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Abstract 

In this paper, to solve time-varying linear inequalities much faster, on basis of zeroing neural network 
(ZNN), two finite-time convergent ZNN (FTCZNN) models are proposed by exploiting two novel non- 
linear activation functions (AFs). The first FTCZNN model is established by using the sign-bi-power 
AF which is termed as FTCZNN-S for presentation convenience. The second one is established by 
amending the sign-bi-power AF through adding a linear term, and called FTCZNN-SL. Compared with 
existing ZNN models for time-varying linear inequalities, the proposed two FTCZNN models possess 
prominent finite-time convergence performance. In addition, theoretical analysis is given to estimate the 
finite-time convergence upper bounds of those two FTCZNN models. Numerical comparative results 
ulteriorly validate the effectiveness and dominance of two FTCZNN models for finding the solution of 
time-varying linear inequalities. 
© 2020 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Solving inequalities is widely regarded as a fundamental problem in scientific research and
ngineering fields [1–5] . For example, Zhang [1] proposed a primal-dual neural network based
n linear variational inequality (LVI), which allows the motion control scheme of redundant
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manipulators to consider the physical limit of joints. In [2] , the robust filtering problem based
on Hopfield neural network was studied, in which the filter design is realized by solving
linear matrix inequality. In [3] , a modified upper bound of the globally convergent discrete
time recurrent neural network for solving linear inequalities was proposed without the need for
the solution set of the original linear systems. Hao and Zhao [4] presented the static output-
feedback stabilisation and controller design method of discrete networked control system, 
where all the results were expressed by linear matrix inequalities (LMIs) and verified by
Matlab LMI toolbox. Su et al. [5] derived a novel method based on cellular neural networks
to eliminate image noise by using the characteristics of linear inequality matrix. Therefore, 
to some degree, solving linear inequalities possesses more wide applications, as compared to 

linear and nonlinear equations solving. 
With the high-speed development of various computational methods [6] , considerable ef- 

forts have been made for finding solutions to linear inequalities. For instance, Lin et al.
[7] developed a novel approach to solve linear inequalities based on a matrix oriented gra-
dient. In [8] , Guo and Zhang proposed a new neural network model to solve linear matrix
inequalities. In [9] , a new explicit bound on the ratio of absolute error to the approximate
solution of linear inequalities was proposed, and this bound generalizes the notion of norms
for nonsingular matrix inverses. Because of the limitation of Matlab toolbox, we often solve
time-varying linear inequalities by solving ordinary differential equations. On the one hand, 
we can convert time-varying linear inequalities into an optimization problem (such as a linear
program) and then solve them by using classic methods, like simplex method and punishment 
method. These methods often require matrix operations, so they cannot be effectively applied 

to large-scale solving problems. 
In recent decades, because of the hardware realization and the parallel-distributed nature, 

neural network has been proposed, developed, and studied in various areas [10–14] . A two-
layer recurrent neural network [10] with low complexity is presented to solve non-smooth 

convex optimization problems. In [11] , a sub-gradient recurrent neural network with finite 
convergence time period for solving two-layer linear programming problems is put forward. 
Furthermore, different from the conventional serial iterative algorithms, neural networks can 

be realized by hardware circuit and thus has attracted the attention of scholars. In [15] , a novel
neural network model has been presented to solve a class of linear variational inequalities
with linear constraints. In [16,17] , projection neural networks have been established to solve
linear variational inequalities and related quadratic programming problems. The identification 

of discrete-time nonlinear systems based on recurrent neural networks was presented and 

studied in [18,19] . Owing to the thorough research of neural networks, recurrent neural net-
works [20,21] are regarded as effective approaches to solve linear and nonlinear time-varying 

inequalities. 
Zeroing neural network (ZNN), which originates from Hopfield neural network, is a clas- 

sification of recurrent neural network (RNN). Before the ZNN model is proposed, gradient 
neural network (GNN) is generally adopted to solve inequalities and equations. However, for 
time-varying cases, error function of GNN model can not converge to zero. To solve this
problem, ZNN is designed and studied. It effectively takes advantage of the time derivative 
information and expedites the convergence rate of error function. In [22] , the comparison 

between ZNN and GNN was given and simulation results demonstrated the better perfor- 
mance of ZNN. Meanwhile, ZNN is widely used in various solving process of equations 
and inequalities, such as matrix-vector inequalities solving [23] . A novel discrete-time ZNN 

model [24] is proposed for matrix inversion. In [25] , the ZNN model is used to solve the sys-
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Table 1 
The main differences and novelties of the FTCZNN models from other models published in [36–40] . 

Item Problem Activation function Finite Convergence Upper bound 

[36] Equation and inequalities Power-sum Infinite - 
[37] Quadratic programming Linear Infinite - 
[38] Matrix Inversion Sign-bi-power Finite Conservative 
[39] Darzin inverse Nonlinear function Infinite - 
[40] Sylverster equation Sign-bi-power Finite Conservative 
This paper Linear Inequalities Improved sign-bi-power Finite (accelerated) Less conservative 
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ems of time-varying linear inequalities. Xiao [26] proposed a finite-time ZNN model to find
ime-varying matrix square root. In [27,28] , three different activation functions (AFs) are
resented to activate ZNN for solving Sylvester equation, and the finite-time convergence
erformance [29] can even be achieved when using the sign-bi-power AF. In addition, using
 novel ZNN model can achieve finite-time convergence for solving equations in [30,31] . 

