good generalization while maintaining its
lightweight, which is mainly due to the fact that LDFnet
not only captures local significant artifacts and global subtle
texture changes, but also optimizes the extracted two types of
features via DFM, thus capturing rich common features.

D. Ablation Study of LDFnet

LDFnet includes three important components: SGE module,
GTR network and DFM. To verify the effectiveness of these
modules, we conduct ablation experiments on three challeng-
ing datasets, such as FF-LQ, FF-HQ and DFDC.

Table III reports the quantitative results of the detection
network under different configurations. From it, we can
observe that the performance of the detection network is
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TABLE III
QUANTITATIVE RESULTS (%) OF ABLATION STUDIES ON LDFNET

improved when only SGE module or GTR network is assem-
bled. Among them, the SGE module can promote the backbone
network to capture local artifacts by suppressing possible
noise and highlighting correct artifact regions with almost no
additional parameters and calculation costs, thus improving the
detection accuracy. The GTR network can effectively improve
the locality problem in CNNs by adaptively switching different
inference modes, so as to realize the global inference of manip-
ulation clues. Although the detection performance can be
improved by capturing local artifacts or global texture changes,
these results are far from satisfactory. To further optimize
the feature representation, the common way is to use local
and global features to make joint prediction by element-wise
sum. However, we find that even if SGE module and GTR
network are assembled at the same time, the improvement
of detection performance is still limited (see the fourth row
of Table III). The reason behind this may be that the local
and global features cannot be fully integrated by pixel-by-
pixel addition. Thus, we introduce DFM to adaptively generate
the optimal feature representation in a dynamic fusion way,
thus further boosting the detection performance of lightweight
networks.

E. Design of DFM

To further evaluate the design of DFM, we modify some
structures and configurations of DFM, and name the modified
versions as A, B, C and D, as shown in Fig. 7. To verify
the importance of concatenated features in pre-fusion, we first
remove the Concat operation between local features and global
features in DFM_A. Then, the attention matrix generated
from global features is removed in DFM_B to verify its
effectiveness. Finally, we replace ‘DW Conv’ and ‘AvgPool’
components with ‘1 × 1 Conv’ and ‘MaxPool’ respectively,
as shown in DFM_C and DFM_D in Fig. 7. These ablation
experiments are also conducted on FF-LQ, FF-HQ and DFDC
datasets.

Table IV reports the quantitative results of five versions of
DFM. From this, we can observe that it is important to splice
local features and global features along the channel direction.
The combined features can generate a more discriminating
feature representation through convolution operation. Then,
we compare the differences between 3 × 3 convolution and
1×1 convolution in extracting information from the combined
features. We note that 3 × 3 convolution is obviously more
suitable for capturing the correlation between manipulation

Fig. 7. Comparison of DFM with different structures. The removed
components are indicated by gray lines, and the replaced components are
marked by red fonts.

traces in spatial dimension and channel dimension. However,
1 × 1 convolution can only achieve cross-channel information
integration at different pixel positions, which makes it impos-
sible to generate a more suitable joint feature representation
from local and global features. In addition, it can be observed
that it is also meaningful to generate attention matrix from
global features. The feature representation can be refined in
a point-wise dot product way by using the attention matrix.
Finally, we compare AvgPool with MaxPool, and verify that
AvgPool can better optimize feature representation.

F. Visualization Result

As we know, Class Activation Map (CAM) [49]
and Gradient-weighted Class Activation Mapping (Graded-
CAM) [50] are two commonly used visualization methods,
which visualize the attention of the model to different regions
of the input image by generating a heat map. However, the
number and distribution position of manipulation artifacts left
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Fig. 8. Visualization of the attention regions. ‘W/ SGE’ stands for BaseNet equipped with SGE module, which is used to verify whether SGE module
can promote the detection network to pay attention to local artifact regions. ‘W/ GTR’ denotes BaseNet equipped with GTR network to verify whether the
detection network captures the global subtle texture changes.

TABLE IV
QUANTITATIVE RESULTS (%) OF DFM WITH DIFFERENT STRUCTURES

by face forgery technology are often different. Visualizing a
single image only by CAM or Grad-CAM will have some
deviation. Thus, we adopt the Average Forgery Attention Maps
(AFAMs) [9] for visualization to reveal the attention changes
of the detection networks under different configurations. These
AFAMs are calculated on 4, 8 and 16 fake face images
respectively, so as to more accurately visualize the attention
region of the detection network.

Fig. 8 shows the visualization results. Among them, from
the first to third rows are AFAMs calculated on differ-
ent numbers of fake face images. The first column is the
visual result of BaseNet. It can be observed that when the
SGE module is embedded, the detection network generally
pays more attention to the local artifact region. In addition,
we can observe from the third column that GTR network can
effectively help the detection network to capture the subtle

texture changes in the global scope. However, only paying
attention to all the clues in the global scope can not fully
improve the detection performance in the intra-dataset and
cross-dataset evaluation. For the task of face forgery detection,
intra-dataset evaluation with high accuracy needs to extract
more discriminating features, while cross-dataset evaluation
with high generalization needs to learn more common features.
From the visualization results of LDFnet, LDFnet can focus
on the important facial regions containing common features
and more discriminating manipulation clues by dynamically
aggregating local and global features, thus achieving better
intra-dataset and cross-dataset evaluation results. These results
reveal the intrinsic reason why LDFnet can achieve better face
forgery detection while maintaining lightweight from a visual
perspective.

G. Limitations

Even though the research shows that LDFnet can achieve
lightweight and high-performance face forgery detection with
the support of SGE, GTR and DFM, there are still some
limitations. For cross-dataset evaluation, although LDFnet has
obvious advantages compared with small model methods,
it is still difficult to obtain competitive detection results com-
pared with large model methods. LDFnet is still insufficient
in capturing the common features left by different forgery
technologies. In the future research, it is still necessary to
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design around the common features in face forgery to pro-
mote the generalization performance of the detection network.
In addition, we should also consider deploying the network in
portable devices to evaluate the energy consumption of the
network in the real environment.

V. CONCLUSION

In this work, a novel LDFnet is proposed, which dynam-
ically aggregates local artifact features and global texture
information, for face forgery detection. Its main advantage is
to achieve accurate detection while maintaining lightweight
architecture. Firstly, we introduce SGE module into the detec-
tion network, which hardly needs additional parameters and
calculation cost, to supervise the feature learning process of
local artifacts. Secondly, we design a TraceBlock by improving
the locality problem in CNNs, and build a GTR network
based on constrained convolution layer and TraceBlocks to
capture the subtle texture changes in the global scope. Finally,
to fully fuse the extracted local features and global features,
we design a lightweight dynamic fusion mechanism. The
extensive experiments confirm that the proposed LDFnet has
achieved promising results. This research seeks to encourage
future work to realize face forgery detection in the direction
of lightweight and strong generalization, so as to better realize
the landing application of detection technology.
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