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Abstract—The prediction of molecular properties re-
mains a challenging task in the field of drug design and
development. Recently, there has been a growing interest
in the analysis of biological images. Molecular images,
as a novel representation, have proven to be competi-
tive, yet they lack explicit information and detailed seman-
tic richness. Conversely, semantic information in SMILES
sequences is explicit but lacks spatial structural details.
Therefore, in this study, we focus on and explore the re-
lationship between these two types of representations,
proposing a novel multimodal architecture named ISMol. IS-
Mol relies on a cross-attention mechanism to extract infor-
mation representations of molecules from both images and
SMILES strings, thereby predicting molecular properties.
Evaluation results on 14 small molecule ADMET datasets
indicate that ISMol outperforms machine learning (ML) and
deep learning (DL) models based on single-modal repre-
sentations. In addition, we analyze our method through a
large number of experiments to test the superiority, inter-
pretability and generalizability of the method. In summary,
ISMol offers a powerful deep learning toolbox for drug dis-
covery in a variety of molecular properties.

Index Terms—Drug design and development, images
and SMILES strings, predict molecular properties, deep
learning toolbox.

I. INTRODUCTION

DRUG discovery is time-consuming, expensive, and high-
risk endeavor, with the average time exceeding 10 years
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and the average cost exceeding $1-2 billion to bring a new
drug approved for clinical use [1], [2]. To reduce the reliance
on labor-intensive experiments and improve the efficiency of
drug development [3], [4], significant efforts have been made
in developing efficient computational tools and bioinformatics
methods [5], [6], [7]. Molecular property prediction (MPP)
is a fundamental task during drug discovery, which includes
bioactivity prediction [8], [9], toxicity prediction [10], [11],
drug-likeness prediction [12], [13], and so on. Quantitative
structure-activity (property) relationship (QSAR/QSPR) models
have increasingly become dominant methods in the selection
of promising drug candidates. ML-based QSAR/QSPR models
are data-driven and heavily dependent on appropriate molec-
ular representations [14], [15]. Currently, the representations
of molecules include molecular descriptors, graph, Simplified
Molecular Input Line Entry System (SMILES), and image.

Molecular descriptors are mathematical representations that
are algorithmically generated [16], which quantitatively de-
scribe the topological and physicochemical structure of
molecules, such as fingerprint-based descriptors [17], [18]. Al-
though descriptor-based methods have shown promising results,
they frequently necessitate extensive feature engineering in the
initial phase [19], [20], [21]. This poses a significant challenge
for many researchers who may not possess the expertise or
resources to generate high-quality features. Unlike molecular
descriptors, structural information about atoms and bonds is dis-
played clearly in molecular graphs, enabling graph-based meth-
ods to be naturally suited for extracting molecular features [22],
[23], [24], [25], [26]. However, the application of graph neural
networks in MPP is currently constrained since they are prone to
overfitting and over-smoothing problems [27], [28], [29]. Given
that SMILES strings are linguistically defined graphical struc-
tures for representing chemical information, natural language
processing (NLP) methods have been extensively adopted [30].
SMILES-based methods have achieved remarkable performance
in molecular property prediction [31], [32], [33], [34]. Nonethe-
less, accurate predictions of molecular properties are still a
challenge due to the limited spatial information of the molecules
this representation contains [35]. Molecular images represent
the detailed structural features of molecules through pixels,
which is one of the most intuitive representations for humans.
In recent times, there has been a growing emphasis on the field
of bioimage analysis [36]. Specially, the feasibility of images
as a novel representation was proven by an impressive method,
ImageMol [37]. However, the molecular images contain weak
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chemical semantics, making it difficult for models to directly
extract chemical-related information from them, which requires
more knowledge of chemistry to further improve performance.

While methods based on a single representation have achieved
significant performance, they all rely on unimodal informa-
tion. In contrast, multimodal models integrate two or more
representations, which provide multiple views of molecules to
enable more robust completion of MPP tasks. Many researchers
have attempted various combinations of SMILES with different
representations [38], [39], [40], [41], but due to sparse chemical
semantics of molecular images, they have not yet succeeded in
integrating images. However, molecular images contain abun-
dant molecular structural information, as they display the topo-
logical features of molecules at high resolution, revealing the
relative positions of atoms, bond lengths, angles, and other
geometric parameters. These are precisely the details that the
SMILES representation lacks. This leads us to a hypothesis of
whether sequence information in SMILES strings and structural
information in molecular images are compensated for each other.
If this hypothesis holds, the structural details in images can be
beneficial to improve the prediction performance of SMILES-
based models and the chemical knowledge encoded in SMILES
can also help the learning of molecular images.

