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A B S T R A C T

Influence maximization (IM) problem is an extensively studied problem in social networks. It aims to find a
small set of users in the social network to initiate the diffusion process and maximize the expected influence
spread. Existing works on conformity-aware IM focus on the interaction between influence and conformity in
a single-influence setting and ignore the role of conformity in a competitive and multiple-influence setting.
This paper proposes a conformity-aware independent cascade (C-IC) model that considers the competition
among multiple influences as well as the role of conformity in a user’s decision-making. It is proved that
the adoption of an influence under the C-IC model is monotone and submodular. Meanwhile, we formulate
two adoption maximization (AM) problems, O-AM and S-AM, which are both NP-hard. Because estimating
the adoption through diffusion simulations is very time-consuming, we propose a reverse adoption estimation
(RAE) method based on a reverse multiple influence sampling (RMIS) technology for the C-IC model and
integrate it into the D-SSA-fix (Nguyenet al., 2018) framework, DSSA for short, to compute a solution with
approximation guarantee. To further boost the performance, we present a fast one-hop adoption estimation
(OAE) method and develop a heuristic algorithm based on OAE, called GOAE. Extensive experiments on eight
real-world social networks show that the C-IC model is superior to a non-conformity diffusion model and
that RAE+DSSA and GOAE are efficient and effective. In most cases, GOAE finds comparable solutions to
RAE+DSSA and CELF with less time and memory overhead. GOAE is five to six orders of magnitude faster
than CELF and RAE+DSSA is up to three orders of magnitude faster than CELF on NetHEPT. GOAE runs up
to four to five orders of magnitude faster than RAE+DSSA with at most two orders of magnitude less memory
usage. GOAE is more scalable than RAE+DSSA in terms of the number of seeds and the size of the social

network.
1. Introduction

In the past decades, much work on social networks has emerged
in sociology, economics, psychology, and other disciplines [1,2]. As
information technology advances [3–5], with the emergence of growing
large-scale datasets from online social networks, social network analy-
sis draws a great deal of interest from researchers but faces many new
challenges.

Challenge. With the development of communication technology
and the Internet, communication is more convenient and online con-
tents are easier to obtain. People can easily access more diverse in-
formation from social networks. For example, online social platforms
like TikTok and Xiaohongshu in China are growing in popularity,
and users enjoy sharing their experiences with their followers. These
experiences often involve multiple (one or more) similar products, such
as newly released mobile phones or some latest movies. As a result,
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the followers may receive information on different products from a
user or several users These people who receive diverse influences often
face a problem that how to make a choice. And the online social
platforms also want to know how to select the most influential users
in their platforms. This poses a challenge for modeling the diffusion
and adoption of multiple influences in competitive social networks.
However, the existing diffusion models are not suitable for this context.
Most of the existing diffusion models are designed for single-influence
settings. However, in real life, there are numerous competitive products
in the social network and people may even recommend multiple similar
products simultaneously based on their experience or information she
has learned. In addition, even for the existing competitive multiple-
influence diffusion models, they often use a ‘‘first come, first served’’
strategy or a fair strategy to choose a product, which may lead to biased
adoption estimation or the selection of users who are not the most
influential.
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To overcome this challenge, we propose a conformity-aware inde-
pendent cascade (C-IC) model that considers the competition among
multiple influences and the role of conformity in a user’s decision-
making. The C-IC model emphasizes the role of the frequency of
receiving an influence in a user’s decision-making and leverages the
property of conformity to build a bridge between the frequency of
receiving an influence to a user’s adoption probability. [6–8] conducted
similar field experiments in the USA, the UK, and Sweden to study
the relationship between conformity and the number of influencers,
respectively. They find as the number of influencers increased. Similar
phenomena also appear online, where more people have more influ-
ence. [9] reported users on Facebook were more likely to like content
if they saw three (compared to one) people had liked it. [10] reported
people were less likely to believe a news if several others commented
it was untrue when they reading on social media. Therefore, we as-
sume that the adoption probability of an influence increases with the
frequency of receiving an influence.

On the other hand, viral marketing aims to promote and popularize
products and innovations by word of mouth to new users who often
lack sufficient knowledge of the products and innovations. New users’
decisions are usually influenced by informational conformity [2]. In-
formational conformity stems from the mentality that when individuals
lack sufficient knowledge and experience, they tend to trust the wisdom
of the group and align themselves with it. For example, on social
platforms, individuals tend to believe the messages that are frequently
retweeted, even if they do not know the truth. Moreover, individuals
are more likely to adopt the products frequently recommended by
friends in their social networks. These phenomena also verify that the
C-IC model is reasonable.

Based on the C-IC model, we formulate two adoption maximization
problems, named O-AM and S-AM, which are significant in applica-
tions such as viral marketing and innovation promotion. The adoption
maximization problem aims to find a small set of users to start the
propagation process and maximize the adoption under the C-IC model.
In the AM problem, adoption serves as the criterion for evaluating the
quality of a solution instead of the influence spread, since an influenced
user only adopts one influence from the influences she received under
the C-IC model.

Contributions. In this paper, we present the C-IC model in the
context of multiple competitive influences, which portrays the diffusion
process of multiple competitive influences and highlights the role of
conformity in users’ decision-making. Besides, we formulate two adop-
tion maximization problems, named O-AM and S-AM, under the C-IC
model and develop two methods, RAE+DSSA and GOAE, to address the
S-AM problem. To summarize, our contributions are as follows.

• We propose the C-IC model for competitive social networks and
demonstrate that the expectation of adoption under the C-IC
model is non-negative, monotone, and submodular. Then we
present two AM problems, O-AM and S-AM, and prove they are
NP-hard.

• We present the RAE method based on the RMIS technology for
the C-IC model to estimate the adoption and integrate it into the
DSSA [11] framework for the S-AM problem. Then, we demon-
strate the mathematical basis of the RAE method.

• We provide a GOAE algorithm based on a fast one-hop adoption
estimation (OAE) which further speeds up the adoption estima-
tion. The GOAE algorithm is more scalable than RAE+DSSA in
terms of running time and memory usage, particularly in the
context of large seed numbers and large-scale networks.

• We conducted experiments on eight real-world network datasets.
We evaluate the C-IC model by compared it with a non-conformity
diffusion model. The experiment results show that the C-IC model
is superior to a non-conformity diffusion model and more con-
ducive to obtaining superior seed sets. We compare RAE+DSSA,
2

GOAE, and CELF. These experiments suggest that RAE+DSSA
and GOAE are efficient and effective. GOAE finds comparable
solutions to RAE+DSSA and CELF with less time and memory
usage. The experiments with the large 𝑘 setting suggest GOAE
scales well for large 𝑘 values on large networks.

We organize the rest of the paper as follows. We introduce the re-
lated work in Section 2 and the preliminaries of this work in Section 3.
We propose the C-IC model and formulate the S-AM problem and the O-
AM problem in Section 4. We establish the theoretical basis of the RAE
method and introduce the RMIS technology in Section 5. We present the
GOAE algorithm based on the OAE method in Section 6. We illustrate
the experiments on eight real-world network datasets and analyze the
results of the experiments in Section 7. We conclude this paper in
Section 8. For ease of reading, all the proofs are given in Appendix.

2. Related work

Kempe et al. [12] formally proposed the influence maximization
(IM) problem, and then proved that it is NP-hard. Additionally, they
proved the influence spread functions under the independent cas-
cade (IC) model and the linear threshold (LT) model are both non-
negative, monotone, and submodular, and based on the fact they
proposed a greedy algorithm to find a solution providing a (1−1∕𝑒−𝜀)-
approximation. Leskovec et al. [13] proposed the CELF (Cost-Effective
Lazy Forward) algorithm to accelerate seed search by avoiding estimat-
ing the influence spreads of unnecessary candidate solutions benefitting
from the submodularity of the influence spread function. Some exist-
ing algorithms for IM waive approximation guarantees for improving
practical efficiency. Chen et al. [14] proposed DegreeDiscount which is
significantly superior to the degree and centrality-based heuristics and
runs faster than the greedy algorithms in [12,13] by many orders of
magnitude. Chen et al. [15] showed that computing influence spread
in the IC model is #P-hard. To improve the performance of computing
influence spread, they designed two heuristic algorithms, called MIA
and PMIA, which use local arborescence structures of each node to ap-
proximate the influence spread. Jiang et al. [16] proposed a simulated
annealing-based approach for the IM problem to replace the time-
consuming greedy algorithm. To further improve the efficiency, they
use EDV (expected diffusion value) instead of estimating the influence
spread through influence diffusion simulations. Jung et al. [17] pro-
posed IRIE which derives a system of linear equations whose solution
can be computed fast by an iterative method. Then the computed values
are used as estimations of the influence spread.

More recently, a wealth of extensions on IM have emerged.
Kazemzadeh et al. [18] proposed the IMBC (Influence Maximization
Based on Community structure) algorithm which exploits optimal
pruning and a minimum of dominating nodes to improve efficiency
and modulates the scores of nodes with a high Rich-Club coefficient
to optimize the selection of seed set. Yang et al. [19] proposed a
Continuous Influence Maximization problem based on an assumption
that the purchase probability curve with respect to discount for each
user is known. They investigated what discounts should be offered
to users to maximize the adoption of a product. Ohsaka et al. [20]
proposed an algorithm to coarsen an original influence network into
a node-weighted influence network which is much smaller and can
approximate the diffusion properties of the original influence network.
The coarsened influence network is used to speed up the estima-
tion of influence spread and the algorithms for IM. Zhao et al. [21]
transformed identifying the most influential nodes into a classification
problem and proposed an InfGCN model based on Graph Convolutional
Networks (GCN), which considers the roles of both network struc-
tures and node features in identifying the importance of nodes. Kou
et al. [22] transformed identifying influential nodes into a regression
problem and proposed a deep learning model based on the graph multi-
head attention mechanism and the dense connection to identify the
most influential nodes.
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2.1. Competitive IM and adoption maximization.

Bharathi et al. [23] are among the first who study the competitive
IM problem with multiple competing innovations. Bhagat et al. [24]
presented an LT-C model and studied the adoption maximization based
on it. They distinguish between adopting and influencing and take
users’ attitude into account based on her experience with products.
They showed that the adoption maximization problem is NP-hard and
the expected number of product adoptions is monotone and submodular
under the LT-C model; Valera and Gomez-Rodriguez [25] proposed
a continuous-time probabilistic model, based on temporal point pro-
cesses, for the adoption and frequency of use of competing products,
which captures several intuitive key factors, i.e. social influence, re-
cency, and competition. Li et al. [26] proposed a game theory-based
framework for the competitive IM problem which jettisons unrealistic
assumptions that a new competitor is aware of a rival’s strategy. Zhu
et al. [27] presented Competitive Independent Cascade model in which
users including seeds are able to spread competitive influences at
the same time and investigated the Minimum Cost Seed Set problem
based on their model. Recently, Hong et al. [28] presented a com-
petitive reverse influence estimation-based greedy (CRIEG) algorithm
with bounded approximation guarantees, which significantly improves
efficiency under the competitive IC model.

2.2. RIS-based algorithms.

Time efficiency becomes a primary challenge for the IM problem
due to the increasing size of social networks. Diffusion simulation-based
greedy algorithms are extremely time-consuming and not scalable,
while other heuristic algorithms lack approximation guarantees. Borgs
et al. [29] made a theoretical breakthrough and proposed a novel
𝑂(𝑘𝑙2(𝑚 + 𝑛)𝜀−3𝑙𝑜𝑔2𝑛) time algorithm based on a drastically different

ethod which is known as reverse influence sampling (RIS) for the
M problem under the IC model. Tang et al. [30] further reduced the
unning time to 𝑂((𝑘 + 𝑙)(𝑚 + 𝑛)𝑙𝑜𝑔𝑛∕𝜀2) and proposed two algorithms,

TIM and TIM+, for the IM problem under the triggering model which
is a general diffusion model including the IC model and the LT model.
Then, they [31] proposed a further improved algorithm, IMM, for
the IM problem, which can support any diffusion model for which a
certain sampling procedure is well-defined. Nguyen et al. [32] adopted
a Stop-and-Stare strategy and proposed two algorithms, SSA and D-
SSA, which perform better than IMM in terms of empirical efficiency.
Huang et al. [33] uncovered some errors in proofs for the approx-
imation factors and the sampling efficiency of SSA and D-SSA, and
then provided an SSA-fix algorithm. Nguyen et al. [11] provided an
D-SSA-fix algorithm and affirmed the sampling efficiency of D-SSA-fix.
Wang et al. [34] proposed a bottom-𝑘 sketch based RIS framework
(BKRIS), which brings the order of samples into the RIS framework,
to accelerate the RIS framework and reduce memory consumption. Guo
et al. [35] presented a framework for generating reverse reachable (RR)
sets, called SUBSIM, and developed the SKIP algorithm for the sorted
subset sampling problem. Then they presented the HIST algorithm to
enhance the scalability in high influence networks. Zhu et al. [36]
proposed a 2-hop+ sampling method for fast and accurate estimation of
influence spread under the IC model, which reduces the sample number
by generating only samples including at least one 2-hop live path. Then,
they exploit a SkipEdge technique to further improve the sampling
efficiency of their method. In addition, they presented the generalized
stopping rule algorithm to obtain an (𝜀, 𝛿)-estimation of the mean of
random variables with fewer samples needed.

