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Abstract: High power consumption of cloud data centres is a crucial challenge in modern cloud computing. To comply with the
conceptions of green computing, power consumption prediction of the computing cluster has a major role to play in these
energy conservation efforts. However, due to complexity and heterogeneity in cloud computing scenarios, it is difficult to
accurately predict the power consumption using conventional approaches. To this end, this study presents a power consumption
model based on feature selection and deep learning to powerfully cope with low energy efficiency. Different from other methods
focusing on only a few performance attributes, the proposed method takes into account up to 12 energy-related features and
introduces deep neural network architecture, aiming at making full use of massive data to train model completely. In particular,
this approach is composed of three main phases including (i) performance monitoring and energy-related feature acquisition, (ii)
essential feature selection, and (iii) model establishment and optimisation. Representative results of comprehensive
experiments, in terms of the relative error, reveal that the proposed power consumption model can undoubtedly achieve state-
of-the-art predictive capability when compared with other models in most cases.

1 Introduction
Over recent years, the scale of the data centre (DC) is increasingly
expanding, with the accelerated growth of data generated by
applications in various industries. Cloud computing is playing an
increasingly important role in our daily lives, driving the energy
consumption (EC) of DC to new highs. The energy management
issue of DC has drawn people's attention extensively [1, 2]. The
industry generally uses power usage effectiveness (PUE) to
measure the energy efficiency of DC. As an effective engineering
ratio, PUE is shown in the following equation:

PUE = ∑ Pm + Pe + PIT + Pother
PIT

(1)

where the numerator denotes the power consumption of all
facilities in the DC including mechanical devices, electrical
equipments, IT infrastructures, and other necessary devices, while
the denominator denotes the power consumption of IT
infrastructures, providing real useful IT work. The closer the value
of PUE is to 1, the higher the energy efficiency in DC is.

According to several DC industry surveys, provided by Uptime
Institute as well as other professional consulting institutions, the
average power usage effectiveness (APUE) has only improved
from 2.5 in 2007 to 1.89 in 2011 while it only improved from 1.89
to 1.7 in 2014 [3]. In the USA, the APUE is still around 1.7 in 2017
for enterprise DCs, while it is between 1.5 and 1.6 for the newly
built DCs. Very few advanced DCs, such as those of Facebook and
Google, can achieve PUE of 1.2 or lower. However, it is obvious
that the improvements of energy efficiency measured by PUE are
slowing down significantly. Even as excellent as Google, it is
getting harder and harder to further reduce the PUE value. As after
a certain degree, the interaction between refrigeration and electrical
systems and complex feedback loops make it difficult to accurately
use conventional engineering formulas to derive and optimise DC
efficiency [4, 5]. Thus, developing innovative methods or strategies
for reducing PUE, that is minimising EC and operational cost
eventually, deserves our endeavours.

Over the last decade, energy efficiency is a major research
concern in modern cloud computing [6]. Many works, some of
which will be discussed in Section 2, provide various solutions to
estimate power consumption of a dynamic and complex DC. Some
researchers have employed machine learning (ML) techniques,
driven by data essentially, to resource provision and management
in cloud DC for ensuring energy efficiency [7–10]. ML is based on
training data to build statistical models, helping us to make
decisions or predictions about events in the real world. There are
many traditional models including support vector machines,
decision tree, KNN, naive Bayes, K-means, neural networks
(NNs), and so on, which belong to ML. In this paper, we present an
improved deep learning (DL) framework, driven by massive data,
to offer a solution for improving energy efficiency by predicting
next energy demand in the cloud. Considering the non-linearity and
complexity of various devices in DC and accuracy of the
experiment [11], we focus on researching the power consumption
of IT infrastructures, which is expressed as PIT in (1). To this end,
our goal is to improve the energy efficiency of cloud computing
clusters by allocating resources legitimately using our power
consumption model.

Although modelling and predicting real-world dynamic system
behaviours have received widespread research interest,
approximating any non-linear or complex system remains a
challenging task. To address these challenges, the significant
contributions of this work can be summarised as follows:

i) A deep NN architecture is elaborated and a power consumption
model based on feature selection and DL framework is proposed,
achieving a boost in prediction accuracy regardless of the
application belonging to I/O intensive, compute-intensive or
transactional web.
ii) An elaborate-designed data preprocessing process including
performance monitoring, energy-related feature acquisition, and
key feature selection has been provided, taking into account more
comprehensive energy-related features and removing redundant
features effectively based on information theory.
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iii) Extensive and multi-angle experimental analysis are
implemented for training and validating the mathematical model,
as well as the research domain accredited benchmarks are used for
data collection and feature extraction by performing tasks of
different application scenarios.
iv) Analyses and comparisons between six different power
consumption models in terms of the relative error (RE)
demonstrate the proposed model is effective and vastly superior.

