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Adaptive Spatial-Temporal Graph Convolution
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Abstract—The rapid growth of vehicles as countries become
more developed has brought great challenges to traffic predic-
tion. Recent works model only local or global spatial-temporal
features via graph neural networks (GNNs). Furthermore, the ex-
plicit graph structure information may contain bias, in particular,
the lack of connections among multiple nodes when in fact, they
are interdependent. This results in the inability to accommodate
information interaction and the underutilization of high-quality
information. In this article, we design an adaptive spatial-temporal
graph convolution networks (ASTGCNs) to collaboratively learn
local-global spatial-temporal information for traffic prediction.
Specifically, we obtain different local spatial-temporal information
(i.e. spatial-temporal information of each temporal point) by di-
viding the global spatial-temporal information along the temporal
dimension. For local spatial-temporal information, we establish
an adaptive graph convolution to enhance the ability of graph
convolution networks (GCNs) in managing bias in the explicit
graph structure. We then employ an attention mechanism to learn
the local summarization of dynamic node neighborhoods to obtain
high-quality information. For global spatial-temporal information,
a temporal convolution network (TCN) block and the ordinary
differential equation (ODE) are utilized in our model. In essence,
our proposed ASTGCNs integrates adaptive graph convolution,
attention mechanism, TCN block and ODE to collaboratively learn
local-global spatial-temporal information. Experimental results
show that our ASTGCNs is superior to state-of-art (SOTA) methods
when applied to four real-world datasets.

Index Terms—Adaptive graph convolution, attention
mechanism, local-global spatial-temporal information, ordinary
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I. INTRODUCTION

A. Motivation

INTELLIGENT transportation system (ITS) is one important
barometer in evaluating the modernization and smart level of

a city or country, especially for a region with a huge population
and high traffic flow. In the context of building smart cities,
traffic prediction [1], [2] can effectively promote the sustainable
development of ITS, including safe travel [3], smooth road
traffic [4], etc. Despite the great progress made in the traffic
prediction methods applied to ITS, traffic forecasting still faces
tremendous challenges [5], [6]. According to a report by Beijing
Traffic Management Bureau, the number of motor vehicles in
Beijing rose 279000 in 2021 compared to 2020, and the peak
road congestion index reached 2.048 (i.e the highest congested
city in China). Therefore, designing an efficient traffic prediction
method is very necessary to reduce the difficulty of traffic
management, especially for ITS in smart cities.

With the development of convolutional neural networks
(CNNs), many methods have been applied to traffic predic-
tion and have achieved impressive results in processing traffic
image [7] and video data [8]. For example, ST-ResNet [9]
proposes 2D convolutional residual network to capture spatial
features between regions. STDN [10] adopts 2D CNN and
long short-term memory (LSTM) to learn spatial and temporal
features, respectively. LMST3D-ResNet [11] proposes 3D CNN
and resnet to full exploit spatial-temporal features of multiple
local regions. STAM [12] constructs 3D CNN layers to learn
dynamic spatial-temporal information for videos. However, all
these methods focus on the modelling of Euclidean data.

With the rise of graph representation learning [13], [14], many
researchers focus on the graph traffic data (i.e non-Euclidean
data), and these data are usually irregular [15]. Face with com-
plex and changing traffic situation, graph traffic data can be used
to freely construct different nodes (i.e traffic observation station)
and establish relationships with other nodes. Generally, every
node has different characteristics such as core and non-core re-
gions. The smaller the spatial distance among nodes, the greater
is the impact on their relationship and vice versa. According to
the above analysis, how to effective build a model of graph traffic
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Fig. 1. Obtaining local spatial-temporal information.

prediction is a daunting challenge, especially for dynamic and
real-time traffic environment.

Several existing traffic prediction methods have been applied
to local spatial-temporal information. Li et.al [16] designed a
unified neural network for local traffic subgraph in data se-
quences. Fang et.al [17] proposed to expand the receptive region
of nodes by DAGC, and MS-Net integrates long-range traffic
information and considers multiple-modal external information.
FedTe [18] establishes an optimal regional traffic matrix and
hierarchical GNNs to handle traffic information of multiple local
regions and various traffic variation, respectively. STSGCN [19]
constructs multiple spatial-temporal synchronous modules to
obtain the heterogeneities in the localized features. However,
these methods fail to consider the global spatial-temporal infor-
mation.