2.3. Conformity and conformity-aware social influence analysis.

Conformity is a fundamental and well-studied concept in social
psychology. Extensive work in social psychology [2,37,38] has shown
the importance of conformity and studied the relationship between
3
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Table 1
Frequently used notations.

Notation Definition

𝐺(𝑉 ,𝐸, 𝑝) an influence graph
𝑁𝑖𝑛(𝑢) the in-neighbor set of 𝑢
𝑁𝑜𝑢𝑡(𝑢) the out-neighbor set of 𝑢
𝑁𝐴(𝑢) the set of in-neighbors activated 𝑢
𝑆 (𝑆𝑖) a seed set (the seed set of influence 𝐼𝑖)
𝑆𝑐 the seed set of all competitive influences
𝑐 the set of seed sets of all competitive influences
 the influence set
(𝑢) the set of influences received by 𝑢
ℎ(𝑢, 𝐼) the probability 𝑢 adopts an influence 𝐼
𝜎(𝑆) the influence spread of a seed set 𝑆
𝑓 (𝑆) the adoption of a seed set 𝑆

conformity and the number of influencers [6–10,39]. Milgram et al. [6]
conducted a field experiment in New York. They asked 1, 3, 5, 10,
and 15 people, called influencers, to stop and look upwards on a busy
sidewalk. They found the proportion of passers-by who are influenced
and look upwards increases with the number of influencers. Coultas
and Eriksson [7] and Gallup et al. [8] replicated the experiment in the
UK and Sweden. They found as the number of influencers increased,
the influence showed a similar linear pattern. Similar phenomena also
appear online, where more people have more influence. Egebark and
Ekstrom [9] reported users on Facebook were more likely to like
content if they saw three (compared to one) people had liked it. Col-
liander [10] reported people were less likely to believe a piece of news
if several others commented it was untrue when they reading on social
media. Based on these observations, we model conformity in the C-IC
model as a social influence that increases with the times a user receives
it. Li et al. [40] studied conformity as an individual’s inclination to
be influenced by others and they computed conformity indices of each
individual by using individuals’ relationships with positive or negative
signs. Zhang et al. [41] studied how the conformity tendency changes
with users’ role defined by her structural properties and proposed a
probabilistic graphical model for modeling the role-aware conformity
influence. Tang et al. [42] studied the role of conformity in changing
individuals’ online behavior and formalized the effects of social confor-
mity into a probabilistic model. The three works study conformity for
computing individuals’ traits or predicting individuals’ actions, which
is different from the purpose of this paper. Li et al. [43] proposed
a conformity-aware cascade (C2) model that exploits the influence
probabilities computed with conformity in [40] for estimating influence
spreads in the context of the IM problem in signed social networks. Li
et al. [44] proposed a group-based algorithm for the IM problem under
the conformity-aware diffusion model based on user profiles and group
profiling. Recently, Li et al. [45] proposed a conformity-aware Hawkes
process-based framework to characterize online information diffusion
and used a semi-parametric inference approach to learn their model.
The three works study online information diffusion or the IM problem
in a different setting from this work. And they cannot to be used for
competitive and multiple-influence diffusion environments which is the
context of this work.

3. Preliminaries

A social network is modeled as an influence graph 𝐺 = (𝑉 ,𝐸, 𝑝),
here 𝑉 is the set of nodes, 𝐸 is the set of directed edges, with 𝑛 = |𝑉 |

nd 𝑚 = |𝐸| and 𝑝 ∶ 𝐸 → (0, 1] is an influence probability function.
𝑖𝑛(𝑢) and 𝑁𝑜𝑢𝑡(𝑢) represent the in-neighbor (incoming neighbor) set

nd the out-neighbor (outgoing neighbor) set of a node 𝑢, respectively.
In this section, we review the IC model and the RIS technology

nder the IC model. Table 1 lists notations used frequently.
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3.1. Independent cascade model

The independent cascade model is one of the most widely used
diffusion models in the IM problem. In the IC model, each node takes
one of two states, active or inactive. Inactive nodes can become active,
but not vice versa. Given an influence graph 𝐺 = (𝑉 ,𝐸, 𝑝) and an
initially activated seed set 𝑆 ⊆ 𝑉 . The diffusion proceeds in discrete
steps according to the following randomized rules. When a node be-
comes active in Step 𝑡, it acquires only one chance to activate each
of its inactive out-neighbors randomly with the influence probability
between them. If any inactive out-neighbor is activated successfully,
then it will become active in Step 𝑡 + 1. The diffusion process ends
when no more nodes are activated. Note that if an inactive node is
activated by any node, it cannot be influenced by other in-neighbors.
This is different from the C-IC model.

The influence spread 𝜎(𝑆) is defined as the expected number of
active nodes when the diffusion ends. Unfortunately, computing 𝜎(𝑆)
nder the IC model is #P-hard [15]. The diffusion simulation-based
ethod has been used for approximately computing 𝜎(𝑆), which re-
eatedly performs diffusion simulations and takes the mean of the
umber of active nodes as 𝜎(𝑆). In practice, ten thousand simulations

are sufficient to estimate 𝜎(𝑆) [12].

.2. Influence maximization problem

The IM problem aims to find an optimal seed set in the social
etwork to maximize the number of activated nodes under a diffusion
odel. It is defined formally as follows.

efinition 3.1 (Influence Maximization Problem [12]). Given an influ-
ence graph 𝐺 = (𝑉 ,𝐸, 𝑝) and an integer 𝑘, the influence maximization
problem requires finding a seed set 𝑆 ⊆ 𝑉 of size 𝑘 that maximizes the
influence spread 𝜎(𝑆).

It is proved that computing the optimal seed set under the IC model
is NP-hard [12]. Fortunately, the influence spread under the IC model
is non-negative, monotone, and submodular. Therefore, the greedy
algorithm can be used to look for a (1 − 1∕𝑒 − 𝜀)-approximate optimal
solution [12]. The greedy algorithm starts with 𝑆 = ∅. Then it chooses
a node providing the largest marginal gain and adds the node into 𝑆
iteratively until 𝑆 includes 𝑘 nodes.

However, the greedy algorithm for IM suffers from low efficiency
because of two disadvantages. Firstly, computing the influence spread
of a candidate seed set needs to perform large numbers of diffusion
simulations. Secondly, it executes global searches in the influence graph
for each new seed. In other words, to find a new seed, it estimates
the influence spreads for all candidate seed sets. It runs ∑𝑘−1

𝑖=0 (𝑛 − 𝑖) ⋅ 𝑙
simulations for finding a seed set of size 𝑘, where 𝑙 is the number of
simulations for computing the influence spread of each seed set. The
greedy algorithm is computationally prohibitive for the IM problem,
especially in large networks.

3.3. RIS under the IC model

Borgs et al. [29] developed the reverse influence sampling (RIS)
technology which estimates 𝜎(𝑆) by generating a set  of random
reverse reachable (RR) sets. Each RIS process generates a random RR
set 𝑅 in the reverse influence graph 𝐺𝑇 which is the transpose graph
of the influence graph 𝐺. Note that the influence probability of each
reversed edge in 𝐺𝑇 is the same as the probability of the original edge in
𝐺. Given 𝐺𝑇 , the RIS is like a random breadth-first traversal (BFS) from
a randomly selected node 𝑢. A RIS proceeds as the following procedure:
(1) Select a node 𝑢 uniformly at random from 𝐺𝑇 . (2) Visit 𝑢 and start
a random BFS from 𝑢 in 𝐺𝑇 . In the random BFS, each visited node
gets one chance to randomly visit each of its out-neighbors with the
4

influence probability between it and its out-neighbor. (3) The random
Fig. 1. Node states under the C-IC model.

BFS ends if no new nodes are visited. (4) Finally, return the set of the
visited nodes as the random RR set 𝑅. Intuitively, 𝑢 can reach the nodes
in 𝑅 in the RIS. Therefore, the nodes in 𝑅 can influence 𝑢.

Given a seed set 𝑆 of an influence 𝐼 , if any seed in 𝑆 exists in 𝑅,
i.e., 𝑆 intersects 𝑅, 𝑢 will be influenced by 𝐼 . Given a set  of random
RR sets, the more random RR sets 𝑆 intersects, the more influential 𝑆
is. Based on the idea, [29] uses a greedy algorithm to select the seed set
that intersects the most random RR sets in . In addition, the RIS-based
algorithms [29–36] for the IM problem investigate how to generate
random RR sets with lower computational overheads to guarantee the
quality and reliability of the seed set.

4. Problem definition

In real life, users may receive information on different products
or innovations from their friends and form their own opinions and
attitudes based on this information. In addition, research work in the
field of social psychology shows people usually tend to conform with
their friends. Therefore, we develop a conformity-aware independent
cascade model that models the propagation and adoption of multiple
competitive influences. Then, we define two adoption maximization
problems under the C-IC model.

4.1. Conformity-aware independent cascade model

In the C-IC model, there are multiple influences propagating in the
social network. Nodes including seeds can propagate multiple influ-
ences simultaneously. The seed sets of different influences may overlap
and a seed may serve multiple influences. Furthermore, the C-IC model
consists of two stages, activation and adoption. Nodes may receive
multiple influences and spread all of them, but they can only adopt
one. The adoption process is subject to conformity in the C-IC model
which emphasizes the role of conformity in the adoption stage from an
audience’s perspective.

To facilitate the description of the C-IC model, some symbols are
defined first. Denote by  the overall set of influences propagating in
he social network 𝐺 and denote by (𝑢) the set of influences received

by 𝑢. 𝑆 =
⋃

||
𝑖=1 𝑆𝑖 is the overall seed set of all the influences, where 𝑆𝑖

is the seed set of 𝐼𝑖.
In the C-IC model, each node has three states, inactive, active, and

adopted as shown in Fig. 1. Each node keeps inactive before it is
exposed to any influence. Only inactive nodes can be activated. Nodes
will become active after they are activated and receive some influences.
Each active node attempts to activate its inactive out-neighbors. Then
they become adopted after they adopt one influence from the influences
received. The adopted nodes remain adopted until the diffusion process
ends. Nodes can only change their states in two ways, becoming active
from inactive and becoming adopted from active.

Given an influence graph 𝐺 and a seed set 𝑆, the diffusion proceeds
in discrete time steps according to the following rules. To start the
propagation process, the influences activate their seeds, while the rest
nodes remain inactive. In Step 𝑡, each active node gets one chance to
randomly activate each of its inactive out-neighbors with the influence
probability between it and its out-neighbor. If a node 𝑢 activates its
out-neighbor 𝑣 successfully, it propagates all the influences in its influ-
ence set (𝑢) to 𝑣. After attempting to activate all the out-neighbors,
each active node randomly adopts one influence from its influence
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Fig. 2. An example of the influence diffusion process under the C-IC model.

et according to the conformity-aware adoption probability introduced
n Section 4.2. Then the active nodes turn adopted and they cannot
ctivate any inactive out-neighbor in subsequent steps. Note that if an
nactive node is activated by its in-neighbors, it will remain inactive
activatable) until the next time step to give other active in-neighbors
pportunities to activate it. As a result, a node may be activated by
ultiple in-neighbors in the same time step and may receive multiple

nfluences from those in-neighbors. If an inactive node 𝑣 is activated
y an in-neighbor, 𝑣 will receive all the influences in the set of the in-
eighbor. Then we get (𝑣) = ⋃

𝑢∈𝑁𝐴(𝑣) (𝑢), where 𝑁𝐴(𝑣) consists of all
the in-neighbors that have activated 𝑣. In Step 𝑡+1, the nodes activated
in Step 𝑡 become active. Then they repeat the behaviors of active nodes
in Step 𝑡. Finally, the diffusion process ends when no more nodes are
activated.

Example. Fig. 2 illustrates the diffusion process of four influences
under the C-IC model in a social network composed of seven nodes
and nine directed edges. 𝐼𝑦, 𝐼𝑏, 𝐼𝑝, and 𝐼𝑔 are represented in yellow,
brown, pink, and green, respectively. The colors of a node are used to
express how it is activated by corresponding influences. A green edge
represents that an activation attempt occurs between the end nodes
of the edge in the current time step. The dashed edges indicate that
activation attempts fail or no activation occurs.

In Step 0, to start the influence diffusion, 𝑎, 𝑏, and 𝑐 are activated
and their influence set consists of the influences activating them. For
example, (𝑏) becomes {𝐼𝑏, 𝐼𝑝, 𝐼𝑔}, since node 𝑏 has been activated by
the three influences.