The rest of the paper is organised as follows. Cloud computing
energy efficiency related works are reviewed in Section 2. In
Section 3 and 4, the well-designed modelling processes including
data preprocessing and model constructing are described in detail.
The analysis and comparison of experimental results is presented in
Section 6. Finally, Section 7 summarises the paper with
recommendations for future work in this area.

2 Related work
No doubt that energy efficiency in cloud computing has become a
hot theme in recent years [12]. Many solutions have been carried
out for modelling the aggregate power consumption of a server. As
servers conduct most of the work in DCs, they are the most power
proportional components in a DC. Roy et al. [13] present a server
power model as a summation of CPU and memory power
consumption, which is one of the simplest power models. Their
power model was represented as

E A = Ecpu A + Ememory A (2)

where Ecpu A  and Ememory A  are EC of the CPU and the memory
while running Algorithm 1.

Considering more components of a server, Tudor et al. [14]
propose a power model expressed as a function of energy used by
CPU, memory, and I/O devices. Furthermore, Song et al. [15]
describe a similar power model by expressing the system power
consumption as a summation of CPU, memory, disk, and network
interface card, which can be shown as

Etotal = Ecpu + Ememory + Edisk + ENIC (3)

Another energy model can be further constructed considering the
levels of resource utilisation by the key components of a server as
[16]

Pt = CcpuUcpu + CmemoryUmemory + CdiskUdisk (4)

where Ucpu is the CPU utilisation, Umemory is the memory access
rate, Udisk is the hard disk I/O request rate, and UNIC is the network
I/O request rate. Pt refers to the predicted power consumption of
server at time t while Ccpu, Cmemory, Cdisk, and CNIC are the
coefficients of CPU, memory, disk, and NIC, respectively.

Tian et al. describe the power consumption of a server as
follows [17]:

Pi = uikiμi
αi + Pi* (5)

where μi
αi denotes the service rate and ui represents the utilisation

of server i. Pi* is the static power consumption of server i. ki, αi,
Pi* are constants determined by the DC.

A different version of model is created by Mills et al. to
estimate the system EC [18]. The power consumed by a server in
this power model is given by

E σ, t1, t2 = ∫
t = t1

t2
σ3 + ρσmax

3 dt (6)

where ρ stands for overhead power which is a fixed factor of the
power consumed when the CPU is operating at full speed. σ
denotes the execution speed of the processor. The overhead

includes the power consumption by all other system components
such as memory, network, and so on.

What is more, in recent years, numerous studies of improving
energy efficiency in DCs have been performed [19–22]. In terms of
the results, most researchers achieve up to a large proportion of
reduction in energy usage. However, the studies for predicting
power consumption is insufficient while power consumption
estimation is critical to resource provisioning and task scheduling
[23–25].

According to different application scenarios, Zhou et al. [26]
describe the mathematical expressions of the power regression
model in detail and verify that the power regression model has
higher precision than other regression models (linear regression,
exponential regression, and polynomial regression).

Zhang et al. [27] find that the cubic polynomial model could
obtain better results whether EC swing in a small range or a wide
range, exceeding the linear model that is only suitable for a small
range.

Bertran et al. [28] prove that the performance monitoring
counters (PMC) power model still has good performance, whose
average error is less than 3%.

Park and Mun [29] propose a prediction approach that power
consumption is determined by basic power and active power, not
depending on actual power consumption. The basic power is
constant determined by hardware while the active power can be
easily calculated with the help of Cloud Monitor. The results show
that average error rate is about 4.22% in the CPU test.

Liu et al. [30] present an abstract energy consumption (AEC)
model to estimate EC of the cloud computing. Particularly,
considering the source-level EC of a task is not the simple
summation of that of its statements, two quantitative
measurements, ‘cross-degree’ and ‘reuse-degree’, are proposed as
the code structure features. Experimental results show that the
mean deviation between the EC and AEC is around 0.005.

Yu et al. [31] construct a CMP EC model by only choosing
some dominant parameters such as CPU, memory, disk, and so on.
Moreover, taking into account different scenarios, they mainly
focus on EC changes of computer systems in data-intensive and
compute-intensive states. Experiments show that the CMP model
can achieve a higher accuracy on power estimation than FAN and
Cubic mode, especially in data-intensive scenario.

Foo et al. [32–34] develop an EC prediction model based on an
evolutionary NN combining with several novel mechanisms of a
genetic algorithm. The results, both in terms of forecasting speed
and accuracy, suggest that the evolutionary NN approach to EC
forecasting for cloud computing is highly promising.