In this study, we built a pre-trained DL model based on a
dual-stream architecture called ISMol for MPP. We evaluated the
performance of ISMol on 14 benchmark datasets and observed
its state-of-the-art performance when compared to baselines.
Ablation experiments on different modality inputs were con-
ducted, and the results demonstrated competitive performance
even when there was no corresponding modal input during the
fine-tuning phase. In addition, we conducted ablation experi-
ments on the components of ISMol, and the results showed that
simply merging pixels features with SMILES could lead to the
model easily learning inductive biases, resulting in a decrease
in its performance. However, extensive experiments indicated a
noteworthy enhancement in performance through the alignment
and integration of both modalities via multiple pretraining tasks.
Furthermore, we analysed the biological interpretation of ISMol
and found that the chemical space generated by ISMol was
more distinguishable than molecular descriptors (MACCS fin-
gerprints). Subsequently, we conducted evaluations of the scaf-
fold generalizability and temporal generalizability of ISMol and
discovered that ISMol either equals or surpasses other existing
methods. Finally, we performed visual analyses to intuitively ex-
plain how ISMol worked. We discovered that ISMol successfully
extracted molecular structures from images and integrated them
with the information contained in SMILES strings, enabling the
model to read molecules from different perspectives.

Our contribution can be summarized into the following:
� We propose a pre-training model called ISMol to predict

molecular properties, which is based on SMILES strings
and molecular images.

� Extensive analyses indicate that ISMol exhibits strong
performance superiority. Additionally, it possesses robust
chemical interpretability, feature extraction capabilities,
and generalization abilities.

� To the best of our knowledge, this is the first explo-
ration of the relationship between SMILES strings and
molecular images. It is the alignment and integration of
image features with SMILES strings that truly enhances
the model performance, whereas the simple mere act of
concatenating them yields the opposite effect.

II. MATERIALS AND METHODS

A. Datasets

The pre-training initial database is a molecular dataset col-
lected from two large-scale drug databases (ChEMBL [42] and
ZINC [43]), which are publicly available [44]. Moreover, we
subjected the initial database to screening, applying criteria for
logP values within the range of (−5, 7), molecular weights
between (12, 600), and heavy atom counts between (3, 50).
Furthermore, based on the molecular scaffold frequency statis-
tics shown in Supplementary Fig. S1, we found that a large
number of scaffolds appeared less than 10 times. Therefore, we
required that the frequency of molecular scaffold occurrences
be within the range of [10, 600]. If there are more than 600, we
only take the first 600 molecules. In the end, we obtained 3.5
million molecules. RDKit was used to generate standardized
RGB images. We formed a pair of the SMILES string and the
corresponding image, called image-SMILES pair, and split all
image-SMILES pairs into an 80/20 training/test set based on
scaffold split. 14 small pharmaceutical datasets from ADMET-
lab 2.0 [45] were used as our benchmark datasets to evaluate the
performance of ISMol, which can be categorized as absorption,
metabolism, excretion, and toxicity. Each of the datasets was
split into the training set, validation set, and test set, with a ratio
of 8:1:1. The detailed descriptions of datasets are provided in
Supplementary Table SI.

B. ISMol Network Architecture

As demonstrated in Fig. 1(a), ISMol mainly included a visual
encoder for extracting unimodal image features, a SMILES
encoder to acquire unimodal SMILES features and a multimodal
fusion module to align and fuse both. In addition, the architecture
also was equipped with three task-specific heads (including
Image-SMILES Matching head, Mask SMILES Modeling head
and Fingerprint Class Predicting head) to accomplish different
pre-training objectives.

Visual Encoder: Given an input image x ∈ RH×W×3, we
resized it to a fixed size x ∈ RHrs×Wrs×3. After the data
augmentations [37], the image was segmented into patches
{xv

1, x
v
2, . . . , x

v
Nv

}, where (H,W ) was the original image size,

(Hrs,Wrs) was the resized image size and xv
i ∈ RP 2·3 was

the i-th patch with the resolution P × P . Then patches were
flattened and linearly projected into 1-D sequences of patch
embeddings by a linear transformation Ev ∈ RP 2×D. A special
learnable token xv

cls ∈ RD embedding was inserted in front of
the first patch to aggregate global visual information. Then, a
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Fig. 1. Overview of the proposed architecture. (a) Dual-stream architecture of ISMol, (b) brief description of the cross-attention mechanism.

learnable embedding Ev
pos ∈ R(N+1)×D as positional embed-

ding was added to all embeddings globally:

zv =
(
xcls, x

v
1E

v, xv
2E

v, . . . , xv
Nv

Ev
)
+ Ev

pos. (1)

Finally, zv was fed into transformer blocks and the final output
was hv = [hv

cls, h
v
1, . . ., h

v
i , . . ., h

v
Nv

], where hv
i ∈ RD was the

i-th hidden state extracted from visual patches. In our actual
network, (Hrs,Wrs) was (224, 224), P was equal to 16, and
the Vision Transformer (ViT) [46] was employed as the visual
encoder.