Furthermore, finite-time control and convergence properties play a more and more irre-
laceable role in improving tracking accuracy and performance, which provide motivation for
s to study the finite time convergence when solving time-varying inequalities. For instance,
n [32] , finite-time control provides the possibility of high quality industrial robot control.
n [33] , based on finite time control, a high performance adaptive fuzzy control filter is im-
lemented. Zou et al. [34] realized precise attitude tracking control of spacecraft according
o finite time control. Furthermore, the spacecraft achieved accurate formation control over
bstacles in [35] . As we know, time-varying equations have been well solved by zeroing
eural networks, and some of these can even achieve finite-time convergence. However, in
erms of solving time-varying inequalities, the current neural networks can only make its error
unction exponentially converge to zero, but cannot achieve finite time convergence. Hence,
he solution to time-varying inequality may not be extended to practical applications because
f high restriction on computation time. 

Aiming at the superiority of ZNN in solving various time-varying inequality problems, in
his paper, two finite-time convergent ZNN (FTCZNN) models are proposed and studied to
nd the solution to the time-varying linear inequalities. The first FTCZNN model, which is

ermed as FTCZNN-S, is an improvement on the conventional ZNN model by applying the
ign-bi-power AF. The second one is developed by amending the sign-bi-power AF through
dding a linear term, and called FTCZNN-SL. The design method of two FTCZNN models
s based on a lower unbounded error function. Therefore, for any initial state inside the initial
olution set of time-varying linear inequalities, the error functions of two FTCZNN models are
lways equal to the initial errors corresponding to any initial state (lower bound). Meanwhile,
hen the initial state is not inside the initial solution set, the convergence property of two
TCZNN models is still very superior, and finite-time convergence is even achieved. That

s to say, both FTCZNN models are able to obtain exact time-varying solutions. In order to
urther show the excellence of the FTCZNN models, we have compared our work with some
f the recent literatures (i.e., [36–40] ) on solving various problems by using zeroing neural
etworks, and the comparative results have been listed in Table 1 . From this table, it can be
oncluded that our work is not only efficient on solving time-varying problems, but also has
aster finite-time convergence speed. In addition, this is the first work to solve time-varying
inear equalities using zeroing neural network to realize the finite-time convergence. 
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The remainder of this work is divided into four sections. Section 2 introduces the design
method of ZNN, and two FTCZNN models are proposed by adopting two novel nonlinear AFs.
Section 3 substantiates the global convergence and finite-time convergence of two FTCZNN 

models. Section 4 shows the simulation verification of two FTCZNN models as well as
comparisons between models proposed in this paper and in other related published works. 
In Section 5 , the conclusion of this work is given. Before ending this section, the major
contributions of this work are listed as below. 

(1) As great improvements to the conventional ZNN model with infinite-time convergence, 
two FTCZNN models are proposed and proved to be capable of finite-time convergence 
for time-varying linear inequalities. This naturally becomes the most significant highlight 
of this work. 

(2) Two different nonlinear AFs are presented to establish FTCZNN models, which are 
based on the vector-valued error functions, instead of the traditional scalar-valued energy 

functions. 
(3) Through rigorous theoretical analysis of these two FTCZNN models, their excellent 

finite-time convergence property is guaranteed. In addition, the upper bounds for two 

FTCZNN models are theoretically calculated by using Lyapunov stability theory, when 

initial states are outside the initial solution set of time-varying linear inequalities. 
(4) Two examples are given to verify the superiority of two FTZCNN models in convergence 

performance to existing ZNN models activated by other AFs. 

2. FTCZNN models 

In this part, we study the solution to time-varying linear inequalities with the following
form: 

A (t ) x(t ) ≤ b(t ) , (1) 

where t denotes time, A (t ) ∈ R 

n×n and b(t ) ∈ R 

n are given time-varying coefficients. The
solution set is defined as �(t ) = { x (t ) | x (t ) ∈ R 

n solves (1) } . The aim of this work is to find
the unknown x(t ) ∈ R 

n within finite time such that the above time-varying inequality system
(1) always holds true. For the sake of presentation, we define the residual error as 

g(t ) = A (t ) x(t ) − b(t ) ∈ R 

n , (2) 

where g(t ) = [ g 1 (t ) , g 2 (t ) , · · · , g n (t )] T . Obviously, if g ( t ) ≤0, the resultant x ( t ) is what we
want to solve for. In this section, for establishing two FTCZNN models, the original ZNN
model for time-varying linear inequalities is first given. Then, by introducing new activation 

functions, two FTCZNN models are proposed to solve time-varying linear inequalities. 