In Step 1, 𝑎, 𝑏, and 𝑐 become active, and then attempt to activate
their inactive out-neighbor along the green edges. Note that 𝑎 and 𝑏
activate 𝑒 in the same time step, while 𝑐 fails to activate 𝑒. Therefore,
(𝑒) becomes {𝐼𝑦, 𝐼𝑏, 𝐼𝑝, 𝐼𝑔}. After all activation attempts finish, 𝑒 ran-
domly adopts one influence from the received influences based on their
adoption probabilities and becomes adopted.

In Step 2, 𝑑, 𝑒, and 𝑓 become active and they successfully activate 𝑔.
Note that 𝑔 is activated by 𝐼𝑦 and 𝐼𝑔 twice and by 𝐼𝑏 and 𝐼𝑝 once. The
sector area is used to indicate the ratio of activation times of different
influences. For example, the green sector covers one-third of the area
of 𝑔 because the activation time of 𝐼𝑔 is one-third of the total activation
time. Then, 𝑑, 𝑒, and 𝑓 adopt one influence from their influence sets
and become adopted.

In Step 3, 𝑔 becomes active, but no nodes can be activated. Then
it randomly adopts one influence and becomes adopted. Finally, the
diffusion process ends since no nodes are activated in this step.

4.2. Conformity-aware adoption probability function

Conformity is a kind of social influence that persons tend to fit in
with their groups in social interactions. Conformity plays an impor-
tant role when users make a choice in a competitive social network,
especially when they lack sufficient knowledge about the products and
5

t

innovations. In the adoption stage of the C-IC model, the conformity-
aware adoption probability is defined as a function depending on the
number of times the influences are received.

Denote by ℎ(𝑢, 𝐼𝑖) the probability function that a node 𝑢 adopts an
influence 𝐼𝑖. We have 0 ≤ ℎ(𝑢, 𝐼𝑖) ≤ 1 and ∑

𝐼𝑖∈ ℎ(𝑢, 𝐼𝑖) = 1 for any
influence 𝐼𝑖 and any activated node 𝑢. Specially, if an influence 𝐼𝑖 is
not exposed to 𝑢, ℎ(𝑢, 𝐼𝑖) = 0. And if only one influence 𝐼𝑖 is exposed to
𝑢, ℎ(𝑢, 𝐼𝑖) = 1.

The conformity-aware adoption probability is modeled based on
the following two observations of common phenomena in information
diffusion process.

Observation one: Literature [6–10] in social psychology report that
the conformity influence increases with the number of influencers and
follows a similar linear pattern. Besides, to ensure a good decision
is made, an individual usually supports the choice that the majority
of people make and the probability of supporting a choice increases
with the population supporting the same choice. We assume that the
adoption probability of an influence increases with the number of times
the influence is received.

Observation two: When a person learns about a product for the first
time, it makes a deep impression. Nevertheless, the impact will wane as
the number of times the same information is received increases. In other
words, the marginal gain of the adoption probability of an influence
decreases as the number of times the influence is received increases.

4.2.1. Linear adoption probability
Based on the two observations above, the conformity-aware adop-

tion probability function is defined as

ℎ(𝑢, 𝐼𝑖) = 𝐻(𝑁𝐴(𝑢, 𝐼𝑖)) =
|𝑁𝐴(𝑢, 𝐼𝑖)|

∑

𝐼𝑗∈ |𝑁𝐴(𝑢, 𝐼𝑗 )|
,

here set 𝑁𝐴(𝑢, 𝐼𝑗 ) ∈ 𝑁𝑖𝑛(𝑢) consists of all the neighbors that propagate
nfluence 𝐼𝑗 to node 𝑢.

We discuss the properties of the adoption probability function for an
influence 𝐼 based on an assumption that seeds of competitive influences
remain unchanged. We have the following conclusion.

Corollary 4.1. The adoption probability function ℎ(𝑢, 𝐼𝑖) = 𝐻(𝑁𝐴(𝑢, 𝐼𝑖))
is a function from 𝑁𝑖𝑛(𝑢)

2 to 𝑅, where 𝑁𝑖𝑛(𝑢)
2 is the power set of 𝑁𝑖𝑛(𝑢)

and 𝑅 is the set of real numbers. ℎ(𝑢, 𝐼𝑖) is non-negative, monotone, and
submodular.

Corollary 4.2. For any set 𝑋 ⊆ 𝑌 ⊆ 𝑁𝑖𝑛(𝑢) and any set 𝑊 ⊆ 𝑁𝑖𝑛(𝑢)−𝑌 ,
we have

𝐻(𝑋 ∪𝑊 ) −𝐻(𝑋) ≥ 𝐻(𝑌 ∪𝑊 ) −𝐻(𝑌 ). (1)

.3. Adoption under the C-IC model

The adoption 𝑓 (𝑆𝑖) under the C-IC model is the expected number of
odes that adopt an influence 𝐼𝑖 by using its seed set 𝑆𝑖. Additionally,
he overall adoption  (𝑆) =

∑

||
𝑖=1 𝑓 (𝑆𝑖) is the sum of adoptions of all

he influences.

heorem 4.3. Given the seed set 𝑆 =
⋃

||
𝑖=1 𝑆𝑖, the overall adoption  (𝑆)

s non-negative, monotone, and submodular. Therefore,  (𝑆) will reach
he maximum when the seed sets of all the influences do not overlap and
𝑆| =

∑

||
𝑖=1 |𝑆𝑖| is the maximum.

In the rest of this section, we focus on analyzing the adoption of a
pecific influence.

heorem 4.4. Given the influence graph 𝐺 = (𝑉 ,𝐸, 𝑝) and the set
𝑐 = {𝑆𝑗 |𝑗 ≠ 𝑖, 1 ≤ 𝑗 ≤ ||}, the adoption 𝑓 (𝑆𝑖) of the influence 𝐼𝑖 under
he C-IC model is non-negative, monotone, and submodular.

We illustrate the complexity of computing the two adoption func-

ions below.
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Theorem 4.5. Computing the overall adoption  (𝑆) =
∑

||
𝑖=1 𝑓(𝑆𝑖) under

he C-IC model is #P-hard.

heorem 4.6. Given the set of competitive seed sets 𝑐 = {𝑆𝑗 |𝑗 ≠ 𝑖, 1 ≤
≤ ||}, Computing the adoption 𝑓 (𝑆𝑖) of 𝐼𝑖 on 𝑆𝑖 under the C-IC model
s #P-hard.

.4. Problem definition

Given an influence graph 𝐺, the number of seeds 𝑘, and the adoption
robability function ℎ(𝑢, 𝐼𝑖), we define the overall adoption maximiza-
ion (O-AM) and the single adoption maximization (S-AM) under the
-IC model.

efinition 4.1 (Overall adoption maximization (O-AM)). O-AM aims to
ind out a seed set 𝑆 =

⋃

||
𝑖=1 𝑆𝑖 that maximizes the overall adoption

(𝑆) =
∑

||
𝑖=1 𝑓(𝑆𝑖) under the C-IC model.

Since  (𝑆) will reach the maximum when the seed sets of all the
nfluences do not overlap and |𝑆| =

∑

||
𝑖=1 |𝑆𝑖| is the maximum. More-

ver,  (𝑆) under the C-IC model is equal to 𝜎(𝑆) under the IC model.
herefore, the O-AM problem under the C-IC model is equivalent to
he IM problem under the IC model, which asks for a seed set 𝑆 to
aximize 𝜎(𝑆). Furthermore, the O-AM problem under the C-IC model

s NP-hard, since the IM problem under the IC model is NP-hard.

efinition 4.2 (Single adoption maximization for (S-AM)).. Given set
𝑆𝑗 |𝑗 ≠ 𝑖, 1 ≤ 𝑗 ≤ ||} of all competitive influences, S-AM for 𝐼𝑖 requires
inding out a seed set 𝑆𝑖 of size 𝑘 that maximizes the adoption 𝑓 (𝑆𝑖)
nder the C-IC model.

The S-AM problem under the C-IC model is NP-hard, since when
| = 1, S-AM is equivalent to the IM problem under the IC model.
herefore, S-AM is not easier than IM which is NP-hard.

. Reverse adoption estimation

Computing the adoption 𝑓 (𝑆𝑖) of an influence under the C-IC model
s #P-hard and the S-AM problem is NP-hard. The diffusion simulation-
ased method can be used to estimate 𝑓 (𝑆𝑖). Benefitting from the

nonnegativity, monotonicity, and submodularity of 𝑓 (𝑆𝑖), the greedy
algorithm can be used to tackle the S-AM problem and provides a
(1 − 1∕𝑒 − 𝜖)-approximate optimal solution. The greedy algorithm runs
∑𝑘−1

𝑖=0 (𝑛 − 𝑖) adoption estimations to obtain 𝑘 seeds for the S-AM prob-
lem. However, the running time of the greedy algorithm is prohibited,
especially for large scale networks.

To overcome the challenges, we propose a reverse adoption esti-
mation (RAE) method based on a reverse multiple influence sampling
(RMIS) technology for the C-IC model for the S-AM problem.

We first demonstrate the mathematical basis of the RAE method
in Section 5.1. Then we describe the RMIS process and explain how
to compute the adoption probability under the C-IC model in Sec-
tion 5.2. After that, we illustrate how to select seeds by updating the
marginal adoption gains of candidate seeds in Section 5.3. Finally,
the two technologies are integrated into the DSSA framework [11] in
Section 5.4.

5.1. Mathematical basis of the RAE method

The RAE technology is proposed to bridge the gap between esti-
mating adoption and the C-IC model, which avoids the inefficiency of
estimating the adoption by repeatedly simulating the influence diffu-
sion processes. It is based on the idea that the expected adoption 𝑓 (𝑆𝑖)
f the influence 𝐼𝑖 under the C-IC model can be estimated by estimating
he expected adoption probability 𝐸[ℎ(𝑢, 𝐼 )].
6

𝑖

Table 2
Notations in Algorithm 1.

Notation Definition

𝑢 the sampling source selected randomly
𝑛𝑟 a structure representing an RR node
𝑛𝑟 .𝑖𝑑 a number representing an RR node
𝑛𝑟 .𝑙𝑒𝑣𝑒𝑙 the distance from 𝑢 to 𝑛𝑟
𝑛𝑟 .𝑁𝑢 the neighbor set of 𝑢 in the paths from 𝑢 to 𝑛𝑟
𝑔𝑟 a structure corresponding to an RR graph
𝑔𝑟 .𝑁𝑟 the set consisting of all RR nodes
𝑔𝑟 .𝑑𝑐 the distance from competitive seeds to 𝑢
𝑔𝑟 .𝑁𝑟(𝑣) the RR node structure in 𝑔𝑟 .𝑁𝑟 whose 𝑖𝑑 equals 𝑣
𝑁𝑢(𝐼) the set of 𝑢’s neighbors spreading 𝐼 to 𝑢

Algorithm 1 RMIS
Input: The reverse influence graph 𝐺𝑇 , a randomly selected node 𝑢, and the

competitive seed set 𝑆𝑐
Output: A structure corresponding to the random RR graph, namely 𝑔𝑟
1: struct{𝑖𝑑; 𝑙𝑒𝑣𝑒𝑙; 𝑁𝑢; }𝑛𝑟;
2: struct{𝑁𝑟; 𝑑𝑐 ; 𝑡𝑐 ; }𝑔𝑟;
3: 𝑔𝑟.𝑑𝑐 ← ∞ and 𝑔𝑟.𝑡𝑐 ← 0;
4: 𝑙𝑒𝑣𝑒𝑙 ← 0 and 𝑠𝑒𝑒𝑑𝑠𝑐 ← ∅;
5: 𝑛𝑟.𝑖𝑑 ← 𝑢, 𝑛𝑟.𝑙𝑒𝑣𝑒𝑙 ← 𝑙𝑒𝑣𝑒𝑙, and 𝑛𝑟.𝑁𝑢 ← ∅;
6: 𝑔𝑟.𝑁𝑟 ← 𝑔𝑟.𝑁𝑟

⋃

{𝑛𝑟};
7: if 𝑢 ∈ 𝑆𝑐 then
8: 𝑔𝑟.𝑑𝑐 ← 𝑙𝑒𝑣𝑒𝑙 and 𝑔𝑟.𝑡𝑐 ← |(𝑢)|;
9: Return 𝑔𝑟;

10: 𝑠𝑒𝑒𝑛 ← {𝑢}, 𝑎𝑐𝑡𝑖𝑣𝑒 ← ∅, and 𝑛𝑒𝑥𝑡 ← {𝑢};
11: while 𝑛𝑒𝑥𝑡 ≠ ∅ && 𝑠𝑒𝑒𝑑𝑠𝑐 = ∅ do
2: 𝑎𝑐𝑡𝑖𝑣𝑒 ← 𝑛𝑒𝑥𝑡 and 𝑛𝑒𝑥𝑡 ← ∅;

