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a b s t r a c t 

To obtain the superiority property of solving time-varying linear matrix inequalities (LMIs), three novel 

finite-time convergence zeroing neural network (FTCZNN) models are designed and analyzed in this pa- 

per. First, to make the Matlab toolbox calculation processing more conveniently, the matrix vectorization 

technique is used to transform matrix-valued FTCZNN models into vector-valued FTCZNN models. Then, 

considering the importance of nonlinear activation functions on the conventional zeroing neural network 

(ZNN), the sign-bi-power activation function (AF), the improved sign-bi-power AF and the tunable sign- 

bi-power AF are explored to establish the FTCZNN models. Theoretical analysis shows that the FTCZNN 

models not only can accelerate the convergence speed, but also can achieve finite-time convergence. 

Computer numerical results ulteriorly confirm the effectiveness and advantages of the FTCZNN models 

for finding the solution set of time-varying LMIs. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

For the past few years, as the inequalities grow in importance

in various applications, the approaches based on solving inequal-

ities are widely used to solve various problems in the engineering

and science fields [1–5] . For example, in [6] , a new way for solving

inequalities which uses the projection neural network model

was proposed. In [7] , a method based on solving inequality was

proposed and developed by Han et al., which was applied to

non-fragile filtering for fuzzy systems. Besides, the linear matrix

inequalities (LMIs) are viewed as an effective approach and design

formulation, such as defining suitable LMIs to solve control design

problems [8,9] . In [10–13] , based on LMIs, they obtained the

novel standards for asymptotic stability of Cohen–Grossberg neural

networks, recurrent neural networks, delayed neural networks and

delayed Hopfield neural networks, respectively. Furthermore, the

global stability condition of neural networks is generally acquired

by LMIs, such as Markovian jumping neural network [14] , discrete

recurrent neural network [15] , discrete delayed impulsive interval

neural network [16] . In addition, Liu et al. [17] realized the op-

timization of coupled neural network based on LMIs. In a word,

solving LMIs has been a hot spot of research. Moreover, LMIs are
∗ Corresponding authors. 
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idely used in practical application, such as obstacle avoidance for

edundant robots [18,19] , motion scheme design based on physical

imit avoidance [20,21] , robot speed minimization [22] and robot

anipulator control [23] . 

The conventional methods of solving LMIs are numerical algo-

ithms that can solve the problem with special circumstances. For

nstance, under the condition that there is no analytic solution, the

MIs can be solved by convex optimization techniques [24] . Orsi

t al. [25] came up with a novel method for solving LMIs based

n alternating projection method, which controls the process

f asymptotic convergence to analytic solution using dynamic

ystems. In order to accelerate the process of solving LMIs, Lin

t al. [26] used a gradient neural network to solve LMIs for the

rst time. Compared with the traditional method, this method

reatly reduced the solving time. In [27] , Xiao et al. defined three

eroing neural network (ZNN) design formulas to solve LMIs. In

28,29] , Guo et al. presented a novel approach to solving LMIs

y converting inequalities to equations. Syed Ali [30] presented a

ovel RNN based on LMIs to prove the global stability. 

However, the conventional algorithms and ZNN models [31] can

ot provide finite-time solution of LMIs. As is known that, Matlab

oolbox can find the numerical solution of ordinary differential

quations. Meanwhile, it can solve the linear inequalities by

nding the upper bound of the solution set, such as [32,33] . At

resent, various recurrent neural network models were presented

o solve equality problems with finite-time convergence. For

nstance, Yu et al. [34] put forward a novel activation function to

https://doi.org/10.1016/j.neucom.2020.01.070
http://www.ScienceDirect.com
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(11) 
chieve strong robustness and fixed time convergence for solving

onlinear equation. Matrix inversion was completed in finite time

sing the new ZNN model with sign-bi-power AF [35] . However,

here is no work to design a finite-time recurrent neural network

o solve time-varying LMIs. In this work, based on traditional ZNN

odels, three FTCZNN models are established by suggesting three

ifferent sign-bi-power AFs which can make the error functions

f various neural network models converge to zero. The first one

s the original sign-bi-power AF, the second one is a modification

f the first one via amending sign-bi-power AF by adding a linear

erm, and the third one is activated by tunable sign-bi-power

F which defines three tunable parameters. Theoretical analy-

is shows that whatever the initial state is, the error function

enerated by the proposed FTCZNN models always converges to

ero in finite time. Compared with the existing algorithms and

onventional ZNN models, the main advantage of the proposed

TCZNN models lies in the fact that they can offer a faster rate

nd finite-time convergence property. The numerical simulation

esults verify the superiority of FTCZNN models. 

The remainder of this paper is divided into four sections. In

ection 2 , the LMI problem is presented and the design method

s given. Besides, the FTCZNN model vectorization has been done.

ection 3 provides the convergence analysis. Section 4 shows

he simulation results of three FTCZNN models. Section 5 is the

onclusion of this paper. Before ending this part, it is necessary to

oint out the main contributions of this paper as below. 