Some global spatial-temporal methods have been put for-
ward to achieve traffic prediction. STGCN [20] proposes com-
plete graph convolutional structures to solve mid-and-long term
traffic prediction. DCRNN [21] designs the bidirectional ran-
dom walks and the encoder-decoder module based on RNN
to capture spatial and temporal correlation information, re-
spectively. GraphWaveNet [22] utilizes adaptive dependency
matrix and deep 1D convolution layer to learn spatial-temporal
features. STGODE [23] adopts two TCNs and an ODE to
synchronously extract spatial-temporal features. However, the
above-mentioned local and global traffic prediction methods fail
to jointly consider the local-global spatial-temporal information.
Moreover, the explicit graph structure may contain bias and some
high-quality information is unutilized.

B. Our Contributions

To tackle these problems, we construct a method called
ASTGCNs that collaboratively learns the local-global spatial-
temporal information for traffic prediction. Specifically, we
obtain different local spatial-temporal information (i.e. spatial-
temporal information of each temporal point) by dividing the
global spatial-temporal information along the temporal dimen-
sion as shown in Fig. 1. The significance of local spatial-
temporal information is to know the state of all nodes at each
temporal dimension in detail thereby deeply exploiting the
effective information. For local spatial-temporal information,
adaptive graph convolution improves GCNs’ ability to tackle
bias in the explicit graph structure whereby the adaptive node

parameter learns specific parameters for each node, and the
adaptive graph generation automatically explores the potential
dependencies among nodes. Then, we consider the spatial ad-
jacency matrix in the attention mechanism to learn the local
summarization of dynamic node neighborhoods for high-quality
information. For global spatial-temporal information, we uti-
lize a TCN block to obtain the long-term temporal correla-
tion and an ODE to establish deeper networks. In essence,
our constructed ASTGCNs integrates adaptive graph convolu-
tion, attention mechanism, TCN block and ODE to collabora-
tively learn the local-global spatial-temporal information. We
applied our method on four real-world traffic graph datasets
and the performance of ASTGCNs is superior to the SOTA
methods.

We summarize the main contributions as follows.
� We propose a traffic prediction method called ASTGCNs.

This method integrates adaptive graph convolution, atten-
tion mechanism, TCN block and ODE to collaboratively
learn the local-global spatial-temporal information.

� Our approach is an end-to-end structure, in which adaptive
graph convolution enhances GCNs ability to address bias
in explicit graph structure.

� Our proposed ASTGCNs establishes an attention mecha-
nism which can obtain high-quality information by com-
puting the local summarization of node neighborhoods.

� Experimental results demonstrate that our method outper-
forms SOTA benchmark methods on four real-world traffic
datasets.

C. Organization

The rest of this article is organized as follows. In Section II,
we review the various technologies that have been applied to
traffic prediction. Section III presents the definitions used and
the problem statement to be accomplished. In Section IV, we
propose the ASTGCNs framework and describe each module in
detail. Section V documents the series of experiments performed
as well as the results. Section VI is our conclusion of this work.

II. RELATED WORK

With the building of smart cities and ITS, many deep learning
methods have deployed in traffic forecasting. We review these
methods under three categories: CNNs, GCNs and attention
mechanism.
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A. Convolutional Neural Networks

In recent years, CNNs have achieved remarkable results
in process traffic image and video data. STDN [10] adopts
CNNs and LSTM to capture the spatial-temporal information
for multiple local regions. Ma et.al [24] propose CNNs and
gated recurrent unit (GRU) to select hybrid spatial-temporal
features for short-term traffic prediction. Jia et.al [25] design a
multi-view CNN aimed at modelling adaptive time-varying con-
trol to compute the traffic flow speed. ST-ResNet [9] proposes
a convolutional residual network to learn the spatial features
between regions. LMST3D-ResNet [11] proposes 3D convo-
lutional residual networks to fully exploit the spatial-temporal
features of multiple local regions. Fu et.al [26] establish a
Faster R-CNN-based model to learn the video data in traffic
sign detection. Perafan-Villota et.al [27] systematically integrate
CNNs, Hadoop and Spark frameworks to handle large-scale
traffic videos. Sindhu et.al [28] devise a YOLOv4 based model
to detect vehicles in traffic videos under different environmental
conditions. STAM [12] constructs 3D CNNs layers to learn the
dynamic spatial-temporal information for videos.