13: 𝑙𝑒𝑣𝑒𝑙 ← 𝑙𝑒𝑣𝑒𝑙 + 1;
14: for each 𝑣 ∈ 𝑎𝑐𝑡𝑖𝑣𝑒 do
15: for each 𝑤 ∈ 𝑁𝑜𝑢𝑡(𝑣) do
16: if 𝑤 ∉ 𝑠𝑒𝑒𝑛 then
17: if 𝑣 activates 𝑤 then
18: 𝑛𝑒𝑥𝑡 ← 𝑛𝑒𝑥𝑡

⋃

{𝑤} and 𝑠𝑒𝑒𝑛 ← 𝑠𝑒𝑒𝑛
⋃

{𝑤};
19: 𝑛𝑟.𝑖𝑑 ← 𝑤 and 𝑛𝑟.𝑙𝑒𝑣𝑒𝑙 ← 𝑙𝑒𝑣𝑒𝑙;
20: if 𝑙𝑒𝑣𝑒𝑙 = 1 then
21: 𝑛𝑟.𝑁𝑢 ← {𝑤};
22: else
23: 𝑛𝑟.𝑁𝑢 ← 𝑔𝑟.𝑁𝑟(𝑣).𝑁𝑢;
24: 𝑔𝑟.𝑁𝑟 ← 𝑔𝑟.𝑁𝑟

⋃

{𝑛𝑟};
25: if 𝑤 ∈ 𝑆𝑐 then
26: 𝑔𝑟.𝑑𝑐 ← 𝑙𝑒𝑣𝑒𝑙 and 𝑠𝑒𝑒𝑑𝑠𝑐 ← 𝑠𝑒𝑒𝑑𝑠𝑐

⋃

{𝑤};
27: else
28: if 𝑤 ∈ 𝑛𝑒𝑥𝑡 && 𝑣 activates 𝑤 then
29: 𝑔𝑟.𝑁𝑟(𝑤).𝑁𝑢 ← 𝑔𝑟.𝑁𝑟(𝑤).𝑁𝑢

⋃

𝑔𝑟.𝑁𝑟(𝑣).𝑁𝑢;
30: if 𝑠𝑒𝑒𝑑𝑠𝑐 ≠ ∅ then
31: for each 𝑠 ∈ 𝑠𝑒𝑒𝑑𝑠𝑐 do
32: for each 𝐼 ∈ (𝑠) do
33: 𝑁𝑢(𝐼) = 𝑁𝑢(𝐼)

⋃

𝑔𝑟.𝑁𝑟(𝑠).𝑁𝑢;
34: 𝑔𝑟.𝑡𝑐 ←

∑

𝐼𝑗∈,𝑗≠𝑖
|𝑁𝑢(𝐼𝑗 )|;

35: Return 𝑔𝑟;

Theorem 5.1. Given the competitive seed sets 𝑐 = {𝑆𝑗 |𝑗 ≠ 𝑖, 1 ≤ 𝑗 ≤
||}, the adoption 𝑓 (𝑆𝑖) of the influence 𝐼𝑖 on a seed set 𝑆𝑖 under the C-IC
model is 𝑛 time the expected adoption probability 𝐸[ℎ(𝑢, 𝐼𝑖)], where 𝑢 is an
arbitrary node in the influence graph 𝐺.

A variable 𝑃 (𝑢, 𝐼𝑖) is defined as the adoption probability with which
an arbitrary node 𝑢 ∈ 𝐺 adopts 𝐼𝑖. Hence, we have 𝑃 (𝑢, 𝐼𝑖) = 𝐸[ℎ(𝑢, 𝐼𝑖)]
and 𝑓 (𝑆𝑖) = 𝑛 ⋅ 𝑃 (𝑢, 𝐼𝑖) according to Theorem 5.1. The S-AM problem
under the C-IC model is equivalent to identifying 𝑘 nodes to maximize
𝑃 (𝑢, 𝐼𝑖).

5.2. Reverse multiple influence sampling

𝑃 (𝑢, 𝐼𝑖) is estimated based on the following ideas. A random variable

𝑝(𝑢, 𝐼𝑖) is defined as the possibility with which a uniformly randomly
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selected node 𝑢 ∈ 𝐺 adopts 𝐼𝑖 in a random diffusion process. Thus,
f we have sufficient instances of 𝑝(𝑢, 𝐼𝑖), we can approximate 𝑃 (𝑢, 𝐼𝑖)
ith the mean of these instances due to 𝑃 (𝑢, 𝐼𝑖) = 𝐸[𝑝(𝑢, 𝐼𝑖)]. To achieve

his goal, the RMIS algorithm is proposed to generate an instance of
(𝑢, 𝐼𝑖). We first select a node 𝑢 uniformly at random from the reverse
nfluence graph 𝐺𝑇 which is the transpose graph of 𝐺. Then, an RMIS
s conducted in 𝐺𝑇 as presented in Algorithm 1 and outputs a structure
𝑟. Finally, we exploit 𝑔𝑟 to calculate an instance of 𝑝(𝑢, 𝐼𝑖), denoted by
𝑔𝑟 (𝑢, 𝐼𝑖), as described in Section 5.2.1.

To facilitate understanding of Algorithm 1, some important no-
ations and their meanings are listed in Table 2. As described in
lgorithm 1, an RMIS proceeds like a random breadth-first traversal

rom 𝑢. First of all, we identify whether 𝑢 is a competitive seed or not
Lines 7-9). If not, we put 𝑢 into the set 𝑛𝑒𝑥𝑡 to start searching for
odes which are able to influence it (Line 10). In the loop (Lines 14-
9), each out-neighbor of each node in 𝑎𝑐𝑡𝑖𝑣𝑒 is attempted to activate
Lines 17 and 29) with the influence probability between the two
odes. The RMIS ends after a loop ends if no nodes are activated or
ompetitive seeds are activated in the loop (Line 11). Activating the
ompetitive seeds causes the RMIS to terminate early because the nodes
ctivated in subsequent loops cannot influence 𝑢. Because the RMIS is
he reverse process of influence diffusion under the C-IC model. Unlike
he breadth-first traversal, a node can be activated more than once by
ifferent nodes in the same loop (Lines 27-29). This case corresponds
o a node that can activate multiple out-neighbors in 𝐺 under the C-
C model. Furthermore, that a node is activated by different nodes in
he RMIS process means it can spread influences to 𝑢 along different
aths. Correspondingly, 𝑁𝑢 of such a node is set to the union of 𝑁𝑢
f the nodes that activate it (Line 29). To facilitate the computation of
(𝑢, 𝐼𝑖), we compute the total number of times 𝑢 receives competitive
nfluences, denoted by 𝑔𝑟.𝑡𝑐 , after the RMIS process ends (Lines 30-34).

xample. Fig. 3(a) exhibits an RMIS process from a randomly selected
ode 𝑢. Since 𝑢 is not a competitive seed, the RMIS process searches
he nodes that can influence it until the competitive seeds (𝑏 and 𝑐)
re activated. If an activated node 𝑣 activates another node 𝑤, we add
new structure 𝑛𝑟 corresponding to 𝑤 into 𝑔𝑟. Note that the node set

ext to the symbol of each node in Fig. 3(a) is its 𝑁𝑢. For example, 𝑎’s
𝑢 = {𝑑, 𝑒} is the union of 𝑑’s 𝑁𝑢 = {𝑑} and 𝑒’s 𝑁𝑢 = {𝑒}, since 𝑎 is

ctivated by 𝑑 and 𝑒. It means that 𝑎 can influence 𝑔 via 𝑑 and 𝑒.

.2.1. Adoption probability computation
Logically, the activated nodes and activated edges in an RMIS

rocess make up a reverse reachable (RR) graph, denoted by 𝑔𝑅, which
s an un-weighted directed graph. In 𝑔𝑅, if there is a path from 𝑢 to a
ode 𝑤, 𝑤 is able to spread influences to 𝑢. Let 𝑔 be the transpose graph
f 𝑔𝑅 and we calculate the adoption probability, denoted by 𝑝𝑔𝑅 (𝑢, 𝐼𝑖),
f 𝑢 on 𝑔𝑅 by 𝐻(𝑁𝐴(𝑢, 𝐼𝑖)) that is the probability of 𝑢 adopting 𝐼𝑖 in 𝑔.

In order to calculate 𝑝𝑔𝑅 (𝑢, 𝐼𝑖), we need to calculate the number of
imes 𝑢 receives each influence, i.e., the number of neighbors sending
ach influence to 𝑢. Any node sends all the influences it has received to
he nodes it activates under the C-IC model. Besides, if there are paths
rom an activated neighbor 𝑛𝑢 of 𝑢 to a node 𝑤 in 𝑔𝑟, 𝑛𝑢 is added into
’s 𝑁𝑢 in Algorithm 1. Hence, each seed can send all the influences to
through the nodes in its 𝑁𝑢. As a result, given the seeds, we can get

he neighbors sending each influence to 𝑢 and compute the number of
imes 𝑢 receives competitive influences (Lines 31-34 in Algorithm 1).

xample. Fig. 3(b) exhibits how the influences spread in the transpose
raph of 𝑔𝑅 where 𝑎 is 𝐼𝑖’s seed (yellow), and 𝑏 and 𝑐 are the com-
etitive seeds. 𝐼𝑖 is spread to 𝑢 twice via 𝑑 and 𝑒, and the competitive
nfluences are sent to 𝑢 four times via 𝑒 and 𝑓 . Therefore, 𝑢 will adopt
nfluence 𝐼𝑖 with the probability 𝑝𝑔𝑅 (𝑢, 𝐼𝑖) = 1∕3.
7

𝐼

Fig. 3. Illustrate RMIS and the adoption probability computation.

5.3. Seed selection

Algorithm 1 outputs 𝑔𝑟 that corresponds to an RR graph 𝑔𝑅. Denoted
by 𝛤𝑔𝑟 (𝑆𝑖) the adoption of 𝑆𝑖 on 𝑢 in 𝑔𝑟 and let 𝛤𝑔𝑟 (𝑆𝑖) = 𝑝𝑔𝑅 (𝑢, 𝐼𝑖), where
𝑢 is the sampling source of 𝑔𝑟 and 𝑆𝑖 is 𝐼𝑖’s seed set. Denoted by 𝑆𝑖,𝑔𝑟 the
set of 𝐼𝑖’s seeds in 𝑔𝑟 and by 𝑁𝑢(𝐼𝑖) the set of 𝑢’s out-neighbors spreading
𝐼𝑖 to 𝑢. Hence we have 𝑁𝑢(𝐼𝑖) =

⋃

𝑣∈𝑆𝑖,𝑔𝑟
𝑔𝑟.𝑁𝑟(𝑣).𝑁𝑢, where 𝑔𝑟.𝑁𝑟(𝑣).𝑁𝑢

is 𝑁𝑢 of 𝑔𝑟.𝑁𝑟(𝑣). We calculate the adoption gain 𝛤𝑔𝑟 (𝑆𝑖) as

𝑔𝑟 (𝑆𝑖) =

{

1, if 𝑝𝑆𝑖 ,𝑔𝑟 < 𝑔𝑟.𝑑𝑐 ;
|𝑁𝑢(𝐼𝑖)|

|𝑁𝑢(𝐼𝑖)|+𝑔𝑟 .𝑡𝑐
, if 𝑝𝑆𝑖 ,𝑔𝑟 = 𝑔𝑟.𝑑𝑐 ,

where 𝑔𝑟.𝑡𝑐 is the number of times 𝑢 receive the competitive influences
and 𝑝𝑆𝑖,𝑔𝑟

is the shortest distance from 𝑢 to 𝑆𝑖,𝑔𝑟 .
Denote by 𝑟 the set consisting of large numbers of outputs of

Algorithm 1. The adoption of 𝐼𝑖 on a seed set 𝑆𝑖 on the outputs in 𝑟,
denoted by 𝛤𝑟 (𝑆𝑖), is calculated by 𝛤𝑟 (𝑆𝑖) = 𝛴𝑔𝑟∈𝑟𝛤𝑔𝑟 (𝑆𝑖)∕|𝑟|. We
ave the following conclusion.

heorem 5.2. Given the set of competitive seed sets 𝑐 = {𝑆𝑗 |𝑗 ≠
, 1 ≤ 𝑗 ≤ ||}, the adoption 𝛤𝑟 (𝑆𝑖) of the influence 𝐼𝑖 based on 𝑟 is
on-negative, monotone, and submodular.

