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Abstract
Cloud-based scientific workflow systems can play an important role in the develop-
ment of cost-effective bioinformatics analysis applications. There are differences in 
the cost control and performance of many kinds of servers in heterogeneous cloud 
data centers for bioinformatics workflows running, which can lead to imbalance 
between operational/maintenance management costs and quality of service of server 
clusters. A task scheduling model that responds to the peaks and valleys of task 
sequencing—the number of tasks that arrive in a given unit of time—is related to 
indicators such as cost saving, load balancing and system performance (average task 
wait time, average response time and throughput). This study proposes a large-scale 
cost-saving and load-balancing scheduling model, called HDCBS, for the optimi-
zation of system throughput. First, queuing theory is used to model each comput-
ing node as an independent queuing system and to obtain the average system wait 
time and average task response time. Then, using convex optimization theory, a task 
assignment solution is proposed with a load-balancing mechanism. The validity 
of the task scheduling model is verified by simulation experiments, and the model 
performance is further validated through a comparison with other frequently used 
scheduling methods. The simulation results show that the credibility of HDCBS is 
greater than 95% in task scheduling.
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1 Introduction

At present, computer science solutions for molecular biology problems are often 
presented in the form of workflows. Cloud-based scientific workflow systems 
can play an important role in the development of cost-effective bioinformatics 
analysis applications. Existing workflow application processes lack effective 
computing resource management capabilities, such as the provided cloud com-
puting environment. Insufficient computational resources destroy the execution 
of workflow applications, wasting time and money. A server cluster in a cloud 
data center can be composed of servers with differing batches, configurations, 
performance and energy consumption. In a heterogeneous cloud, the cost con-
trol and performance of these different servers can vary, which is related to the 
trade-off between operational/maintenance cost and quality of service (QoS). The 
balancing of these two metrics needs to be optimized in heterogeneous cloud data 
centers. A task scheduling model that responds to the peaks and valleys of task 
sequencing [1–3] is related to performance indicators such as cost savings, load 
balancing and system performance (average task wait time, average response time 
and throughput). Traditional task scheduling methods [4–6] simply attempt to 
optimize system throughput or system response time or make load balancing the 
overarching objective while ignoring other factors, such as the server cluster’s 
recognition of task intensity, operation/maintenance management cost control and 
the dynamic adjustment of large-scale cluster computer points in a static schedul-
ing strategy.

In this paper, a large-scale cost saving and load balancing task scheduling 
model (HDCBS) is proposed in order to optimize system throughput, and the 
task scheduling process in a cloud data center is modeled mathematically using 
queuing theory. Each computing node was modeled as an independent M/G/1/∞
(M/M/1/∞ ) queuing system for analysis, and the process of the main schedul-
ing server assigning tasks to computing nodes in a cluster was analyzed. Next 
factors of cost control, average system wait time and average task response time 
were modeled. A task assignment solution with load balancing mechanism was 
then proposed using convex optimization theory, and the feasibility and validity 
of the large-scale task scheduling model were verified by simulation experiments 
on MultiRECloudSim [7], framework for modeling and simulation of cloud com-
puting infrastructures and services. With the actual task sequence as the input, 
the performance of the model was validated by comparing it with frequently-
used scheduling methods. Our contributions in this paper can be summarized as 
follows:

• We propose a task scheduling model to deal with the tradeoff between the 
operation costs and system performance in heterogeneous cloud data centers 
for bioinformatics workflows running.

• We propose an efficient and novel cost savings and load distribution schedul-
ing model based on treating every execution node as an M/G/1/∞(M/M/1/∞ ) 
queuing system for dynamic assignment with variable task arrival rate.
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• We use queuing theory to describe and formulate the target function and solve 
the optimization problem. We also conduct extensive simulation experiment to 
evaluate and validate our method in the end.

2  Related work

Cloud computing technology can hide technical details and make it easier for users 
to build such a responsive environment. Hondo et al. conducted a study on bioinfor-
matics workflows running in an IaaS cloud computing environment, used different 
types of NoSQL database systems to persist provenance data based on the PROV-
DM model [8]. Liu et al. proposed a cloud-based bioinformatics workflow platform 
for large-scale next-generation sequencing analysis, capable of reliable, highly scal-
able execution and fully automated manner of sequencing analyses workflows [9]. 
Abouelhoda et al. [10] proposed the new progress in designing scalable and cost-
effective cloud workflows based on Tavaxy workflow system and emphasized the 
application of genome analysis.

For improving effective computing resource management capabilities in the 
workflow application, Emeakaroha et  al. [11] proposed a workflow optimization 
management method of bioinformatics based on cloud computing. Xie et  al. [12] 
concerned the balance between the cost of storing intermediate data and the comput-
ing costs incurred in regenerating this data when large bioinformatics or other work-
flows are implemented using cloud resources.