As ensuring energy efficiency in DCs is a worthwhile
endeavour, more and more innovative approaches, such as machine
learning, are applied to resource conservation and management
problems in the cloud computing [9].

Given the complexity of distributed clusters and the interaction
among multiple control systems [35], accurate energy efficiency
models allow DC managers to optimise operational configurations
without on-site commissioning.

Inspired by the challenges and deficiency of the existing works,
we present a power consumption model based on feature selection
and deep learning (abbreviated as FSDL model) in cloud
computing scenarios. While drawing on this idea from
aforementioned efforts, our goal is quite different because we seek
not only energy efficiency but also the high prediction accuracy of
power consumption, leading to novel methodology. Section 3 and
Section 4 will elaborate the procedures of our approach. Section 5
reveals the comprehensive experimental results.

3 Methodology
The methodology is mainly composed of the following stages:
performance monitoring, energy-related feature acquisition, feature
selection, building a power consumption model, and evaluation of
experimental results. Fig. 1 shows each step of constructing a
power consumption model by the methodology proposed in this
paper. 
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The performance monitoring step is responsible for monitoring
all relevant performance metrics as the primary data source. Then
energy-related features are obtained and formatted. At the stage of
essential feature selection, we calculate the importance ratio of
each feature based on information entropy theory so that core
features can be selected. Based on above, we build a power
consumption model based on DL approach and optimise the
parameters. Finally, we evaluate the results of the experiment and
demonstrate the effectiveness of the proposed model.

4 Data preprocessing
As one type of ML approaches, DL is evolved from the deep
research in NNs while its network structure is more complex than
other ML models. DL is used to learn the essential characteristics
and laws of large amount of sample data entered. Therefore, the
quality and quantity of sample data play a crucial role in training
the DL models. In this work, we first designed the process of data
preprocessing, specifically including energy-related feature
acquisition and essential feature selection, to ensure the quality of
the training data set.

4.1 Performance monitoring and energy-related feature
acquisition

Data acquisition is an important part of performance monitoring
and analysing in cloud computing, and it is the foundation of data
processing, analysis, and display. Moreover, as the MapReduce
parallel computing framework is a widely used programming
model in DCs, it has a significant impact on the EC of the DC.
Hence, experimental data sets are collected from the Hadoop
cluster while the MapReduce jobs are running.

To obtain the working status of the servers and collect
experimental data in time, it is extremely significant to monitor and
manage the performance metrics of the server cluster. To the best
of our knowledge, many commonly used performance monitors,
i.e. Ganglia, Hadoop build-in counters, Nagios, Nigel's
performance Monitor (nmon), Cloudera Manager, Zenoss, Zabbix,
and so on, can contribute to data monitoring and acquisition. For
instance, Ganglia, a scalable distributed monitoring system for
high-performance computing systems, is mainly used to collect
system-level information including CPU utilisation, disk
utilisation, and so on. Nagios, an open-source application, can
monitor systems, networks, and infrastructure. Besides offering
host monitoring, Nagios can provide an anomaly detection
mechanism when things go wrong. Zabbix, an open-source
monitoring tool for networks, operating systems, and applications,
can monitor statistics such as CPU load, network utilisation, disk
space, and so on. However, most of them can only monitor some
basic performance metrics and cause excessive system overhead.

Considering the limitations and defects of a separate
performance monitoring tool in cloud computing platforms, our
inspiration was to design a comprehensive solution for energy-
related features acquisition, combining several typical and
complementary open-source solutions. To achieve a trade-off
between the system overhead and the scope of monitoring metrics,
we proposed a combined monitoring method consisting of Ganglia,
Hadoop build-in counters, and Zabbix in this work. The main
advantages of these components are as follows: Ganglia can
monitor basic performance metrics of a cluster in real time, with

low system overhead and no impact on the performance of related
services; Hadoop build-in counters are mainly used to report
multiple indicators related to MapReduce jobs and the results do
not need to be transmitted over the network; Zabbix supports
secondary custom development to monitor various required
performance parameters.

This combined monitoring approach effectively fused the
strengths of these three components, not only co-monitoring more
diverse energy-related metrics but also ensuring a lower overall
system overhead. The required energy-related metrics and the
corresponding monitoring ways are shown in Table 1. 

4.2 Essential feature selection

Theoretically speaking, all energy-related features need to be
monitored and recorded. Nevertheless, there are huge differences
between different attributes for the importance of decision making,
even affecting the correctness of decision. During data acquisition
and performance monitoring, data sets usually have problems such
as irrelevant attributes and redundant attributes [36]. To solve the
problem of effective information redundancy in high-dimensional
data, we will discuss some classical data dimensionality reduction
algorithms and the process used to select a subset of relevant
features from those extracted in the preceding section.