2.1. ZNN model 

In order to facilitate the observation of the whole process of solving linear inequalities,
we first define a vector-valued error function: 

E (t ) = [ e 1 (t ) , e 2 (t ) , . . . , e n (t )] 
T , (3)

with e i (t ) = g i (t ) , i = 1 , 2, . . . , n. 
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Second, a new differential formula is constructed to make error function (3) converge to
ero. Different from previous differential formula for error function (3) , the novel method can
xploit different activation functions to shorten the convergence time. The new differential
ormula for the error function (3) is presented as follows: 

d E (t ) 

d t 
= −εSTP (E (0)) ♦�(E (t )) , (4)

here ε is a positive parameter, �(·) : R 

n → R 

n is a set of activation functions, and STP (·) :
 

n → R 

n stands for a set of step functions with each element defined as 

tp (a) = 

{
1 , a > 0;
0, a ≤ 0. 

(5)

esides, the operator ♦ is defined as 

♦d = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

c 1 d 1 

c 2 d 2 
. . . 

c n d n 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. (6)

hus, we can obtain the dynamic equation of the ZNN model for solving time-varying linear
nequalities: 

 (t ) ̇  x (t ) = −εSTP (A (0) x(0) − b(0)) ♦�(A (t ) x(t ) − b(t )) − ˙ A (t ) x(t ) + 

˙ b (t ) . (7)

It is worth pointing out that the above ZNN model (7) has been proved to be globally
onvergent when �( ·) satisfies the monotonicity and parity. In the following part, two finite-
ime convergent AFs are explored to shorten the convergence time of ZNN model (7) . This
s the first application to this ZNN model for solving time-varying linear inequalities. 

.2. Novel activation functions 

In the past years, the following AFs are widely applied in ZNN models: (1) the linear
ctivation function: 

(x) = x; (8)

2) the power activation function: 

(x) = x p , p ≥ 3 ; (9)

3) the bipolar-sigmoid activation function: 

(x) = 

1 + exp (−p) 

1 − exp (−p) 

1 − exp (−px) 

1 + exp (−px) 
, p > 2; (10)

4) the power-sigmoid activation function: 

(x ) = 

1 

2 

x p 1 + 

1 + exp (−p 2 ) 

1 − exp (−p 2 ) 

1 − exp (−p 2 x) 

1 + exp (−p 2 x) 
, p 1 ≥ 3 , p 2 > 2. (11)

However, the above mentioned AFs cannot make ZNN model (7) to achieve finite-time
onvergence in solving time-varying linear inequalities. For equality problems solving, Li et al.
27,28] proposed a new nonlinear AF named the sign-bi-power activation function, which can
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accelerate ZNN to finite-time convergence. Inspired by this point, in order to make ZNN
model (7) converge to the solution of time-varying linear inequalities within finite-time, the 
sign-bi-power AF is first applied to this model. Then, to solve time-varying linear inequalities
much faster, a modified sign-bi-power AF is further applied to accelerate the convergence 
speed of ZNN model (7) . 

Specifically, the sign-bi-power AF is given as follows: 

�1 (x ) = 

1 

2 

| x | r sign (x ) + 

1 

2 

| x | 1 r sign (x ) , (12)

where 0 < r < 1 and sign( ·) is defined as: 

sign (x) = 

⎧ ⎨ 

⎩ 

1 , if x > 0;
0, if x = 0;
−1 , if x < 0. 

(13) 

In order to improve the convergence speed, on basis of sign-bi-power AF (12) , an improved
sign-bi-power AF is designed by adding a linear term, and is presented as below: 

�2 (x ) = 

1 

2 

| x | r sign (x ) + 

1 

2 

x + 

1 

2 

| x | 1 r sign (x ) . (14)

Remark 1. Generally speaking, chattering phenomenon appears when discontinuous functions 
(e.g., sign function) are applied in nonlinear systems. In this work, we have explored two
nonlinear activation functions (including the sign term) to accelerate the convergence speed of 
ZNN model (7) . For avoiding chattering phenomenon generated by the sign function, we do
not directly use the sign function as activation functions to accelerate the convergence speed 

of ZNN model (7) . In contrast, we have explored two sign-bi-power functions (including the
sign term) as activation functions. Obviously, these two sign-bi-power functions are continuous 
ones. Therefore, chattering phenomenon is avoided by using two continuous sign-bi-power 
functions. The continuity proofs of the two activation functions are provided as below. 

The sign-bi-power AF (12) can be rewritten as: 

�1 (x) = 

⎧ ⎨ 

⎩ 

1 
2 x 

r + 

1 
2 x 

1 
r , x > 0;

0, x = 0;
1 
2 (−x) r + 

1 
2 (−x) 

1 
r , x < 0. 

(15) 

Obviously, when x > 0 and x < 0, the expressions of the sign-bi-power AF are continuous,
so we only need to prove the continuity of the sign-bi-power AF (12) at the point x =
0. Because �1 (0) = lim x→ 0 −

(
(−x) r / 2 + (−x) 

1 
r / 2 

)
= lim x→ 0 + 

(
x r / 2 + x 

1 
r / 2 

)
= 0, we can 

conclude that the sign-bi-power AF (12) is continuous at the point x = 0. In summary, the
sign-bi-power AF (12) is a continuous function. In the same way, we can prove that the
improved sign-bi-power function (14) is also continuous. 