Current studies on task scheduling, load balancing of computational nodes and 
system performance optimization in heterogeneous cloud data centers have attracted 
the attention of cloud service providers. Many of these studies have achieved pro-
ductive results. Bai et al. proposed a performance evaluation model for the hetero-
geneous cloud data center. The model consisted of an M/M/1/∞ queuing system of a 
main scheduling server and an M/M/C/∞ queuing system of computing nodes. Key 
technical indicators of the queuing system will be provided later in this study. The 
effectiveness of the performance evaluation model was verified by experiments [13]. 
Jin et al. defined a scheduling model based on task sequence perception to minimize 
the overall delays of data transmission and task execution in geographically distrib-
uted data centers. These researchers also proposed an online heuristic algorithm to 
achieve load balancing and optimize the overall response time of data centers [14]. 
Chen et  al. [15] proposed a cloud load balancing (CLB) mechanism, which uses 
an additional dynamic balancing method to optimize balanced loading performance 
when users log in at the same time. Tripathi et  al. established a non-cooperative 
game model between front-end and terminal proxy servers to represent the load bal-
ancing problems in distributed data centers. In addition, a Nash balancing algorithm 
based on distributed load balancing was proposed to minimize the operational costs 
of data centers [16]. In order to solve the problem of the capacity constraints faced 
by a single cloud data center during peak periods, Panda et al. proposed task sched-
uling and four related algorithms (CZSN, CDSN, CDN and CNRSN) for cross-cloud 
joint load balancing. This proposed solution optimizes the system’s task completion 
time and improves cloud resource utilization [17].
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In addition to the performance analysis of servers in cloud data centers, heter-
ogeneous cloud data centers were modeled using the queuing theory to study the 
factors related to task assignment, energy consumption, load balancing and system 
throughput of computing nodes, thereby optimizing the relevant performance indi-
cators [18–20]. For the scenario of the irregular arrival of tasks in a service cloud 
that changes with time, Yuan analyzed the mathematical relationship between the 
task rejection rate and the service rate provided by service cloud and proposed a 
multi-queue scheduling (MQS) method based on profit maximization. The method 
combined simulated annealing, particle swarm optimization and the new meta-heu-
ristic optimization method of a genetic algorithm, in order to optimize profit and 
throughput by meeting the task response time limit [21].

There are three general disadvantages to the methods proposed by the above 
studies:

• The proposed task scheduling algorithms did not take into account the impact 
of timeliness of task sequence intensity on load balancing. The static state of a 
computing node cluster was taken as the main constraint, which restricted the 
dynamic adjustment based on service intensity and computing node capacity.

• The objectives were uniform. In the task scheduling process, load balancing 
was the focus over optimization of operation/maintenance cost control, which 
resulted in overlooking the effect of system performance.

• Most of the task scheduling models were aimed at the optimization of isomor-
phic computing nodes, which failed to meet the needs of heterogeneous cloud 
data centers and could not be widely applied.

Such task scheduling models could not perceive or adapt to the impact of a compli-
cated, dynamically changing task arrival rate on the task assignment rate of com-
puting nodes. Additionally, they could not meet the optimization requirements for 
operation cost, energy consumption and system performance.

3  A tasks scheduling framework for bioinformatics workflow 
running

In the process of bioinformatics research, there are a lot of computing and services 
requirements for storage, genomic and metagenomics sequencing, data statistics, 
experimental and simulation datasets, and high throughput proteomics. In order to 
accelerate biological research, it is an effective solution by using the technologies of 
virtualization and computing service encapsulation to construct a cloud-based com-
puting platform for bioinformatics workflows running.

The cloud computing platform can meet the needs of computational biology, 
reflected mainly in:

• Storage capacity: The big storage capacity will meet the needs of bioinformat-
ics for large databases, such as genome sequence database, transcriptomics 
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databases, and heterosis-related gene database, and the size of these databases 
is more than 100TB or even 10PB.

• Flexible computing models: In computation-as-a-service, it will adjust com-
putational resources, such as computing nodes, storage capacity, network 
bandwidth, and so on, according to users’ requirements.

• Parallel computing and large-scale data analyses: It can schedule large-scale 
cluster to run heavy duty calculations for high-speed analyses.

• Supporting tools and algorithms: The running environment can support many 
different tools, programming software, and algorithms for different data analy-
ses and users requirements.

We present a cloud-based tasks scheduling service platform for metabolomics 
data analyses, traditional Chinese medicine (TCM) candidates research, gene and 
protein sequences analyses. Some tools, applications and software for compu-
tational biology and bioinformatics which can run in the platform are listed in 
Table 1.

The tasks scheduling framework of the platform is shown as Fig. 1.
As shown in Fig. 1, in the application container layer, all the users’ requirements 

(such as RNA-Seq services, PCA, FCS and K-means, and so on) will be encapsu-
lated and transformed into fine-grained applications. These task sets consist of a 
large number of applications, services, and computing units which is a large-scale 
bioinformatics workflow. The scheduling engine with the core controller-HDCBS 
will assign all the arrival tasks to run in the cloud computing infrastructures for bal-
ancing operational/maintenance management cost control and QoS in heterogeneous 
cloud data centers.

4  Construction of HDCBS

Bioinformatics workflows can be mapped into task sequences for running in a cloud 
computing environment/ cloud data center. In the cloud datacenter, there is a server 
to serve as a task filter and adapter. It analyses the user requests (bioinformatics 
workflows running applications packaged in containers) and transforms them (jobs) 
into arrival tasks with resources require or abandon it. By the task filter and adapter, 
the core node server will get the arrival tasks whose arrival time can be consid-
ered as a Poisson distribution and then assign them to the computing nods. Each 
job contains several subtasks and the service time for each subtask [2, 25, 26] will 
be considered as following an exponential distribution. In this way, the following 
parameters in the model of HDCBS are made.

• Tasks arrive at the core node server according to a Poisson distribution with 
parameter � . That means the tasks arrival rate is �.

• The service times of computing nodes for tasks is considered as an exponential 
distribution with parameter �i . The service rate of a computing node is �i.
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Following the different arrival rate of the task sequence, HDCBS will control the 
core node server to assign tasks to computing nodes with different strategy which 
will contribute for reconfiguring the datacenter by a cycle window time for saving 
costs and resources.