As one of the most widely used unsupervised dimensionality
reduction algorithms, principal component analysis (PCA) [37]
obtains the projection matrix by maximising the variance among
samples after dimensionality reduction, so as to preserve the
distribution properties of global samples as much as possible.
However, the PCA algorithm consumes a large amount of memory
and has a high time complexity. As a result, it is difficult to
calculate the eigenvectors of high-dimensional data, and the
processing time cannot meet the requirements of related
applications.

Linear discriminant analysis (LDA) [38], a supervised linear
dimensionality reduction algorithm, can obtain a projection
subspace with strong discriminative ability by maximising the
quotient between inter-class dispersion and intra-class dispersion to
separate the samples of different classes as far as possible.
However, LDA focuses on the larger inter-class dispersion and
ignores the smaller inter-class dispersion, which is likely to cause
the fusion of different classes that are close to each other in the
subspace, resulting in excessive reduction and information loss of
the subset.

Different from PCA and LDA, locally linear embedding (LLE)
[39] belongs to the category of non-linear dimensionality reduction
methods. Under the premise of keeping the original data properties
unchanged, LLE can leverage local linearity to represent global
non-linearity and map data from high-dimensional space to low-
dimensional space to determine the subset features. However, LLE
is sensitive to the selection of the nearest-neighbour number, as
different nearest-neighbour numbers have a great influence on the
dimensionality reduction results in the high-dimensional space,
which will lead to a large fluctuation in the feature selection
results.

Therefore, considering the problems existing in the traditional
data dimensionality reduction algorithm above, we have to develop
a more effective, targeted attribute reduction mechanism to
optimise the feature set of Table 1. Concretely, we will calculate
the importance ratio of each feature, based on information entropy

Fig. 1  Overall framework of model construction
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of rough set theory, to remove redundant attributes to streamline
the dimension of the feature vector.
 

Definition 1: (Feature selection): Select M(M<N) sub-features
from N features. Among the M sub-features, the objective function
can achieve the optimal solution.

Selecting as few sub-features as possible will not significantly
reduce the effect of the model. Conversely, building a model by
selecting partial core sub-features can greatly reduce the execution
time of the learning algorithm and improve the efficiency of the
model.

Information entropy is the average rate at which information is
produced by a stochastic source of data [40]. Information entropy
is a measure of the degree of confusion or dispersion of
distribution. The more dispersed the distribution (or the more even
the distribution) is, the larger the entropy gets. By contrast, the
more orderly the distribution (or the more concentrated the
distribution) is, the smaller the entropy becomes.
 

Definition 2: (Information entropy): Let category be X and the
corresponding label be x, x ε X. Let P(x) denotes the probability of
x; then the information entropy of X is defined as

H x = − ∑
∀x ∈ X

P x logb P x (7)

where b is the base of the logarithm used. In (7), b can be set as 2
as the entropy is typically measured in bits. The measure of
information entropy associated with each possible data value is the
negative logarithm of the probability mass function for the value.

In information theory, the conditional entropy quantifies the
amount of information needed to describe the outcome of a random
variable Y given that the value of another random variable X is
known. The entropy of Y conditioned on X is written as H(Y X).
 

Definition 3: (Conditional entropy): Let x be the value of
attribute X and let y be the value of attribute Y. If H(Y X = x) is
the entropy of the discrete random variable Y conditioned on the
discrete random variable X taking a certain value x, then H(Y X) is

the result of averaging H Y X = x  over all possible values x that X
may take. Then the conditional entropy can explicitly be written as

H Y X = − ∑
∀x ∈ X

P X ∑
∀y ∈ Y

P(y x)logbP(y x)

∑
x

P x H Y X = x
(8)

 
Definition 4: (Kullback–Leibler divergence): the Kullback–

Leibler divergence (KLIC) is a measure of how one probability
distribution diverges from a second, expected probability
distribution. Then the KLIC of attribute A is defined as the
difference between the basic entropy and the conditional entropy of
its attribute

DKL A = H S − H(S A) (9)

where H S  is the basic entropy, while H(S A) is the conditional
entropy under the condition of attribute A. The greater the
attribute's KLIC is, the more information the attribute can provide.
Thus, KLIC describes the purity of an attribute.