2.3. FTCZNN models 

In this section, by injecting AFs (12) and (14) into ZNN model (7) , we can obtain the
corresponding two FTCZNN models to solve time-varying linear inequalities. Their simplified 

design processes are presented as below. 
(1) FTCZNN-S model : Similar to the design process of ZNN model (7) , the error function

is first defined as E ( t ). Then, the differential formula for this error function is given as 

˙ E (t ) = −εSTP (E (0)) ♦�1 (E (t )) , (16) 
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here �1 ( ·) denotes the sign-bi-power AF (12) , E (0) denotes the initial error of E ( t ) at t = 0,

TP( ·) and ♦ are defined as before. 
At last, expanding the differential formula (16) by substituting E ( t ), the dynamic equation

orresponding to the FTCZNN-S model is formed by 

 (t ) ̇  x (t ) = −εSTP (A (0) x(0) − b(0)) ♦�1 (A (t ) x(t ) − b(t )) 

− ˙ A (t ) x(t ) + 

˙ b (t ) . (17)

(2) FTCZNN-SL model : On the basis of FTCZNN-S model (17) , AF is changed to the
mproved sign-bi-power AF (14) . Then, the differential formula for the error function is
btained as follows: 

˙ 
 (t ) = −εSTP (E (0)) ♦�2 (E (t )) , (18)

nd the corresponding FTCZNN-SL model is formed by 

 (t ) ̇  x (t ) = −εSTP (A (0) x(0) − b(0)) ♦�2 (A (t ) x(t ) − b(t )) 

− ˙ A (t ) x(t ) + 

˙ b (t ) . (19)

. Theoretical analysis 

In this part, we will analyze the global convergence property of FTCZNN-S model (17) and
TCZNN-SL model (19) , and then discuss their finite-time convergence property further. 

.1. Global convergence 

It has been proved that ZNN model (7) can achieve the global convergence, provided that
onlinear AFs are monotonically increasing odd functions. According to this point, in order
o verify the global convergence of FTCZNN-S (17) and FTCZNN-SL (19) , it is necessary
or us to prove the parity of AFs (12) and (14) at first. 

heorem 1. Given smoothly time-varying coefficient matrix A (t ) ∈ R 

n×n and vector b(t ) ∈
 

n , FTCZNN-S model (17) and FTCZNN-SL model (19) are globally convergent. That is to
ay, no matter what the initial states x (0) are, state vectors x ( t ) are correspondingly convergent
o the theoretical solution set �( t ) of Eq. (1) . 

roof. First, let us review the definitions of AFs (12) and (14) , from which we can get 

1 (−x) = 

1 

2 

| − x | r sign (−x ) + 

1 

2 

| − x | 1 r sign (−x ) 

= −1 

2 

| x | r sign (x ) − 1 

2 

| x | 1 r sign (x ) 

= −�1 (x) . (20)

2 (−x) = 

1 

2 

| − x | r sign (−x ) − 1 

2 

x + 

1 

2 

| − x | 1 r sign (−x ) 

= −1 

2 

| x | r sign (x ) − 1 

2 

x − 1 

2 

| x | 1 r sign (x ) 

= −�2 (x) . (21)
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Hence, we can conclude that AFs (12) and (14) satisfy the parity. On the other hand, AFs
(12) and (14) are monotonically increasing. That is to say, such two finite-time convergent 
AFs are monotonically increasing odd functions. Thus, for proving the global convergence 
of FTCZNN-S model (17) and FTCZNN-SL model (19) in a unified manner, we only need
consider the following formula: 

˙ E (t ) = −εSTP (E (0)) ♦�(E (t )) , 

because FTCZNN-S model (17) and FTCZNN-SL model (19) can be equivalently derived 

from this design formula by choosing different AFs. 
Next, we only need equivalently to prove the global convergence of the above design

formula. Considering the definition of STP( ·), the proof is divided into two cases according
to whether initial state x(0) ∈ R 

n is inside of initial solution set �(0) or not. 
Case I If initial state x(0) ∈ R 

n is inside of the initial solution set �(0), we can
obtain g (0) ≤0. That is to say, E (0) ≤0, which means STP (E (0)) = 0. So, ˙ E (t ) =
−εSTP (E (0)) ♦�(E (t )) = 0. 

Therefore, no matter what happens with time, the time derivative of E ( t ) is always equal
to 0, which implies state vector x ( t ) always keeps inside the solution set �( t ) of time-varying
linear inequalities. 

Case II If initial state x(0) ∈ R 

n is outside of the initial solution set �(0), we obtain
g (0) > 0. That is to say, E (0) > 0, from which we can conclude that STP (E (0)) = 1 , and
˙ E (t ) = −ε�(E (t )) . For proving the global stability of this differential formula, it can be

equivalently expressed as a set of following equations: 

˙ e i (t ) = −ε�(e i (t )) , i = 1 , 2, · · · , n. (22) 

Define a Lyapunov function as s i (t ) = e 2 i (t ) / 2 ≥ 0. Then its time derivative alongside dynamic
system (22) can be computed as and its time derivative is 

d s i (t ) 

d t 
= −εe i (t ) ̇  e i (t ) = −εe i (t )�(e i (t )) . 