In order to find a seed set of size 𝑘 with a maximum adoption
ased on 𝑟, we develop a Seed-Selection algorithm in Algorithm 2.
n Algorithm 2, the marginal gain of each node is initialized before
electing the first seed (Lines 3-5). For a node 𝑣 in an output 𝑔𝑟,
ssume it is a new seed and calculate the marginal gain on 𝑔𝑟 by
𝑔𝑟 ({𝑣}

⋃

𝑆𝑖)−𝛤𝑔𝑟 (𝑆𝑖). Then we calculate the marginal gain of the node
y accumulating all marginal gains of it on the outputs in 𝑟. The seeds
re selected one by one until the number of seeds reaches 𝑘 (Lines 6-
2). In each loop, the node providing the maximum marginal gain is
hosen as a new seed 𝑠 (Line 7). Then we update the marginal gains of
he nodes in the outputs that contain 𝑠 (Lines 9-11). For a node in an
utput 𝑔𝑟, the new marginal gain on 𝑔𝑟 should be calculated based on
𝑠}

⋃

𝑆𝑖. Thus, we update the marginal gain by subtracting the original
arginal gain based on 𝑆𝑖 and then adding the new marginal gain based

n {𝑠}
⋃

𝑆𝑖. Finally, we output 𝑆𝑖 and 𝛤𝑟 (𝑆𝑖) which is the adoption of
(Line 14).
𝑖
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Algorithm 2 Seed-Selection
Input: A set of outputs of Algorithm 1 𝑟, an integer 𝑘
utput: A seed set 𝑆𝑖 of the influence 𝐼𝑖 and the adoption 𝛤𝑟

(𝑆𝑖)
1: 𝑆𝑖 ← ∅ and 𝛤𝑟

(𝑆𝑖) ← 0;
2: Set the marginal gain 𝛾(𝑣) to be 0 for each node 𝑣 in 𝑉 ;
3: for each 𝑔𝑟 in 𝑟 do
4: for each 𝑣 in 𝑔𝑟 do
5: 𝛾(𝑣) ← 𝛾(𝑣) + 𝛤𝑔𝑟 ({𝑣}

⋃

𝑆𝑖) − 𝛤𝑔𝑟 (𝑆𝑖);
6: for 𝑖 = 1 to 𝑘 do
7: 𝑠 ← argmax{𝑢∈𝑉 −𝑆𝑖} 𝛾(𝑢);
8: for each 𝑔𝑟 containing 𝑠 do
9: for each 𝑣 in 𝑔𝑟 and 𝑣 ≠ 𝑠 do
0: 𝛾(𝑣) ← 𝛾(𝑣) − (𝛤𝑔𝑟 ({𝑣}

⋃

𝑆𝑖) − 𝛤𝑔𝑟 (𝑆𝑖));
1: 𝛾(𝑣) ← 𝛾(𝑣) + (𝛤𝑔𝑟 ({𝑣}

⋃

{𝑠}
⋃

𝑆𝑖) − 𝛤𝑔𝑟 ({𝑠}
⋃

𝑆𝑖));
2: 𝛤𝑟

(𝑆𝑖) ← 𝛤𝑟
(𝑆𝑖) + 𝛾(𝑠);

3: 𝑆𝑖 ← 𝑆𝑖
⋃

{𝑠};
4: Return 𝑆𝑖 and 𝛤𝑟

(𝑆𝑖);

Theorem 5.3. Let 𝑆+
𝑖 be the seed set output by Algorithm 2. Let 𝑆∗

𝑖 be
an optimal seed set with maximum adoption 𝛤𝑟 (𝑆𝑖) over all sets of size 𝑘
on the output set 𝑟. 𝛤𝑟 (𝑆

+
𝑖 ) ⩾ (1 − 1∕𝑒) ⋅ 𝛤𝑟 (𝑆

∗
𝑖 ) holds.

Example. Fig. 3(c) and Fig. 3(d) explain how to initialize and update
the marginal gain of each node in 𝑔𝑅, respectively. Let 𝛾𝑔𝑅 (𝑣) denote the
marginal gain of a node 𝑣 in 𝑔𝑅. In Fig. 3(c), there are two competitive
seeds, 𝑏 and 𝑐, and there are no seeds of the influence 𝐼𝑖. We compute
the marginal gain of each node based on the assumption that it is a
new seed. For instance, we have 𝛾𝑔𝑅 (𝑢) = 1 since if 𝑢 is the seed of 𝐼𝑖,
𝑢 must adopt 𝐼𝑖. If 𝑒 is the seed of 𝐼𝑖, we get 𝛾𝑔𝑅 (𝑒) = 1 because 𝐼𝑖 will
reach 𝑢 earlier than the competitive influences from 𝑏 and 𝑐. Besides,
assuming 𝑐 is a seed of 𝐼𝑖, 𝑐 spreads two influences to 𝑢 and 𝑏 spreads
three influences to 𝑢, respectively. In the case, 𝛾𝑔𝑅 (𝑐) = 1∕5 is because
𝑢 only receives 𝐼𝑖 once from 𝑓

In Fig. 3(d), we assume 𝑎 has been chosen to be a seed of 𝐼𝑖 and
the marginal gains of nodes in 𝑔𝑅 need updating. Fig. 3(d) presents the
updated marginal gain of each node and these marginal gains decrease
compared to that in Fig. 3(c). In this case, we adjust the value of the
marginal gain of a node 𝑣 by using 𝛾𝑔𝑅 (𝑣) = 𝛤𝑔𝑅 ({𝑣}

⋃

{𝑎}) − 𝛤𝑔𝑅 ({𝑎}).
For example, 𝛾𝑔𝑅 (𝑑) = 2∕3, since 𝛾𝑔𝑅 (𝑑) = 𝛤𝑔𝑅 ({𝑑}

⋃

{𝑎}) − 𝛤𝑔𝑅 ({𝑎}) =
1−1∕3 = 2∕3. And we find 𝛾𝑔𝑅 (𝑏) = 0 because even if 𝑏 is used as a new
seed of 𝐼𝑖, the number of times 𝑢 receives 𝐼𝑖 keeps the same. In addition,
if 𝑐 is used as a new seed of 𝐼𝑖, we have 𝛾𝑔𝑅 (𝑐) = 𝛤𝑔𝑅 ({𝑐}

⋃

{𝑎}) −
𝛤𝑔𝑅 ({𝑎}) = 3∕7 − 1∕3 = 2∕21

5.4. RAE+DSSA algorithm

The DSSA [11] algorithm, one of the state-of-the-art algorithms,
provides a (1 − 1∕𝑒 − 𝜖)-approximate solution with a probability of at
least (1 − 𝛿) under the IC model. It strives to improve the efficiency of
tackling the IM problem while ensuring the approximation guarantee
and reliability of the solution.

The RAE method and the Seed-Selection algorithm bridge the gap
between the C-IC model and the DSSA algorithm. We adapt DSSA to fit
the C-IC model that models multiple competitive influences spreading
simultaneously in a social network. We exploit the RAE method to
compute adoptions based on 𝑟 in the changed DSSA algorithm. We
replace the RIS technology with the RMIS technology to generate sam-
ples for estimating adoption and replace the Max-Coverage algorithm in
the DSSA algorithm with the Seed-Selection algorithm to provide the
seed set with the maximum adoption and its adoption. The changed
algorithm is called RAE+DSSA.

Since the Seed-Selection algorithm provides a (1−1∕𝑒)-approximate
solution based on 𝑟. According to [11], we have the following conclu-
sion: Given 𝜖 ∈ (0, 1) and 𝛿 ∈ (0, 1), RAE+DSSA returns an (1 − 1∕𝑒 −
𝜖)-approximate optimal solution with probability at least (1 − 𝛿).
8

6. One-hop adoption estimation

To reduce the time and space complexity of estimating adoption,
only seeds and their out-neighbors are taken into consideration. The
adoption of an influence is defined as the sum of the adoption gains
(the adoption probabilities of the influence) on its seeds and their
out-neighbors.

Denote by 𝑔(𝑆𝑖, 𝑣0) the adoption gain that a specific influence 𝐼𝑖
can obtain on a node 𝑣0 by using the seed set 𝑆𝑖. 𝑣0 may be in one
of the following three states. (1) If 𝑣0 is a seed of influence 𝐼𝑖, we have
𝑔(𝑆𝑖, 𝑣0) = 1

|(𝑣0)|
. (2) If 𝑣0 is not a seed of influence 𝐼𝑖 but 𝑣0 is a

seed of any competitive influence, we have 𝑔(𝑆𝑖, 𝑣0) = 0. (3) If 𝑣0 is
not a seed of any influence, we can compute 𝑔(𝑆𝑖, 𝑣0) by using Eq. (2).
In this case, we consider an in-coming star graph 𝐺𝑖𝑛(𝑣0) = (𝑉 ′, 𝐸′, 𝑝′)
which is a subgraph of 𝐺. 𝑉 ′ includes 𝑣0 and its in-neighbors, i.e., 𝑉 ′ =
{𝑣0}

⋃

𝑁𝑖𝑛(𝑣0). 𝐸′ includes all the edges from the in-neighbors to 𝑣0.
Denote by 𝑇 and 𝑆 the seed set of all the influences and 𝐼𝑖 in 𝑁𝑖𝑛(𝑣0),

respectively, i.e., 𝑆 = 𝑆𝑖
⋂

𝑁𝑖𝑛(𝑣0) and 𝑇 = (
⋃

||
𝑗=1 𝑆𝑗 )

⋂

𝑁𝑖𝑛(𝑣0). Denote
by  the set consisting of all subsets of 𝑇 . We have

𝑔(𝑆𝑖, 𝑣0) =
∑

𝑇 ′∈

∏

𝑣∈𝑇 ′
𝑝𝑣 ⋅

∏

𝑣∈𝑇−𝑇 ′
(1 − 𝑝𝑣) ⋅

|𝑆 ∩ 𝑇 ′
|

∑

𝑣∈𝑇 ′ |(𝑣)|
, (2)

here 𝑝𝑣 is the probability with which 𝑣 activates 𝑣0.
The time complexity of computing 𝑔(𝑆𝑖, 𝑣0) by using Eq. (2) is

(2|𝑇 |). However, Eq. (2) only computes an adoption gain on just one
ode. Therefore, an approximation of the adoption gain is imperative
o reduce the time complexity. To simplify the computation, we first
ransform Eq. (2). Let set 𝐶 = 𝑇 − 𝑆 be the seed set in which seeds
nly serve for the competitive influences. Denote by  and  the set
onsisting of all subsets of 𝑆 and 𝐶, respectively. Since any subset of 𝑇
an be uniquely divided into two subsets of 𝑆 and 𝐶. We have

(𝑆𝑖, 𝑣0) =
∑

𝑆′∈

∑

𝐶′∈

{

∏

𝑣∈𝑆′
𝑝𝑣 ⋅

∏

𝑣∈𝐶′
𝑝𝑣 ⋅

∏

𝑣∈𝑆−𝑆′
(1 − 𝑝𝑣)

⋅
∏

𝑣∈𝐶−𝐶′
(1 − 𝑝𝑣) ⋅

|𝑆′
|

∑

𝑣∈𝑆′ |(𝑣)| +
∑

𝑣∈𝐶′ |(𝑣)|

}

.

Since the in-neighbors activate 𝑣0 independently in the C-IC model,
he adoption gain can be computed as

(𝑆𝑖, 𝑣0) =
∑

𝑆′∈

{

∏

𝑣∈𝑆′
𝑝𝑣 ⋅

∏

𝑣∈𝑆−𝑆′
(1 − 𝑝𝑣) ⋅

∑

𝐶′∈

∏

𝑣∈𝐶′
𝑝𝑣

⋅
∏

𝑣∈𝐶−𝐶′
(1 − 𝑝𝑣) ⋅

|𝑆′
|

∑

𝑣∈𝑆′ |(𝑣)| +
∑

𝑣∈𝐶′ |(𝑣)|

}

.

Since the influence probabilities are small in C-IC models, we re-
lace 1 − 𝑝𝑣 in ∏

𝑣∈𝐶−𝐶′ (1 − 𝑝𝑣) with 1 and neglect terms with 𝐶 ′ ≠ ∅
n the above equation and get
∑

′∈

∏

𝑣∈𝐶′
𝑝𝑣 ⋅

∏

𝑣∈𝐶−𝐶′
(1 − 𝑝𝑣) ⋅

|𝑆′
|

∑

𝑣∈𝑆′ |(𝑣)| +
∑

𝑣∈𝐶′ |(𝑣)|
≈

|𝑆′
|

∑

𝑣∈𝑆′ |(𝑣)|
.

Then, we further simplify the computation by only considering
terms with |𝑆′

| = 1 and finally approximate 𝑔(𝑆𝑖, 𝑣0) as

𝑔(𝑆𝑖, 𝑣0) ≈
∑

𝑆′∈

∏

𝑣∈𝑆′
𝑝𝑣 ⋅

∏

𝑣∈𝑆−𝑆′
(1 − 𝑝𝑣)⋅

|𝑆′
|

∑

𝑣∈𝑆′ |(𝑣)|

≈
∑

𝑢∈𝑆
𝑝𝑢 ⋅

∏

𝑣∈𝑆−{𝑢}
(1 − 𝑝𝑣) ⋅

1
|(𝑢)|

(3)

Suppose 𝑠 ∈ 𝑁𝑖𝑛(𝑣0) is a candidate seed of 𝐼𝑖 and 𝑆 is the current
seed set of 𝐼𝑖 in 𝑁𝑖𝑛(𝑣0). Based on Eq. (3), the marginal gain of 𝑠 on 𝑣0,
enoted by 𝛥(𝑠, 𝑆, 𝑣0), is estimated as

(𝑠, 𝑆𝑖, 𝑣0) = 𝑔(𝑆𝑖
⋃

{𝑠}, 𝑣0) − 𝑔(𝑆𝑖, 𝑣0)

= 𝑝𝑠 ⋅
∏

(1 − 𝑝𝑣) ⋅
1 − 𝑝𝑠 ⋅ 𝑔(𝑆𝑖, 𝑣0).