4.1  Logical structure modeling

The task scheduling model for heterogeneous cloud data centers consisted of a 
core node server and m computing nodes to execute delegated tasks. First, the 
core node server undertook the intensity analysis of current task sequence to 
obtain the arrival rate � of system service requests, and on this basis, completed 
the task assignment/task distribution for all m computing nodes in a balanced 
manner, that is, delegating all tasks to each computing node for execution fol-
lowing { �1 , �2,… , �m }. Secondly, according to the process of task execution and 
the characteristics of the computing nodes, each computing node was modeled 
as an independent M/G/1/∞(M/M/1/∞ ) queuing system using queuing theory, 
and its service rate was defined as �i(i = 1, 2,… ,m) according to CPU computing 

Fig. 1  A tasks scheduling framework for bioinformatics workflows running



6120 W. Cai et al.

1 3

capability. This established the logical structure of the task scheduling model for 
heterogeneous cloud data center, as shown in Fig. 2. The main objective of the 
task scheduling model was to acquire the optimal average task response time (or 
average task waiting time) and improve system throughput, while limiting the 
operational costs of servers in heterogeneous cloud data centers and satisfying the 
load balancing requirements of the computing nodes.

4.2  Formal description and theoretical model

Cloud data centers provide service and application operation platforms through 
virtualization technology, the main forms of which are virtual machines (VM) 
and containers, which appear in the resource pool as independent computing 
nodes. In addition, tasks [2, 25, 26] in the task sequence were taken as a sched-
uled small-grained application service, and its granularity was evaluated using 
the number I of instructions contained in the application set (unit: G). Based on 
this application scenario, the service rate �i(i = 1, 2,… ,m) of each computing 
node took the main frequency of its CPU as the computing power, i.e., fi , to cal-
culate the ability of the CPU of computing node Ni to execute instructions (unit: 
GIPS, or billion instructions per second), which was taken as the reference point.

When studying the basic characteristics of task sequence [1–3, 25, 26], the 
time of service requests (task sequence) arriving at the cloud data center was 
assumed to be 1∕� of independent random exponential distribution, that is, the 
arrival rate of tasks was Poisson distribution with � as its parameter. The param-
eters of the theoretical task scheduling model that integrated cost saving and load 
balancing are shown in Table 2.

According to queuing theory [27], the time of service requests (tasks) arriving 
in a cloud data center are independently and identically distributed, and any com-
puting node Ni is an M/G/1/∞(M/M/1/∞ ) queuing system. Assuming that the ser-
vice intensity of computing node is 𝜌i = 𝜆i∕𝜇i, 𝜆i < 𝜇i , and that the service time 
is general distribution G, the average response time Ws_i and the average waiting 
time Wq_i of each computing node are:

Fig. 2  Logical structure of task scheduling model for heterogeneous cloud data center
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According to the above average response time and average waiting time of comput-
ing nodes, for the M/G/1/∞ queuing system whose number of computing nodes is 
m, the service rate is �i (i = 1, 2,… ,m) and the probability of each task assigned to 
node Ni is �i , the average response time Ws and the average waiting time Wq of the 
system are:

(1)Ws_i =
1

�i

+
�iE(T

2
n
)

2(1 − �i)
=

I

fi
+

�iE(T
2
n
)

2
(
1 −

�iI

fi

) ,

(2)Wq_i =
�iE(T

2
n
)

2(1 − �i)
=

�iE(T
2
n
)

2
(
1 −

�iI

fi

) ,

(3)Ws =

m�
i=1

piWs_i =

m�
i=1

pi

⎛⎜⎜⎜⎝
I

fi
+

�iE(T
2
n
)

2
�
1 −

�iI

fi

�
⎞⎟⎟⎟⎠
=

m�
i=1

�i

�

⎛⎜⎜⎜⎝
I

fi
+

�iE(T
2
n
)

2
�
1 −

�iI

fi

�
⎞⎟⎟⎟⎠
,

Table 2  Meanings of parametric symbols in cost savings and load balancing scheduling model

Symbol Description and meaning

m The number of computing nodes in data center, i.e., the number of servers in data center
� The arrival rate of service requests, i.e., the number of tasks entering the system within a unit 

time

I The average number of instructions in the instruction set of service application, representing 
the granularity of tasks

Ni The mark number of the computing node in the server cluster, representing the ith computing 
node, where i ∈ {1, 2,… ,m}

fi The number of instructions executed by the Ni CPU core of computing node per second (unit: 
GIPS)

ci The operation cost coefficient of computing node Ni , obtained by normalizing each type of 
computing node with the computing power level, energy consumption, network, storage and 
memory of the computing node that has the highest cost in the server cluster as the reference

�i The number of tasks executed by computing node Ni in unit time, i.e., the service rate of 
computing node Ni , where �i = 1/(I∕fi ) = fi∕I

�i Arrival rate of tasks delegated to compute node Ni where � = �1 + �2 +⋯ + �m

�i The service intensity of computing node, 𝜌i = 𝜆i∕𝜇i, 𝜆i < 𝜇i

pi Probability of core server assigning a task to computing node Ni where �i = �pi and 
∑m

i
pi = 1

Tn The time required for the nth task in the task sequence to leave the system and to execute the 
next task (i.e., the n + 1th task) in the computing node