As proved before, AFs (12) and (14) are monotonically increasing odd functions, they satisfy
�(−e i (t )) = −�(e i (t )) , which can be written as: 

�(e i (t )) 

⎧ ⎨ 

⎩ 

> 0, if e i (t ) > 0;
= 0, if e i ( t ) = 0;
< 0, if e i ( t ) < 0. 

This property guarantees that, ˙ s i (t ) < 0 is valid for e i ( t ) � = 0 and ˙ s i (t ) = 0 only holds
true for e i (t ) = 0. By Lyapunov stability theory [41] , e i ( t ) globally converges to zero, when
initial state x(0) ∈ R 

n is outside of the initial solution set �(0). This means that state vector
x ( t ) converges to the theoretical solution set �( t ) of time-varying linear inequalities in this
situation. 

Based on the above two cases, the proof is completed. �

3.2. Finite-time convergence 

For real-time solving problems, finite-time convergence is naturally much better than 

infinite-time exponential convergence. In this part, we present two theorems to further prove 
the finite-time convergence of FTCZNN-S model (17) and FTCZNN-SL model (19) , and 

calculate their convergence upper bounds analytically. 
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heorem 2. Given smoothly time-varying coefficient matrix A (t ) ∈ R 

n×n and vector b(t ) ∈
 

n , starting from any initial state x (0), FTCZNN-S model (17) converges to the theoretical
olution set of time-varying linear inequalities in finite time. Moreover, the convergence time
pper bound T 1 is given as follows: 

 1 ≤
{ 

2r(L(0) (r−1) / 2r −1) 

ε(r−1) 
+ 

2 
ε(1 −r) 

, L(0) ≥ 1 , 

2 
ε(1 −r) 

L(0) (r−1) / 2 , L(0) < 1 , 
(23)

here L(0) = | e + (0) | 2 with e + (0) = max {| e i (0) |} . 
roof. Similar to Theorem 1 , the proof can also be divided into the following two cases
ccording to different initial states x (0). 

Case I If initial state x (0) is inside initial solution set �(0), we have e i (0) ≤0 and thus
TP (e i (0)) = 0. This means that the differential formula (16) for the error function is zero.
hat is to say, the value of error function E ( t ) always equals to its initial value E (0) and state
ector x ( t ) remains the initial state x (0), and so is the state vector x ( t ). Thus, state solution
 ( t ) from this point is always inside the solution set. The convergence time is less than the
pper bound. 

Case II If initial state x (0) is outside initial solution set �(0), we have e i ( t ) > 0, and
TP (e i (0)) = 1 . For FTCZNN-S model (17) , in this situation, its i th differential formula can
e rewritten as 

˙  i (t ) = −ε�1 (e i (t )) , i = 1 , 2, · · · , n. (24)

n order to calculate the upper bound, we first define an element e + (t ) in Eq. (24) with
 

+ (0) = max {| e i (0) |} . Since e i ( t ) in Eq. (24) has the same dynamic system, according to the
omparison Lemma, we have −| e + (t ) | ≤ e i (t ) ≤ | e + (t ) | . This indicates that e i ( t ) converges

o zero for all i when e + (t ) reaches zero. Next, we calculate the convergence upper bound
f e + (t ) by studying the following differential system: 

˙  + (t ) = −ε�1 (e 
+ (t )) . 

efine the Lyapunov function L(t ) = | e + (t ) | 2 . The time derivative of L ( t ) along this dynamics
s computed as follows: 

˙ 
 (t ) = 2e + (t ) ̇  e + (t ) 

= −2εe + (t )�1 (e 
+ (t )) 

= −ε(| e + (t ) | r+1 + | e + (t ) | 1 r +1 ) 

= −ε(L 

r+1 
2 + L 

r+1 
2r ) . (25)

If L (0) ≥1, from the Eq. (25) , we have the following inequality: 

˙ 
 ≤ −εL 

r+1 
2r , 

rom which we can obtain 

 L ≤ −εL 

r+1 
2r d t . (26)

ntegrating both sides of the formula (26) from 0 to t , we have 
 L(t ) 

L(0) 

L 

− r+1 
2r d L ≤ −ε

∫ t 

0 
d t . 
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Simplifying the inequality after integration yields to 

L(t ) ≤
[

r − 1 

2r 
(−εt + 

2r 

r − 1 

L(0) 
r−1 
2r ) 

] 2r 
r−1 

. 

Setting the left-hand side of this inequality equal to 1, we get the value of t 1 : 

 1 = 

2r(L(0) (r−1) / 2r − 1) 

ε(r − 1) 

Thus, after time t 1 , L ( t ) decreases to 1. When L ( t ) ≤1, the inequality Eq. (25) shows that: 

˙ L ≤ −εL 

r+1 
2 . 

Similar to solving for t 1 , we compute the remaining convergence time t 2 : 

 2 = 

2 

(1 − r) ε

Hence, we obtain the convergence time upper bound T 1 < t 1 + t 2 . 
If L (0) ≤1, from the Eq. (25) , we have the following inequality: 

˙ L ≤ −εL 

r+1 
2 , and d L ≤ −εL 

r+1 
2 d t . 