According to (7) and (8), assume that C is the collection of load
performance attributes collected from the operating system, and D
is the cluster power consumption value when each feature value is
acquired during the execution of jobs. Then the conditional entropy
of each performance attribute can be expressed as

H D C = − ∑
i = 1

n
P Xi ∑

j = 1

m
P(Y j Xi)logbP(Y j Xi) (10)

In cloud computing, various performance attributes have different
effects on power consumption of computing clusters. Our goal is to
apply information theory to detect the ‘weightier’ input features
that contribute positively to the power consumption. From this
perspective, assume that Ci is an arbitrary attribute in the
conditional attribute set C, then its importance relative to the
system power consumption can be described as the entropy change
of C relative to decision attributes before and after Ci is removed
from C. Then the importance of Ci is quantified as

Table 1 Energy-related metrics and corresponding monitoring ways
Number Metrics Unit Description Acquisition method
1 CPU utilisation percent percent of time that the CPU is utilised Ganglia
2 average load loads/procs average number of processes simultaneously in ready state

during the last minute
Ganglia

3 memory use gigabytes memory use for processes Ganglia
4 map task read gigabytes data read by map task from local disk Hadoop built-in counters
5 reduce task read gigabyte data read by reduce task from local disk Hadoop built-in counters
6 map task write gigabyte data written by map task to local disk Hadoop built-in counters
7 reduce task write gigabyte data written by reduce task to local disk Hadoop built-in counters
8 shuffle size gigabyte data transferred from map to reduce Hadoop built-in counters
9 network I/O speed gigabytes/s data transmitted and received Ganglia
10 file size gigabytes size of MapReduce jobs Hadoop built-in counters
11 number of M/R instructions number instruction number of jobs Zabbix
12 average jobs completion duration hour time taken to finish a MapReduce job Hadoop built-in counters
13 disk utilisation percent percent of time that the disk is utilised Ganglia
14 transmission and read/write ratio percent data transfer and read/write ratio Zabbix
15 available space in file system gigabytes file system free space Zabbix
16 page faults/s number speed of page errors caused by executing threads in the

process
Zabbix

17 bytes consumed per CPU second bytes average number of bytes consumed per CPU second Zabbix
18 context switches rate number number of switches between processes or threads per second Zabbix
19 HDFS R/W throughput bytes/s amount of data successfully transmitted per second in HDFS Hadoop built-in counters
20 disk traffic bytes/s rate of disk transfers Zabbix
21 paging rate number number of pages READ to physical memory or written to

pagefile(s) per second
Zabbix

22 power consumption kw power consumed by Hadoop cluster smart meter
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DKL Ci = H D C − Ci − H(D C) (11)

Here, we can achieve the purpose of attribute reduction by
calculating the importance ratio of each attribute in C according to
the above equations.

5 Power consumption model implementation
DL approach can effectively model and predict non-linear dynamic
systems such as the cloud DCs, which is a viable solution for
reducing power consumption in cloud computing.

5.1 Deep neural network architecture (DNNA)

DL allows computational models that are composed of multiple
processing layers to learn representations of data with multiple
levels of abstraction [41]. As a multilayered complex NN structure,
the DL model can effectively solve the problem that the shallow
network usually cannot converge to the global optimal solution.

The DNNA, a framework used for power consumption
modelling, consists of three main components: the input layer, the
hidden layer, and the output layer. The input layer contains d input
nodes, depending on the dimension of the input feature vector, and
1 bias node, whose common value is 1. The hidden layer usually
has m layers and each layer has k hidden nodes and 1 bias node,
while the most appropriate values of m or k depend on the
comparison of multiple experiments. The output layer has only 1
output node representing the power consumption. Fig. 1 illustrates
the structure of DNNA.

In the DNNA we specify a set of n vectors FV1, FV2, …, FVn,
where each vector FVi∈Rd (d-dimensional of feature vector space).
EPC, an abbreviation of electrical power consumption, denotes the
result estimated by the entire DNNA at the output layer.

In a forecasting process using DNNA, specifically, the input
matrix X, consisting of w feature vectors, is multiplied by the
model parameters matrix θ to produce the first hidden state matrix
H1. The next hidden layers continue to forward propagate
intermediate results using the same computational process until the
predicted power consumption value is calculated.

5.2 Mathematical model

Fig. 2 presents the elegant design of the DL architecture which can
search for relationships between complex input features and power
consumption by training massive amounts of data. Understanding
the underlying mathematical behaviour of DNNA allows us to
control and optimise it.

Let the DNNA input layer comprise of d input eigenvalues
denoted as F1, F2, …, Fd . Starting from the second layer, specially,
aj is the input of each neuron that can be generated by

aj = ∑
i = 1

n
Fi × Wi j

1 + 1 (12)

where Wi j
1  is the connection weight between the input layer and the

first layer of the hidden layers. i identifies the neuron of the
preceding layer while j identifies the neuron of the current layer. aj
is the weighted sum of the outputs of all neurons in the preceding
layer.