(1) This paper proposes, researches and develops three novel

FTCZNN models for solving LMI problems via applying three

superior AFs. They achieve finite-time convergence for the

online solution of LMI problems. This naturally becomes the

most significant highlight of this work. 

(2) Three different nonlinear AFs are presented to establish

FTCZNN models, which is via defining matrix-valued error

functions, instead of the traditional scalar-valued energy

functions. 

(3) The theoretical analysis of the finite-time convergence

guarantees the accuracy of the proposed FTCZNN models.

By Lyapunov stability theory, the convergence upper bounds

of FTCZNN models can be calculated precisely. 

(4) Numerical simulation results verify the superior conver-

gence performance of three FTZCNN models for solving

time-varying LMI problems, as compared with the existing

ZNN models. 

. FTCZNN Models 

In this section, some basic knowledge is presented at first.

hen, based on the conventional ZNN model for LMIs, three

TCZNN models are designed by applying finite-time AFs. 

.1. Problem formulation 

In this part, the multi-dimensional time-varying LMI problem

s formulated as below: 

 (t) X (t) B (t) ≤ C(t) , (1)

here A (t) ∈ R 

m ×m , B (t) ∈ R 

n ×n and C(t) ∈ R 

m ×n denote time-

arying matrices. The purpose of this paper is to find the unknown

olution set X ( t ) which can make (1) hold true anytime. 

.2. ZNN model 

To monitor the process of solving LMIs, we define the matrix-

ector error function as follows: 

(t) = A (t ) X (t ) B (t ) − C(t) , (2)
here E(t) ∈ R 

m ×n . 

Based on the effort s which have been done, the ZNN design

ormula for establishing the neural model is constructed as 

˙ 
 (t) = −εSTP (E (0)) ♦�(E (t)) , (3)

here �(·) : R 

m ×n → R 

m ×n is a monotonously increasingly odd

ctivation function array, ε is a positive parameter and STP (·) :
 

n → R 

n stands for a set of step functions which is defined as 

tp (a ) = 

{
1 , a > 0 ;
0 , a ≤ 0 . 

(4) 

esides, the operator ♦ is defined as 

♦c = 

⎡ 

⎢ ⎢ ⎣ 

b 1 c 1 
b 2 c 2 

. . . 
b n c n 

⎤ 

⎥ ⎥ ⎦ 

. (5) 

ote that the above ZNN design formula can make the error

unction converge to zero exponentially. Substituting (2) into (3) ,

e have its implicit dynamic equation of the ZNN model: 

 (t) ˙ X (t) B (t) = −εSTP (A (0) X (0) B (0) − C(0)) ♦�(A (t) X (t) B (t) 

− C(t)) − ˙ A (t ) X (t ) B (t ) − A (t ) X (t ) ̇ B (t ) + 

˙ C (t) . 

(6) 

.3. ZNN model vectorization 

According to the implicit dynamic equation of ZNN model

6) , X ( t ) can not be calculated directly in Matlab. To address this

roblem, the Kronecker product is used to convert ZNN model

6) from the matrix form to the vector form. Then, ZNN model

6) is transformed into the following vector-valued one: 

 (t) ̇ y (t) = −εSTP (P (0) y (0) − vec (C(0))) ♦�(P (t) Y (t) 

− vec (C(t)) − Q(t) y (t) − R (t) y (t) + vec ( ̇ C (t)) , (7) 

here P (t) = B T (t) � A (t) with P (0) = B T (0) � A (0) , Q(t) =
 

T (t) � ˙ A (t ) , R (t ) = 

˙ B T (t) � A (t ) and y (t ) = vec (X(t)) with

 (0) = vec (X(0)) , where vec( X ( t )) and vec ( ̇ C (t)) denote the

ectorization of X ( t ) and vec ( ̇ C (t)) , respectively. In the following

art, three finite-time convergent AFs are explored to shorten the

onvergence time and it is the first application to FTCZNN models

or solving time-varying LMIs. 

.4. Activation functions 

In the past years, the following AFs are widely applied in ZNN

odels: 

(1) the linear activation function: 

�(x ) = x ; (8) 

(2) the power activation function: 

�(x ) = x p , p ≥ 3 ; (9)

(3) the bipolar-sigmoid activation function: 

�(x ) = 

1 + exp (−p) 

1 − exp (−p) 

1 − exp (−px ) 

1 + exp (−px ) 
, p > 2 ; (10)

(4) the power-sigmoid activation function: 

�(x ) = 

1 

2 

x p 1 + 

1 + exp (−p 2 ) 

1 − exp (−p 2 ) 

1 − exp (−p 2 x ) 

1 + exp (−p 2 x ) 
, p 1 ≥ 3 , p 2 > 2 .
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However, the above mentioned AFs only can make the error

function of ZNN model (6) converge to zero, and they cannot

guarantee the finite convergence time in solving time-varying

LMIs. To solve this problem, three superior finite-time AFs are

applied to ZNN model (6) , and the corresponding FTCZNN models

are thus derived. 