SMILES Encoder: Given an input SMILES string, we first
tokenized it to an index array in the corresponding vocabu-
lary dict using a special regex pattern [47], then mapped the
array to a list of learnable atomic embeddings. After that, a
couple of transformer blocks were applied to encode the list as
hidden state vectors hs=[hs

cls, h
s
1, h

s
2, . . . , h

s
Ns

], where hs
clswas

additional embedding to aggregate global SMILES informa-
tion. ChemBERTa-77M-MLM was used as the initialization
of our SMILES encoder, which we could call directly from
DeepChem [48]. This encoder was a transformer that adopted
masked language modeling (MLM) pretraining on unlabeled 77
million SMILES strings. And, it already had some knowledge
of the SMILES grammar, which would save a vast amount of
computational resources and time for our training.

Multimodal Fusion Module: Specifically, this component
comprised three cross-layers, each of which consisted of three
essential sub-layers: a self-attention sub-layer, a cross-attention
sub-layer, and a feed-forward sub-layer. Obviously, the attention

mechanism is:

Attn(Q,K, V ) = softmax

(
QKT

scale

)
· V. (2)

The Query (Q), Key (K) and Value (V) matrices in the self-
attention sub-layer were obtained from the same modality map-
ping:

hv
sa = Attn (hv, hv, hv) , h

s
sa = Attn (hs, hs, hs) , (3)

where hv
sa and hs

sa denoted the self-attention results of the
molecular image and SMILES string, respectively. The cross-
attention mechanism, similar to self-attention, differs in the
source of the Q, K, and V matrices. The Q matrix is sourced from
the current modality, while the K and V matrices are sourced
from another modality. As shown in Fig. 1(b), the solid line
inputs represent the current visual modality injecting SMILES
information, while the dashed line inputs represent the opposite.
Thus, in the cross-attention sub-layer, information from another
modality could be integrated into their respective representation:

hv
ca = Attn (hv

sa, h
s
sa, h

s
sa) , h

s
ca = Attn (hs

sa, h
v
sa, h

v
sa) , (4)

where hv
ca and hs

ca were the cross-attention results of the im-
age and SMILES string respectively. Finally, the corresponding
features were obtained through inputting into the feed-forward
sub-layer respectively:

Zv = [zvcls; z
v
1 ; . . . ; z

v
N ], Zs = [zscls; z

s
1; . . . ; z

s
N ], (5)

where Zv and Zs were the output of the molecular image and
SMILES string after one layer of cross-layer, respectively.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 08,2024 at 01:38:23 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: DUAL-VIEW LEARNING BASED ON IMAGES AND SEQUENCES 1567

C. Pre-Training Objectives

To be detailed, we jointly optimized three objectives during
the pre-training phase, of which two tasks (Masked SMILES
Modeling and Image-SMILES Matching) were widely used in
vision-language pre-training (VLP) and the third task (Finger-
print Class Predicting) depended on the features of molecular
data and referred to the implementation in ImageMol.

Masked SMILES Modeling: The MLM task was first intro-
duced in NLP, while it has been shown to be greatly bene-
ficial to improve much performance in VLP [49], [50], [51].
We adopted a masking strategy analogy to ChemBERTa-77M-
MLM for SMILES sequences. In our case, given a molecular
image-SMILES pair (v, s), we utilized the “<MASK>” token
to randomly mask each atomic tokens in SMILES string swith a
probability of 15%, and trained ISMol to reconstruct the masked
tokens sm via the unmasked tokens s\m and its corresponding
image v. Thus, the training objective was to minimize the loss
of the reconstructed SMILES sequence:

Lmsm(θ) = E(v,s)∼Df
(
sm|v, s\m

)
. (6)

A linear layer with an activation function with default parameters
was used as the MSM decoder header. Since the frequency of
atoms in the dataset had varies greatly [52], f was the focal loss
function to mitigate the sample imbalance:

f = −αθ(1− pθ)
γ log(pθ), (7)

where θ was the trainable parameters of ISMol, pθ was a pre-
dicted probability value, and α and γ were hyperparameters.