Integrating both sides of the differential inequality 

∫ L(t ) 
L(0) 

L 

− r+1 
2 d L ≤ −ε

∫ t 
0 d t, the convergence 

time upper bound t 3 can be computed as 

 3 = 

2 

ε(1 − r) 
L(0) 

(1 −r) 

2 . 

The proof is completed. �

Theorem 3. Given smoothly time-varying coefficient matrix A (t ) ∈ R 

n×n and vector b(t ) ∈
R 

n , starting from any initial state x (0), FTCZNN-SL model (19) converges to the theoretical
solution set of time-varying linear inequalities in finite time. Moreover, the convergence time 
upper bound T 2 is given as follows: 

T 2 ≤
⎧ ⎨ 

⎩ 

2r ln 
[ 

2 
L(0) (r−1) / 2r +1 

] 
ε(1 −r) 

+ 

2 ln 2 
ε(1 −r) 

, L(0) ≥ 1 , 

2 ln [ 1+ L(0) (1 −r) / 2 ] 
ε(1 −r) 

, L(0) < 1 , 

(27) 

where r , ε, and L (0) are defined as before. 

Proof. Similarly, the proof is divided into the following two parts. 
Case I When initial state x (0) is inside the initial solution set �(0), the analysis is the

same as Case I of Theorem 2 , and is deleted due to similarity. 
Case II When initial state x (0) is outside the solution set �(0), analogous to the Case II

in Theorem 2 , the i th element of FTCZNN-SL model (19) can be simplified as 

˙ e i (t ) = −ε�2 (e i (t )) . 

Similarly, we can define e + (t ) with e + (0) = max {| e i (0) |} . Then, we choose the Lyapunov
function L(t ) = | e + (t ) | 2 . The time derivative of L ( t ) along this dynamics is computed as
follows: 
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I∫
w

T
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˙ 
 = 2e + (t ) ̇  e + (t ) 

= −2εe + (t )�2 (e 
+ (t )) 

= −ε(| e + (t ) | r+1 + | e + (t ) | 2 + | e + (t ) | 1 r +1 ) 

= −ε(L 

r+1 
2 + L + L 

r+1 
2r ) . (28)

If L (0) ≥1, considering the Eq. (28) , the following inequality is satisfied: 

˙ 
 ≤ −ε(L + L 

r+1 
2r ) , 

hich can be rewritten as 
d L 

L 

(r+1) / 2r + L 

≤ −εd t . (29)

ntegrating the formula (29) from 0 to t yields to 

 L(t ) 

L(0) 

1 

L 

(r+1) / 2r + L 

d L ≤
∫ t 

0 
−ε d t, 

hich can be rewritten as follows: 

2r 

r − 1 

∫ L(t ) 

L(0) 

1 

1 + L 

(r−1) / 2r 
d (L 

(r−1) / 2r ) ≤
∫ t 

0 
−ε d t . 

et L ( t ) equal to 1, t 4 satisfies the following equality: 

 4 = 

2r ln 

[ 
2 

L(0) (r−1) / 2r +1 

] 
ε(1 − r) 

. 

hen t ≥ t 4 , we have L ( t ) ≤1. It follows from the condition (28) that 

˙ 
 ≤ −ε(L 

r+1 
2 + L) . (30)

here exists t 5 satisfying the equation: 

 5 = 

2 ln 2 

ε(1 − r) 
. 

he convergence time upper bound T 2 < t 4 + t 5 . 
If L (0) ≤1, the inequality (30) holds and its differential form can be obtained: 

d L 

L + L 

(r+1) / 2 
≤ −εd t 

ntegrating both sides of the formula from 0 to t, we have: 
 L(t ) 

L(0) 

1 

L + L 

(r+1) / 2 
d L ≤

∫ t 

0 
−ε d t . 

hich can be rewritten as 

2 

1 − r 

∫ L(t ) 

L(0) 

1 

1 + L 

(1 −r) / 2 
d (L 

(1 −r) / 2 ) ≤
∫ t 

0 
−ε d t . 

hus, the convergence upper bound T 2 < t 6 satisfies the following equation: 

 6 = 

2 ln 

[
1 + L(0) (1 −r) / 2 

]
ε(1 − r) 

. 

That completes the proof. �
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Fig. 1. Trajectories of state vector x ( t ) and residual error g ( t ) by applying FTCZNN-S model (17) to solve (1) when 
x (0) is inside �(0) with ε = 1 and p = 0. 3 in Example 1 . (a) Trajectories of x ( t ). (b) Trajectories of g ( t ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Simulative verification 

In this part, two illustrative computer-simulation examples are provided to evaluate the 
performance of FTCZNN-S model (17) and FTCZNN-SL model (19) for finding the solution 

of time-varying linear inequalities. Moreover, in order to provide the substantiation of the 
finite-time convergence performance, simulative results of FTCZNN models and ZNN model 
are comparatively analyzed. 