Specifically, the fist sign-bi-power AF is given as follows: 

�1 (x ) = 

1 

2 

| x | r sgn (x ) + 

1 

2 

| x | 1 r sgn (x ) , (12)

where 0 < r < 1 and sgn( · ) is defined as 

sgn (x ) = 

{ 

1 , if x > 0 ;
0 , if x = 0 ;
−1 , if x < 0 . 

(13)

In order to accelerate convergence, on basis of sign-bi-power

AF (12) , an improved sign-bi-power AF is designed by adding a

linear term, and is presented as below: 

�2 (x ) = 

1 

2 

| x | r sgn (x ) + 

1 

2 

x + 

1 

2 

| x | 1 r sgn (x ) . (14)

To further reduce the theoretical convergence time upper

bound, a tunable sign-bi-power AF is presented as below: 

�3 (x ) = 

1 

2 

k 1 | x | r sgn (x ) + 

1 

2 

k 2 x + 

1 

2 

k 3 | x | 1 r sgn (x ) . (15)

2.5. FTCZNN models 

In this section, by applying AFs (12), (14) and (15) to ZNN

model (6) , we can obtain the corresponding three FTCZNN models

to solve time-varying LMIs. Their respective design processes of

FTCZNN models are presented as below. 

(1) FTCZNN-1 model : Similar to the design process of (6) , we can

obtain the same error function. Then, the differential for-

mula for this error function is shown as 

˙ E (t) = −εSTP (E (0)) ♦�1 (E (t)) , (16)

where �1 ( · ) denotes the sign-bi-power AF (12) , E (0) de-

notes the initial error of E ( t ) at t = 0 , STP( · ) and ♦ are de-

fined as before. 

At last, expanding the differential formula (16) by sub-

stituting E ( t ), the dynamic equation corresponding to the

FTCZNN-1 model is formed by 

P (t) ̇ y (t) = −εSTP (P (0) y (0) − vec (C(0))) ♦�1 (P (t) y (t) 

−vec (C(t)) − Q(t) y (t) − R (t) y (t) + vec ( ̇ C (t)) 

(17)

where P (t) = B T (t) � A (t ) , Q(t ) = B T (t) � ˙ A (t ) , R (t ) =
˙ B T (t) � A (t) , and y (t) = vec (X(t)) . 

(2) FTCZNN-2 model : On the basis of FTCZNN-1 model (17) ,

we change the activation function to the improved sign-bi-

power AF (14) . Then, the differential formula for the error

function is obtained as follows: 

˙ E (t) = −εSTP (E (0)) ♦�2 (E (t)) , (18)

and the corresponding FTCZNN-2 model is formed by 

P (t) ̇ y (t) = −εSTP (P (0) y (0) − vec (C(0))) ♦�2 (P (t) y (t) 

−vec (C(t)) − Q(t) y (t) − R (t) y (t) + vec ( ̇ C (t)) . 

(19)

(3) FTCZNN-3 model : On the foundation of FTCZNN-2 model (19) ,

adding the tunable parameters to shorten convergence time,

the differential formula for the error function is indicated

below: 

˙ E (t) = −εSTP (E (0)) ♦�3 (E (t)) . (20)
Then, expanding the above equation, we get the following

FTCZNN-3 model: 

P (t) ̇ y (t) = −εSTP (P (0) y (0) − vec (C(0))) ♦�3 (P (t) y (t) 

− vec (C(t)) − Q(t) y (t) − R (t) y (t) + vec ( ̇ C (t)) . 

(21)

. Theoretical analysis 

In this part, we theoretically substantiate the convergent

roperty of the proposed three FTCZNN models for solving LMIs.

n addition, the finite-time convergence performance of FTCZNN

odels will be proved, with specific upper bound estimated. It

s worth mentioning that when the initial state X (0) is inside the

olution set, we have E(0) = A (0) X(0) B (0) − C(0) ≤ 0 . That is, as

he time t goes by, X ( t ) always stay in the solution set. Thus, in

he following proofs, we only need to consider the situation when

he initial state X (0) is outside the solution set. 

.1. Global convergence 

It is the primary goal that we have to demonstrate the global

onvergence of the proposed three FTCZNN models which are

ctivated by three different sign-bi-power activation functions. 

heorem 1. Given smoothly time-varying coefficient matrices

 (t) ∈ R 

m ×m , B (t) ∈ R 

n ×n and C(t) ∈ R 

m ×n , FTCZNN-1 model (17) ,

TCZNN-2 model (19) and FTCZNN-3 model (21) achieve the global

onvergence. 

roof. According to the definitions of the novel AFs, we have 

1 (−x ) = 

1 

2 

| − x | r sgn (−x ) + 

1 

2 

| − x | 1 r sgn (−x ) 

= −1 

2 

| x | r sgn (x ) − 1 

2 

| x | 1 r sgn (x ) 

= −�1 (x ) ; (22)