Image-SMILES Matching: In this task, ISMol needed to iden-
tify whether the given image-SMILES pairs matched or not.
We provided the model with matched or mismatched image-
SMILES pair (v, s) with equal probability. After the inference
of the backbone of ISMol, we concatenated the visual vector
zvcls and the SMILES vector zscls as a fused representation of
the both modalities, and then it was fed to a fully connected
layer with a sigmoid function to predict a score between 0 and
1, where 0 meant that the image and SMILES string did not
match and 1 meant that they did. Consequently, the task could
be regarded as a binary classification problem with the objective
loss of minimizing the negative log-likelihood:

Lism(θ) = −E(v,s)∼D[logPθ(y|v, s)], (8)

where y ∈ {0, 1} indicated whether the image-SMILES pair
matched or not.

Fingerprint Class Predicting: Each molecule has a unique
MACCS fingerprint, which is an abstract representation that
transforms (encodes) the molecule into a series of bit charac-
ters. We clustered their fingerprints using K-Means algorithm
into 100, 1000, and 10000 categories, with similar molecular
structure information between the same categories. The results
of clustering were used as pseudo-labels. Both the information
contained in images and extracted from SMILES strings should
have the same labels. For the visual features, the training objec-
tive was to minimize the loss:

Lfcp−v(θ) = −E(v,s)∼D[log(Pθ(y100|v) · Pθ(y1000|v)
· Pθ(y10000|v))], (9)

where y100 ∈ {0, 1, . . . , 99}, y1000 ∈ {0, 1, . . . , 999} and
y10000 ∈ {0, 1, . . . , 9999} were the different clustering
pseudo-labels. Similarly, for the SMILES features, it should be
consistent with another ones:

Lfcp−s(θ) = −E(v,s)∼D[log(Pθ(y100|s) · Pθ(y1000|s)
· Pθ(y10000|s))]. (10)

Six different linear layers with default parameters were utilized
as the FCP head for three categories within both modality. The
final loss was the sum of Lfcp−v and Lfcp−s:

Lfcp = Lfcp−v + Lfcp−s. (11)

Joint loss: The overall pre-training loss could be calculated
as the sum of the three aforementioned losses. Specifically, the
total objective loss was:

L = λ1Lmsm + λ2Lism + λ3Lfcp, (12)

where λ1, λ2 and λ3 were trade-off parameters, so as to keep the
loss of each task in the same order of magnitude. There were set
to 1, 8, and 1, respectively.

D. Experimental Details

During the pre-training stage, each of image-SMILES pairs
was fed to two encoders separately for extracting different
features, and both features were aligned and fused in the fusion
module. We trained and tested the proposed model with a batch
size of 4096. A total of 25,000 training steps were conducted,
accumulating gradients 64 times per step. We used AdamW
optimizer with a learning rate linearly warming up to over 2500
steps and decaying to 0 with the polynomial schedule.

After pre-training, we retained the backbone of ISMol, but
replaced the pre-training heads with a downstream head con-
sisting of fully connected neural network layers. The receiver
operating characteristic curve (ROC-AUC) was employed as
the evaluation metric for the classification tasks. The model that
exhibited the highest ROC-AUC values on the validation set was
employed to assess the test set. The outcomes obtained from
the test set substantiated the performance of ISMol. It should
be noted that hyper-parameters had a significant impact on the
downstream tasks. Therefore, we applied a grid search strategy
for hyper-parameters in an actual network to ensure that ISMol
achieved optimal results. Four hyper-parameters were chosen:
the dropout rate of fine-turning head, the batch size, the learning
rate and the max steps of gradient update. Supplementary Table
SII illustrates the search method and search ranges of hyper-
parameters. To eliminate the influence of random factors, we
selected three different random seeds to run experiments for each
task and reported the average values as the final result. All ex-
periments were executed using PyTorch-Lightning framework
on an NVIDIA RTX A6000 GPU.

III. RESULTS AND DISCUSSION

A. Performance Comparison With Baseline Models

To verify the performance of ISMol, we compared it with
seven competitive methods across the benchmark datasets.
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TABLE I
PERFORMANCE OF ISMOL ON DRUG-DISCOVERY-RELATED DATASETS COMPARED TO OTHER METHODS

Those methods could be classified into four categories:
descriptor-based models, graph-based models, SMILES-based
models, and image-based models. We provided a brief introduc-
tion of the methods, as below:

� XGBoost-MACCS is a traditional ML model based on
molecular descriptor (MACCS fingerprints [17]).