B. Graph Convolutional Networks

Recently, the emergence of GCNs in exploring graph spatial-
temporal information for traffic prediction has achieved good
results. STGCN [20] proposes complete graph convolutional
structures to solve mid-and-long term traffic prediction. Deep-
STN+ [29] aims to obtain long-range spatial correlation in-
formation via ConvPlus component and PoI prior knowledge.
DCRNN [21] designs the bidirectional random walks and the
encoder-decoder module based on RNN to capture spatial and
temporal correlation information, respectively. LSGCN [30]
aims to capture long short-term spatial-temporal features via
spatial gated block and GCNs. GSTPRN [31] builds posi-
tion graph convolution, approximate personalized propagation
to enhance spatial position and neighborhood information.
GraphWaveNet [22] utilizes adaptive dependency matrix and
deep 1D convolution layer to learn spatial-temporal features.
AGCRN [32] integrates GRU, node adaptive parameter learning
and data adaptive graph generation to avoid pre-defined graph.
HGCN [33] uses multiple GCNs with spectral pooling in a hi-
erarchical manner for spatial-temporal learning. STGODE [23]
adopts an ODE and two TCN blocks with residual structure to
synchronously extract spatial-temporal features.

C. Attention Mechanism

The attention mechanism sets different values for different
information to obtain high-quality information. ST-RGAN [34]
designs graph attention networks and residual structure for
fine-grained traffic forecasting. AST-GAT [35] establishes
multi-head graph attention block and LSTM to obtain the
spatial-temporal features and temporal features, respectively.
DSANet [36] employs local-global temporal convolution and
self-attention for time series prediction. IGAGCN [37] adopts
causal convolution and attention mechanism for short time spans
and to obtain dynamic information. AGNN [38] calculates an

adaptive local summarization of node neighborhoods to obtain
the attention in the homogeneous graph. ST-LBAGAN [39]
proposes U-Net structure and attention map to handle missing
traffic data imputation. TAGCN [40] employs temporal attention
mechanism for different time granularity (e.g. hour, day and
week-level). ASTGCN [41] integrates attention mechanism and
GCNs for different time periods in traffic forecasting.

Overall, our proposed ASTGCNs is quite different from the
existing literatures. We establish local spatial-temporal informa-
tion to deeply explore the effective information by an adaptive
graph convolution and an attention mechanism. Moreover, we
adopt a temporal convolution network (TCN) block and the
ordinary differential equation (ODE) to obtain global spatial-
temporal information. The above-mentioned modules are inte-
grated for collaborative local-global learning.

III. PRELIMINARY

We describe some basic definitions and the problem statement
for the graph spatial-temporal traffic network.

Definition 1 (Graph traffic network): A graph traffic network
is described as G = (V,E,A), where V presents the set of
nodes; E is the set of edges; A is the adjacency matrix. Note
that we also adopt spatial adjacency matrix Asp [20] in this
article.

Definition 2 (Graph traffic signal matrix): The historical data
of each node at same temporal point t is denoted as Xt =
(X1,t, . . ., Xn−1,t, Xn,t) ∈ RN×F . For all nodes at various tem-
poral points, the graph traffic signal matrix X ∈ RT×N×F is
represented as:

X = [X1, . . ., Xt−1, Xt]
T . (1)

where T denotes whole time; N is the number of nodes; F is
the dimension of each node.