Then the output of the jth neuron is determined by an activation
function shown in (14) acting on it

φ z = 1
1 + e−z (13)

Equation (13) is the sigmoid function usually used as an activation
function. The argument z will receive an assignment from δj r ,
the input variable of the jth downstream neuron.

Assume there are m layers in the hidden layer. Considering the
applicability of the neurons in each layer, a more general
mathematical expression based on (12) is induced as follows:

δj r = ∑
i = 1

k
φ δi r − 1 × Wi j

r − 1 + 1 (14)

where δj r  denotes the input of the jth neuron of the rth layer. r
should belong to the scope of 2 ≤ r ≤ m + 2 . k is the number of
neurons of the (r − 1)th layer.

Let EPC be the predicted results of DL NNs at the output layer.
More generally, the power consumption prediction model based on
(14) can be deduced as

EPC = ∑
i = 1

k
φ δi m + 1 × Wi1

m + 1 + 1 (15)

During the process of DL, however, the model needs to
continuously learn a large amount of training samples in order to
determine the optimal parameters of the model. The evaluation
criterion for the final solution depends on whether the cost function
has approximated the minimum value and hence the cost function
is given by

M θ = 1
2s ∑

i = 1

s
Y^ i − Yθ x i

2
(16)

where Y^ i
 is the target at the output layer while Yθ x i  is the actual

calculated value by the DL model. s is the number of samples.
M θ  denotes the error between the fitted value and the true value.
The partial derivative of M θ  to θ would be

∂M θ
∂θ j

= − 1
s ∑

i

s
Y^ i − Yθ x i xj

i (17)

Essentially speaking, DL discovers intricate structure in large data
sets by using the back-propagation (BP) algorithm to indicate how
a machine should change its internal parameters that are used to
compute the representation in each layer from the representation in
the previous layer. Thus, the choice of BP algorithm is crucial for
faster convergence and higher accuracy. Gradient descent
algorithm, one of the most common optimisation methods used in
machine learning, can adjust the model parameters at each iteration
along the opposite direction of the gradient of the cost function
until a solution tends to converge on the global optima.

Gradient descent algorithm mainly contains three different
forms: batch gradient descent, stochastic gradient descent, and
mini-batch gradient descent (MBGD). Comprehensively
considering the convergence speed and the accuracy of the optimal
solution, we adopt MBGD, a compromised algorithm, to optimise
the model parameters. According to (16) and (17), the pseudo-code
of MBGD is described in Algorithm 1. s is the total length of the
training sample set, b is the size for a mini-batch samples, and α is
the learning rate.
 

Algorithm 1: Pseudo-code of MBGD
1: s ← N, b ← B, α ← A , n ← N /B
2: for j = 0 to n do
3:  for i = 1 + b* j to i = 1 + b* n − 1  do

4:    θ j = θ j + α*1
b ∑

k = i

i + b − 1
Y^ k − Yθ x k xj

k

5:  end for
6:  if M θ j ≤ ε then
7:    θ = θ j
8:   break
9:  end if
10: end for
11: return θ
At each iteration, MBGD divides the training set into several

small batches, which updates parameters with a fixed number of
samples by calculating the derivatives of relevant parameters and
the cost function value.
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6 Analysis and comparison of experimental
results
In this section, we design a set of comprehensive experiments to
evaluate the performance of the proposed prediction model. The
Hadoop framework is adopted to simulate a cloud environment.

6.1 Experimental settings

To perform the experiments in a real environment, we use a
heterogeneous cluster of ten nodes comprising one Core i5-based
namenode and nine Core i3-based datanodes. After energy related
metrics are extracted from the running MapReduce jobs, we use
these preprocessed data to train and calibrate the prediction model
on another PC. The detailed configuration is specified in Table 2. 

As MapReduce jobs are generally divided into three categories:
I/O intensive applications, compute-intensive applications, and
transactional web applications, we adopted benchmarks released by
Purdue University [42] to train the power consumption model
repeatedly as well as verify its validity. The benchmark
characteristics are listed in Table 3. 

6.2 Feature importance

In our experiment, different categories of assignments are
submitted to the Hadoop cluster. Performance features given by
Table 1 are collected every 10 s during job execution. Meanwhile,
we record the cluster power consumption in the sampling interval.
Then we combine the feature group and the corresponding power
consumption to generate an original sample.