6122 W. Cai et al.

1 3

Because the operational/maintenance management costs of each type of computing 
node differ in terms of computing power, energy consumption, network and storage, 
the cost is a function of the above-mentioned factors. (the function can be obtained 
by statistical analysis in practical application, but no in-depth analysis is performed 
here because of space limitations.) In this study, computing power (i.e., service rate 
�i ) is the sole influencing factor in cost control. When selecting or starting a com-
puting node, the cost Cti(�i) can be defined as:

The cost function Fc(�) of the whole system can be defined as:

4.3  Task scheduling target model

Based on the above analysis and definitions, the task scheduling model for hetero-
geneous cloud data centers with computing node size m is a scheduling mecha-
nism that can not only realize load rebalancing during the process of task assign-
ment, but can also achieve cost savings and good system performance (average 
response time or average waiting time of tasks). Accordingly, the target model 
with parameters �, fi, I, ci,m can be defined as:

Definition 1 The objective function min(Obs(�) ) of average task response time 
with cost saving and system optimization is:

(4)Wq =

m�
i=1

piWq_i =

m�
i=1

pi

⎛
⎜⎜⎜⎝

�iE(T
2
n
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�
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�iI
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�
⎞
⎟⎟⎟⎠
=

m�
i=1

�i

�

⎛
⎜⎜⎜⎝

�iE(T
2
n
)

2
�
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�iI
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�
⎞
⎟⎟⎟⎠
,

(5)Cti(�i) = pici�i =
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�
ci�i, i ∈ {1, 2,… ,m},
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Cti(�i) =

m∑
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�
ci�i =

m∑
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�icifi
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,
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� +
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I

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠
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(7-1)s.t.

m∑
i=0

�i = �,

(7-2)�i ≥ 0, ∀i ∈ {1, 2,…m},
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Definition 2 The objective function min(Obq(�) ) of average task waiting time with 
cost saving and system optimization is:

The above two objective functions were attained by solving {�1, �2,… , �m} on the 
premise of known parameters �, fi, I, ci,m . Thus, the scheme �i of the core node server 
assigning tasks to each computing node was obtained, and a task scheduling method 
that takes into account cost savings and load balancing was realized.

5  Model solution and verification

5.1  Target model solution

Expanding Eq. (7) yields the sum of n terms of Obs(�) . Each term corresponds to an 
objective function of a computing node with task intensity �i:

Lemma 1 Identifying the optimal solution of Eq.  (7) in Definition 1 is a convex 
optimization problem.

Proof In Definition 1, �, fi, I, ci,m are known parameters. Therefore, for each item 
Obs_i(�i) in Eq.  (7), the first-order and the second-order derivatives of �i can be 
obtained:

(7-3)fi∕I − 𝜆i > 0, ∀i ∈ {1, 2,…m},

(8)min
�,fi,I,ci,m

⎛
⎜⎜⎜⎝
Obq(�) = Wq + Fc(�) =

m�
i=1

�i

�

⎛
⎜⎜⎜⎝

�iE(T
2
n
)

2
�
1 −

�iI

fi

� +
cifi

I

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠
,

(8-1)s.t.

m∑
i=0

�i = �,

(8-2)�i ≥ 0, ∀i ∈ {1, 2,…m},

(8-3)fi∕I − 𝜆i > 0, ∀i ∈ {1, 2,…m},

(9)
m∑
i=1

Obs_i(�i) =

m∑
i=1

(Ws_i + Fc(�i)),
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From the constraint set of Eq. (7), �i ≥ 0 , fi∕I − 𝜆i > 0 and E(T2
n
) = c > 0 , it was 

obtained that IE(T2
n
)𝜆i(2fi∕I − 𝜆i) > 0 . Further analysis of Eqs. (9) and (10) showed 

that objective function Ob�
s_i
(𝜆i) > 0 and Ob��

s_i
(𝜆i) > 0 , that is, the first-order deriva-

tive Ob�
s_i
(�i) and the second-order derivative Ob��

s_i
(�i) of Obs_i(�i) are always greater 

than 0 in the solution interval, which easily proves that Obs_i(�i) is a convex function 
in the solution interval.

Equation (7) in the objective model is the sum of m terms of Obs_i(�i) , and each 
term of Obs_i(�i) is a convex function in the solution interval. As “the function com-
posed of the sum of finite-term convex functions is still a convex function,” [28] Eq. 
(7) and all its constraints are convex functions in the solution interval. According to 
convex optimization theory, the optimal solution of Eq. (7) is essentially a convex 
optimization problem with a real number of linear multiple equality constraints and 
inequality constraints, and the proof process is omitted. Similarly, the optimal solu-
tion of Eq. (8) is also a convex optimization problem, and the proof process is omit-
ted here as well.

Lemma 1 is proved.   ◻

Lemma 2 Identifying the optimal solution of Eq. (8) in Definition 2 is a convex 
optimization problem.