Problem statement: Given the graph traffic signal matrix X
based on a graph traffic networkG, the purpose of the traffic pre-
diction is to learn a function fθ based on historical observation
data to predict the future T ′ situation and it is shown as follows:

{X,G} fθ−→ {Xt+1, . . ., Xt+T ′ }. (2)

IV. THE PROPOSED ASTGCNS ARCHITECTURE

STGODE [23] constructs two TCN blocks with residual struc-
ture and an ODE to synchronously learn global spatial-temporal
features. This motivates us to introduce different local spatial-
temporal information for collaborative local-global learning.
The significance of the local spatial-temporal information is to
understand the state of nodes at different temporal dimensions in
detail so as to deeply exploit the effective information, especially
for dynamic and real-time traffic environment. Our proposed
ASTGCNs and STGODE have several notable differences:

1) Our method jointly considers local and global spatial-
temporal information for collaborative local-global learn-
ing.

2) For local spatial-temporal information, we establish an
adaptive graph convolution and an attention mechanism.
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Fig. 2. (a) Presents ASTGCNs architecture. (b) Shows the detail of ASTGCNs layer for collaborative local-global learning.

3) For global spatial-temporal information, we utilize only
one TCN block without residual structure and an ODE of
spatial adjacency matrix Asp.

Fig. 2(a) presents our ASTGCNs architecture, including two
ASTGCNs layers consisting of several ASTGCNs blocks, a
max pooling layer and an output layer. In Fig. 2(b), the input
spatial-temporal information (i.e. black line) is separated into
two branches (i.e. the green line and the red line). The first
branch (i.e. green line) shows the processing of the differ-
ent local spatial-temporal information, X:t ∈ RN×F (i.e. the
spatial-temporal information of each temporal point) obtained
by dividing the global spatial-temporal information along the
temporal dimension. The second branch (i.e. red line) shows
the processing of the global spatial-temporal information which
is consistent with the input spatial-temporal information. For
local spatial-temporal information (i.e. green line), we employ
an adaptive graph convolution and an attention mechanism (i.e.
green cuboid). For global spatial-temporal information (i.e. red
line), we utilize a TCN block and an ODE (i.e. red cuboid).
Finally, we achieve collaborative local-global learning by the
aggregation of the outputs of the two branches.

A. Local Spatial-Temporal Information

Fig. 3 shows the process of local spatial-temporal information
learning. Specifically, we input different local spatial-temporal
information into an adaptive graph learning module where the
outputs are then passed into an attention mechanism module.
Thereafter, these local spatial-temporal information are aggre-
gated.

1) Adaptive Graph Convolution: Adaptive graph convolu-
tion module includes the adaptive node parameter and adaptive

Fig. 3. Process of local spatial-temporal information learning.

graph generation. Its role is to enhance the ability of the GCNs
to manage bias in the explicit graph structure.

The GCNs of the 1st order Chebyshev adopts the parameters
sharing mode to decrease the number of parameters for node

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on October 20,2023 at 02:24:54 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: ASTGCNS FOR COLLABORATIVE LOCAL-GLOBAL LEARNING IN TRAFFIC PREDICTION 12657

embeddings as shown below:

Q:t = ÂX:tΦ+ b,

Â = In +D
− 1

2 AD
− 1

2 , (3)

where In indicates a unit matrix, D and A are the degree
matrix and the adjacent matrix respectively. X:t ∈ RN×F is the
input and and Q:t ∈ RN×d is the output, Φ ∈ RF×d denotes the
weights and b ∈ Rd represents the bias.

As mentioned, the GCNs utilizes parameter sharing among
all the nodes to decrease the number of parameters. However,
the shared parameter mode leads to the deviation of some im-
portant nodes information. Assigning parameters to each node
Φ ∈ RN×F×d is an efficient method, but Φ is too large to may
cause overfitting problem, especially if N is big enough.