2 (−x ) = 

1 

2 

| − x | r sgn (−x ) − 1 

2 

x + 

1 

2 

| − x | 1 r sgn (−x ) 

= −1 

2 

| x | r sgn (x ) − 1 

2 

x − 1 

2 

| x | 1 r sgn (x ) 

= −�2 (x ) ; (23)

3 (−x ) = 

1 

2 

k 1 | − x | r sgn (−x ) − 1 

2 

k 2 x + 

1 

2 

k 3 | − x | 1 r sgn (−x ) 

= −1 

2 

k 1 | x | r sgn (x ) − 1 

2 

k 2 x − 1 

2 

k 3 | x | 1 r sgn (x ) 

= −�3 (x ) . (24)

herefore, we can know that the three AFs are monotonically

ncreasing odd functions. 

Then, let us define a Lyapunov function u i j (t) = � 

2 
i j 
(t) / 2 , where

ij ( t ) is the element of E ( t ) which is defined in (2) . Since X (0) is

utside the solution set, STP (E(0)) = 1 which means that every el-

ment of STP( E (0)) equals to 1. Therefore, we have STP (� i j (0)) = 1 .

hus, ˙ u i j (t) is computed as 

˙ 
 i j (t) = 

d u i j (t) 

d t 

= −ε� i j (t) ˙ � i j (t) = −ε� i j (t)�k (� i j (t)) , k = 1 , 2 , 3 . (25)

s shown in the above, �k ( · ) is monotonically increasing, so we

btain 

 i j (t)�k (� i j (t)) 

{
> 0 , if � i j (t) � = 0 ;
= 0 , if � i j ( t) = 0 ; (26)
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hich guarantees that ˙ u i j (t) < 0 for ϱij ( t ) � = 0, and u i j (t) = 0 for

 i j (t) = 0 . That is to say, ϱij ( t ) ≤ 0 for any i, j , so E ( t ) can converge

o zero. 

The proof is completed. �

.2. Finite-time convergence analysis 

The three FTCZNN models not only can achieve global con-

ergence but also can accomplish the finite-time convergence. In

nother word, they have better convergence performance. In this

ection, we will provide three theorems to show the finite-time

onvergent property of the proposed three FTCZNN models. 

heorem 2. Given smoothly time-varying coefficient matrices

 (t) ∈ R 

m ×m , B (t) ∈ R 

n ×n and C(t) ∈ R 

m ×n , FTCZNN-1 model

17) can achieve finite-time convergence. The convergence time upper

ound T 1 satisfies the following equation: 

 1 ≤
{ 

2 r(L (0) (r−1) / 2 r −1) 
ε(r−1) 

+ 

2 
ε(1 −r) 

, L (0) ≥ 1 , 

2 
ε(1 −r) 

L (0) (1 −r) / 2 , L (0) < 1 , 
(27) 

here L (0) = | � 

+ (0) | 2 with � 

+ (0) = max {| � i j (0) |} . 
roof. When X (0) is outside the solution set, STP (E(0)) = 1 which

eans that every element of STP( E (0)) equals to 1. Therefore, we

ave STP (� i j (0)) = 1 . From (16) , we acquire 

˙  i j (t) = −ε�1 (� i j (t)) , i = 1 , 2 , · · · , n. (28)

hen, we define � 

+ (t) = max | (� i j (t)) | which is used to calculate

he convergence time upper bound. By Comparison Lemma, we

ave −| � 

+ (t) | < � i j (t) < | � 

+ (t) | . Hence, we just need guarantee

hat | � 

+ (t) | achieves finite-time convergence. Substituting the

xpression of | � 

+ (t) | into (28) , we have 

˙  + (t) = −ε�1 (� 

+ (t)) . 

efine the Lyapunov function L (t) = | � 

+ (t) | 2 , whose time deriva-

ive along this dynamics is computed as follows: 

˙ 
 (t) = 2 � 

+ (t) ˙ � 

+ (t) 

= −2 ε� 

+ (t)�1 (� 

+ (t)) 

= −ε(| � 

+ (t) | r+1 + | � 

+ (t) | 1 r +1 ) 

= −ε(L 
r+1 

2 + L 
r+1 
2 r ) . (29) 

f L (0) ≥ 1, from Eq. (29) , we have the following inequality: 

˙ 
 ≤ −εL 

r+1 
2 r , (30) 

rom which we can obtain 

 L ≤ −εL 
r+1 
2 r d t. (31) 

ntegrating both sides of the formula (31) from 0 to t , we have 

 L (t) 

L (0) 
L −

r+1 
2 r d L ≤ −ε

∫ t 

0 

d t. 

implifying the inequality after integration yields to 

 (t) ≤
[ 

r − 1 

2 r 
(−εt + 

2 r 

r − 1 

L (0) 
r−1 
2 r ) 

] 2 r 
r−1 

. (32) 

etting the left-hand side of this inequality equal to 1, we get the

alue of t 1 : 

 1 = 

2 r(L (0) (r−1) / 2 r − 1) 

ε(r − 1) 
. (33) 

hus, after time t 1 , L ( t ) decreases to 1. When L ( t ) ≤ 1, the

nequality (29) shows that 

˙ 
 ≤ −εL 

r+1 
2 . (34) 
imilar to solving for t 1 , we compute the remaining convergence

ime t 2 : 

 2 = 

2 

(1 − r) ε
. (35) 

ence, we obtain the convergence time upper bound T 1 < t 1 + t 2 . 