Proof Similar to the proof of Lemma 1, identifying the optimal solution of Eq. (8) is 
also a convex optimization problem.   ◻

The task scheduling of a cloud data center is classifiable [2, 25, 26]. It can be clas-
sified into I/O, intensive computing, time-consuming and short tasks. Therefore, the 
program instruction sets contained in tasks can also be classified accordingly, so that 
the execution of tasks in computing nodes can satisfy the negative exponential distri-
bution with the parameter �i . In this case, the computing nodes can be modeled as an 
M/M/1/∞ queuing system. Thus, in Eqs. (1) and (2), E(T2

n
) = 2 , and the min(Obs(�) ) 

of objective function in Definition 1 can be transformed as:

(10)

Ob�
s_i
(�i) =

d

d�i

�i

�

⎛
⎜⎜⎜⎝
I

fi
+

�iE(T
2
n
)

2(1 −
�iI

fi
)

+
cifi

I

⎞
⎟⎟⎟⎠
=

I

�fi

+
IE(T2

n
)�i(2fi∕I − �i)

2�fi(fi∕I − �i)
2

+
cifi

�I
,

(11)Ob��
s_i
(�i) =

d2(Obsi(�i))

d�i
=

E(T2
n
)fi∕I

�(fi∕I − �i)
3
,

(12)min
�,fi,I,ci,m

(
Obs(�) = Ws + Fc(�) =

m∑
i=1

�i

�

(
1

fi∕I − �i

+
cifi

I

))
,
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Due to space limitations, only the min(Obs(�) ) of objective function in Eq.  (11), 
i.e., the convex optimization problem with real number linear inequality constraints, 
was solved here. According to convex optimization theory, the problem satisfied 
Karush-Kuhn-Tucker (KKT) conditions and was solved using the Lagrange multi-
plier method to obtain the optimal solution.

Assuming the Lagrange multipliers are �, �i, �i , the corresponding Lagrange func-
tion of Eq. (12) is:

According to the KKT conditions and Eqs. (12) and (13), the following conditions 
can be obtained:

The △

△�i
L(�i, �, �i, �i) in (14) is:

(12-1)s.t.

m∑
i=0

�i = �,

(12-2)�i ≥ 0, ∀i ∈ {1, 2,…m},

(12-3)fi∕I − 𝜆i > 0, ∀i ∈ {1, 2,…m},

(13)

L(�i, �, �i, �i) =

(
m∑
i=1

Obs_i(�i)

)
− �

(
m∑
i=1

�i − �

)

−

m∑
i=1

�i�i −

m∑
i=1

�i

(
fi

I
− �i

)
,

(14)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

△

△𝜆i
L(𝜆i, 𝛽, 𝛾i, 𝛿i) = 0∑m

i=0
𝜆i − 𝜆 = 0

𝜆i ≥ 0, ∀i ∈ {1, 2,…m}
fi

I
− 𝜆i > 0, ∀i ∈ {1, 2,…m}

𝛽(
∑m

i=1
𝜆i − 𝜆) = 0

𝛾i𝜆i = 0, ∀i ∈ {1, 2,…m}

𝛿i(
fi

I
− 𝜆i) = 0, ∀i ∈ {1, 2,…m}

𝛽, 𝛾i, 𝛿i ≥ 0, ∀i ∈ {1, 2,…m}

,

(14-1)

△

△�i
L(�i, �, �i, �i) =

d

d�i

�i

�

⎛
⎜⎜⎜⎝
I

fi
+

�iE(T
2
n
)

2(1 −
�iI

fi
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+
cifi

I

⎞
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−
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d(
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d
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�
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��

d(�i)
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The equations in (14) are solved using convex optimization theory. Because 
�i(

fi

I
− �i) = 0 and fi

I
− 𝜆i > 0 , it can be obtained that �i = 0 . According to Eq. (13), 

the corresponding solution expression of �i(�) is:

According to Eq.  (15) and constraint 
∑m

i=0
�i − � = 0 , the value of variable � can 

be obtained, and the task assignment (task arrival rate �i){�1, �2,… , �m} of each 
computing node can be obtained. Thus, the optimal solution of Eq. (11) in objective 
function is obtained.

Next, the monotonicity of Eq.  (14) was analyzed, because 𝜆�
i
(𝛽) > 0 and 

𝜆��
i
(𝛽) < 0 , �i(�) were strictly monotone increasing functions. As variable 

� ≥
1+ci(fi∕I)

2

�fi∕I
 and 

∑m

i=0
𝜆i < 𝜆 , the value of � in interval [0,+∞) under the condition 

of �∑m

i=0
𝜆i − 𝜆� < 𝜀 was obtained through an approach using binary search. The 

pseudocode of the corresponding algorithm is:

5.2  Experimental verification

To verify the validity and feasibility of HDCBS for heterogeneous clouds, Mat-
Lab14.0 was used to generate a task sequence with arrival time satisfying inde-
pendent Poisson distribution � , which was then submitted to the CloudSim frame-
work to process the service requests of the task sequence. The actual experimental 
data were verified and compared with the solution data of objective model. The 
experiment used two Dell PowerEdge T720s (dual Xeon 6-core E5-2630 2.3Gb 
CPUs, for a total of 12 CPU cores). Based on the prices of different servers in the 

(15)𝜆i(𝛽) =

⎧
⎪⎨⎪⎩

fi

I
−

�
fi∕I

𝛽𝜆−cifi∕I
, 𝛽 ≥

1+ci(fi∕I)
2

𝜆fi∕I

0, 𝛽 <
1+ci(fi∕I)

2

𝜆fi∕I

,
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cloud market, we present a cost coefficient for each computing node according to 
its CPU, memory, storage and network. The settings in the experiments are shown 
in Table 3.

The two objectives of the experiment were: (1) to obtain task assignment 
schemes {�1, �2,… , �m} for each computing node by solving the objective model; 
(2) to obtain the calculated average response time based on the objective model 
and the actual response time used to execute the task sequence using MultiRE-
CloudSim [7], which were then compared to analyze the credibility of the perfor-
mance indicator.