Example 1. For investigation, consider time-varying linear inequality (1) with the following 

coefficients: 

A (t ) = 

⎡ 

⎣ 

−sin (10t ) cos (10t ) 
cos (10t ) sin (10t ) 

⎤ 

⎦ , and b(t ) = 

⎡ 

⎣ 

sin (10t ) 
cos (10t ) 

⎤ 

⎦ . 

If initial state vector x (0) is inside the initial solution set �(0), when applying FTCZNN-S
model (17) to solve Example 1 with ε = 1 and r = 0. 3 , the state trajectory can be seen
from Fig. 1 (a). In order to make it easier to understand, Fig. 1 (b) shows the trajectory of
the corresponding residual error g(t ) = A (t ) x(t ) − b(t ) . From it, we can obtain that residual
error g ( t ) is always equal to 0, which verifies corresponding theoretical results of this case.
If initial state vector x (0) is outside the initial solution set �(0), the trajectory of x ( t ) can be
seen from Fig. 2 (a). The blue solid line shows the actual solution of Example 1 and the red
one draws the upper bound of the solution set, which means that x ( t ) effectively converges
to the solution set of Example 1 . Similarly, Fig. 2 (b) shows the trajectory of residual error
g(t ) = A (t ) x(t ) − b(t ) , which decreases to zero within finite time 2.5 s. 

Besides, 2-norm ‖ E ( t ) ‖ 2 of the error function is used to evaluate the whole convergence
performance of various ZNN models, and the corresponding results are shown in Fig. 3 .
As seen from this figure, FTCZNN-S model (17) and FTCZNN-SL model (19) have better
convergence performance than the conventional ZNN models activated by the linear activation 

function (8) , the power function (9) , the bipolar-sigmoid function (10) and the smooth power-
sigmoid function (11) [42–45] . In addition, it can be concluded that such two FTCZNN
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Fig. 2. The actual and theoretical trajectories of state vector x ( t ) and residual error g ( t ) by applying FTCZNN-S 
model (17) to solve (1) when x (0) is outside �(0) with ε = 1 and r = 0. 3 in Example 1 . (a) Trajectories of x ( t ). (b) 
Trajectories of g ( t ). 
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Fig. 3. Comparisons of two FTCZNN models with the conventional ZNN models activated by other AFs with ε = 1 
and r = 0. 3 in Example 1 . (a) By FTCZNN-S model (17) . (b) By FTCZNN-SL model (19) . 

m  

l  

o
 

t
 

L  

0

t

odels can reach to zero within 3 s, while the conventional ZNN models have a relatively
arge estimation errors when t = 3 s. The above simulation results demonstrate the superiority
f two FTCZNN models in solving time-varying linear inequalities. 

In order to verify the estimation of the convergence time in Theorems 2 and 3 , we choose
wo specific different initial states, and the following two cases are discussed. 

Case I Let x(0) = [3 , 0. 5] T , which means that E (0) = A (0) x(0) − b(0) = [0. 5 , 2] T , and
(0) = | e + (0) | 2 = 2 

2 = 4 > 1 . The parameters of FTCZNN-S model (17) are given as r =
. 3 and ε = 1 . By Theorem 2 , the convergence time upper bound t a is given as 

 a = 

2r(L(0) (r−1) / 2r − 1) 

ε(r − 1) 
+ 

2 

ε(1 − r) 
≈ 3 . 5442 s . 
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Let r = 0. 3 and ε = 1 . By Theorem 3 , the convergence time upper bound t b for FTCZNN-SL
model (19) is given as 

 b = 

2r ln 

[ 
2 

L(0) (r−1) / 2r +1 

] 
ε(1 − r) 

+ 

2 ln 2 

ε(1 − r) 
≈ 2. 4194 s . 

In the situation of L (0) ≥1, from the simulation results in Fig. 4 (a), the actual convergence
time is 3.02 s for FTCZNN-S model (17) and 2.12 s for FTCZNN-SL model (19) , which are
smaller than the theoretical results computed in the above. 

Case II Let x(0) = [1 . 5 , 0. 5] T , which means that E (0) = A (0) x(0) − b(0) = [0. 5 , 0. 5] T ,
and L(0) = | e + (0) | 2 = (0. 5) 2 = 0. 25 < 1 . The parameters of FTCZNN-S model (17) are
given as r = 0. 3 and ε = 1 . By Theorem 2 , the convergence time upper bound t a in this
situation is computed as 

 a = 

2 

ε(1 − r) 
L(0) (1 −r) / 2 ≈ 1 . 7588 s . 

For FTCZNN-SL model (19) with the same parameters, by Theorem 3 , the convergence time
upper bound t b is given as 

 b = 

2 ln 

[
1 + L(0) (1 −r) / 2 

]
ε(1 − r) 

≈ 1 . 3705 s . 