If L (0) ≤ 1, from Eq. (29) , we have the following inequality: 

˙ 
 ≤ −εL 

r+1 
2 , and d L ≤ −εL 

r+1 
2 d t. 

ntegrating both sides of the differential inequality 
∫ L (t) 

L (0) 
L −

r+1 
2 d L ≤

ε
∫ t 

0 d t, the convergence time upper bound t 3 can be computed

s 

 3 = 

2 

ε(1 − r) 
L (0) 

(1 −r) 
2 . (36)

The proof is completed. �

heorem 3. Given smoothly time-varying coefficient matrices

 (t) ∈ R 

m ×m , B (t) ∈ R 

n ×n and C(t) ∈ R 

m ×n , FTCZNN-2 model

19) can accomplish finite-time convergence for solving time-varying

MIs. The convergence time upper bound T 2 is calculated as 

 2 ≤

⎧ ⎨ 

⎩ 

2 r ln 

[ 
2 

L (0) (r−1) / 2 r +1 

] 
ε(1 −r) 

+ 

2 ln 2 
ε(1 −r) 

, L (0) ≥ 1 , 

2 ln [ 1+ L (0) (1 −r) / 2 ] 
ε(1 −r) 

, L (0) < 1 , 

(37) 

here r , ε and L (0) are defined as before. 

roof. Similar to Theorem 2 , from (18) , we have 

˙  i j (t) = −ε�2 (� i j (t)) , i = 1 , 2 , . . . , n. (38)

hen, the derivative of the Lyapunov function along time t is

omputed as follows: 

˙ 
 = 2 � 

+ (t) ˙ � 

+ (t) 

= −2 ε� 

+ (t)�2 (� 

+ (t)) 

= −ε(| � 

+ (t) | r+1 + | � 

+ (t) | 2 + | � 

+ (t) | 1 r +1 ) 

= −ε(L 
r+1 

2 + L + L 
r+1 
2 r ) . (39) 

f L (0) ≥ 1, considering Eq. (39) , the following inequality is

atisfied: 

˙ 
 ≤ −ε(L + L 

r+1 
2 r ) , (40)

hich can be rewritten as 

d L 

L (r+1) / 2 r + L 
≤ −εd t. (41) 

ntegrating the formula (41) from 0 to t yields 

 L (t) 

L (0) 

1 

L (r+1) / 2 r + L 
d L ≤

∫ t 

0 

−ε d t, 

hich can be rewritten as follows: 

2 r 

r − 1 

∫ L (t) 

L (0) 

1 

1 + L (r−1) / 2 r 
d (L (r−1) / 2 r ) ≤

∫ t 

0 

−ε d t. 

et L ( t ) equal to 1, t 4 satisfies the following equality: 

 4 = 

2 r ln 

[ 
2 

L (0) (r−1) / 2 r +1 

] 
ε(1 − r) 

. (42) 

hen t ≥ t 4 , we have L ( t ) ≤ 1. It follows from the condition

39) that 

˙ 
 ≤ −ε(L 

r+1 
2 + L ) . (43)

here exists t 5 satisfying the equation: 

 5 = 

2 ln 2 

ε(1 − r) 
. (44) 
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The convergence time upper bound T 2 < t 4 + t 5 . 

If L (0) ≤ 1, the inequality (43) holds and its differential form

can be obtained: 

d L 

L + L (r+1) / 2 
≤ −εd t (45)

Integrating both sides of the formula from 0 to t, we have ∫ L (t) 

L (0) 

1 

L + L (r+1) / 2 
d L ≤

∫ t 

0 

−ε d t. 

which can be rewritten as 

2 

1 − r 

∫ L (t) 

L (0) 

1 

1 + L (1 −r) / 2 
d (L (1 −r) / 2 ) ≤

∫ t 

0 

−ε d t. 

Thus, the convergence upper bound T 2 < t 6 satisfies the following

equation: 

 6 = 

2 ln 

[
1 + L (0) (1 −r) / 2 

]
ε(1 − r) 

. (46)

That completes the proof. �

Theorem 4. Given smoothly time-varying coefficient matrices

A (t) ∈ R 

m ×m , B (t) ∈ R 

n ×n and C(t) ∈ R 

m ×n , FTCZNN-3 model

(21) can accomplish finite-time convergence and greatly shorten the

convergence time. Its upper bound T 3 satisfies the following formula: 

T 4 ≤

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

2 r ln 

[ 
1+ k 2 

k 3 
L (0) (r−1) / 2 r 

1+ k 2 
k 3 

] 

k 2 ε(r−1) 
+ 

2 ln 

[ 
1+ k 2 

k 1 

] 
k 2 ε(1 −r) 

, L (0) ≥ 1 , 

2 ln 

[ 
1+ k 2 

k 1 
L (0) (1 −r) / 2 

] 
k 2 ε(1 −r) 

, L (0) < 1 , 

(47)

where r , ε and L (0) are defined as before. 