To tackle the above problem, adaptive node parameters adopts
the mode of matrix factorization to enhance GCNs ability.
Specifically, the weights Φ ∈ RN×F×d are replaced by Φ =
EG ·WG, where EG ∈ RN×C is the embedding matrix and
WG ∈ RC×F×d represents a weight pool, and C � N . Taking
a node i as an example, Ei

G extracts parameters Φi from the
shared weight pool WG, and this process is seen as finding the
specific parameters for node i in the set of candidate parameters.
Likewise for bias b. The equation for adaptive node parameter
is:

Q:t = ÂX:tEGWG + EGbG. (4)

In addition, from the perspective of distance factor, the spatial
distance on the graph are defined by computing the physical
distance between the nodes. However, some nodes establish
the interaction by utilizing an intermediate node and the above
process fails to consider some potential dependencies by the in-
termediate node. This causes bias in the explicit graph structure.

Adaptive graph generation aims to automatically explore
potential dependencies in the data to solve bias in the explicit
graph structure. The node embedding EA ∈ RN×de is obtained
by randomly initializing all nodes, where each row of EA is
one node embedding and de indicates the node embedding
dimension. Then, we compute the multiplication of EA and ET

A

to infer the potential dependencies between each pair of nodes
as follows:

Ã = D
− 1

2 AD
− 1

2 = σ(ReLU(EA · ET
A)), (5)

where σ is softmax function.
From (5), the matrix D

− 1
2 AD

− 1
2 is replaced to reduce the

repeated calculations during the training process. EA can au-
tomatically explore the potential dependencies among nodes
during training; thus the equation for adaptive graph generation
is as follows:

Q:t = (In + Ã)X:tΦ. (6)

We then obtain the adaptive graph convolution which com-
bines adaptive node parameter (i.e. (4)) and adaptive graph
generation (i.e. (6)) and it is shown as follows:

Q:t = (In + Ã)X:tEGWG + EGbG. (7)

2) Attention Mechanism: In graph traffic data, each node
establishes various dependency relationships with its neighbors.
However, these dependency relationships bring different levels
of importance of information due to various factors (e,g. spatial
distance, different time, core or non-core regions). How to find
high-quality information from a large of dependency relation-
ship is a daunting challenge, especially for real-time changes in
the local spatial-temporal environment. Therefore, we design an
attention mechanism module to learn the local summarization
of dynamic node neighborhoods for high-quality information.

Based on the outcome of adaptive graph learning, attention
propagation scheme is expressed as:

K:t = PQ:t, (8)

where P ∈ RN×N denotes the propagation function.
For P in the propagation scheme, the attention between the

node i and the node j is shown as:

Pij = (1/C)eβ cos(Q:t,i,Q:t,j), (9)

where C =
∑

j∈N(i)∪i e
β cos(Q:t,i,Q:t,j) calculates the relation

degree between nodes i and j, β is a trainable parameter, and
cos(x, y) = xT /y||x|| ||y|| with the L2 norm ||x||.

We replace the static adjacent matrix A with the spatial
adjacent matrix Asp, and the output is shown as:

Z:t = f(Q:t, A
sp) = softmax(K:t,W ), (10)

where Z:t ∈ RN×d and W ∈ Rd×d is the weights.
Finally, we aggregate different local spatial-temporal infor-

mation Z:t to produce Zlocal ∈ RT×N×d.

B. Global Spatial-Temporal Information

Fig. 4 shows the process of global spatial-temporal informa-
tion learning. Specifically, we input the global spatial-temporal
information into the TCN block module, and then go through
an ODE module, and finally learn the global spatial-temporal
information.

1) Temporal Convolution Network: Temporal convolution
network (TCN) is a kind of one-dimensional dilated convolu-
tional network to learn long-term temporal dependencies. TCN
block contains three hidden layers.

H
(m)
tcn =

{
X, ifm = 0

μ(W (m) ∗(m)
b H

(m−1)
tcn ), ifm = 1, 2, 3

(11)

where X ∈ RT×N×F denotes the initial input and H
(m)
tcn ∈

RT×N×d is the m-th layer output, μ is an activate function (i.e.
ReLU), W (m) is the m-th convolution kernel, b(m) = 2(m−1) is
the dilated rate.