� XGBoost-ECFP4 is a conventional ML model based on a
different descriptor, namely ECFP4 fingerprints [18].

� HRGCN+ [53] combines molecular graph and descriptors,
which can improve the predictive performance of the
model.

� CD-MVGNN [22] modifies the interaction process be-
tween the atom-central view and bond-central view in
the Multi-View Graph Neural Networks to improve the
accuracy and robustness of predictions.

� ChemBERTa-77M-MTR [30] calculates 200 molecular
properties for each compound by RDKit and uses these
as labels to train a multi-task regression architecture to
learn molecular knowledge.

� Knowledge-based BERT [29] proposes a multi-
granularity pre-training model based on SMILES strings
that aims to improve the ability to extract information
from the SMILES sequences.

� ImageMol [37] pre-trains the ResNet network on a dataset
of 10 million molecular images by setting multiple pretext
tasks to enable it to extract chemical structures from
molecular images.

The final results are shown in Table I, where the best results
are highlighted in bold. Not surprisingly, methods based on
molecular descriptors perform the worst. Typically, molecular
fingerprints are used as auxiliary inputs to enhance the gener-
alization capability, such as HRGCN+, rather than being used
as the sole input for a model [28]. However, the combina-
tion of multiple representations does not necessarily lead to

a significant improvement in performance, and the efficiency
of extracting and utilizing the information embedded in the
representations is also crucial. Despite incorporating molecu-
lar descriptors into the graph representation, the performance
of HRGCN+ (Average AUROC: 0.798) is not as effective as
CD-MVGNN (Average AUROC: 0.818), which serves as evi-
dence for this point. While ChemBERTa-77M-MTR (Average
AUROC: 0.807) can infer potentially 200 or more properties
of molecules, it falls short of encompassing their complete
set of properties. Similarly, knowledge-based BERT (average
AUROC: 0.809) analyzes the grammar rules of SMILES at
different granularities, but its performance is limited due to its
reliance on one-dimensional data and the absence of spatial fea-
tures. In comparison, ISMol attains equal or better performance
compared to the baseline models in 13 out of 14 datasets. Then,
for statistical comparisons with competitive representations,
we conducted T-tests (all obeying normal distributions), and
the p-values are shown in Supplementary Table SIII. ISMol
demonstrates statistical significance compared to graph-based
(CD-MVGNN), and SMILES-based (Chemberta-77M-MTR)
methods on five datasets. It also exhibits significant advan-
tages compared to the image-based method (ImageMol) on
three datasets. In particular, ISMol (Average AUROC: 0.854)
achieves different degrees of improvement in the average AU-
ROC compared to the image-based method (ImageMol, average
AUROC: 0.826) and SMILES-based methods (ChemBERTa-
77M-MTR, average AUROC: 0.807; Knowledge-based BERT,
average AUROC: 0.809). This suggests that our previous hy-
pothesis holds true, which is that the structural information
in the image is complementary to the SMILES sequence in-
formation, thereby improving performance. ISMol exhibits
outstanding performance on drug discovery-related datasets,
making it as one of the competitive DL methods for drug
discovery.
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Fig. 2. Visualization of dimensionality reduction is performed on different molecular representations, with each color representing a different
pseudo-label category.

B. Biological Interpretation of ISMol

To gain an understanding of the ability of ISMol to effectively
extract and distinguish molecular structures, we briefly visualize
the chemical space generated by ISMol. UMAP is a manifold
learning algorithm known for its ability to reduce dimensionality
while preserving the global structure of data [54]. Using the
UMAP algorithm, we performed dimensionality reduction on
MACCS fingerprints of those molecules, as well as on the em-
beddings generated by ISMol before and after the pre-training.
After that, the Davies-Bouldin (DB) index was to assess the
quality of clustering results, which measured the similarity
between each cluster and its most closely related cluster, and
then computed the average of these similarities. We randomly
selected 10000 molecules from ChEMBL and clustered their
MACCS fingerprints, with the resulting cluster labels assigned
as the molecules’ pseudo-labels. We compared each molecule
based on: (a) MACCS fingerprints, (b) embeddings generated
by non pre-trained ISMol and (c) embeddings generated by
pre-trained ISMol. Fig. 2 shows the visualized results, where the
molecular features generated by pre-trained ISMol have a more
discrete distribution than MACCS fingerprints, with ISMol (DB
index = 0.884) outperforming MACCS fingerprints (DB index
= 0.974). In addition, the pre-training strategy greatly improved
the ability of ISMol to characterize the molecules (DB index =
13.001), which implied that the strategy brought with it gains
for the model.