Proof. From (20) , the ij th element of E ( t ) can be rewritten as 

˙ � i j (t) = −ε�3 (� i j (t)) . (48)

According to the definition of the Lyapunov function as before,

its derivative that reflects the dynamic change of the model is

obtained as 

˙ L = 2 � 

+ (t) ˙ � 

+ (t) 

= −2 ε� 

+ (t)�3 (� 

+ (t)) 

= −ε(k 1 | � 

+ (t) | r+1 + k 2 | � 

+ (t) | 2 + k 3 | � 

+ (t) | 1 r +1 ) 

= −ε(L k 1 
r+1 

2 + k 2 L + k 3 L 
r+1 
2 r ) . (49)

If L (0) > 1, the following result is satisfied: 

˙ L ≤ −ε(k 2 L + k 3 L 
r+1 
2 r ) , (50)

which can be written as 

2 r 

k 3 (r − 1) 
· d (L (r −1) / 2 r ) 

1 + 

k 2 
k 3 

L ( (r − 1) / 2 r) 
≤ −εt. (51)

Integrating two side of (51) from 0 to t , 

2 r 

k 2 (r − 1) 

∫ L (t) 

L (0) 

1 

1 + 

k 2 
k 3 

L ( (r − 1) / 2 r) 
d (L (r−1) / 2 r ) ≤

∫ t 

0 

−ε d t. (52)

Let L ( t ) equal to 1, we can get the time t 7 : 

 7 = 

2 r 

k 2 ε(1 − r) 
ln 

[ 

1 + 

k 2 
k 3 

L (0) (r−1) / 2 r 

1 + 

k 2 
k 3 

] 

. (53)

When L (0) < 1, (49) satisfies the following equation: 

˙ L ≤ −ε(k 1 L 
r+1 

2 + k 2 L ) . (54)

w  
epeating this process until the L ( t ) converges to 0, we can get t 8 :

 8 = 

2 ln 

[
1 + 

k 2 
k 1 

]
k 2 ε(1 − r) 

. (55)

he upper bound of convergence time T 4 < t 7 + t 8 . 

If L (0) < 1, analog to the proving course of L (0) > 1, the

erivative of Lyapunov function can be shown as 

2 

k 2 (1 − r) 

∫ L (t) 

L (0) 

1 

1 + 

k 2 
k 1 

L (1 −r) / 2 
d (L (1 −r) / 2 ) ≤

∫ t 

0 

−ε d t. 

n the same way, integrating both side of the type, we can

alculate the convergence time t 9 as 

 9 = 

2 ln 

[
1 + 

k 2 
k 1 

L (0) (1 −r) / 2 
]

k 2 ε(1 − r) 
. (56)

his proof is completed. �

. Simulative verification 

In the previous two sections, three FTCZNN models together

ith their theoretical analysis have been presented. In this part,

or illustration and comparison, a numerical example is given to

valuate the performance of the FTCZNN models activated by dif-

erent AFs for solving time-varying LMIs. To testify the superiority

f three FTCZNN models, some comparative experiments have also

een conducted under the same conditions. 

.1. Constant parameter 

For illustration and simulation, let us consider a specific time-

arying LMI with the following coefficient matrices A ( t ), B ( t ) and

 ( t ): 

 (t) = 

[ 

3 + sin (4 t) cos (4 t) / 2 cos (4 t) 
cos (4 t) / 2 3 + sin (4 t) cos (4 t) / 2 

cos (4 t) cos (4 t) / 2 3 + sin (4 t) 

] 

, 

 (t) = 

[
sin (4 t) cos (4 t) 

−cos (4 t) sin (4 t) 

]
and 

(t) = 

[ 

sin (3 t) cos (3 t) 
cos (4 t) + 1 sin (4 t) + 1 

sin (5 t) + cos (5 t) sin (5 t ) cos (5 t ) 

] 

. 

Fig. 1 shows the state trajectories of X ( t ) by applying FTCZNN-1

odel (17) with ε = 1 and r = 0 . 5 , where the red solid lines

epresent the theoretical upper bound of the solution set with

ach element denoted by x ∗
i j 
(t) , while the blue dotted lines show

he actual trajectories with each element denoted by x ij ( t ). It can

e seen that the blue dotted line gradually coincides with the red

ne over time. In other words, the simulation results shown in

ig. 1 (a)–(f) can constitute the solution of the above time-varying

MI. 