(4)
𝑣∈𝑆 |(𝑠)|
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Table 3
Datasets.

Dataset 𝑛 𝑚 Type

NetHEPT 15.2K 31.4K Undirected
NetPHY 37.1K 174.2K Undirected
Enron 36.7K 367.7K Directed
Epinions 131.6K 840.8K Directed
DBLP 0.6M 2.0M Undirected
Pokec 1.6M 30.6M Directed
Orkut 3.0M 117.2M Undirected
LiveJournal 4.8M 68.5M Directed

Based on Eq. (4), the total marginal gain  (𝑠, 𝑆𝑖) of 𝑠 is estimated
as the sum of marginal gains on 𝑠 and its out-neighbors. Intuitively, the
doption gain on 𝑠 is defined as 𝛥(𝑠, 𝑆𝑖, 𝑠) =

1
|(𝑠)| − 𝑔(𝑆𝑖, 𝑠). Therefore,

we have
 (𝑠, 𝑆𝑖) = 𝛥(𝑠, 𝑆𝑖, 𝑠) +

∑

𝑣∈𝑁𝑜𝑢𝑡(𝑠),𝑣∉𝑆𝐶

𝛥(𝑠, 𝑆𝑖, 𝑣). (5)

A greedy strategy is used to select the seeds with maximum marginal
gain iteratively until the number of seeds reaches 𝑘 in Algorithm 3.
In each loop, the marginal gains of two classes of nodes change after
adding a new seed 𝑠 into 𝑆𝑖 and need to be updated. One class includes
odes that share common out-neighbors with 𝑠. The marginal gains
f those nodes obtained from the common out-neighbors will reduce
fter adding 𝑠 into 𝑆𝑖 according to Eq. (4) and Eq. (5). The other class
ncludes the in-neighbors of 𝑠 since they cannot activate 𝑠 and obtain
arginal gains from 𝑠. Note that we only update the marginal gains

hat will change after selecting a new seed instead of re-computing the
arginal gains of all nodes (Line 6). Therefore, the running time of
lgorithm 3 is further reduced.

Algorithm 3 GOAE
Input: Seed number 𝑘, influence graph 𝐺 = (𝑉 ,𝐸, 𝑝), seed sets of the

competitive influences
utput: A seed set 𝑆𝑖 of the influence 𝐼𝑖

1: Let seed set 𝑆𝑖 = ∅;
2: Initialize the marginal gain  (𝑢, 𝑆𝑖) for every node 𝑢 ∈ 𝑉 ;
3: for 𝑖 = 1 to 𝑘 do
4: 𝑠 ← argmax{𝑢∈𝑉 −𝑆𝑖}  (𝑢, 𝑆𝑖);
5: Add 𝑠 into 𝑆𝑖;
6: Update  (𝑢, 𝑆𝑖) of nodes whose marginal gains change after adding 𝑠

into 𝑆𝑖;
7: Return 𝑆𝑖;

7. Experiments

Numerous experiments are conducted to evaluate the performance
of RAE+DSSA and GOAE in this section. All the experiments are con-
ducted on a Linux machine with 2.4 GHz Intel Xeon E5-2680 v4 and
251.6 GB memory. The algorithms tested are implemented in C++ and
compiled with g++ 4.8.5.

7.1. Experimental setup

Datasets: Seven real network datasets are used in the experiments,
as listed in Table 3. NetHEPT, NetPHY, and DBLP are three collabo-
ration networks, which are downloaded from [46]. Enron is an email
communication network and Epinions, Pokec, Orkut, and LiveJournal
are online social networks, which are downloaded from SNAP [47].

Influence probability settings. We adopt the following three clas-
sic models to set the influence probabilities.

UC [12]: The influence probabilities of all the edges are uniformly
set to 0.1.

WC [12]: The multiplicity of edges is considered in the WC model.
For an edge (𝑢, 𝑣), we set the influence probability 𝑝 = 𝑐 ∕𝑑 (𝑣),
9

𝑢𝑣 𝑢𝑣 𝑖𝑛
where 𝑐𝑢𝑣 is the number of the parallel edges from 𝑢 to 𝑣 and 𝑑𝑖𝑛(𝑣)
is the in-degree of 𝑣. The WC model is asymmetric.

TC [15]: The influence probability of each edge is selected uni-
formly at random from the following three values 0.001, 0.01, and 0.1.
The three values reflect the different strength of influence from weak
to strong.

Size of seed set. Although there is no limit to the number of
competitive influences in the C-IC model, we consider two competitive
influences in the experiments. Two settings of the seed number 𝑘 are
onsidered: (i) 𝑘 ∈ {1, 10, 20, 30, 40, 50}, referred to as the small 𝑘

setting. Meanwhile, the sizes of the two competitive seed sets are set
to twenty. We first assign the top ten largest out-degree nodes to the
two competitive influences as common seeds. Then we select seeds from
the remaining nodes and assign them to the two competitive influences
as follows. Step (a), the node with the largest out-degree is assigned
to one competitive influence and the other competitive influence gets
the node with the second largest out-degree. Step (b), exchange the
order in which we assign the selected seeds. Step (c), return to Step
(a) until the competitive influences both have twenty seeds. (ii) 𝑘 ∈
{1, 5000, 10000, 15000, 20000, 25000}, referred to as the large 𝑘 setting.
Moreover, the sizes of the two competitive seed sets are set to ten
thousand. They have two thousand five hundred common seeds whose
out-degree are in the top two thousand five hundred. The other seeds
of the two competitive influences are assigned as in the small 𝑘 setting.

Parameter settings. We implement a sequential version of the
D-SSA-fix algorithm [11] and integrate the RMIS algorithm and the
Seed-Selection algorithm into it for the S-AM problem under the C-IC
model. It removes the influence of parallel sampling in the original
version on computational performance. When not confusing, DSSA
refers to our implementation in this section. In all the experiments, we
set 𝜀 = 0.1 and 𝛿 = 0.1, and retain the settings of other parameters
of the D-SSA-fix algorithm in [11]. For each experiment, we run each
algorithm five times and report the mean of the measurements. To
evaluate and compare the quality of the solutions returned by the two
algorithms, we run one thousand diffusion simulations for each seed
set and report the average adoption as its adoption.

7.2. Experimental results under small 𝑘 setting

We experimentally evaluate RAE+DSSA and GOAE under the small
𝑘 setting on NetHEPT, NetPHY, Enron, Epinions, and DBLP. The small 𝑘
setting is a classic setting of the size of seed sets, which is used in most
existing work on the IM problem. We compare the solution quality, the
running time, and the memory usage of the two algorithms under the
C-IC model with the three influence probability settings. The results of
RAE+DSSA under the WC setting when 𝑘 = 1 are not reported since the
running time is over 5 h.

Solution quality. Fig. 4 shows the adoptions of seed sets returned
by RAE+DSSA and GOAE on the four real-world networks. The adop-
tions increase with the size of the seed set in all experiments on the
four networks. The adoptions of most seed sets returned by GOAE are
not significantly less than those of seed sets returned by RAE+DSSA.
It illustrates that GOAE returns seed sets of comparable quality to
RAE+DSSA. We additionally report the proportions of the adoptions of
seed sets returned by GOAE to the adoptions of seed sets returned by
RAE+DSSA in Table 4. The results also show that the quality of most
solutions returned by the two algorithms is comparable. Most (85%)
of the proportions are larger than 70%. In some cases, the proportion
even reaches 1. It verifies that the adoption estimated by using Eq. (3)
is a good indicator of seed set quality.

Computation cost. Fig. 5 and Fig. 6 show the running time and
memory usage of RAE+DSSA and GOAE on the four real-world net-
works, respectively. The computation cost, both running time and
memory usage, of RAE+DSSA are mainly affected by the number of
samples and the computation cost of each sample. The computation
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Fig. 4. Adoption vs. 𝑘 under the three influence probability settings on four real-world networks.
Fig. 5. Running time vs. 𝑘 under the three influence probability settings on four real-world networks.
Fig. 6. Memory used vs. 𝑘 under the three influence probability settings on four real-world networks.
Table 4
The proportions of the adoptions of seed sets obtained by GOAE to the adoptions of seed sets obtained by RAE+DSSA.

WC UC TC

𝑘 1 10 20 30 40 50 1 10 20 30 40 50 1 10 20 30 40 50

NetHEPT 0.88 0.78 0.86 0.89 0.87 0.90 0.95 0.90 0.87 0.91 0.91 0.92 0.63 0.87 0.88 0.88 0.88 0.89
NetPHY 1.00 0.82 0.84 0.84 0.85 0.86 0.74 0.86 0.93 0.94 0.91 0.92 0.80 0.81 0.89 0.92 0.95 0.94
Enron 1.00 0.98 0.98 0.96 0.97 0.96 0.66 0.71 0.79 0.79 0.79 0.76 0.68 0.69 0.74 0.73 0.70 0.72
Epinions 0.91 0.90 0.93 0.87 0.90 0.92 0.41 0.74 0.65 0.65 0.69 0.72 0.65 0.76 0.70 0.72 0.74 0.74
DBLP – 0.80 0.84 0.82 0.85 0.84 0.51 1.00 1.00 1.00 1.00 1.00 0.22 0.74 0.76 0.79 0.83 0.82
a
cost of each sample is determined by the RAE method and the num-
ber of samples is determined by DSSA. The computation costs of
RAE+DSSA when 𝑘 = 1 are significantly higher than the computation
osts under other values of 𝑘 since DSSA needs large numbers of
amples to provide an approximation guarantee for the solution when
he adoption of a candidate solution is small. The adoptions of the
andidate solutions increase with 𝑘, which results in a reduction in the
umber of samples required for DSSA. Therefore, the computation cost
f RAE+DSSA decreases when 𝑘 increases. Note that when 𝑘 reaches a
ertain value, this trend will end, after which the computation cost of
AE+DSSA will increase with 𝑘 to provide an approximation guarantee

or the solution. On the contrary, the computation cost of GOAE is not
10

nly significantly lower than the computation cost of RAE+DSSA but
lso grows very slowly with 𝑘. Fig. 5 shows GOAE runs at least two
orders of magnitude faster than RAE+DSSA. Furthermore, GOAE runs
up to four orders of magnitude faster than RAE+DSSA under the three
influence probability settings. RAE+DSSA is very time-consuming for
large networks, especially when 𝑘 = 1. In Fig. 6, the memory usage
of RAE+DSSA is at most two orders of magnitude larger than that
of GOAE. Besides, the computation cost of RAE+DSSA is significantly
influenced by the influence probability settings, while that of GOAE are
very closed under the three influence probability settings. For the same
𝑘, the computation cost of RAE+DSSA varies, because the adoption of
the solution is affected by the three influence probability settings. Like
the previous analysis, if the adoption of the solution is less, e.g., under

the TC setting, RAE+DSSA will need more samples.
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Table 5
Adoptions of seed sets obtained by GOAE under the three influence probability settings on Pokec.

Adoption (k)

𝑘 1 100 200 300 400 500 600 700 800 900 1000 2000 3000 4000 5000 10 000

TC 0.47 3.67 5.83 7.87 9.18 10.14 11.13 12.15 13.18 14.17 15.21 18.74 19.74 20.74 21.74 26.74
UC 1.92 8.78 10.41 12.22 14.15 16.07 17.33 17.43 17.53 17.63 17.73 18.73 19.72 20.72 21.72 26.72
WC 0.51 8.84 12.86 16.66 17.14 17.23 17.31 17.40 17.49 17.59 17.68 18.63 19.61 20.60 21.59 26.56
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Fig. 7. Experiments on NetHEPT.

Fig. 8. Adoption on NetHEPT under the C-IC model and the non-conformity model.

7.2.1. Experimental results on NetHEPT
We also implement the CELF algorithm in [13], as the baseline

method, and run it on NetHEPT for the S-AM problem. In the CELF
algorithm, the adoptions are estimated based on influence diffusion
simulations and we run ten thousand simulations for each candidate
seed set. But we do not use it on other datasets, since it takes tens of
hours for one experiment.