2) Ordinary Differential Equation: Ordinary differential
equation (ODE) addresses the over-smoothing problem with
increasing CGNN [42] network depth. For spatial-temporal
information, we illustrate the discrete expression of the ODE
mathematical definition as:

H(l+1) = H
(l)
ode ×1

α

2
Â×2 U ×3 P +H(0), (12)
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Fig. 4. Process of global spatial-temporal information learning.

where H(l) ∈ RT×N×F is the hidden information of l-th layer,
α ∈ [0, 1] represents a hyperparameter, ×i is matrix multiplica-
tion on mode i, U represents the transform matrix for temporal
dimension, P denotes the characteristics transform matrix, and
H(0) is the original input.

The scheme extracts the spatial information and temporal in-
formation simultaneously based on the input of spatial-temporal
information (i.e. tensor representation). According to different
×i, the complex spatial-temporal dependencies is coupled. To
address the problem of over-smoothing,H(0) is introduced. (12)
is further expanded to:

H(l) =
l∑

i=0

(
H(0) ×1

α

2
Âi ×2 U

i ×3 P
i
)
, (13)

whereH(l) aggregates the information of all layers as the output.
For the detailed explanation of the corollary process of ODE,

please refer to STGODE [23]. The ODE is represented as
follows:

H(t) = ODE

(
dH(t)

dt
,H(0), t

)
, (14)

where dH(t)
dt = H(t)×1 (

α
2 Â− In) +H(t)×2 (U − In) +

H(t)×3 (W − In) +H(0), and t denotes a continuous variable
parameter.

To clearly illustrate the process of global spatial-temporal
information, we jointly describe a TCN block and an ODE.

H(t)global = ODE

(
dH(t)

dt
,H

(m)
tcn , t

)
, (15)

where H(t)global ∈ RT×N×d is the output, and the static

adjacent matrix A is replaced with spatial adjacent ma-

trix Asp, dH(t)
dt = H(t)×1 (

α
2 (In +D

− 1
2 AspD

− 1
2 )− In) +

H(t)×2 (U − In) +H(t)×3 (W − In) +H(0).

C. Collaborative Local-Global Learning

The first branch (i.e. different local spatial-temporal infor-
mation) is processed by an adaptive graph learning and an
attention mechanism, and then we aggregate these information
to capture Zlocal ∈ RT×N×d. The second branch (i.e. global
spatial-temporal information) is learned through a TCN block
and an ODE, and we obtain H(t)global ∈ RT×N×d. Therefore,
the collaborative local-global learning is expressed as:

S = Zlocal +H(t)global. (16)

For multiple ASTGCNs layers, the above-mentioned learning
process of local-global spatial-temporal information is repeated,
in whichS(l) is the output of l-th layer and the input of (l + 1)-th
layer. Moreover, several ASTGCNs blocks are adopted in a
parallel structure to explore the complex spatial-temporal in-
formation and different dependencies.

D. Pooling Layer and Output Layer

Following the ASTGCNs layers, a max-pooling layer can
choose different ASTGCNs blocks to aggregate information,
and then the output layer employs two MLP to generate the
prediction.

The parameters of the model are optimized by the Adam op-
timizer. Huber loss function is used to our proposed ASTGCNs:

Loss(Y, Ỹ ) =

{
1
2 (Y − Ỹ )2, if |Y − Ỹ | ≤ δ;

δ|Y − Ỹ | − 1
2δ

2, if |Y − Ỹ | > δ,
(17)

where δ denotes a hyperparameter to adjust the sensitivity from
squared error loss.

V. EXPERIMENTS

Using four real-world traffic flow datasets, we design differ-
ent experiments to showcase the performance of our proposed
ASTGCNs.

A. Datasets

Caltrans Performance Measurement System (PEMS) has
more than 39,000 sensors on California highways to construct
real-time traffic datasets such as PeMS03, PeMS04, PeMS07,
PeMS08. These real-time highway data are captured every half-
minute and comprise average occupancy, average speed, average
and total flow. Flow refers to the number of vehicles that pass
over the detector in a 30-second period and occupancy is the
fraction of time that a vehicle is over the detector. The data
thus summarize average vehicle flow as a function of occupancy
providing insight into how traffic will flow in a given stretch of
roads.
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TABLE I
BASELINE RESULT COMPARISON ON TRAFFIC PREDICTION

PeMS03: The dataset collects data from 358 sensors with 547
edges and 26208 time steps. The collection time span is from
9/2018 to 11/2018.