Then, to assess ISMol’s biological interpretation within
downstream datasets, we selected representative datasets from
each of the four major property classes, including HIA in the
absorption property class, CYP3A4-sub in the metabolism prop-
erty class, SkinSen in the excretion property class, and T12 in the
toxicology property class. As illustrated in Fig. 3, the DB index
with the pre-trained ISMol are consistently lower than those
obtained using MACCS fingerprints on the selected datasets.
The results indicate that the chemical space generated by IS-
Mol was more discriminative than that of MACCS fingerprints.
Furthermore, comparing the results of pre-trained ISMol with
non-pretrained ISMol, the pre-training strategy significantly
optimized the chemical space of the model.

Fig. 3. Evaluation results of dimensionality reduction and clustering
on the representations of four selected downstream task datasets. The
lower the DB index value, the better the performance.

C. Ablation Experiments

We conducted ablation experiments on the input of ISMol.
As ISMol required the use of image-SMILES pairs as inputs,
its constraint was more stringent than those of the single-input
methods. We were inspired to investigate whether ISMol could
perform well with only one modality of information inputs. To
tackle the problem of missing modality inputs, we utilized the
placeholder approach for substitution. In particular, we used an
empty string as a placeholder for SMILES when the correct
image was fed (ISMol_onlyImage), and a blank image as a place-
holder for the image when the correct SMILES string was en-
tered (ISMol_onlySMILES). The results are shown in Table II.
It is surprising that the performance of ISMol achieved com-
parable performance to the image-based method (ImageMol)
or SMILES-based (Knowledge-based BERT) method when the
input was only images (ISMol_onlyImages, average AUROC:
0.826) or SMILES strings (ISMol_onlySMILES, average AU-
ROC: 0.820). This seems to indicate that ISMol was able to
extract unimodal information more effectively after pre-training.
Because it enhanced the ability to extract current modality
information with another modality, even without corresponding
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TABLE II
ABLATION EXPERIMENTS ON COMPONENTS AND INPUTS OF ISMOL

inputs during the fine-tuning stage. This once again confirms the
validity of the hypothesis we previously mentioned, namely that
the information from these two modalities could complement
each other. Meanwhile, this implies that ISMol can perform well
even under a single input condition.

We then conducted ablation experiments on the components
of ISMol. We separately tested the performance of the visual
encoder (ViT) and the SMILES encoder (ChemBERTa-77M-
MLM), both of which were initialized with weights provided
by the official release, as shown in Table II. The image-based
method (ViT, average AUROC: 0.751), performed the worst.
This could be attributed to the fact that simple pixel features
contained weak chemical information, and the introduction of
blank pixels further hindered the model to make correct in-
ferences. The performance of ChemBERTa-77M-MLM (Av-
erage AUROC: 0.778) was also predictably unsatisfactory, as
it struggled to capture the spatial structure of molecules well
solely through the masking language modeling task. Intuitively,
incorporating additional information would likely improve pre-
dictive performance. However, comparing the experiments of
ISMol_nonPretrained (Average AUROC: 0.768), we found that
simply concatenating the two modalities did not appear to im-
prove the performance and may have even led to a decrease. The
introduction of low-quality pixel features made the SMILES-
based model more prone to learning induction bias, which could
result in incorrect predictions. When the model had not been
pre-trained, our previous assumption was wrong, which meant
that hastily adding images not only did not improve predictive
performance but instead reduced it.

D. Essential Pre-Training

The pre-training strategy yields remarkable results in NLP,
CV, and other fields [29]. This strategy enables proficient

learning and performance on small-scale datasets. In most MPP
tasks, there is only a limited amount of relevant training data
available, which is insufficient for DL models to learn valuable
patterns through normal training. Hence, pre-training a model
on abundant unlabeled data to acquire molecular knowledge
and then fine-tuning it on the actual tasks is a workable ap-
proach [30], [37]. By comparing the performance of pre-trained
and non pre-trained ISMol on the downstream dataset, we
observed an average performance improvement of 8.6% with
the pre-training strategy. This proved the effectiveness of the
approach in our case. The strategy enabled ISMol to extract
critical features from molecular images and SMILES strings
more efficiently and with greater robustness.