To compare with RAE+DSSA and GOAE, the experimental results
are presented in Fig. 7. We report the adoption, running time, and used
memory of the three methods. The three measurements of RAE+DSSA
and GOAE show similar trends as shown in Fig. 4, 5, and 6. As shown
in Fig. 7(a), RAE+DSSA achieves comparable adoptions with the CELF
algorithm. The adoptions obtained by GOAE are slightly less than the
adoptions obtained by RAE+DSSA and CELF. However, GOAE is three
to five orders of magnitude faster than RAE+DSSA and five to six orders
of magnitude faster than CELF on NetHEPT in Fig. 7(b). In addition,
RAE+DSSA is up to three orders of magnitude faster than CELF on
NetHEPT. Fig. 7(c) shows GOAE and CELF use nearly the same amount
of memory which is much less than the memory used by RAE+DSSA. In
summary, GOAE and RAE+DSSA outperform CELF, since running time
is the main challenge of the S-AM problem.

To evaluate the C-IC model, we compare it with a non-conformity
diffusion model and we also use the CELF algorithm under the non-
conformity diffusion model on NetHEPT, under which a user selects
one influence from her received influences with the same probabilities.
For example, if a user receives three influences, and then she will adopt
one of them with a one-third probability for each received influence.

The adoptions used three influence probabilities settings are shown
in Fig. 8. In Fig. 8, C-IC and NC represent adoptions under the C-IC
model and the non-conformity diffusion model respectively. C-IC(NC)
stands for adoptions under the C-IC model, but the seed sets are
selected under the non-conformity diffusion model. Fig. 8 shows that
the adoptions under the non-conformity diffusion model are always
larger than the adoptions under the C-IC model. Besides, the adoptions
denoted by C-IC(NC) are consistently less than the adoptions under
the C-IC model. It means that if a diffusion model ignores the role of
11
conformity, the adoptions are overestimated and the selected seed sets
are not the optimal. The difference in the adoptions between C-IC(NC)
and C-IC in Figs. 8(a) and 8(c) is small and less than that in Fig. 8(b).
Because the influence probabilities in TC are much smaller than UC and
WC, which means that a user can only be activated by fewer neighbors
and receive fewer influences. It weakens the role of conformity in the
adoption stage and leads to a small difference in the adoptions between
C-IC(NC) and C-IC. Similarly, a user can only be activated by a few
neighbors under the WC settings, since the influence probabilities in
WC are set as 𝑝𝑢𝑣 = 𝑐𝑢𝑣∕𝑑𝑖𝑛(𝑣), which makes the expected number
f neighbors activating a user is small. This results in the adoptions
f C-IC(NC) and C-IC being close. While under the UC model, an
ctivated user can receive more influences from more friends, which
nables conformity to play a role in the adoption stage. Therefore, in
ig. 8(b), the adoptions under the C-IC model are significantly larger
han the adoptions denoted by C-IC(NC). Due to the easy access to
nline content and the convenience of communication, a person in a
ocial network often receives a wealth of messages both in variety and
requency from her friends. We believe the real information dissemina-
ion environments are closer to the UC influence probabilities setting.
o summarize, compared with a non-conformity diffusion model, the
-IC model is more conducive to obtaining superior seed sets.

.3. Experimental results under large 𝑘 setting

We additionally evaluate GOAE algorithms under the large 𝑘 setting
n the three large real-world networks, i.e., Pokec, LiveJournal, and
rkut.
Adoption. We report the adoptions of solutions obtained by GOAE

n Pokec in Table 5 varying 𝑘 from 1 to 10000. Table 5 shows the
adoption increases with 𝑘. Besides, the results indicate that only a
small fraction of nodes can influence a large number of nodes. We
observe that the adoption gain becomes almost equal to the number
of new seeds added after this small fraction of nodes are selected as
seeds. The phenomenon is consistent with the motivation of adoption
maximization.

Computation cost. Fig. 9 and Table 6 show the running time and
the memory usage of GOAE on the three large networks, respectively.
Similar to the experimental results under the small 𝑘 setting, the
computation cost of GOAE is very low and increases very slowly with 𝑘.
The results illustrate that GOAE scales well for large 𝑘 values on large
networks. For example, GOAE returns 25000 seeds within 150 s using
less than 6 GB of memory on Orkut which has more than 117 million
edges.

For each value of 𝑘, the running time is similar and the memory
usage is almost the same under the three influence probability settings.
It means that the computation cost of GOAE is not influenced by the
influence probability setting. Furthermore, we observe that selecting
one seed seems time-consuming compared to selecting a large number
of seeds. This is because GOAE needs to calculate and sort the marginal
gains of all the nodes before selecting the first seed.

8. Conclusion

In this paper, we propose the C-IC model to model influence diffu-
sion and adoption in a competitive social network to obtain a more
realistic and effective seed set. The adoption under the C-IC model
is non-negative, monotone, and submodular. Furthermore, two AM
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Fig. 9. Running time vs. 𝑘 under the three influence probability settings on three
eal-world networks.

Table 6
Memory used vs. 𝑘 under the three influence probability settings.

Memory used (M)

𝑘 1 5000 10 000 15 000 20 000 25 000

Pokec 618 1050 1050 1050 1050 1050
LiveJournal 2600 2657 2657 2657 2657 2657
Orkut 2372 6039 6039 6039 6039 6039

problems, O-AM and S-AM, are proposed, which are both NP-hard.
The RAE method based on RMIS is presented to estimate the adoption
instead of the method based on influence diffusion simulation. Then
it is integrated into the DSSA framework to obtain a solution to the
S-AM problem with approximate guarantees. In addition, we propose
the GOAE algorithm based on the OAE method for overcoming the
challenge caused by the large-scale networks and large size of seed set.
Experiments on eight real-world networks demonstrate the effective-
ness of the two methods. Moreover, the GOAE algorithm runs up to
four to five orders of magnitude faster than RAE+DSSA. The memory
usage of GOAE is at most two orders of magnitude less than that of
RAE+DSSA.
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Appendix

Proof of Corollary 4.1. Monotonicity and submodularity of ℎ(𝑢, 𝐼𝑖) are
proofed as follows.

Monotonicity of ℎ(𝑢, 𝐼𝑖): For any node 𝑢 ∈ 𝑉 , if 𝑣 is a new
in-neighbor sending 𝐼 to 𝑢, we have
12

𝑖 t
𝐻(𝑁𝐴(𝑢, 𝐼𝑖) ∪ {𝑣}) −𝐻(𝑁𝐴(𝑢, 𝐼𝑖))

=

∑

𝐼𝑗∈,𝐼𝑗≠𝐼𝑖 |𝑁𝐴(𝑢, 𝐼𝑗 )|

(
∑

𝐼𝑗∈ |𝑁𝐴(𝑢, 𝐼𝑗 )|)(
∑

𝐼𝑗∈ |𝑁𝐴(𝑢, 𝐼𝑗 )| + 1)

= 𝑇
(|𝑁𝐴(𝑢, 𝐼𝑖)| + 𝑇 )[(|𝑁𝐴(𝑢, 𝐼𝑖)| + 1) + 𝑇 ]

≥ 0,

(A.1)

here 𝑇 =
∑

𝐼𝑗∈,𝐼𝑗≠𝐼𝑖 |𝑁𝐴(𝑢, 𝐼𝑗 )| ≥ 0. Based on Eq. (A.1), 𝐻(𝑋) ≤ 𝐻(𝑌 )
or any two sets 𝑋 ⊆ 𝑌 ⊆ 𝑁𝑖𝑛(𝑢). Therefore, 𝐻(𝑁𝐴(𝑢, 𝐼𝑖)) is monotone
ncreasing. This is consistent with Observation one.
Submodularity of ℎ(𝑢, 𝐼𝑖): For any 𝑋 ⊆ 𝑌 ⊆ 𝑁𝑖𝑛(𝑢) and 𝑣 ∈

𝑖𝑛(𝑢) − 𝑌 , we have

(𝑋 ∪ {𝑣}) −𝐻(𝑋)

= 𝑇
(|𝑋| + 𝑇 )[(|𝑋| + 1) + 𝑇 ]

≥ 𝑇
(|𝑌 | + 𝑇 )[(|𝑌 | + 1) + 𝑇 ]

= 𝐻(𝑌 ∪ {𝑣}) −𝐻(𝑌 ),

ince |𝑌 | ≥ |𝑋|, where 𝑇 =
∑

𝐼𝑗∈,𝐼𝑗≠𝐼𝑖 |𝑁𝐴(𝑢, 𝐼𝑗 )|. Therefore, 𝐻(𝑁𝐴(𝑢,
𝑖)) is submodular. This is consistent with Observation two. □

roof of Corollary 4.2.. When 𝑊 = ∅, |𝑊 | = 0, Eq. (1) is established.
For any set 𝑊 , |𝑊 | ≥ 0, if 𝐻(𝑋 ∪𝑊 ) −𝐻(𝑋) ≥ 𝐻(𝑌 ∪𝑊 ) −𝐻(𝑌 )

olds. Then, add a new element 𝑤 into 𝑊 . We have

(𝑋 ∪𝑊 ∪ {𝑣}) −𝐻(𝑋)

= 𝐻(𝑋 ∪𝑊 ∪ {𝑣}) −𝐻(𝑋 ∪𝑊 ) +𝐻(𝑋 ∪𝑊 ) −𝐻(𝑋)

≥ 𝐻(𝑌 ∪𝑊 ∪ {𝑣}) −𝐻(𝑌 ∪𝑊 ) +𝐻(𝑌 ∪𝑊 ) −𝐻(𝑌 )

= 𝐻(𝑌 ∪𝑊 ∪ {𝑣}) −𝐻(𝑌 ),

ecause 𝐻(𝑋 ∪𝑊 ∪{𝑣})−𝐻(𝑋 ∪𝑊 ) ≥ 𝐻(𝑌 ∪𝑊 ∪{𝑣})−𝐻(𝑌 ∪𝑊 ) and
(𝑋 ∪𝑊 ) −𝐻(𝑋) ≥ 𝐻(𝑌 ∪𝑊 ) −𝐻(𝑌 ). This corollary is proofed. □

roof of Theorem 4.3. Given the seed set 𝑆 =
⋃

||
𝑖=1 𝑆𝑖, the overall

doption  (𝑆) under the C-IC model is equal to 𝜎(𝑆) under the IC
odel. Thus,  (𝑆) is non-negative, monotone, and submodular. More-

ver,  (𝑆) achieves the maximum value when the size of 𝑆 reaches
aximum, which needs seed sets of all the influences do not overlap.
heorem 4.3 is proved. □

roof of Theorem 4.4. In 𝐺, each edge 𝑒 = (𝑢, 𝑣) has a weight
𝑒 ∈ (0, 1] representing the probability that 𝑢 activates 𝑣. The influence
raph 𝐺 is interpreted as a distribution  over determined unweighted
nstance graphs. An instance graph 𝑔 ∈  is a randomly generated
raph where each edge 𝑒 is independently removed from 𝐺 with the
robability 1 − 𝑝𝑒. Our proof for the monotonicity and submodularity
f 𝑓 (𝑆𝑖) is based on the instance graphs in .

That a node in an instance graph is reachable from the seeds of
n influence 𝐼𝑖 means it is activated by 𝐼𝑖. A node may be activated
y multiple influences and it will adopt only one influence from these
nfluences. The adoption of 𝐼𝑖 in an instance graph 𝑔 is denoted by
(𝑔, 𝑆𝑖), where 𝑆𝑖 is the seed set of 𝐼𝑖.
Monotonicity of 𝑓 (𝑔, 𝑆𝑖): We first prove the monotonicity of 𝑓 (𝑔, 𝑆𝑖)

n an instance graph 𝑔. For a node 𝑣 in 𝑔, denoted by 𝑓𝑔(𝑣, 𝑆𝑖) the adop-
ion that 𝐼𝑖 can obtain from 𝑣, i.e., 𝑓𝑔(𝑣, 𝑆𝑖) = ℎ(𝑣, 𝐼𝑖) = 𝐻(𝑁𝐴(𝑣, 𝐼𝑖)).
irst of all, we analyze the adoption 𝑓𝑔(𝑣, 𝑆𝑖) in 𝑔, since 𝑓 (𝑔, 𝑆𝑖) =
𝑣∈𝑉 𝑓𝑔(𝑣, 𝑆𝑖). Suppose a new seed 𝑠 ∈ 𝑉 −𝑆𝑖 is added into 𝑆𝑖. 𝑓𝑔(𝑣, 𝑆𝑖)

s monotone increasing, if 𝑓𝑔(𝑣, 𝑆𝑖
⋃

{𝑠}) ≥ 𝑓𝑔(𝑣, 𝑆𝑖) holds for any 𝑆𝑖
nd 𝑠.

For the sake of simplicity, we first define three auxiliary variables,
𝑠, 𝑝𝑆𝑖

, and 𝑝𝑆𝑐
. They are the minimum distances from the new seed

, the seed set 𝑆𝑖, and the competitive seed set 𝑆𝑐 =
⋃

𝑆𝑗∈𝑐 𝑆𝑗 to 𝑣,
espectively.