In order to screen out the features having greater impact on
power consumption, we calculate the KLIC, defined in (9), of each
feature. The importance of all monitored energy-related features is
shown in Table 4. 

As presented in Table 4, we calculate the importance ratio and
average importance ratio of all energy-related features. Even the
same feature may have different contributions to power
consumption in different application domains. For instance, ‘CPU
utilisation’ is very crucial for compute-intensive applications while
its importance ratio much lower than ‘disk traffic’ for I/O intensive
applications. However, for the sake of being possessed of stronger
applicability and generality, we will focus on the average
importance indicators in consideration of various application
scenarios.

6.3 Analysis and comparison

Based on the previous data preparation, we collect 50,000 feature
vector samples. Then we divide the sample set into two parts for
different stages of modelling. In the training stage, the training set
with a scale of 40000 samples is used for training the model, while
the test set containing 10,000 samples is responsible for model
verification in the verification stage.

Furthermore, without loss of generality and for the ease of
analogy with the aforementioned methods, we define the RE of
power consumption in (18) as a metric to evaluate the accuracy of
all models

RE = Powerreal − Powerpredict
Powerreal

(18)

where RE denotes the relative error, Powerreal is the actual power
consumption value while Powerpredict is the calculated value from
the model.

At the beginning of the modelling experiment, we have been
trying to train models with input eigenvectors of different
dimensions determined by different importance ratios. Moreover,

Fig. 2  Deep neural network architecture
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the weights in each layer were initialised from a zero-mean
Gaussian distribution with standard deviation 0.01. The mini-batch
size of MBGD is 100. The learning rate is set to 0.04 at the outset
and is adaptively reduced by ten times when the error plateaus. In
order to seek the best importance threshold, the contrast for
different thresholds in terms of calculation time and RE (prediction
accuracy) of the model is shown in Fig. 3. 

As presented in Fig. 3, we compare the calculation time and
prediction accuracy of the model under different thresholds. The
magnitude relationship between the average importance ratio of a
feature and a certain threshold will determine if the feature can be
used as an input to the model under the current condition. We can

see that as the threshold increases, the calculation time decreases,
while the error decreases first and then rises. The decrease in
computation time is due to the decrease in input features. The more
input features do not necessarily lead to smaller errors; on the
contrary, it often increases occurrence probability of overfitting.
For example, when the importance threshold is 0.020, the
dimension of feature vector is 10 and the RE is 0.029; when the
importance threshold is 0.010, the dimension of feature vector is 12
and the RE is 0.012; when the importance threshold is 0.007, the
dimension of feature vector is 15 while the RE is 0.015. The reason
includes two folds. On the one hand, the parameter dimension will
not be enough to fully train the model if the threshold is too large,

Table 2 Experimental environment
Item Description
namenode Dell OptiPlex 7040, 4*CPU Intel Core i5-6500, Memory 8 GB DDR4, Disk 1TB 7200 rpm, OS CentOS V6.4, Apache

Hadoop V2.7.1
datanode Dell Vostro 3470-R1328R, 4*CPU Intel Core i3-7100, Memory 4 GB DDR4, Disk 1TB 7200 rpm, OS CentOS V6.4, Apache

Hadoop V2.7.1
pc for building model Dell OptiPlex 7040, 4*CPU Intel Core i5-6500, Memory 4 GB DDR4, Disk 2*1TB 7200 rpm,GPU NVIDIA GTX1070, OS

Windows 10, CUDA V8.0.6, Anaconda3V42.0, TensorFlow-GPU V1.3
smart meter VICTOR VC470, rated voltage 220 V, Rated current 10 A
monitor software Ganglia, Hadoop built-in counters, Zabbix
IDE Eclipse V4.5.2, PyCharm V 2018.2.1
 

Table 3 Benchmark characteristics
Benchmark Input size, GB Input data Category
self-join 250 synthetic I/O intensive
tera-sort 300 synthetic, random I/O intensive
ranked-inverted-index 205 multi-wordcount output I/O intensive
kmeans 100 100 Netflix data, k = 6 compute-intensive
inverted-index 250 Wikipedia compute-intensive
term-vector 250 Wikipedia compute-intensive
word-count 250 Wikipedia compute-intensive
multi-word-count 250 Wikipedia transactional web
histogram-movies 215 Netflix data transactional web
histogram-ratings 215 Netflix data transactional web
grep 250 Wikipedia transactional web

 

Table 4 Importance ratio of all monitored features
Number Features Importance ratio Average importance ratio