PeMS04: The dataset collects data from 307 sensors with 340
edges and 16992 time steps. The collection time span is from
1/2018 to 2/2018.

PeMS07: The dataset collects data from 883 sensors with 866
edges and 28224 time steps. The collection time span is from
5/2012 to 6/2012.

PeMS08: The dataset collects data from 170 sensors with 295
edges and 17856 time steps. The collection time span is from
7/2016 to 8/2016.

B. Settings

We adopt a ratio of 6:2:2 to split the dataset into a training
set, validation set and test set. The hyper-parameters σ and ε of
the spatial adjacency matrix are 10 and 0.5. The learning rate is
0.01 and the regularized factor set to 0.8. The node embedding
dimension (i.e. de) is set to 5. The trainable parameter β is set
to 1. The hidden units are 64, 32, 64 in the TCN block, and each
layer consists of 3 ASTGCNs blocks. 200 epochs are used in the
training. Three classical evaluation metrics are used to evaluate
the performance of the experiments, namely, Root Mean Square
Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute
Percentage Error (MAPE). We employ 60 minutes of historical
traffic data to predict the next 60 minutes of future traffic.

C. Comparision of the Baseline Methods

We select both classical methods as well as state-of-the-art
(SOTA) methods in graph traffic prediction as baselines for
comparison with our proposed ASTGCNs so as to showcase
the effectiveness of our method.

ARIMA [43]: This statistical method adopts residual autocor-
relations for time series.

STGCN [20]: This method constructs graph convolutional
structures to solve mid-and-long term traffic prediction.

DCRNN [21]: This method designs the bidirectional random
walks and the encoder-decoder module based on RNN to capture
spatial and temporal correlation information, respectively.

GraphWaveNet [22]: This method utilizes adaptive depen-
dency matrix and deep 1D convolution layer to learn spatial-
temporal features.

ASTGCN [41]: This method integrates attention mechanism
and GCNs for different time periods in traffic forecasting.

STSGCN [19]: This method employs multiple spatial-
temporal synchronous modules to obtain the heterogeneities in
the localized features.

STGODE [23]: This method adopts an ODE and two TCN
blocks with residual structure to synchronously extract spatial-
temporal features.

D. Result Comparison and Analysis

In Table I, we comprehensively compare the results of multi-
ple baseline methods. It can be clearly seen that our ASTGCNs
outperform the SOTA benchmarks in all four traffic datasets.

We conduct an in-depth analysis of the performance of the
various baseline methods. ARIMA fails to consider spatial-
dimension information. STGCN constructs a simple graph con-
volutional structure to capture the shallow information. DCRNN
designs the RNN structure to limit its mid to long term prediction
performance. GraphWaveNet loses a lot of graph structure infor-
mation because GNNs is not considered. ASTGCN only adopts
an attention mechanism to learn temporal dimension features.
STSGCN does not consider global spatial-temporal features.
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Fig. 5. Comparison of truth and prediction on ASTGCNs. (a) Node 80. (b) Node 256.

STGODE fails to model the different local spatial-temporal
information.

Our ASTGCNs collaboratively learns local-global spatial-
temporal information to perform traffic prediction. For local
spatial-temporal information, we establish an adaptive graph
convolution to enhance the ability of graph convolution networks
(GCNs) to tackle bias in the explicit graph structure. Thereafter,
we employ an attention mechanism to learn the local summa-
rization of dynamic node neighborhoods to obtain high-quality
information. For global spatial-temporal information, a temporal
convolution network (TCN) block and the ordinary differential
equation (ODE) are utilized in our model. Finally, our method
deeply explores the spatial-temporal information fully by ag-
gregating the two types of information. Therefore, ASTGCNs
achieves better result.