(1) If 𝑣 = 𝑠, adding the new seed 𝑠 into 𝑆𝑖 may result in the following

wo cases.
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(1.1) if 𝑝𝑆𝑐
= 0, i.e. 𝑣 ∈ 𝑆𝑐 , we have 𝑓𝑔(𝑣, 𝑆𝑖

⋃

{𝑠}) > 0 and
𝑓𝑔(𝑣, 𝑆𝑖) = 0 due to 𝑝𝑆𝑖

> 𝑝𝑆𝑐
.

(1.2) if 𝑝𝑆𝑐
> 0, we have 𝑓𝑔(𝑣, 𝑆𝑖

⋃

{𝑠}) = 1 for 𝑝𝑠 = 0 < 𝑝𝑆𝑐
and

𝑓𝑔(𝑣, 𝑆𝑖) ≥ 0.
Thus, given 𝑣 = 𝑠, 𝑓𝑔(𝑣, 𝑆𝑖

⋃

{𝑠}) − 𝑓𝑔(𝑣, 𝑆𝑖) ≥ 0 holds.
(2) If 𝑣 ≠ 𝑠, there are more possible cases after adding 𝑠 into 𝑆𝑖.
(2.1) if 𝑝𝑆𝑖

< 𝑝𝑆𝑐
, 𝑓𝑔(𝑣, 𝑆𝑖

⋃

{𝑠}) = 𝑓𝑔(𝑣, 𝑆𝑖) = 1 holds no matter how
long 𝑝𝑠 is.

(2.2) if 𝑝𝑆𝑖
> 𝑝𝑆𝑐

, we have 𝑓𝑔(𝑣, 𝑆𝑖
⋃

{𝑠}) ≥ 0 and 𝑓𝑔(𝑣, 𝑆𝑖) = 0.
(2.3) if 𝑝𝑆𝑖

= 𝑝𝑆𝑐
, we have 0 < 𝑓𝑔(𝑣, 𝑆𝑖) < 1. (2.3.1) if 𝑝𝑠 < 𝑝𝑆𝑖

= 𝑝𝑆𝑐
,

𝑓𝑔(𝑣, 𝑆𝑖
⋃

{𝑠}) = 1 holds; (2.3.2) if 𝑝𝑠 > 𝑝𝑆𝑖
= 𝑝𝑆𝑐

, 𝑓𝑔(𝑣, 𝑆𝑖
⋃

{𝑠}) =
𝑓𝑔(𝑣, 𝑆𝑖) holds; (2.3.3) if 𝑝𝑠 = 𝑝𝑆𝑖

= 𝑝𝑆𝑐
, 𝑓𝑔(𝑣, 𝑆𝑖

⋃

{𝑠}) ≥ 𝑓𝑔(𝑣, 𝑆𝑖)
holds due to the following analysis. Denote by 𝑁𝑔(𝑣, 𝑆𝑖) the set of 𝑣’s
in-neighbors that spread 𝐼𝑖 to 𝑣, when 𝑆𝑖 is used as the seed set of 𝐼𝑖.
We have |𝑁𝑔(𝑣, 𝑆𝑖)| ≤ |𝑁𝑔(𝑣, 𝑆𝑖

⋃

{𝑠})| for 𝑁𝑔(𝑣, 𝑆𝑖) ⊆ 𝑁𝑔(𝑣, 𝑆𝑖
⋃

{𝑠}).
Since the adoption probability function ℎ(𝑢, 𝐼𝑖) is monotone increasing,
we get 𝑓𝑔(𝑣, 𝑆𝑖

⋃

{𝑠}) ≥ 𝑓𝑔(𝑣, 𝑆𝑖).
Thus, given 𝑣 ≠ 𝑠, 𝑓𝑔(𝑣, 𝑆𝑖

⋃

{𝑠}) − 𝑓𝑔(𝑣, 𝑆𝑖) ≥ 0 holds.
To summarize, 𝑓 (𝑔, 𝑆𝑖) is monotone increasing owing to 𝑓 (𝑔, 𝑆𝑖) =

∑

𝑣∈𝑉 𝑓𝑔(𝑣, 𝑆𝑖).
Submodularity of 𝑓 (𝑔, 𝑆𝑖): We prove the submodularity of 𝑓 (𝑔, 𝑆𝑖)

based on 𝑓𝑔(𝑣, 𝑆𝑖). Firstly, we aim to prove that

𝑓𝑔(𝑣, 𝑆𝑖 ∪ {𝑠}) − 𝑓𝑔(𝑣, 𝑆𝑖) ≥ 𝑓𝑔(𝑣, 𝑇𝑖 ∪ {𝑠}) − 𝑓𝑔(𝑣, 𝑇𝑖) (A.2)

holds for any 𝑆𝑖 and 𝑇𝑖, if 𝑆𝑖 ⊆ 𝑇𝑖 ⊆ 𝑉 and 𝑠 ∈ 𝑉 − 𝑇𝑖.
(1) If 𝑣 = 𝑠, we have 𝑓𝑔(𝑣, 𝑇𝑖∪{𝑠}) = 𝑓𝑔(𝑣, 𝑆𝑖∪{𝑠}) owing to 𝑠 ∈ 𝑉 −𝑇𝑖.

Additionally, 𝑓𝑔(𝑣, 𝑇𝑖) ≥ 𝑓𝑔(𝑣, 𝑆𝑖) holds due to 𝑇𝑖 ⊇ 𝑆𝑖. Thus, Eq. (A.2)
holds.

(2)If 𝑣 ≠ 𝑠, there are more possible cases. We have 𝑝𝑇𝑖 ≤ 𝑝𝑆𝑖
because

of 𝑆𝑖 ⊆ 𝑇𝑖.
(2.1)If 𝑝𝑠 < 𝑝𝑆𝑐

, we have 𝑓𝑔(𝑣, 𝑇𝑖 ∪ {𝑠}) = 𝑓𝑔(𝑣, 𝑆𝑖 ∪ {𝑠}) = 1 and
𝑓𝑔(𝑣, 𝑇𝑖) ≥ 𝑓𝑔(𝑣, 𝑆𝑖). Eq. (A.2) holds.

(2.2)If 𝑝𝑠 > 𝑝𝑆𝑐
, we have 𝑓𝑔(𝑣, 𝑇𝑖∪{𝑠}) = 𝑓𝑔(𝑣, 𝑇𝑖) and 𝑓𝑔(𝑣, 𝑆𝑖∪{𝑠}) =

𝑓𝑔(𝑣, 𝑆𝑖). Eq. (A.2) holds.
(2.3) If 𝑝𝑠 = 𝑝𝑆𝑐

, there are three cases. (2.3.1) If 𝑝𝑠 = 𝑝𝑆𝑐
< 𝑝𝑇𝑖 , we

have 𝑓𝑔(𝑣, 𝑇𝑖∪{𝑠}) = 𝑓𝑔(𝑣, 𝑆𝑖∪{𝑠}) and 𝑓𝑔(𝑣, 𝑇𝑖) = 𝑓𝑔(𝑣, 𝑆𝑖) = 0. Eq. (A.2)
holds. (2.3.2) If 𝑝𝑠 = 𝑝𝑆𝑐

> 𝑝𝑇𝑖 , we have 𝑓𝑔(𝑣, 𝑇𝑖 ∪ {𝑠}) − 𝑓𝑔(𝑣, 𝑇𝑖) = 0. In
addition, we have 𝑓𝑔(𝑣, 𝑆𝑖 ∪ {𝑠}) − 𝑓𝑔(𝑣, 𝑆𝑖) ≥ 0. Thus, Eq. (A.2) holds.
(2.3.3) If 𝑝𝑠 = 𝑝𝑆𝑐

= 𝑝𝑇𝑖 , we consider 𝑣’s in-neighbors spreading 𝐼𝑖 to 𝑣.
Denote by 𝑁𝑔(𝑣, 𝑆𝑖) the set of 𝑣’s in-neighbors which spread 𝐼𝑖 to 𝑣 in 𝑔,
when 𝑆𝑖 is used as the seed set of 𝐼𝑖. Given 𝑊 = 𝑁𝑔(𝑣, 𝑇𝑖∪{𝑠})−𝑁𝑔(𝑣, 𝑇𝑖),
we have 𝑓𝑔(𝑣, 𝑇𝑖 ∪ {𝑠}) − 𝑓𝑔(𝑣, 𝑇𝑖) = 𝐻(𝑁𝑔(𝑣, 𝑇𝑖) ∪ 𝑊 ) − 𝐻(𝑁𝑔(𝑣, 𝑇𝑖)) ≤
𝐻(𝑁𝑔(𝑣, 𝑆𝑖)∪𝑊 )−𝐻(𝑁𝑔(𝑣, 𝑆𝑖)) according to Corollary 4.2. In addition,
we have 𝑁𝑔(𝑣, 𝑆𝑖) ⊆ 𝑁𝑔(𝑣, 𝑇𝑖) because of 𝑆𝑖 ⊆ 𝑇𝑖. Further, we have
𝑊 ⊆ 𝑁𝑔(𝑣, 𝑆𝑖∪{𝑠})−𝑁𝑔(𝑣, 𝑆𝑖) and 𝐻(𝑁𝑔(𝑣, 𝑆𝑖∪{𝑠})) ≥ 𝐻(𝑁𝑔(𝑣, 𝑆𝑖)∪𝑊 )
according to Corollary 4.1. Therefore, we have of 𝑓𝑔(𝑣, 𝑆𝑖 ∪ {𝑠}) −
𝑓𝑔(𝑣, 𝑆𝑖) = 𝐻(𝑁𝑔(𝑣, 𝑆𝑖 ∪ {𝑠})) − 𝐻(𝑁𝑔(𝑣, 𝑆𝑖)) ≥ 𝐻(𝑁𝑔(𝑣, 𝑆𝑖) ∪ 𝑊 ) −
𝐻(𝑁𝑔(𝑣, 𝑆𝑖)). As a result, Eq. (A.2) holds.

To summarize, 𝑓 (𝑔, 𝑆𝑖) is submodular owing to 𝑓 (𝑔, 𝑆𝑖) =
∑

𝑣∈𝑉
𝑓𝑔(𝑣, 𝑆𝑖), i.e. 𝑓 (𝑔, 𝑆𝑖 ∪ {𝑠}) − 𝑓 (𝑔, 𝑆𝑖) ≥ 𝑓 (𝑔, 𝑇𝑖 ∪ {𝑠}) − 𝑓 (𝑔, 𝑇𝑖).

Monotonicity and submodularity of 𝑓 (𝑆𝑖): Since 𝑓 (𝑔, 𝐼𝑖) is mono-
tone and submodular and 𝑔 ∈  is an instance graph of the influence
graph 𝐺. The adoption 𝑓 (𝑆𝑖) is monotone and submodular due to
𝑓 (𝑆𝑖) =

∑

𝑔∈ 𝑃𝑟(𝑔)⋅𝑓 (𝑔, 𝑆𝑖), where 𝑃𝑟(𝑔) is the probability of generating
𝑔. □

Proof of Theorem 4.5. Since computing 𝜎(𝑆) under the IC model
is #P-hard. In addition, computing  (𝑆) under the C-IC model is
equivalent to computing 𝜎(𝑆) under the IC model. Therefore, the time
complexity of computing  (𝑆) is #P-hard. □

Proof of Theorem 4.6. The IC model is a special case of the C-IC
model when || = 1. Therefore, computing 𝑓 (𝑆𝑖) under the C-IC model
is not easier than computing 𝜎(𝑆) under the IC model. Theorem 4.6 is
proved. □
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Proof of Theorem 5.1. Given the competitive seed sets, we have

𝑓 (𝑆𝑖) =
∑

𝑔∈
𝑃𝑟(𝑔) ⋅ 𝑓 (𝑔, 𝑆𝑖)

=
∑

𝑔∈
𝑃𝑟(𝑔) ⋅

∑

𝑢∈𝑔
ℎ(𝑢, 𝐼𝑖)

=
∑

𝑔∈
𝑃𝑟(𝑔) ⋅ 𝑛 ⋅ 𝐸𝑢∈𝑔[ℎ(𝑢, 𝐼𝑖)]

= 𝑛 ⋅ 𝐸[ℎ(𝑢, 𝐼𝑖)]. □

Proof of Theorem 5.2. Like 𝑓𝑔(𝑣, 𝑆𝑖) in the proof of Theorem 4.4,
𝛤𝑔𝑟 (𝑆𝑖) is non-negative, monotone, and submodular. Theorem 5.2 is
proved. □

Proof of Theorem 5.3. 𝛤𝑟 (𝑆𝑖) is non-negative, monotone, and sub-
modular. Algorithm 2 is a greedy algorithm based on 𝛤𝑟 (𝑆𝑖). There-
fore, the seed set 𝑆+

𝑖 output by Algorithm 2 provides a (1 − 1∕𝑒)-
approximation of the optimal solution 𝑆∗

𝑖 on the output set 𝑟. □
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