I/O intensive Compute-intensive Transactional web
1 CPU utilisation 0.0364 0.0566 0.0528 0.0486
2 bytes consumed per CPU second 0.0317 0.0517 0.0442 0.0425
3 context switches rate 0.0370 0.0553 0.0419 0.0447
4 number of M/R instructions 0.0544 0.0510 0.0600 0.0551
5 shuffle size 0.0598 0.0321 0.0412 0.0444
6 disk traffic 0.0628 0.0386 0.0469 0.0494
7 HDFS R/W Throughput 0.0613 0.0310 0.0517 0.0480
8 transmission and read/write ratio 0.0511 0.0234 0.0446 0.0397
9 average load 0.0199 0.0291 0.0239 0.0243
10 memory use 0.0207 0.0188 0.0241 0.0212
11 page faults/sec 0.0135 0.0174 0.0182 0.0164
12 network I/O speed 0.0149 0.0136 0.0233 0.0173
13 paging rate 0.0162 0.0057 0.0071 0.0097
14 disk utilisation 0.0124 0.0038 0.0084 0.0082
15 available space in file system 0.0118 0.0045 0.0069 0.0077
16 MapTask read 0.0131 0.0024 0.0040 0.0065
17 reduce task read 0.0126 0.0017 0.0038 0.0060
18 map task write 0.0143 0.0020 0.0044 0.0069
19 reduce task write 0.0139 0.0028 0.0036 0.0068
20 file size 0.0035 0.0019 0.0021 0.0025
21 average jobs completion duration 0.0030 0.0028 0.0033 0.0030
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causing under-fitting results. On the other hand, considering too
many factors to build the model if the threshold is too small will
lead to over-fitting results.

Consequently, considering the tradeoff between computation
time and prediction accuracy, we adopt 0.010 as the importance
threshold. Then features whose average importance ratios are
greater than the threshold are considered. Finally, 12 energy-related
features are selected, constituting a feature vector as the input of
the model.

Besides, through constantly training and comparing different
NN structures, we finally adopt a five-layer network structure of
12 × 100 × 100 × 100 × 1 for the sake of model accuracy and
calculation speed.

In the verification stage, each feature vector in test set is
inputted into the trained model, and thus, the power consumption
of this vector is predicted. To evaluate the efficiency of FSDL
model, we compare our approach with other five methods
including power regression model [26], cubic model [27], PMC
model [28], AEC model [30], CMP model [31]. Fig. 4 illustrates
the REs of the six energy models under the same experimental
environment and benchmarks. 

Fig. 4, respectively, show the comparison for the six energy
models in terms of RE. Fig. 4 reveals that, no matter in any
application domains, the power consumption model based on
FSDL can achieve the highest prediction accuracy in most cases.
Compared with the other five models, the average RE of the FSDL
model is reduced by more than 1.1%. Considering more core
features and using deep learning method to construct the power
consumption model can account for this fact. Compared with
power regression model, FSDL model achieves around 1%

accuracy improvement. We can see that FSDL model selects 12
energy-related features to train the model while power regression
model only considers six factors (processor time, disk byte/s, disk
time, page fault/s, memory used, and byte total/s). Generally, more
input features may cause longer computation time and more power
consumption. Compared with power regression model, although
FSDL model achieves only around 1% accuracy improvement, the
energy saved by model prediction will be much greater than the
energy consumed by itself, especially for large-scale DCs.
Therefore, it is worthwhile constructing a power consumption
model based on feature selection and deep learning.

7 Conclusion and future work
In this work, we motivate, develop, and evaluate a power
consumption model based on feature selection and deep learning in
cloud computing. The proposed methodology is mainly composed
of the following three processes: (i) performance monitoring and
feature extraction, this step is responsible for obtaining all energy-
related features; (ii) feature selection, this step is responsible for
reserving really significant features while removing redundant
features; (iii) modelling and evaluation, the last but not least step is
responsible for designing, building, and evaluating model.
Considering more energy-related features, the proposed solution
conduces to make full use of massive sample data to train model
completely with deep learning method to achieve higher prediction
accuracy. In contrast to the models based on conventional
approaches, the proposed power consumption model based on
feature selection and deep learning has a smaller RE of power
consumption prediction. From the desirable experimental results,

Fig. 3  Experimental comparison of different thresholds
(a) Variation of eigenvector dimension and calculation time under different threshold conditions, (b) Variation of eigenvector dimension and relative error under different threshold
conditions, (c) Variation of calculation time and relative error under different threshold conditions

 

Fig. 4  Comparison of relative errors of different models
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we are full of confidence that taking the advantages of deep
learning to effectively improve the energy efficiency of cloud DCs
is a promising direction. Meanwhile, we will make endeavour in
advanced architecture, intelligent data acquisition system, efficient
computing framework, modelling and relevant algorithms.
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