Experimental parameters and configuration instructions were as follows:

• Task sequence set: Taskk( Ik, tk_a, tk_o ), k ∈ {1, 2,… , 106} . Where Ik, tk_a, tk_o 
denotes the instruction set size of the k th task (the number of instructions, the 
average number of instructions in the instruction set is 1 Giga, i.e., I = 1 Giga); 
tk_a denotes the time when the instruction was assigned to computing node by 
the core server; tk_o denotes the time when the task was completed and left the 
system. Accordingly, the system response time of task Taskk is tk_o - tk_a , and the 
task sequence set size is 106 . The mean response time of the system Ws can be 
calculated as average(tk_o − tk_a)

• Computing node cluster: In the experiment, two clusters of nodes (VMs or 
containers) were configured on the MultiRECloudSim [7] platform: SNT1 and 
SNT2. Size m = 5. Each computing node was equipped with a CPU of different 
computing power, numbered N#i(1 ≤ i ≤ 5) , and its configuration and cost coef-
ficient ci(1 ≤ i ≤ 5) are shown in Table 3.

Validation of the task scheduling model is conducted as follows.
According to experimental parameters and configuration instructions, in 

order to reduce the possibility of accidental error in the experiment, Mul-
tiRECloudSim [7] was used to independently simulate task intensity 
� = 5 + 0.5i, i ∈ {0, 1, 2,… , 20} on cluster SNT1 and SNT2 for 30 times with 
the configuration listed in Table  3. The average task response time of each 
cluster under the task scheduling strategy based on HDCBS for heterogeneous 
cloud was recorded. A 95% confidence interval (CI) of the average response 
time was obtained using the sample data obtained in MultiRECloudSim [7] 

Table 3  Configurations of VMs 
in SNT1 and SNT2

Node ID (VM) Cluster SNT1 Cluster SNT2

ci fi(GIPS) ci fi(GIPS)

N#1 0.1253 2.37 0.1732 3.25
N#2 0.1762 2.61 0.1454 3.42
N#3 0.2278 3.81 0.2102 4.26
N#4 0.2652 4.11 0.2423 4.46
N#5 0.3255 5.15 0.3302 5.84
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experiment, which was then compared with the results calculated using the 
objective model, i.e., the scheduling model to validate the model. The experi-
mental results obtained using the simulation platform and the calculated results 
� ∶ {5.5, 10.5, 15} of HDCBS are shown in Table 4.

Comparison results between the experimental data and HDCBS data at task 
intensity � = 5.5 + 0.5i, i ∈ {0, 1, 2,… , 20} and 95% confidence interval (95% CI) 
are shown in Fig. 3. (The sub-graph in Fig. 3 is the magnified effect figure of the 
corresponding position.)

Table 4 and Fig. 3 show the average response time obtained from 30 independ-
ent experiments on MultiRECloudSim [7] with two cluster configurations in Table 4 
and the 95% confidence interval of HDCBS calculation results. By analyzing the 
average task response time comparison table Ws , i.e., Table 4, and the data compari-
son analysis chart, it was found that all results obtained using the proposed HDCBS 
for heterogeneous cloud fall within the 95% confidence interval of the experimental 
results, which proves that the credibility of the proposed HDCBS is greater than 
95%.

Table 4  The simulations and analytical results of Ws

� Cluster No. Ws 95% confidence interval (95% C.I) HDCBS value

Mean Lower Upper

5.5 SNT1 0.576635945 0.56432199 0.588949901 0.587620328
5.5 SNT2 0.450046853 0.435172625 0.46492108 0.452477279
10.5 SNT1 0.704930066 0.690911117 0.718949015 0.709056916
10.5 SNT2 0.57279 0.559335657 0.586244344 0.564034666
15 SNT1 1.911687857 1.900311326 1.923064388 1.915436249
15 SNT2 0.868892425 0.854508464 0.883276386 0.868347777

Fig. 3  Comparison of 95% confidence interval between the calculation results of HDCBS and that of 
mean response time
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6  Efficiency and performance comparison and experimental analysis

6.1  Impacts of ci and fi on Ws

ci and fi represent the current state and the processing capacity of the data center 
server cluster, both of which are known parameters in a fixed computing node clus-
ter. To study the influence of ci and fi on the average system response time Ws , three 
other clusters (note: the total computing processing capacity is the same, that is, 
Σfi = 18.05 ) with different configurations were used in the experiment to respond to 
different task intensities. The configuration of the corresponding clusters is shown in 
Table 5.

The total computing processing capacity of all clusters is the same. fi of cluster 
SNT3 is the same as that of SNT1, but ci is different between the two. fi and ci of 
cluster SNT4 are different from those of SNT1. The configuration of all VMs in 
cluster SNT5 is the same. Using the configurations in Tables  3 and 5, the corre-
sponding computing node clusters were constructed on MultiRECloudSim [7]. Task 
sequences with computing node response intensity of 0.5 ≤ � ≤ 18 were assigned 
using our proposed algorithm. The average task response time Ws of each cluster 
was determined, and the obtained experimental data were compared and analyzed.

(1) ci ≠ 0

The average system response time Ws of clusters SNT1 and SNT3-SNT5 when 
ci ≠ 0 and the task response intensity is 0.5 ≤ � ≤ 18 is shown in Fig. 4.

Ws was further compared and analyzed. With cluster SNT1 as the comparison 
benchmark, the percentage of Ws performance improvement (i.e., 
WsSNT1−WsSNTi

WsSNT1

× 100% ) of SNT2-SNT5 in response to different task intensities is 
shown in Fig. 5.