In this case, the simulative results are shown in Fig. 4 (b), which implies the actual conver-
gence time is also less than the theoretical upper bound of the convergence time. Specifically,
the difference between the actual convergence time 3.02 s and the theoretical convergence 
time upper bound 3.5442 s for FTCZNN-S model (17) is larger than that between 2.12 s
and 2.4194 s for FTCZNN-SL model (19) . That is to say, the actual convergence time of
FTCZNN-SL model (19) is much closer to the theoretical convergence time upper bound. 
It means that FTCZNN-SL model (19) has better convergence performance than FTCZNN-S 

model (17) . 
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Fig. 5. The actual and theoretical trajectories of state vector x ( t ) and residual error g ( t ) by applying FTCZNN-S 
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xample 2. To further verify the finite-time convergence of two FTCZNN models, we
onsider a different time-varying linear inequality with the following more complicated
oefficients: 

 (t ) = 

⎡ 

⎣ 

4 + sin (2t ) 3 cos (2t ) 
3 sin (2t ) sin (2t ) cos (2t ) + 1 

⎤ 

⎦ , and b(t ) = 

⎡ 

⎣ 

3 sin (2t ) 
cos (2t ) − 4 

⎤ 

⎦ . 

As shown in Example 1 , it is obvious that, when initial state x (0) is inside the initial solution
et �(0), such two FTCZNN models are stable at its initial value without iteration. Therefore,
e mainly consider the situation when initial state x (0) is outside the initial solution set �(0).
s shown in Fig. 5 (a), the evolvement of vector state x ( t ) coincides with the theoretical upper
ound trajectory. Moreover, Fig. 5 (b) implies that the residual error can converge to zero
ithin 2.9 s. 
Besides, we also compare the proposed two FTCZNN models with existing ZNN model

ctivated by AFs (8) - (11) , with the results shown in Fig. 6 . It follows that FTCZNN-S model
17) converges to zero within 3 s, and FTCZNN-SL model (19) converges to zero within
.21 s; while the others cannot converge to zero under the same conditions. 

In this example, similar to Example 1 , we also select two different specific initial states
nd consider the following two cases. 

Case I Let initial state x(0) = [1 . 5 , 0. 5] T and the corresponding initial error function can
e calculated as E (0) = A (0) x(0) − b(0) = [7 . 5 , 3 . 5] T , which leads to L(0) = | e + (0) | 2 =
7 . 5) 2 = 56 . 25 > 1 . The parameters of FTCZNN-S model (17) are given as r = 0. 3 and
= 1 . According to Theorem 2 , the convergence time upper bound t a satisfies the following

ormula: 

 a = 

2r(L(0) (r−1) / 2r − 1) 

ε(r − 1) 
+ 

2 

ε(1 − r) 
≈ 3 . 7065 s . 
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Fig. 6. Comparisons of two FTCZNN models with the conventional ZNN models activated by other AFs with ε = 1 
and r = 0. 3 in Example 2 . (a) By FTCZNN-S model (17) . (b) By FTCZNN-SL model (19) . 
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Fig. 7. Comparisons of the FTCZNN-S model (17) and FTCZNN-SL model (19) with ε = 1 and r = 0. 3 in 
Example 2 . (a) when L (0) > 1. (b) when L (0) < 1. 
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Let r = 0. 3 and ε = 1 , by Theorem 3 , the convergence time upper bound t b for FTCZNN-SL
model (19) is given as 

 b = 

2r ln 

[ 
2 

L(0) (r−1) / 2r +1 

] 
ε(1 − r) 

+ 

2 ln 2 

ε(1 − r) 
≈ 2. 5668 s . 

Case II Let x(0) = [2, −2. 5] T , which means that E (0) = A (0) x(0) − b(0) = [0. 5 , 0. 5] T ,
and L(0) = | e + (0) | 2 = (0. 5) 2 = 0. 25 < 1 . The parameters of FTCZNN-S model (17) are
given as r = 0. 3 and ε = 1 . Known from Theorem 2 , the convergence time upper bound
t a is shown as 

 a = 

2 

ε(1 − r) 
L(0) (1 −r) / 2 ≈ 1 . 7588 s . 
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hile employing FTCZNN-SL model (19) , by Theorem 3 , the convergence time upper bound
 b in this situation is computed as follows: 

 b = 

2 ln 

[
1 + L(0) (1 −r) / 2 

]
ε(1 − r) 

≈ 1 . 3705 s . 

Similar to the experiment results in Example 1 , from Fig. 7 , we know that FTCZNN-SL
odel (19) has the fastest convergent rate and shortest convergence time. Moreover, it is
orth mentioning that the convergence time upper bound of two FTCZNN models is only

elated to L (0) and design parameters. Even if time-varying linear inequalities have different
oefficients, they may have the same e + (t ) and the same theoretical convergence upper bound,
s shown in Case II of Examples 1 and 2 . 

. Conclusions 

In this paper, by exploring two novel nonlinear AFs, two FTCZNN models have been pro-
osed to solve the time-varying linear inequalities. Since design formulas fully consider the
ime derivative information of time-varying coefficients, two FTCZNN models are theoreti-
ally proved to be globally convergent when applied to solve time-varying linear inequalities.
urthermore, the proposed two FTCZNN models have been proved to possess the finite-time
onvergence with the corresponding upper bounds estimated. At last, two numerical simula-
ion examples have been presented to validate the great properties of two FTCZNN models
y comparing the conventional ZNN model activated by the linear AF, the power AF, the
ipolar-sigmoid AF, and the power-sigmoid AF. 
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