E. Generalizability Experiments

With the continual expansion of chemical databases, the
generalizability of the model to new data becomes a crucial
issue. We conducted a survey of the number and proportion of
scaffolds that appeared in the pre-training dataset for the 14
ADMET datasets. The results are available in Supplementary
Table SIV. In comparison to ImageMol, our dataset size was
reduced by almost 2/3, yet the average scaffold coverage in the
14 downstream tasks decreased by only 14.7%. Additionally, our
SMILES encoder was based on the ChemBERTa-77M-MLM
model, which had been pre-trained on a dataset of 77 million
molecules, contributing to its benefits for downstream tasks.
The performance statistics in Table I also indicated that ISMol
outperformed Image-based model. Therefore, the scaffold gen-
eralizability of ISMol surpasses that of ImageMol.

In addition, to further measure the performance of the models
in terms of generalizability on retrospective and prospective,
we evaluated the performance of different models on Epidermal
Growth Factor Receptor (EGFR) dataset with retrospect splitting
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TABLE III
PROSPECTIVE AND RETROSPECTIVE EXPERIMENTS ON ISMOL

Fig. 4. Visualization results of attention map in visual feature extractor. On the left is the original image, and on the right is the visualization of the
attention map with the CLS marker in its upper left corner and the red region represents a query.

and prospect splitting. In details, we collected 5,833 molecules
targeting the EGFR from ChEMBL database, which is the most
popular drug target and ranks first in innovative drug develop-
ment globally [55]. We labeled a molecule as a positive sample if
its IC50 (the concentration at which the ratio of apoptotic cells to
total cells is 50%) was less than 30 nM. Otherwise, the molecule
was labeled as a negative sample. Subsequently, we searched
for the ‘Molecule ChEMBL ID’ in the PubChem database and
recorded its ‘create date’. Based on the timestamps, we split the
data into training, validation, and test sets. Specifically, we used
the earliest added molecules for the training set, the mid-time
added molecules for the validation set, and the most recently
added molecules for the test set. This type of splitting was
referred to as the ‘prospect split’ and conversely, we referred
to it as the ‘retrospect split’. The statistical results can be
found in Supplementary Table SV. Subsequently, we fine-tuned
each representative models based on different representations
with retrospect splitting and prospect splitting to evaluate the
performance retrospectively and prospectively. The results are
shown in Table III. The best results are indicated in bold. We
found that ISMol achieves or approaches the best performance
under different time splitting settings, indicating its superior
generalization to both unseen new data and historical data.

F. Explanatory Analysis

As we all know, in molecular images, the molecular structures
are projected into Euclidean space, making it difficult to mine
and fully leverage the information contained therein [28]. More
than just performance improvement, we were particularly inter-
ested in how ISMol extracted and utilized structural information
from molecular images. To this end, we visualized the attention

maps in our visual encoder. As shown in Fig. 4, warmer colors
indicate greater attention allocated to the corresponding region
within the attention mechanism, while cooler colors indicate
lower attention. ISMol effectively extracted molecular structures
by focusing on the spatial information of other atoms or func-
tional groups around the queried area, rather than insignificant
blank areas. Such a feature could potentially make the molecular
image a valuable representation in fields such as chemistry and
biology.

In general, the alignment and fusion of diverse data could
help a model to enhance the comprehension of the data fea-
tures, thereby reducing inductive bias and generalization er-
rors [41]. For an intuitive interpretation of the alignment and
fusion process of the two modalities in the fusion module, an
exemplar molecule was selected randomly, with the SMILES
string “O=[P+](O)c1ccc(Cl)cc1”. The molecule was converted
into an image and input into ISMol along with its SMILES string.
Then, we visualized the attention maps of the different cross-
attention layers in the multimodal fusion module. For a brief
description, we removed the attention scores of the nonsense
patches, and the results were shown in Fig. 5. As the number of
cross-attentive layers increased, the interaction between the two
modalities gradually reinforced and became clearer. Multiple
different vertical lines in the figures show that ISMol indeed
paid more attention to the specific features of the other modality
in the current modality. The complete attention maps can be seen
in Supplementary Fig. S2.

Then, we further studied the results of aligning and fusing
after the fusion module. We used specified SMILES sub-strings
as query terms to calculate the similarity with all patches and
selected those with high similarity for visualization. Table IV
reveals the query results that it was essentially possible to
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Fig. 5. Visualisation of cross-attention maps from the different layers in the multimodality fusion module. (a) is cross-attention visualization in the
SMILES modality. (b) is the visualization of cross-attention in the visual modality.

TABLE IV
VISUALIZATION OF EXAMPLE MOLECULAR IMAGES ALIGNED WITH SMILES SUB-STRINGS

locate the corresponding pixels in the image when using different
SMILES sub-strings for querying. The results indicate that IS-
Mol achieved effective alignment and fusion of information from
both SMILES strings and molecular images. More examples can
be found in Supplementary Table SVI.