According to Figs. 4 and 5, because both the time performance and the total 
cost factors were taken into account in the objective function, ci and fi affected 
the task allocation by the algorithm to each computing node, thus affecting 
the Ws of the cluster. SNT1 and SNT3 have the same fi value but different ci 
values; as shown in Figs.  4 and 5, when the task response intensity � ∈ (0, 6] , 
WsSNT3 is shorter than WsSNT1 , the percentage of improvement is between 1.5% 
and 11.4%, with the average percentage of improvement at 5.4%. When � = 1.5 , 
the percentage of improvement is 11.4%. When � ∈ (6, 18.05] , the percentage of 

Table 5  Configuration information for the VMs for three clusters

Node ID (VM) Cluster SNT3 Cluster SNT4 Cluster SNT5

ci fi(GIPS) ci fi(GIPS) ci fi(GIPS)

N#1 0.1852 2.37 0.136 2.5 0.224 3.61
N#2 0.1364 2.61 0.215 2.9 0.224 3.61
N#3 0.2012 3.81 0.221 3.25 0.224 3.61
N#4 0.2322 4.11 0.255 4.2 0.224 3.61
N#5 0.3125 5.15 0.3215 5.2 0.224 3.61
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improvement is decreased to less than 0.5%, and as the task intensity increases, 
the performance improvement becomes minimal. The total computing processing 
capacity of SNT1 is the same as that of SNT4, but the values of fi and ci are dif-
ferent. When � = 1.5 , WsSNT4 is improved by 13.5% compared with WsSNT1 , but 
overall WsSNT1 is better than WsSNT4 ; especially when 𝜆 > 5.5 , WsSNT1 < WsSNT4 . 
For SNT5 with isomorphic configuration, when 0 < 𝜆 < 11 , WsSNT5 < WsSNT1 , the 
average improvement is 24.3%. However, when 11 < 𝜆 < 18.05 , the processing 
capacity of SNT1 is greater than that of SNT5, that is WsSNT1 < WsSNT5.

(2) ci = 0

Fig. 4  Ws of each cluster when ci ≠ 0

Fig. 5  Improvement percentage of Ws of clusters SNT3, SNT4 and SNT5 compared with cluster SNT1
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The performance of the HDCBS model in computing node clusters with differ-
ent configurations was studied in terms of the performance of the system, i.e., when 
ci = 0 . The corresponding Ws curves and performance comparison curves of clus-
ters SNT1, SNT4 and SNT5 obtained in task sequence experiments with intensity of 
0.5 < 𝜆 < 18 are shown in Figs. 6 and 7.

According to Figs.  6 and 7, when cost is not taken into consideration, 
for clusters with the same computing power but with different configura-
tions of the nodes, the average system response time Ws obtained using the pro-
posed algorithm is different in response to the task sequence with the same 

Fig. 6  Ws of SNT1, SNT4 and SNT5 when ci ≠ 0

Fig. 7  Improvement percentage of Ws of clusters SNT4 and SNT5 compared with cluster SNT1 when 
ci ≠ 0
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intensity. SNT1 and SNT4 are heterogeneous computing node clusters, the 
Ws of which are similar overall, and the average percentage of improvement 
average((WsSNT1 −WsSNT4)∕WsSNT1 × 100%) ≈ −0.5% . The performance of iso-
morphic cluster SNT5 is the lowest among the three; WsSNT1 < WsSNT5 . Overall, 
WsSNT1 is improved by 7.19% in average compared with WsSNT5 . Particularly in task 
sequences with low intensity � ∈ (0, 4] , the average improvement percentage of 
WsSNT1 is higher than 10%, with a maximum of 32.4%.

Based on the above analysis of ci ≠ 0 and ci = 0 , it can be concluded that, based 
on the proposed HDCBS, the proper configuration should be selected for the com-
puting node cluster to respond to task sequences with different characteristics 
in order to obtain faster time performance and to lower costs. With both cost and 
time performance taken into account, the cluster of isomorphic systems should be 
selected to respond to low-intensity task sequences and that the cluster of heteroge-
neous systems should be selected to respond to high-intensity task sequences. When 
only considering the time performance of the system, a reasonable heterogeneous 
system cluster should be configured to handle task sequences with different intensi-
ties in order to increase system performance.

6.2  Performance and efficiency comparison with commonly used algorithms

In order to analyze and evaluate the efficiency and performance of HDCBS in the 
heterogeneous cloud, HDCBS was compared with two widely used representative 
algorithms: SRPT [29] and proportional fair scheduling mechanism (PF) [30, 31]. 
The efficiency and performance of the task scheduling scheme based on objective 
model and the currently commonly used allocation schemes (allocation by aver-
age, allocation by computing power) were comparatively analyzed in terms of cost 
control.

Using the configuration of cluster SNT1 in Table 2, the results of task assignment 
under the HDCBS, SRPT and PF mechanisms with task intensity � ∈ [0.5, 18) were 
compared in terms of efficiency and performance, i.e., average task response time, 
cost of node in unit time and target cost that includes cost savings. The results are 
shown in Figs. 8, 9 and 10. (The sub-graphs are the magnified effect figures of the 
corresponding positions.)

In an SRPT scheduling strategy, because only the response time of each node 
was considered while the cost of each node was not taken into account and the 
shortest response time was prioritized, the tasks were assigned according to the 
response time of each node. In the PF mechanism, based on the computing power 
of nodes, tasks were assigned evenly according to the proportion of computing 
power in the cluster. In the proposed HDCBS, the number of tasks assigned to 
each computing node was controlled with the goal of comprehensive efficiency 
and performance, cost savings and rapid response time. By analyzing the corre-
sponding efficiency and performance indicators in Figs. 8, 9 and 10, it was found 
that SRPT and PF are better than HDCBS in average task response time, but 
HDCBS is the best in cost of unit time and target cost that combines cost savings. 
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In particular, the performance of HDCBS in node cost saving is highest when 
low- and medium-intensity � ∈ (0, 7] , that is, when service intensity of computing 
node cluster � ≤ 40%.