Then, the residual errors ‖ P (t) y (t) − vec (C(t)) ‖ 2 =
 A (t) X(t) B (t) − C(t) ‖ F (where ‖ · ‖ 2 denotes two norm of a

ector and ‖ · ‖ F denotes Frobenius norm of a matrix) are shown

n Fig. 2 . Obviously, the residual error function reflects the whole

onvergence process. From Fig. 2 , three FTCZNN models obviously

ave shorter convergence time than the conventional ZNN models

ctivated by the linear activation function (8) , the power function

9) , the bipolar-sigmoid function (10) and the smooth power-

igmoid function (11) [40–43] . Moreover, among them, FTCZNN-3

odel (21) with three tunable parameters obtains the best con-

ergence performance for solving LMIs. In addition, it can be seen

hat such three FTCZNN models can reach zero within 3 s. Mean-

hile, the corresponding results of the traditional ZNN models
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Fig. 1. Trajectories of state vector x ( t ) by applying FTCZNN-1 model (17) to solve LMI (1) when x (0) is outside �(0) with ε = 1 and r = 0 . 3 . (a) x 11 ( t ) (b) x 12 ( t ) (c) x 21 ( t ) (d) 

x 22 ( t ) (e) x 31 ( t ) (f) x 32 ( t ) 

Fig. 2. Comparisons of three FTCZNN models with the conventional ZNN models activated by other AFs with ε = 1 and r = 0 . 3 when L (0) > 1. (a) By FTCZNN-1 model 

(17) and FTCZNN-2 model (19) . (b) By FTCZNN-1 model (17) and FTCZNN-3 model (21) . 
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or finding LMIs solution still have some estimation errors at this

ime. 

For the sake of demonstrating the finite-time convergence

roperty of FTCZNN models for solving LMIs, a specific initial

tate X (0) is given. According to the preceding theorems, we can

alculate the convergence time upper bound. Considering that

ifferent states can lead to different convergence upper bound, the

imulation cases are decomposed into two parts. 

Case I. Let X(0) = [ −1 , −0 . 5 ;−3 , 2 ;−1 . 5 , 1] , which represents

hat A (0) X(0) B (0) − C(0) = [ −0 . 5 , −7 ;−8 . 25 , −11 . 25 ;−4 . 5 , −7] ,

nd L (0) = | � 

+ (0) | 2 = (11 . 25) 2 = 126 . 5625 . The parameters

f FTCZNN-1 model (17) are given as r = 0 . 3 and ε = 1 . By

heorem 2 , the convergence time upper bound t a is given as 

 a = 

2 r(L (0) (r−1) / 2 r − 1) 

ε(r − 1) 
+ 

2 

ε(1 − r) 
≈ 3 . 7113 s . 
o  
et r = 0 . 3 and ε = 1 . By Theorem 3 , the convergence time upper

ound t b for FTCZNN-2 model (19) is given as 

 b = 

2 r ln 

[ 
2 

L (0) (r−1) / 2 r +1 

] 
ε(1 − r) 

+ 

2 ln 2 

ε(1 − r) 
≈ 2 . 3942 s . 

eeping r and ε the unchanged, let k 1 = 1 , k 2 = 10 , and k 3 = 1 .

ccording to Theorem 4 , the convergence time upper bound t c for

TCZNN-3 model (21) is computed as 

 c = 

2 r ln 

[
1+ k 2 

k 3 
L (0) (r−1) / 2 r 

1+ k 2 
k 3 

]
k 3 ε(1 − r) 

+ 

2 ln 

[
1 + 

k 2 
k 1 

]
k 1 ε(1 − r) 

≈ 1 . 0227 s . 

From Fig. 2 , it can be seen that the actual convergence time

s smaller or equal to their corresponding theoretical upper bound

f convergence time. Specifically, FTCZNN-3 model (21) for solv-
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Fig. 3. Comparisons of three FTCZNN models with the conventional ZNN models activated by other AFs with ε = 1 and r = 0 . 3 when L (0) < 1. (a) By FTCZNN-1 model 

(17) and FTCZNN-2 model (19) . (b) By FTCZNN-1 model (17) and FTCZNN-3 model (21) . 

Fig. 4. Comparisons among three cases of FTCZNN-3 model (21) with different tunable parameters. (a) L (0) > 1. (b) L (0) < 1. 
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Fig. 5. Transient behaviors of the error function ‖ E ( t ) ‖ 2 synthesized by FTCZNN-3 

model (21) with k 2 = 1 , k 3 = 1 and different values of k 1 . 

 

F  

t  

a  
ing LMIs can converge to zero within 0.75 s, FTCZNN-2 model

(19) spends 2.12 s, and FTCZNN-1 model (17) needs 2.95 s to com-

plete the process of convergence. Moreover, the distance between

the actual time and theoretical analysis value can express the

convergence performance. Hence, it can easily be concluded that

FTCZNN-3 model (21) has the best convergence performance, fol-

lowed by FTCZNN-2 model (19) , and finally FTCZNN-1 model (17) . 