Finally, we investigated whether the pixel patches were in-
jected with biochemical knowledge after the interaction with
the SMILES features. A straightforward approach we adopted
was to first cluster (and color) the visual hidden states, and sub-
sequently overlay the clustering results onto the original image.
As the final results are shown in Fig. 6, ViT could distinguish
structural features based on pixels, but failed to separate out the
white background. This drawback would cause ViT to reason
based on blocks of nonsensical pixels, thus severely impairing its
performance [37]. Instead, ISMol was able to discriminate well
white backgrounds and isolate the structures of the molecule
in the image. Meanwhile, the image patches were endowed
with certain chemical structural features rather than just simple
pixels. These results again demonstrated that ISMol not only
effectively integrated information from both sources, but also
provided complementary insights for each other.

G. Discussion

In this work, we place a substantial emphasis on the hypothesis
of information complementarity between molecular images and
SMILES sequences, and we innovatively propose the utilization
of visual knowledge to enhance drug discovery. Conventional
wisdom tends to undervalue molecular images as a represen-
tation primarily due to their explicit information being pro-
jected into Euclidean space, rendering it challenging to harness
effectively. However, it is worth noting that two-dimensional
structural information, encompassing geometric spatial features
such as atomic distances and bond angles, becomes explicit. We
endeavor to confer explicit semantics on this information by
aligning and fusing it with SMILES sequences. This approach
parallels human cognition, where, upon encountering an image,
the visual system captures its structural features and, through
existing cognitive systems, imparts concrete cognitive entities
to the image to achieve a comprehensive understanding of a sub-
ject. To equip our model with alignment and fusion capabilities,
we undertake pretraining on a large-scale dataset. Subsequently,
we fine-tune the model on ADMET datasets and compare its
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Fig. 6. Visualization of patch clusters for images as produced from
ISMol (densely clustered patches). The first column shows the original
images, the second column shows the clustering results of the patches
generated by ViT, and the last column shows the clustering results of
the patches generated by ISMol.

performance with the latest competitive models, showcasing
superior results. Furthermore, we conduct an extensive array
of experiments to substantiate the validity of our approach.

However, we posit that molecular images, as a novel repre-
sentation, are not without their inherent challenges. The primary
issue lies in the fact that simple pixel features lack explicit
chemical information, as evidently illustrated in Fig. 4 on the left
side with the original image. Notably, we employ the clustering
results of the MACCS fingerprint to distill image features. This
process is a clear attempt to imbue pixel features with chemical
significance, prompting us to consider an additional question:
if different fingerprints or explicit chemical knowledge were
used to distill image features, could more explicit chemical
information be conferred upon pixel features, thereby render-
ing structural features within the image explicit? This ques-
tion stands as a subject for future investigation. Furthermore,
molecular images contain nearly 95% blank space [37]. Without
specialized training, models like ViT are susceptible to mak-
ing misjudgments. However, the introduction of a substantial
computational burden by blank areas remains an problem that
is challenging to circumvent. Nevertheless, due to the rapid
advancement in current computility, this problem is gradually
becoming less critical.

IV. CONCLUSION

In this study, we placed emphasis on validating the hypothesis
of complementarity between molecular images and SMILES
strings, and proposed a pre-training model based on the both,

called as ISMol. ISMol performed favorably compared to the re-
cently published seven methods on 14 public ADMET datasets.
In response to the fast-growing chemical databases, we com-
pared the generalizability of different models and found that
ISMol outperformed others. This suggested that ISMol had great
retrospective and prospective capabilities. We performed exper-
iments with the ablation of different inputs and the components
of input. Numerous experiments revealed that the alignment
and fusion of these types of features after pre-training allowed
them to complement each other, which brought a gain in per-
formance improvement. In biological interpretation, we found
the proposed pre-training strategies significantly optimized the
discriminability of ISMol embedding vectors, which is better
than MACCS fingerprints. It indicated that ISMol has robust bi-
ological interpretability. Importantly, we discovered that ISMol
focused on neighboring atoms and bonds in images to extract
molecular structures, and achieved alignment and fusion of the
two types of features through the cross-attention mechanism.
In general, ISMol explored the relationship between molecular
images and SMILES strings and demonstrated promising per-
formance in the field of drug development. In future work, we
will explore the benefits of contrastive learning for molecular
property prediction. Additionally, the consideration of other
modalities of data to enhance the robustness of the model will
be pursued.
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