E. Analysis of Truth and Prediction on ASTGCNs

In Fig. 5, we compare truth and prediction on ASTGCNs
based on the relationship of traffic flow and temporal. We
observe that the prediction results of ASTGCNs are close to
the truth and reflect the trend of traffic flow changes along the
temporal dimension.

From Fig. 5(a), we find that the high traffic flow of node 80
appeared before 12:00. Compared with the normal traffic flow
period, the change between prediction and truth is obvious in the
high traffic flow period. Fig. 5(b) shows traffic situation of node
256 and the high traffic flow occurs around 12:00. The change
between prediction and truth is smoother than node 80 because
the range of the traffic flow from 40 to 300.

F. Performance of the Proposed ASTGCNs With Different
Node Embedding Dimension

We evaluate the performance of ASTGCNs on the PeMS07
dataset using different node embedding dimension de on the
adaptive graph learning module. Table II shows the performance
under the three metrics: RMSE, MAE and MAPE. We observe
that de = 5 performs better than de = 2 in RMSE and MAE,

TABLE II
RESULT OF DIFFERENT NODE EMBEDDING DIMENSION ON PEMS07 DATASET

TABLE III
RESULT OF DIFFERENT NODE EMBEDDING DIMENSION ON PEMS08 DATASET

but de = 2 performs better than de = 5 in MAPE. Compared to
de = 2 and de = 5, de = 10 yields poor performance.

In additional, we also utilize different de to evaluate the
performance of ASTGCNs on the PeMS08 dataset. Table III
show that de = 5 obtains best result, and de = 10 performs
slightly good than de = 2.

The results of different de on adaptive graph learning module
show that our ASTGCNs obtains better result compared to the
SOTA baselines.

G. Ablation Experiment

To clearly show the performance of the different modules, we
conduct ablation studies of the different modules on PeMS07
dataset. The results are as follows:
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Fig. 6. Results from the different modules. (a) PeMS07. (b) PeMS08.

� NoAdaptive: the method fails to consider adaptive graph
learning to illustrate the effect of bias in the explicit graph
structure.

� NoAttention: the method removes the attention mechanism
to show the different degree of influence of nodes relation-
ship.

� NoODE: the method does not construct the ODE to show
the benefits of a deeper network.

� OneASTGCNsLayer: the method only ulitizes one AST-
GCNs layer to compare single layer and multiple layers
learning.

It can be seen from Fig. 6(a) that all results (i.e. NoAdaptive,
NoAttention, NoODE and OneASTGCNsLayer) on PeMS07
dataset are poorer than ASTGCNs. NoAdaptive yields the worst
performance which illustrates that the bias in the explicit graph
structure is more sensitive to the model, especially for dynamic
and real-time traffic environment. The performance of NoAtten-
tion is improved compared to NoODE and OneASTGCNsLayer,
which reflects that deep network and multiple layers can extract
more spatial-temporal information. The result of NoODE and
OneASTGCNsLayer shows that these two modules have a sim-
ilar effect on the model.

Fig. 6(b) shows the results on PeMS08 dataset. By observing
the performance of all modules, NoAdaptive produces the worst
performance, and the result of NoAttention is improved com-
pared to NoODE and OneASTGCNsLayer. This phenomenon is
consistent with the PeMS07 dataset. However, the performance
of the different modules is smoother (i.e. closer to ASTGCNs)
on PeMS08 dataset.

VI. CONCLUSION

In this article, we address the limitation that existing meth-
ods only consider local or global spatial-temporal information
through modeling different local spatial-temporal information
and global spatial-temporal information. From the local spatial-
temporal information aspect, we adopt an adaptive graph learn-
ing to solve the bias in the explicit graph structure. Moreover, we
employ an attention mechanism which exploits the use of spatial

adjacency matrix to obtain high-quality information. From the
global spatial-temporal information aspect, we employ a TCN
block and ODE to construct a deeper network for long-term
temporal dependencies. Finally, we integrate adaptive graph
learning, attention mechanism, TCN block and ODE into multi-
ple ASTGCNs layers comprising several blocks. Experimental
results show that our proposed method outperforms the SOTA
baselines on four datasets.

For future research direction, we will explore electricity usage
prediction based on regions of city.
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