Equation (16) is used to calculate the efficiency and performance improvement of 
the HDCBS than the SRPT and PF:

where TvalueA(A = {SRP, PF}) is the target value of Eq.  (7). The target value of 
Eq. (7) and the improvement percentage values of HDCBS among of the three algo-
rithms are shown in Table 6.

(16)Iv =
TvalueA − TvalueHDCBS

TvalueHDCBS
∗ 100%, A = {SRP, PF},

Fig. 8  Comparison of mean response times between the three strategies

Fig. 9  Comparison of node cost in unit time ($/s) between the three strategies
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Compared with the SRPT and PF algorithms, HDCBS improves efficiency and 
performance by more than 10% and 5%, respectively, in processing task sequences 
within this intensity range, which can be seen from the efficiency and performance 
improvement percentage comparison chart in Fig. 11.

From the values shown in Table 6 which is the smaller the best it is and the curve 
in Fig. 11, it can be observed that compared with the performance and efficiency 
improvement in SRPT and PF, the average savings is ≥ 50% relative to target cost 
that takes into account cost savings in HDCBS when the cluster service intensity is 
at medium and low intensity, i.e., � ∈ (0, 7] and 

∑m

i=1
fi = 18.05 . This feature can be 

used to guide the selection or dynamic assembly of server clusters with correspond-
ing service capabilities 

∑m

i=1
fi in heterogeneous cloud data centers to respond to the 

appropriate task intensity, so as to achieve a better performance to efficiency ratio.
The task assignment rate of HDCBS to each computing node in cluster SNT1 

under differing task intensities is shown in Fig. 12. When the cluster responded to 
low task intensity, tasks were assigned to computing nodes according to cost coef-
ficient. Nodes with high cost coefficients were dormant at low task intensity. With 

Fig. 10  Comparison of target cost that combining cost savings between the three strategies

Table 6  The target value and 
the improvement percentage 
of HDCBS among of the three 
algorithms

� HDCBS SRPT PT

0.5 Tvalue 0.814130469 1.891378742 1.300064597
0.5 Iv 0 132.32% 59.69%
3.5 Tvalue 1.14359085 1.60246021 1.358806924
3.5 Iv 0 40.13% 18.82%
6.5 Tvalue 1.371733023 1.544372357 1.448064745
6.5 Iv 0 12.59% 5.565%
14 Tvalue 2.233921289 2.237231259 2.249732214
14 Iv 0 0.1482% 0.7078%
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the increase in task intensity, the service intensity of nodes with strong service 
capability was increased (i.e., the amount of assigned tasks gradually increased) 
to ensure the optimal target cost that takes into account cost savings. As shown 
in Fig. 13, SRPT mainly assigns tasks to computing nodes with the strongest pro-
cessing capacity with the shortest task as priority. At this point, computing nodes 
with low processing capacity are in a dormant state. The operation and mainte-
nance costs of computing nodes with low processing power are usually small, 
which inevitably leads to SRPT being a higher cost approach than HDCBS.

Fig. 11  Efficiency and performance improvement of HDCBS relative to SRPT and PF

Fig. 12  Task assignment rate of each computing node in HDCBS
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When the service intensity reached the limit of the cluster’s processing capacity 
(i.e., the task intensity was close to the service capacity of the cluster), the number of 
assigned tasks was close to the fair task scheduling mechanism (i.e., the task assign-
ment was based on the proportion of the node’s service capacity in the cluster).

7  Conclusions

In the development of cost-effective bioinformatics analysis applications, bioinfor-
matics workflows are mapped into task sequences to run in the cloud data center. 
Task scheduling in large-scale server clusters in heterogeneous cloud data centers 
is a topic of much research. In this study, to balance operational/maintenance man-
agement cost control and QoS in heterogeneous cloud data centers, HDCBS was 
proposed. The goal was to find the most appropriate task assignment for each node 
in order to obtain the optimal target cost, which takes into account cost savings by 
controlling the task assignment of computing nodes, based on the synthetic consid-
eration of the impacts of cluster service capability 

∑m

i=1
fi , cost of each node ci , task 

granularity I and task sequence intensity � on cost savings, average task response 
time and load balancing.

First, each computing node was modeled as an independent M/G/1/∞ (M/M/1/∞ ) 
queuing system. On this basis, the mathematical model of HDCBS was constructed 
and analyzed, and an algorithm for solving the objective model was proposed. 
Finally, through the simulation experiment of CloudSim, the confidence in the reli-
ability and feasibility of HDCBS was proved to be more than 95%. In addition, a 
comparative analysis of HDCBS with SRPT and PF showed that its performance 
and efficiency are the highest among the three.

In this study, a scheduling model that takes into account cost savings and load 
balancing was proposed for large-scale server clusters in heterogeneous cloud 
data centers. In practice, our scheduling method can be used general for cloud 

Fig. 13  Task assignment rate of each computing node in SRPT
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computing datacenter and also be applied to fine-granularity applications, such 
as traffic flow scheduling [32–35] and resource allocation service computing [36, 
37]. Future work should focus on how to dynamically build the most suitable 
server cluster to obtain the optimal cost and highest QoS corresponding to the 
task sequence intensity. This task is both important and challenging.
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