Case II. Let X(0) = [0 . 3 , 0 . 008 ; 0 . 1 , −0 . 08 ;−0 . 34 , −0 . 3] ,

which represents that A (0) X(0) B (0) − C(0) =
[0 . 71 , −0 . 79 ; 0 . 15 , −0 . 004 ;−0 . 78 , 0 . 6] , and L (0) = | � 

+ (0) | 2 =
(0 . 79) 2 = 0 . 6241 < 1 . The parameters of FTCZNN-1 model (17) are

given as r = 0 . 3 and ε = 1 . By Theorem 2 , the convergence time

upper bound t a is given as 

 a = 

2 

ε(1 − r) 
L (0) (1 −r) / 2 ≈ 2 . 4225 s . 

While using FTCZNN-2 model (19) to solve (1) , by Theorem 3 , the

convergence time upper bound t b is given as 

 b = 

2 ln 

[
1 + L (0) (1 −r) / 2 

]
ε(1 − r) 

≈ 1 . 7544 s . 

Let k 1 = 1 , k 2 = 10 , and k 3 = 1 , by Theorem 4 , the convergence

time upper bound t c for FTCZNN-3 model (21) is calculated as 

 c = 

2 ln 

[
1 + 

k 2 
k 1 

L (0) (1 −r) / 2 
]

k ε(1 − r) 
≈ 0 . 6426 s . 
2 
Similar to the situation when L (0) > 1, from Fig. 3 , three

TCZNN models have better convergence performance. In addition,

he distance between the theoretical computational time and the

ctual time using FTCZNN-3 model (21) is shorter than the other.
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Fig. 6. Comparisons between FTCZNN model (16) and the varying-parameter FTCZNN model (57) for solving time-varying linear matrix inequalities. (a) Free noise. (b) 

Random noise generated from 0.1 ∗rand(6, 1). 
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t demonstrates the superiority of FTCZNN-3 model (21) with the

unable sign-bi-power AF via numerical simulations. 

For further investigation, we have done a contrast experiment

o determine which parameter has the greatest effect on the

onvergence rate of FTCZNN-3 model (21) . In Fig. 4 , the aforemen-

ioned LMI problem can be solved by setting three different cases

or FTCZNN-3 model (21) , i.e., k 1 = 10 , k 2 = 1 and k 3 = 1 ; k 1 = 1 ,

 2 = 10 and k 3 = 1 ; and k 1 = 0 , k 2 = 1 and k 3 = 10 . According to

he simulation results, we can see that three cases are able to

ake the residual error achieve to zero rapidly. Under the first

ase, i.e., k 1 = 10 , k 2 = 1 and k 3 = 1 , the convergence time is least.

his is consistent with the results of theoretical analysis. Because

hatever the initial state L (0) is, there is always a period when

 (0) < 1. In other words, the time from L (0) < 1 to 0 is unavoid-

ble and must be experienced. What determines the length of

onvergence time for FTCZNN-3 model (21) is the value of k 1 , so

he greater k 1 , the shorter convergence time. 

Furthermore, in Fig. 5 , it is worth pointing out that the con-

ergence time reduced from 2.17 s to 0.425 s when the value of

 1 is increased from 1 to 10. When k 1 = 100 , the residual error

nly needs 0.055 s to converge to zero. Therefore, the value of

 1 is an important influential factor for the convergence time

f FTCZNN-3 model (21) when applied to solving time-varying

MIs. 

.2. Varying parameter FTCZNN model 

Inspired by Zhang et al. [36–39] , the varying parameters have

een considered in the traditional ZNN models. Hence, in this sub-

ection, a varying parameter is added to FTCZNN model (16) for

olving time-varying linear matrix inequalities, and the varying

arameter FTCZNN model can be directly given as 

˙ 
 (t) = −(t γ + γ ) STP (E (0)) ♦�(E (t)) , (57)

here γ ≥ 2, STP( · ) is defined in formula (4) , the operator ♦
s defined in Eq. (5) , and �( · ) is the sign-bi-power activation

unction which is defined in Eq. (12) . 

Using the same example in Section 4.1 , from Fig. 6 , it can be

een that the varying-parameter FTCZNN model (57) with γ = 3

as better performance in convergence rate, convergence time

nd robustness. In the future work, these features may be further

esearched and applied to practical engineering fields. 
. Conclusions 

For the purpose of solving the time-varying LMIs more faster

nd in finite-time, three FTCZNN models have been presented and

nvestigated in this work by exploring three nonlinear activation

unctions. It has been first proved that three FTCZNN models are

lobally stable according to the Lyapunov theory. Then, the conver-

ence upper bounds of three FTCZNN models have been estimated

o prove the finite-time convergence performance. Numerical

omparison results ulteriorly reveal the superiority performance

f three FTCZNN models for solving LMIs. That is to say, the state

olutions by using FTCZNN models can converge to the theoretical

olution set of time-varying LMIs accurately and rapidly. The

uture work may focus on the following two topics. One is the

tudy and investigation of the application of time-varying linear

atrix inequality in practice. The other is to develop and optimize

he neural models to possess superior convergence performance. 
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